Двс принцип действия: Устройство современного двигателя внутреннего сгорания

Содержание

Устройство и принцип действия двухтактного двигателя внутреннего сгорания

    Многие из нас ездят на мотороллерах, но вот как устроен и работает двигатель внутреннего сгорания (далее ДВС), который приводит в движение Вашу двухколесную технику, знает не каждый. А вот хорошо зная все принципы работы ДВС, Вы сможете быстро и правильно диагностировать его неполадки. Да и вообще, в ознакомительных целях знание принципов работы не помешает.
    Вообще-то существует два основных типа двигателей: двухтактные и четырехтактные. Практически на каждом мотороллере, особенно до 2000 года выпуска, установлен двухтактный двигатель. В двухтактных двигателях все рабочие циклы (процессы впуска топливной смеси, выпуска отработанных газов, продувки) происходят в течении одного оборота коленвала за два основных такта. У двигателей такого типа отсутствуют клапаны (как в четырехтактных ДВС), их роль выполняет поршень, который при своем перемещении закрывает впускные, выпускные и продувочные окна. Поэтому они более просты в конструкции.

    Мощность двухтактного двигателя при одинаковых размерах цилиндра и частоте вращения вала теоретически в два раза больше четырехтактного за счет большего числа рабочих циклов. Однако неполное использование хода поршня для расширения, худшее освобождение цилиндра от остаточных газов и затраты части вырабатываемой мощности на продувку приводят практически к увеличению мощности только на 60…70%.
    Итак, рассмотрим конструкцию двухтактного ДВС, показанную на рисунке 1:
    Двигатель состоит из картера, в который на подшипниках с двух сторон установлен коленчатый вал и цилиндра. Внутри цилиндра движется поршень — металлический стакан, опоясанный пружинящими кольцами (поршневые кольца), вложенными в канавки на поршне. Поршневые кольца не пропускают газов, образующихся при сгорании топлива, в промежутке между поршнем и стенками цилиндра. Поршень снабжен металлическим стержнем — пальцем, он соединяет поршень с шатуном. Шатун передаёт прямолинейное возвратно-поступательное движение поршня во вращательное движение коленчатого вала.
Далее уже, в частности на мотороллере, вращательное движение передается на вариатор, принцип работы которого описан в статье: Устройство и принцип работы вариатора.
    Смазка всех трущихся поверхностей и подшипников внутри двухтактных двигателей происходит с помощью топливной смеси, в которое подмешано необходимое количество масла. Из рисунка 1 видно, что топливная смесь (желтый цвет) попадает и в кривошипную камеру двигателя (это та полость, где закреплен и вращается коленчатый вал), и в цилиндр.  Смазки там нигде нет, а если бы и была, то смылась топливной смесью. Вот по этой причине масло и добавляют в определенной пропорции к бензину. Тип масла используется специальный, именно для двухтактных двигателей. Оно должно выдерживать высокие температуры и сгорая вместе с топливом оставлять минимум зольных отложений.
    Теперь о принципе работы. Весь рабочий цикл в двигателе осуществляется за два такта.
Такт сжатия.
    1. Такт сжатия.  Поршень перемещается от нижней мертвой точки поршня (в этом положении поршень находится на рис. 2, далее это положение называем сокращенно НМТ) к верхней мертвой точке поршня (положение поршня на рис.3, далее ВМТ), перекрывая сначала продувочное 2, а затем выпускное 3 окна. После закрытия поршнем выпускного окна в цилиндре начинается сжатие ранее поступившей в него горючей смеси. Одновременно в кривошипной камере 1 вследствие ее герметичности и после того как поршень перекрывает продувочные окна 2, под поршнем создается разряжение, под действием которого из карбюратора через впускное окно и открывающийся клапан поступает горючая смесь в кривошипную камеру.
    2. Такт рабочего хода. При положении поршня около ВМТ сжатая рабочая смесь (1 на рис. 3) воспламеняется электрической искрой от свечи, в результате чего температура и давление газов резко возрастают. Под действием теплового расширения газов поршень перемещается к НМТ, при этом расширяющиеся газы совершают полезную работу. Одновременно, опускаясь вниз, поршень создает высокое давление в кривошипной камере (сжимая топливо-воздушную смесь в ней). Под действием давления клапан закрывается, не давая таким образом горючей смеси снова попасть во впускной коллектор и затем в карбюратор.
    Когда поршень дойдет до выпускного окна (1 на рис. 4), оно открывается и начнется выпуск отработавших газов в атмосферу, давление в цилиндре понижается. При дальнейшем перемещении поршень открывает продувочное окно (1 на рис. 5) и сжатая в кривошипной камере горючая смесь поступает по каналу (2 на рис. 5), заполняя цилиндр и осуществляя продувку его от остатков отработавших газов.
    Далее цикл повторяется.

    Стоит упомянуть о принципе зажигания. Так как топливной смеси нужно время для воспламенения, искра на свече появляется чуть раньше, чем поршень достигает ВМТ. В идеале, чем быстрей движения поршня, тем раньше должно быть зажигание, потому-что поршень от момента искры быстрее доходит до ВМТ.  Существуют механические и электронные устройства, меняющие угол зажигания в зависимости от оборотов двигателя.

Практически у мотороллеров до 2000 г.в. таких систем не было и угол опережения зажигания был установлен в расчете на оптимальные обороты. На некоторых же скутерах, например Honda Dio ZX AF35, установлен электронный коммутатор с динамическим опережением. С ним двигатель развивает больше мощности.

    Наглядно просмотреть работу двухтактного ДВС можно на этом ролике:

Двигатель внутреннего сгорания — это… Что такое Двигатель внутреннего сгорания?

Дви́гатель вну́треннего сгора́ния (сокращённо ДВС) — это тип двигателя, тепловой машины, в которой химическая энергия топлива (обычно применяется жидкое или газообразное углеводородное топливо), сгорающего в рабочей зоне, преобразуется в механическую энергию.

Несмотря на то, что двигатель внутреннего сгорания относится к относительно несовершенному типу тепловых машин (громоздкость, сильный шум, токсичные выбросы и необходимость системы их отвода, относительно небольшой ресурс, необходимость охлаждения и смазки, высокая сложность в проектировании, изготовлении и обслуживании, сложная система зажигания, большое количество изнашиваемых частей, высокое потребление горючего и так далее

), благодаря своей автономности (используемое топливо содержит гораздо больше энергии, чем лучшие электрические аккумуляторы), ДВС очень широко распространены, — например, на транспорте.

История создания

В 1799 году французский инженер Филипп Лебон открыл светильный газ. В 1799 году он получил патент на использование и способ получения светильного газа путём сухой перегонки древесины или угля, однако светильный газ годился не только для освещения.

В 1801 году Лебон взял патент на конструкцию газового двигателя. Принцип действия этой машины основывался на известном свойстве открытого им газа: его смесь с воздухом взрывалась при воспламенении с выделением большого количества теплоты. Продукты горения, стремительно расширяясь, оказывали сильное давление на окружающую среду — таким образом, оставалось только найти способ использования выделившейся энергии. В двигателе Лебона были предусмотрены два компрессора и камера смешивания. Один компрессор должен был накачивать в камеру сжатый воздух, а другой — сжатый светильный газ из газогенератора. Затем газовоздушная смесь поступала в рабочий цилиндр, где воспламенялась. Двигатель был двойного действия, то есть попеременно действовавшие рабочие камеры находились по обе стороны поршня.
По существу, Лебон вынашивал мысль о двигателе внутреннего сгорания, однако в 1804 году он погиб, так и не успев воплотить в жизнь своё изобретение.

В последующие годы изобретатели из разных стран пытались создать работоспособный двигатель на светильном газе. Однако все эти попытки не привели к появлению на рынке двигателей, которые могли бы успешно конкурировать с паровой машиной.

Честь создания коммерчески успешного двигателя внутреннего сгорания принадлежит бельгийскому механику Жану Этьену Ленуару. Работая на гальваническом заводе, Ленуар пришёл к мысли, что топливовоздушную смесь в газовом двигателе можно воспламенять с помощью электрической искры, и решил построить двигатель на основе этой идеи. Решив возникшие по ходу проблемы (тугой ход и перегрев поршня, ведущий к заклиниванию) продумав систему охлаждения и смазки двигателя, Ленуар создал работоспособный двигатель внутреннего сгорания. В 1864 году было выпущено более трёхсот таких двигателей разной мощности. Разбогатев, Ленуар перестал работать над дальнейшим усовершенствованием своей машины, и это предопределило её судьбу — она была вытеснена с рынка более совершенным двигателем, созданным немецким изобретателем Августом Отто и получившим патент на изобретение своей модели газового двигателя в 1864 году.

В 1864 году немецкий изобретатель Августо Отто заключил договор с богатым инженером Лангеном для реализации своего изобретения — была создана фирма «Отто и Компания». Ни Отто, ни Ланген не владели достаточными знаниями в области электротехники и отказались от электрического зажигания. Воспламенение они осуществляли открытым пламенем через трубку. Цилиндр двигателя Отто, в отличие от двигателя Ленуара, был вертикальным. Вращаемый вал помещался над цилиндром сбоку. Принцип действия: вращающийся вал поднимал поршень на 1/10 высоты цилиндра, в результате чего под поршнем образовывалось разреженное пространство и происходило всасывание смеси воздуха и газа. Затем смесь воспламенялась. При взрыве давление под поршнем возрастало примерно до 4 атм. Под действием этого давления поршень поднимался, объём газа увеличивался и давление падало. Поршень сначала под давлением газа, а потом по инерции поднимался до тех пор, пока под ним не создавалось разрежение. Таким образом, энергия сгоревшего топлива использовалась в двигателе с максимальной полнотой. В этом заключалась главная оригинальная находка Отто. Рабочий ход поршня вниз начинался под действием атмосферного давления, и после того, как давление в цилиндре достигало атмосферного, открывался выпускной вентиль, и поршень своей массой вытеснял отработанные газы. Из-за более полного расширения продуктов сгорания КПД этого двигателя был значительно выше, чем КПД двигателя Ленуара и достигал 15 %, то есть превосходил КПД самых лучших паровых машин того времени. Кроме того, двигатели Отто были почти в пять раз экономичнее двигателей Ленуара, они сразу стали пользоваться большим спросом. В последующие годы их было выпущено около пяти тысяч штук. Несмотря на это, Отто упорно работал над усовершенствованием их конструкции. Вскоре была применена кривошипно-шатунная передача. Однако самое существенное из его изобретений было сделано в 1877 году, когда Отто получил патент на новый двигатель с четырёхтактным циклом. Этот цикл по сей день лежит в основе работы большинства газовых и бензиновых двигателей.

Типы двигателей внутреннего сгорания

Поршневой ДВС Роторный ДВС Газотурбинный ДВС

ДВС классифицируют:

а) По назначению — делятся на транспортные, стационарные и специальные.

б) По роду применяемого топлива — легкие жидкие (бензин, газ), тяжелые жидкие (дизельное топливо, судовые мазуты).

в) По способу образования горючей смеси — внешнее (карбюратор, инжектор) и внутреннее (в цилиндре ДВС).

г) По способу воспламенения (с принудительным зажиганием, с воспламенением от сжатия, калоризаторные).

д) По расположению цилиндров разделяют рядные, вертикальные, оппозитные с одним и с двумя коленвалами, V-образные с верхним и нижним расположением коленвала, VR-образные и W-образные, однорядные и двухрядные звездообразные, Н-образные, двухрядные с параллельными коленвалами, «двойной веер», ромбовидные, трехлучевые и некоторые другие.

Бензиновые

Бензиновые карбюраторные

Смесь топлива с воздухом готовится в карбюраторе, далее смесь подаётся в цилиндр, сжимается, а затем поджигается при помощи искры, проскакивающей между электродами свечи. Основная характерная особенность топливо-воздушной смеси в этом случае — гомогенность.

Бензиновые инжекторные

Также, существует способ смесеобразования путём впрыска бензина во впускной коллектор или непосредственно в цилиндр при помощи распыляющих форсунок (инжектор). Существуют системы одноточечного и распределённого впрыска различных механических и электронных систем. В механических системах впрыска дозация топлива осуществляется плунжерно — рычажным механизмом с возможностью электронной корректировки состава смеси. В электронных системах смесеобразование осуществляется под управлением электронного блока управления (ЭБУ), управляющим электрическими бензиновыми вентилями.

Дизельные, с воспламенением от сжатия

Дизельный двигатель характеризуется воспламенением топлива без использования свечи зажигания. В разогретый от сжатия воздух (до температуры, превышающей температуру воспламенения топлива) через форсунку впрыскивается порция топлива. В процессе впрыскивания топлива происходит его распыливание, а затем вокруг отдельных капель топлива возникают очаги сгорания. Т. к. дизельные двигатели не подвержены явлению детонации, характерному для двигателей с принудительным воспламенением, в них допустимо использование более высоких степеней сжатия (до 26), что благотворно сказывается на КПД данного типа двигателей, который может превышать 50% в случае с крупными судовыми двигателями.

Дизельные двигатели являются менее быстроходными и характеризуются большим крутящим моментом на валу. Дизельное топливо является более дешевым, нежели бензин. Также некоторые крупные дизельные двигатели приспособлены для работы на тяжелых топливах, например, мазутах. Запуск крупных дизельных двигателей осуществляется, как правило, за счет пневматической схемы с запасом сжатого воздуха, либо в случае с инверторными генераторными установками, от присоединенной электромашины, которая при обычной эксплуатации выполняет роль генератора.

Вопреки расхожему мнению, современные двигатели, традиционно называемые дизельными, работают не по циклу Дизеля, а по циклу Тринклера-Сабатэ со смешанным подводом теплоты.

Недостатки дизельных двигателей обусловлены особенностями рабочего цикла — более высокой механической напряженностью, требующей повышенной прочности конструкции и, как следствие, увеличения её габаритов, веса и увеличения стоимости за счёт усложнённой конструкции и использования более дорогих материалов. Также дизельные двигатели за счет гетерогенного сгорания характеризуются неизбежными выбросами сажи и повышенным содержанием оксидов азота в выхлопных газах.

Газовые

Двигатель, сжигающий в качестве топлива углеводороды, находящиеся в газообразном состоянии при нормальных условиях:

  • смеси сжиженных газов — хранятся в баллоне под давлением насыщенных паров (до 16 атм). Испарённая в испарителе жидкая фаза или паровая фаза смеси ступенчато теряет давление в газовом редукторе до близкого атмосферному, и всасывается двигателем во впускной коллектор через воздушно-газовый смеситель или впрыскивается во впускной коллектор посредством электрических форсунок. Зажигание осуществляется при помощи искры, проскакивающей между электродами свечи.
  • сжатые природные газы — хранятся в баллоне под давлением 150—200 атм. Устройство систем питания аналогично системам питания сжиженным газом, отличие — отсутствие испарителя.
  • генераторный газ — газ, полученный превращением твёрдого топлива в газообразное. В качестве твёрдого топлива используются:

Газодизельные

Основная порция топлива приготавливается, как в одной из разновидностей газовых двигателей, но зажигается не электрической свечой, а запальной порцией дизтоплива, впрыскиваемого в цилиндр аналогично дизельному двигателю.

Роторно-поршневой

Предложен изобретателем Ванкелем в начале ХХ века. Основа двигателя — треугольный ротор (поршень), вращающийся в камере особой 8-образной формы, исполняющий функции поршня, коленвала и газораспределителя. Такая конструкция позволяет осуществить любой 4-тактный цикл Дизеля, Стирлинга или Отто без применения специального механизма газораспределения. За один оборот двигатель выполняет три полных рабочих цикла, что эквивалентно работе шестицилиндрового поршневого двигателя. Строился серийно фирмой НСУ в Германии (автомобиль RO-80), ВАЗом в СССР (ВАЗ-21018 «Жигули», ВАЗ-416, ВАЗ-426, ВАЗ-526), в настоящее время строится только Маздой (Mazda RX-8). При своей принципиальной простоте имеет ряд существенных конструктивных сложностей, делающих его широкое внедрение весьма затруднительным. Основные трудности связаны с созданием долговечных работоспособных уплотнений между ротором и камерой и с построением системы смазки.

В Германии в конце 70х годов ХХ века существовал анекдот: «Продам НСУ, дам в придачу два колеса, фару и 18 запасных моторов в хорошем состоянии».

  • RCV — двигатель внутреннего сгорания, система газораспределения которого реализована за счёт движения поршня, который совершает возвратно-поступательные движения, попеременно проходя впускной и выпускной патрубок.

Комбинированный двигатель внутреннего сгорания

  •  — двигатель внутреннего сгорания, представляющий собой комбинацию из поршневой и лопаточной машин (турбина, компрессор), в котором обе машины в соотносимой мере участвуют в осуществлении рабочего процесса. Примером комбинированного ДВС служит поршневой двигатель с газотурбинным наддувом (турбонаддув). Большой вклад в теорию комбинированных двигателей внес советский инженер, профессор А. Н. Шелест.

Циклы работы поршневых ДВС

Двухтактный цикл Схема работы четырёхтактного двигателя, цикл Отто
1. впуск
2. сжатие
3. рабочий ход
4. выпуск

Поршневые двигатели внутреннего сгорания классифицируются по количеству тактов в рабочем цикле на двухтактные и четырёхтактные.

Рабочий цикл четырёхтактных двигателей внутреннего сгорания занимает два полных оборота кривошипа, состоящий из четырёх отдельных тактов:

  1. впуска,
  2. сжатия заряда,
  3. рабочего хода и
  4. выпуска (выхлопа).

Изменение рабочих тактов обеспечивается специальным газораспределительным механизмом, чаще всего он представлен одним или двумя распределительными валами, системой толкателей и клапанами, непосредственно обеспечивающими смену фазы. Некоторые двигатели внутреннего сгорания использовали для этой цели золотниковые гильзы (Рикардо), имеющие впускные и/или выхлопные окна. Сообщение полости цилиндра с коллекторами в этом случае обеспечивалось радиальным и вращательным движениями золотниковой гильзы, окнами открывающей нужный канал. Ввиду особенностей газодинамики — инерционности газов, времени возникновения газового ветра такты впуска, рабочего хода и выпуска в реальном четырёхтактном цикле перекрываются, это называется перекрытием фаз газораспределения. Чем выше рабочие обороты двигателя, тем больше перекрытие фаз и чем оно больше, тем меньше крутящий момент двигателя внутреннего сгорания на низких оборотах. Поэтому в современных двигателях внутреннего сгорания всё шире используются устройства, позволяющие изменять фазы газораспределения в процессе работы. Особенно пригодны для этой цели двигатели с электромагнитным управлением клапанами (BMW, Mazda). Имеются также двигатели с переменной степенью сжатия (СААБ), обладающие большей гибкостью характеристики.

Двухтактные двигатели имеют множество вариантов компоновки и большое разнообразие конструктивных систем. Основной принцип любого двухтактного двигателя — исполнение поршнем функций элемента газораспределения. Рабочий цикл складывается, строго говоря, из трёх тактов: рабочего хода, длящегося от верхней мёртвой точки (ВМТ) до 20—30 градусов до нижней мёртвой точки (НМТ), продувки, фактически совмещающей впуск и выхлоп, и сжатия, длящегося от 20—30 градусов после НМТ до ВМТ. Продувка, с точки зрения газодинамики, слабое звено двухтактного цикла. С одной стороны, невозможно обеспечить полное разделение свежего заряда и выхлопных газов, поэтому неизбежны либо потери свежей смеси, буквально вылетающей в выхлопную трубу (если двигатель внутреннего сгорания — дизель, речь идёт о потере воздуха), с другой стороны, рабочий ход длится не половину оборота, а меньше, что само по себе снижает КПД. В то же время длительность чрезвычайно важного процесса газообмена, в четырёхтактном двигателе занимающего половину рабочего цикла, не может быть увеличена. Двухтактные двигатели могут вообще не иметь системы газораспределения. Однако, если речь не идёт об упрощённых дешёвых двигателях, двухтактный двигатель сложнее и дороже за счёт обязательного применения воздуходувки или системы наддува, повышенная теплонапряжённость ЦПГ требует более дорогих материалов для поршней, колец, втулок цилиндров. Исполнение поршнем функций элемента газораспределения обязывает иметь его высоту не менее ход поршня + высота продувочных окон, что некритично в мопеде, но существенно утяжеляет поршень уже при относительно небольших мощностях. Когда же мощность измеряется сотнями лошадиных сил, увеличение массы поршня становится очень серьёзным фактором. Введение распределительных гильз с вертикальным ходом в двигателях Рикардо было попыткой сделать возможным уменьшение габаритов и массы поршня. Система оказалась сложной и дорогой в исполнении, кроме авиации, такие двигатели нигде больше не использовались. Выхлопные клапаны (при прямоточной клапанной продувке) имеют вдвое большую теплонапряжённость в сравнении с выхлопными клапанами четырёхтактных двигателей и худшие условия для теплоотвода, а их сёдла имеют более длительный прямой контакт с выхлопными газами.

Самой простой с точки зрения порядка работы и самой сложной с точки зрения конструкции является система Фербенкс — Морзе, представленная в СССР и в России, в основном, тепловозными дизелями серий Д100. Такой двигатель представляет собой симметричную двухвальную систему с расходящимися поршнями, каждый из которых связан со своим коленвалом. Таким образом, этот двигатель имеет два коленвала, механически синхронизированные; тот, который связан с выхлопными поршнями, опережает впускной на 20—30 градусов. За счёт этого опережения улучшается качество продувки, которая в этом случае является прямоточной, и улучшается наполнение цилиндра, так как в конце продувки выхлопные окна уже закрыты. В 30х — 40х годах ХХ века были предложены схемы с парами расходящихся поршней — ромбовидная, треугольная; существовали авиационные дизели с тремя звездообразно расходящимися поршнями, из которых два были впускными и один — выхлопным. В 20-х годах Юнкерс предложил одновальную систему с длинными шатунами, связанными с пальцами верхних поршней специальными коромыслами; верхний поршень передавал усилия на коленвал парой длинных шатунов, и на один цилиндр приходилось три колена вала. На коромыслах стояли также квадратные поршни продувочных полостей. Двухтактные двигатели с расходящимися поршнями любой системы имеют, в основном, два недостатка: во-первых, они весьма сложны и габаритны, во-вторых, выхлопные поршни и гильзы в зоне выхлопных окон имеют значительную температурную напряжённость и склонность к перегреву. Кольца выхлопных поршней также являются термически нагруженными, склонны к закоксовыванию и потере упругости. Эти особенности делают конструктивное исполнение таких двигателей нетривиальной задачей.

Двигатели с прямоточной клапанной продувкой оснащены распределительным валом и выхлопными клапанами. Это значительно снижает требования к материалам и исполнению ЦПГ. Впуск осуществляется через окна в гильзе цилиндра, открываемые поршнем. Именно так компонуется большинство современных двухтактных дизелей. Зона окон и гильза в нижней части во многих случаях охлаждаются наддувочным воздухом.

В случаях, когда одним из основных требований к двигателю является его удешевление, используются разные виды кривошипно-камерной контурной оконно-оконной продувки — петлевая, возвратно-петлевая (дефлекторная) в разнообразных модификациях. Для улучшения параметров двигателя применяются разнообразные конструктивные приёмы — изменяемая длина впускного и выхлопного каналов, может варьироваться количество и расположение перепускных каналов, используются золотники, вращающиеся отсекатели газов, гильзы и шторки, изменяющие высоту окон (и, соответственно, моменты начала впуска и выхлопа). Большинство таких двигателей имеет воздушное пассивное охлаждение. Их недостатки — относительно невысокое качество газообмена и потери горючей смеси при продувке, при наличии нескольких цилиндров секции кривошипных камер приходится разделять и герметизировать, усложняется и удорожается конструкция коленвала.

Дополнительные агрегаты, требующиеся для ДВС

Недостатком двигателя внутреннего сгорания является то, что он развивает наивысшую мощность только в узком диапазоне оборотов. Поэтому неотъемлемым атрибутом двигателя внутреннего сгорания является трансмиссия. Лишь в отдельных случаях (например, в самолётах) можно обойтись без сложной трансмиссии. Постепенно завоёвывает мир идея гибридного автомобиля, в котором мотор всегда работает в оптимальном режиме.

Кроме того, двигателю внутреннего сгорания необходимы система питания (для подачи топлива и воздуха — приготовления топливо-воздушной смеси), выхлопная система (для отвода выхлопных газов), также не обойтись без системы смазки(предназначена для уменьшения сил трения в механизмах двигателя, защиты деталей двигателя от коррозии, а также совместно с системой охлаждения для поддержания оптимального теплового режима), системы охлаждения(для поддержания оптимального теплового режима двигателя), система запуска (применяются способы запуска: электростартерный, с помощью вспомогательного пускового двигателя, пневматический, с помощью мускульной силы человека), система зажигания (для воспламениня топливо-воздушной смеси, применяется у двигателей с принудительным воспламенением).

См. также

Примечания

Ссылки

Принцип работы ДВС | Простые вещи

Первая наша статья будет посвящена не совсем новой теме в интернете — двигателям. Двигатель внутреннего сгорания или сокращенно ДВС — устройство, созданное в 1860 году французским изобретателем Э. Ленуаром (двигатель был двухтактным), оно служит для преобразования энергии, выделяющейся при сжигании топлива, в механическую энергию.

ДВС классифицируются:

По числу стадий (тактов) цикла на два типа: двухтактные и четырёхтактные.

По способу преобразования энергии на четыре типа: поршневые, реактивные, турбинные, комбинированные.

КПД ДВС варьируется в пределах от 40 до 50 процентов.

В 1876 году Николаус Отто изобрёл четырёхтактный ДВС.

4 такта работы ДВС:

Первая стадия работы ДВС – впуск топлива через открытый клапан.

Вторая – закрытие клапанов впуска и выпуска.

Третья– свеча создаёт искру, топливо загорается, газ расширяется и толкает поршень. Происходит рабочий ход поршня.

Четвертая – выпуск отработанных газов через клапан.

Теперь рассмотрим такты работы двухтактного ДВС:

Первый такт – впуск топливной смеси. Выпускное отверстие закрыто поршнем.

Второй – сгорания топлива, расширение газа, рабочий ход, выпуск через отверстие отработанном газа. При первом пуске смеси рабочий ход должен создаваться извне.

По расположению цилиндров двигатели делятся на следующие типы:

1) Вертикальное и наклонное расположение цилиндров в один ряд.

2) V-образные (цилиндры расположены под небольшим углом друг к другу, по форме напоминает букву V).

3) Оппозицией (цилиндры расположены друг напротив друг под углом 180 градусов).

Система зажигания передает заряд свече, которая поджидает топливо. Системой зажигания является трамблер. Его задача подать заряд тому цилиндру, в котором поршень достиг критической точки сжатия топлива.

Подписывайтесь, что бы быть в курсе всего интересного что вас окружает.

Двигатель внутреннего сгорания рисунок с подписями. Принцип работы двигателя внутреннего сгорания. По рабочему циклу

Двигатель внутреннего сгорания: устройство и принципы работы

04.04.2017

Двигателем внутреннего сгорания называется разновидность тепловой машины, которая преобразует энергию, содержащуюся в топливе, в механическую работу. В большинстве случае используется газообразное или жидкое топливо, полученное путем переработки углеводородов. Извлечение энергии происходит в результате его сгорания.

Двигатели внутреннего сгорания имеют ряд недостатков. К ним относятся следующие:

  • сравнительно большие массогабаритные показатели затрудняют их перемещение и сужают сферу использования;
  • высокий уровень шума и токсичные выбросы приводят к тому, что устройства, работающие от двигателей внутреннего сгорания, могут лишь со значительными ограничениями использоваться в закрытых, плохо вентилируемых помещениях;
  • сравнительно небольшой эксплуатационный ресурс вынуждает довольно часто ремонтировать двигатели внутреннего сгорания, что связано с дополнительными затратами;
  • выделение в процессе работы значительного количества тепловой энергии обуславливает необходимость создания эффективной системы охлаждения;
  • из-за многокомпонентной конструкции двигатели внутреннего сгорания сложны в производстве и недостаточно надежны;
  • данный вид тепловой машины отличается высоким потреблением горючего.

Несмотря на все перечисленные недостатки двигатели внутреннего сгорания пользуются огромной популярностью, в первую очередь – благодаря своей автономности (она достигается за счет того, что топливо содержит в себе значительно большее количество энергии по сравнению с любой аккумуляторной батареей). Одной из основных областей их применения является личный и общественный транспорт.

Типы двигателей внутреннего сгорания

Когда речь идет о двигателях внутреннего сгорания, следует иметь в виду, что на сегодняшний день существует несколько их разновидностей, которые отличаются друг от друга конструктивными особенностями.

1. Поршневые двигатели внутреннего сгорания характеризуются тем, что сгорание топлива происходит в цилиндре. Именно он отвечает за преобразование той химической энергии, которая содержится в горючем, в полезную механическую работу. Чтобы добиться этого, поршневые двигатели внутреннего сгорания оснащаются кривошипно-ползунным механизмом, с помощью которого и происходит преобразование.

Поршневые двигатели внутреннего сгорания принято делить на несколько разновидностей (основанием для классификации служит используемое ими топливо).

В бензиновых карбюраторных двигателях образование топливовоздушной смеси происходит в карбюраторе (первый этап). Далее в дело вступают распыляющие форсунки (электрические или механические), местом расположения которых служит впускной коллектор. Готовая смесь бензина и воздуха поступает в цилиндр.

Там происходит ее сжатие и поджиг с помощью искры, которая возникает при прохождении электричества между электродами специальной свечи. В случае с карбюраторными двигателями топливовоздушной смеси присуща гомогенность (однородность).

Бензиновые инжекторные двигатели используют в своей работе иной принцип смесеобразования. Он основан на непосредственном впрыске горючего, которое напрямую поступает в цилиндр (для этого используются распыляющие форсунки, называемые также инжектором). Таким образом, образование топливовоздушной смеси, как и ее сгорание, осуществляется непосредственно в самом цилиндре.

Дизельные двигатели отличаются тем, что используют для своей работы особую разновидность топлива, называемую «дизельное» или просто «дизель». Для его подачи в цилиндр используется высокое давление. По мере того, как в камеру сгорания подаются все новые порции горючего, прямо в ней происходит процесс образования топливовоздушной смеси и ее моментальной сгорание. Поджиг топливовоздушной смеси происходит не с помощью искры, а под действием нагретого воздуха, который подвергается в цилиндре сильному сжатию.

Топливом для газовых двигателей служат различные углеводороды, которые при нормальных условиях пребывают в газообразном состоянии. Из этого следует, что для их хранения и использования требуется соблюдать особые условия:

  • Сжиженные газы поставляются в баллонах различного объема, внутри которых с помощью насыщенных паров создается достаточное давление, но не превышающее 16 атмосфер. Благодаря этому горючее находится в жидком состоянии. Для его перехода в пригодную для сжигания жидкую фазу используется специальное устройство, называемое испарителем. Понижение давления до уровня, который примерно соответствует нормальному атмосферному давлению, осуществляется в соответствии со ступенчатым принципом. В его основе лежит использование так называемого газового редуктора. После этого топливовоздушная смесь поступает во впускной коллектор (перед этим она должна пройти через специальный смеситель). В конце этого достаточно сложного цикла горючее подается в цилиндр для последующего поджига, осуществляемого с помощью искры, которая возникает при прохождении электричества между электродами специальной свечи.
  • Хранение сжатого природного газа осуществляется при гораздо более высоком давлении, которое находится в диапазоне от 150 до 200 атмосфер. Единственное конструктивное отличие данной системы от той, что описана выше, заключается в отсутствии испарителя. В целом принцип остается тем же.

Генераторный газ получают путем переработки твердого топлива (угля, горючих сланцев, торфа и т.п.). По своим основным техническим характеристикам он практически ничем не отличается от других видов газообразного топлива.

Газодизельные двигатели

Данная разновидность двигателей внутреннего сгорания отличается тем, что приготовление основной порции топливовоздушной смеси осуществляется аналогично газовым двигателям. Однако для ее поджига используется не искра, получаемая при помощи электрической свечи, а запальная порция топлива (ее впрыск в цилиндр осуществляется тем же способом, как и в случае с дизельными двигателями).

Роторно-поршневые двигатели внутреннего сгорания

К данному классу относится комбинированная разновидность данных устройств. Ее гибридный характер находит свое отражение в том, что конструкция двигателя включает в себя сразу два важных конструктивных элемента: роторно-поршневую машину и одновременно — лопаточную машину (она может быть представлена компрессором, турбиной и т.д.). Обе упомянутых машины на равных принимают участие в рабочем процессе. В качестве характерного примера таких комбинированных устройств можно привести поршневой двигатель, оснащенный системой турбонаддува.

Особую категорию составляют двигатели внутреннего сгорания, для обозначения которых используется английская аббревиатура RCV. От других разновидностей они отличаются тем, что газораспределение в данном случае основывается на вращении цилиндра. При совершении вращательного движения топливо по очереди проходит выпускной и впускной патрубок. Поршень отвечает за движение в возвратно-поступательном направлении.

Поршневые двигатели внутреннего сгорания: циклы работы

Для классификации поршневых двигателей внутреннего сгорания также используется принцип их работы. По данному показателю двигатели внутреннего сгорания делятся на две большие группы: двух- и четырехтактные.

Четырехтактные двигатели внутреннего сгорания используют в своей работе так называемый цикл Отто, который включает в себя следующие фазы: впуск, сжатие, рабочий ход и выпуск. Следует добавить, что рабочий ход состоит не из одного, как остальные фазы, а сразу из двух процессов: сгорание и расширение.

Наиболее широко применяемая схема, по которой осуществляется рабочий цикл в двигателях внутреннего сгорания, состоит из следующих этапов:

1. Пока происходит впуск топливовоздушной смеси, поршень перемещается между верхней мертвой точкой (ВМТ) и нижней мертвой точкой (НМТ). В результате этого внутри цилиндра освобождается значительное пространство, в которое и поступает топливовоздушная смесь, заполняя его.

Всасывание топливовоздушной смеси осуществляется за счет разности давления, существующего внутри цилиндра и во впускном коллекторе. Толчком к поступлению топливовоздушной смеси в камеру сгорания служит открытие впускного клапана. Этот момент принято обозначать термином «угол открытия впускного клапана» (φа).

При этом следует иметь в виду, что в цилиндре на этот момент уже содержаться продукты, оставшиеся после сгорания предыдущей порции горючего (для их обозначения используется понятие остаточных газов). В результате их смешения с топливовоздушной смесью, называемой на профессиональном языке свежим зарядом, образуется рабочая смесь. Чем успешнее протекает процесс ее приготовления, тем более полно сгорает топливо, выделяя при этом максимум энергии.

В результате растет кпд двигателя. В связи с этим еще на этапе конструирования двигателя особое внимание уделяется правильному смесеобразованию. Ведущую роль играют различные параметры свежего заряда, включая его абсолютную величину, а также удельную долю в общем объеме рабочей смеси.

2. При переходе к фазе сжатия оба клапана закрываются, а поршень совершает движение в обратном направлении (от НМТ к ВМТ). В результате надпоршневая полость заметно уменьшается в объеме. Это приводит к тому, что содержащаяся в ней рабочая смесь (рабочее тело) сжимается. За счет этого удается добиться того, что процесс сгорания топливовоздушной смеси протекает более интенсивно. От сжатия также зависит такой важнейший показатель, как полнота использования тепловой энергии, которая выделяется при сжигании горючего, а следовательно – и эффективность работы самого двигателя внутреннего сгорания.

Для увеличения этого важнейшего показателя конструкторы стараются проектировать устройства, обладающие максимально возможной степенью сжатия рабочей смеси. Если мы имеем дело с ее принудительным зажиганием, то степень сжатия не превышает 12. Если же двигатель внутреннего сгорания работает на принципе самовоспламенения, то упомянутый выше параметр обычно находится в диапазоне от 14 до 22.

3. Воспламенение рабочей смеси дает старт реакции окисления, которая происходит благодаря кислороду воздуха, входящему в ее состав. Этот процесс сопровождается резким ростом давления по всему объему надпоршневой полости. Поджиг рабочей смеси осуществляется при помощи электрической искры, которая имеет высокое напряжение (до 15 кВ).

Ее источник располагается в непосредственной близости от ВМТ. В этой роли выступает электрическая свеча зажигания, которую вворачивают в головку цилиндра. Однако в том случае, если поджиг топливовоздушной смеси осуществляется посредством горячего воздуха, предварительно подвергнутого сжатию, наличие данного конструктивного элемента является излишним.

Вместо него двигатель внутреннего сгорания оснащается особой форсункой. Она отвечает за поступление топливовоздушной смеси, которая в определенный момент подается под высоким давлением (оно может превышать 30 Мн/м²).

4. При сгорании топлива образуются газы, которые имеют очень высокую температуру, а потому неуклонно стремятся к расширению. В результате поршень вновь перемещается от ВМТ к НМТ. Это движение называется рабочим ходом поршня. Именно на этом этапе происходит передача давления на коленчатый вал (если быть точнее, то на его шатунную шейку), который в результате проворачивается. Этот процесс происходит при участии шатуна.

5. Суть завершающей фазы, которая называется впуском, сводится к тому, что поршень совершает обратное движение (от НМТ к ВМТ). К этому моменту открывается второй клапан, благодаря чему отработавшие газы покидают внутреннее пространство цилиндра. Как уже говорилось выше, части продуктов сгорания это не касается. Они остаются в той части цилиндра, откуда поршень их не может вытеснить. За счет того, что описанный цикл последовательно повторяется, достигается непрерывный характер работы двигателя.

Если мы имеем дело с одноцилиндровым двигателем, то все фазы (от подготовки рабочей смеси до вытеснения из цилиндра продуктов сгорания) осуществляется за счет поршня. При этом используется энергия маховика, накапливаемая им в течение рабочего хода. Во всех остальных случаях (имеются в виду двигатели внутреннего сгорания с двумя и более цилиндрами) соседние цилиндры дополняют друг друга, помогая выполнять вспомогательные ходы. В связи с этим из их конструкции без малейшего ущерба может быть исключен маховик.

Чтобы было удобнее изучать различные двигатели внутреннего сгорания, в их рабочем цикле вычленяют различные процессы. Однако существует и противоположный подход, когда сходные процессы объединяют в группы. Основой для подобной классификации служит положение поршня, которое он занимает в отношении обеих мертвых точек. Таким образом, перемещения поршня образуют тот отправной пункт, отталкиваясь от которого, удобно рассматривать работу двигателя в целом.

Важнейшим понятием является «такт». Им обозначают ту часть рабочего цикла, которая укладывается во временной промежуток, когда поршень перемещается от одной смежной мертвой точки к другой. Такт (а вслед за ним и весь соответствующий ему ход поршня) называется процессом. Он играет роль основного при перемещении поршня, которое происходит между двумя его положениями.

Если переходить к тем конкретным процессам, о которых мы говорили выше (впуск, сжатие, рабочий ход и выпуск), то каждый из них четко приурочен к определенному такту. В связи с этим в двигателях внутреннего сгорания принято различать одноименные такты, а вместе с ними – и ходы поршня.

Выше мы уже говорили о том, что наряду с четырехтактными существуют и двухтактные двигатели. Однако независимо от количества тактов рабочий цикл любого поршневого двигателя состоит из пяти упомянутых выше процессов, а в его основе лежит одна и та же схема. Конструктивные особенности в данном случае не играют принципиальной роли.

Дополнительные агрегаты для двигателей внутреннего сгорания

Важный недостаток двигателя внутреннего сгорания заключается в достаточно узком диапазоне оборотов, в котором он способен развивать значительную мощность. Чтобы компенсировать этот недостаток, двигатель внутреннего сгорания нуждается в дополнительных агрегатах. Самые важные из них – стартер и трансмиссия.

Наличие последнего устройства не является обязательным условием лишь в редких случаях (когда, к примеру, речь идет о самолетах). В последнее время все привлекательнее становится перспектива создать гибридный автомобиль, чей двигатель мог бы постоянно сохранять оптимальный режим работы.

К дополнительным агрегатам, обслуживающим двигатель внутреннего сгорания, относится топливная система, которая осуществляет подачу горючего, а также выхлопная система, необходимая для того, чтобы отводить отработавшие газы.

Автомобильные двигатели чрезвычайно разнообразны. Технология, которая применяется при разработке и запуске в производство силовых агрегатов, имеет богатую историю. Требования современности вынуждают производителей ежегодно внедрять в свои проекты доработки и модернизировать имеющиеся технологии.

Двигатель внутреннего сгорания имеет устройство и принцип работы, способный обеспечивать высокую мощность и длительный период эксплуатации — от пользователя требуется только минимально необходимое обслуживание и своевременный мелкий ремонт.

При первом взгляде сложно представить, как работает двигатель: слишком много взаимосвязанных механизмов собранно в одном небольшом пространстве. Но при детальном изучении и анализе связей в этой системе работа двигателя автомобиля оказывается предельно простой и понятной.

В состав двигателя автомобиля входит ряд узлов, имеющих важное значение и обеспечивающих выполнение рабочих функций всей системы .

Блок цилиндров иногда называют корпусом или рамой всей системы. Описание двигателя не обходится без изучения данного элемента конструкции. Именно в этой части мотора обустроена система связанных каналов, предназначеных для смазки и создания необходимой температуры двигателя внутреннего сгорания.

Верхняя часть корпуса поршня имеет каналы для колец. Сами поршневые кольца подразделяются на верхние и нижние. Исходя из выполняемых функций, данные кольца называют компрессионными. Крутящий момент двигателя определяется прочностью и работой рассмотренных элементов.

Нижние кольца поршня играют важную роль для обеспечения ресурса двигателя. Нижние кольца выполняют 2 роли: сохраняют герметичность камеры сгорания и являются уплотнителями, которые предотвращают проникновение масла внутрь камеры сгорания.

Двигатель автомобиля представляет собой систему, в которой осуществляется передача энергии между механизмами с минимальными потерями ее величины на различных этапах. Поэтому кривошипно-шатунный механизм становится одним из важнейших элементов системы. Он обеспечивает передачу возвратно-поступательной энергии от поршня на коленвал.

В целом, принцип работы двигателя достаточно прост и претерпел мало фундаментальных изменений за период существования. В этом просто нет необходимости — некоторые усовершенствования и оптимизации позволяют достигать лучших результатов в работе. Концепция же всей системы неизменна.

Крутящий момент двигателя создается за счет выделяемой при сгорании топлива энергии, которая передается от камеры сгорания к колесам по соединительным элементам. В форсунках топливо передается в камеру сгорания, где происходит его обогащение воздухом. Свеча зажигания создает искру, которая мгновенно воспламеняет образовавшуюся смесь. Так происходит небольшой взрыв, который обеспечивает работы двигателя.

В результате такого действия происходит образования большого объема газов, стимулируя к совершению поступательных движений. Так формируется крутящий момент двигателя. Энергия от поршня передается на коленвал, который передает движение на трансмиссию, а после этого, специальная система шестеренок переносит движение на колеса.

Порядок работы работающего двигателя незатейлив и при исправных связующих элементах гарантирует минимальные потери энергии. Схема работы и строение каждого механизма основаны на преобразовании созданного импульса в практически используемый объем энергии. Ресурс двигателя определяется износостойкостью каждого звена.

Принцип работы двигателя внутреннего сгорания

Двигатель легкового автомобиля выполняется в виде одного из типов систем внутреннего сгорания. Принцип действия двигателя может отличаться по некоторым показателям, что служит основой для разделения моторов на различные типы и модификации.

В качестве определяющих параметров, служащих для разделения силовых агрегатов на категории, служат:

  • рабочий объем,
  • количество цилиндров,
  • мощность системы,
  • скорость вращения узлов,
  • применяемое для работы топливо и др.

Разобраться в том, как работает двигатель, просто. Но по мере изучения всплывают новые показатели, которые вызывают вопросы. Так, часто можно встретить разделение двигателей по числу тактов. Что это такое и как влияет на работу машины?

Устройство двигателя автомобиля основано на четырехтактовой системе. Эти 4 такта равны по времени — за весь цикл поршень дважды поднимается вверх в цилиндре и дважды опускается вниз. Такт берет начало в тот момент, когда поршень находится в верхней или нижней части. Механики называют эти точки ВМТ и НМТ — верхняя и нижняя мертвые точки соответственно.

Такт № 1 — впуск. По мере движения вниз, поршень втягивает в цилиндр наполненную топливом смесь. Работа системы происходит при открытом клапане впуска. Мощность двигателя автомобиля определяется количеством, размерами и временем, которое клапан открыт.

В отдельных моделях работа педали газа увеличивает период нахождения клапана в открытом состоянии, что позволяет увеличить объем топлива, попадающего в систему. Такое устройство двигателей внутреннего сгорания обеспечивает сильное ускорение работы системы.

Такт № 2 — сжатие. На этом этапе поршень начинает свое движение вверх, что приводит к сжатию полученной в цилиндр смеси. Она сживается ровно до объемов камеры сгорания топлива. Эта камера представляет собой пространство между верхней частью поршня и верхом цилиндра в момент нахождения поршня в ВМТ. Клапаны впуска в этот момент работы прочно закрыты.

От плотности закрытия зависит качество сжатия смеси. Если сам поршень, или цилиндр, или кольца поршней потерты и не в надлежащем состоянии, то качество работы и ресурс двигателя значительно снизятся.

Такт № 3 — рабочий ход. Этот этап начинается с ВМТ. Система зажигания гарантирует воспламенение топливной смеси и обеспечивает выделение энергии. Происходит взрыв смеси, при котором высвобождается энергия. И за счет увеличения объема происходит выталкивание поршня вниз. Клапаны при этом закрыты. Технические характеристики двигателя во многом зависят от протекания третьего такта работы мотора.

Такт № 4 — выпуск. Окончание цикла работы. Движение поршня вверх обеспечивает выталкивание газов. Таким образом, осуществляется вентиляция цилиндра. Этот такт важен для обеспечения ресурса двигателя.

Двигатель имеет принцип работы, основанный на распределении энергии от взрывов газов, требует внимания к созданию всех узлов.

Работа двигателя внутреннего сгорания циклична. Вся энергия, которая создается в процессе выполнения работы на всех 4 тактах работы поршней, направляется на организацию работы автомобиля.

Варианты конструкций внутреннего двигателя

Характеристика двигателя зависит от особенностей его конструкции. Внутреннее сгорание — основной тип физического процесса, протекающего в системе мотора на современных автомобилях. За период развития машиностроения успешно реализовано несколько типов ДВС.

Устройство бензинового двигателя разделяет систему на 2 типа — инжекторные двигатели и карбюраторные модели. Также в производстве есть несколько типов карбюраторов и систем впрыска. Основа работы — сжигание бензина.

Характеристика бензинового двигателя выглядит предпочтительнее. Хотя для каждого пользователя есть свои личные приоритеты и преимущества от работы каждого двигателя. Бензиновый двигатель внутреннего сгорания является одним из самых распространенных в современном автомобилестроении. Порядок работы мотора прост и не отличается от классической интерпретации.

Дизельные двигатели основаны на применении подготовленного дизельного топлива. Оно попадает в цилиндры через форсунки. Главное преимущество дизельного двигателя заключается в отсутствии необходимости электричества для сжигания топлива. Оно требуется только для запуска двигателя.

Газовый двигатель применяет для работы сжиженные и сжатые газы, а также некоторые другие типы газов.

Узнать какой ресурс у двигателя на вашем авто лучше всего у производителя. Примерную цифру разработчики озвучивают в сопроводительных документах на транспортное средство. Здесь содержится вся актуальная и точная информация о моторе. В паспорте вы узнаете технические параметры мотора, сколько весит двигатель и всю информацию о движущем агрегате.

Срок службы двигателя зависит от качества обслуживания, интенсивности использования. Заложенный разработчиком срок эксплуатации подразумевает внимательное и бережное отношение с машиной.

Что значит двигатель? Это ключевой элемент в автомобиле, который призван обеспечить его движение. Надежность и точность работы всех узлов системы гарантирует качество движения и безопасность эксплуатации машины.

Характеристики двигателей различаются в широких пределах, несмотря на то. Что принцип внутреннего сгорания топлива остается неизменным. Так разработчикам удается удовлетворять потребности покупателей и реализовывать проекты по улучшению работы автомобилей в целом.

Средний ресурс двигателя внутреннего сгорания составляет несколько сотен тысяч километров. При таких нагрузках от всех составных частей системы требуется прочность и точная совместная работа. Поэтому известная и детально изученная концепция внутреннего сгорания постоянно подвергается доработкам и внедрениям новых подходов.

Ресурс двигателей различается в широком диапазоне. Порядок работы, при этом, общий (с небольшими отклонениями от стандарта). Несколько может различаться вес двигателя и отдельные характеристики.

Современный двигатель внутреннего сгорания имеет классическое устройство и досконально изученный принцип работы. Поэтому механикам не составляет труда решить любую проблему в кратчайшие сроки.

Ремонтные работы усложняются в том случае, если поломка не была устранена сразу. В таких ситуациях порядок работы механизмов может, нарушен окончательно и потребуется серьезная работа по восстановлению. Ресурс двигателя после грамотного ремонта не пострадает.

Каждому, водителю интересно и необходимо знать, как устроен автомобиль, что такое ДВС в машине, из чего состоит двигатель автомобиля и каков у ДВС ресурс.

Отличие двигателей внутреннего сгорания от двигателей внешнего сгорания

ДВС называется так именно потому, что топливо сжигается внутри рабочего органа (цилиндра), промежуточный теплоноситель, например пар, здесь не нужен, как это организовано в паровозах. Если рассматривать паровой двигатель и двигатель, но уже внутреннего сгорания автомобиля, устройство их сходно, это очевидно (на рисунке справа паровой двигатель, слева – ДВС).

Принцип работы одинаков: на поршень, действует какая-то сила. От этого поршень вынужден двигаться вперед или назад (возвратно-поступательно). Эти движения при помощи специального механизма (кривошипного) преобразуются во вращение (колеса у паровоза и коленчатого вала «коленвала» у автомобиля). В двигателях внешнего сгорания нагревается вода, превращаясь в пар, и уже этот пар совершает полезную работу толкая поршень, а в ДВС мы нагреваем воздух внутри (непосредственно в цилиндре)и он (воздух) двигает поршень. От этого коэффициент полезного действия, у ДВС, конечно, выше.

История создания ДВС

История гласит, что первый работающий двигатель внутреннего сгорания коммерческого использования, то есть выпускаемый для продажи, был разработан французским изобретателем Ленуаром. Его двигатель работал на светильном газе в смеси с воздухом. Причем именно он догадался поджигать эту смесь путем электрической искры. Только в 1864 году документально зафиксирована продажа более 310 таких двигателей. На этом он разбогател. Жан Этьен Ленуар потерял интерес к изобретательству и вскоре(в 1877 году) его моторы были вытеснены более совершенными, на тот момент, двигателями Отто, изобретателя из Германии. Донат Банки (венгерский инженер) в 1893 году произвел настоящую революцию в двигателестроении. Он изобрел карбюратор. С этого момента история не знает бензиновых двигателей без этого устройства. И так продолжалось около 100 лет. На смену ему пришла система непосредственного впрыска, но это уже новейшая история.
Все первые двигатели внутреннего сгорания были только одноцилиндровыми. Увеличение мощности велось путем увеличения диаметра рабочего цилиндра. Только к концу 19-го века появились ДВС с двумя цилиндрами, а в начале 20-го века – четырехцилиндровые. Теперь, повышение мощности производилось уже путем увеличения числа цилиндров. На сегодняшний день можно встретить автомобильный двигатель в 2-мя, 4-мя, 6-ю цилиндрами. Реже 8 и 12. Некоторые спортивные автомобили имеют 24 цилиндра. Расположение цилиндров может быть как рядным, так и V-образным.
Вопреки расхожему мнению ни Готлиб Даймлер, ни Карл Бенц, ни Генри Форд устройство двигателя автомобиля не изменяли кардинально (разве что мелкие доработки), но оказали огромное влияние в автомобилестроение как таковое. Что такое ДВС в авто мы сейчас и рассмотрим.

Общее устройство двигателя внутреннего сгорания

Итак, ДВС состоит из корпуса, в котором все остальные детали монтируются. Чаще всего это блок цилиндров.

На данном рисунке показан один цилиндр без блока. Устройство ДВС направлено на максимально комфортные условия для цилиндров, ведь именно в них производится работа. Цилиндр, это металлическая (чаще всего стальная) труба, в которой двигается поршень. Он обозначен на рисунке цифрой 7. Над цилиндром устанавливается головка цилиндра 1, в которую вмонтированы клапана (5 – впускной и 4 — выпускной), а также свеча зажигания 3 и коромысла 2.
Над клапанами 4 и 5 есть пружины, которые удерживают их в закрытом состоянии. Коромысла при помощи толкателей 14 и распределительного вала 13 открывают клапана в определенный момент (тогда, когда это необходимо). Распределительный вал с кулачками вращается от коленвала 11 через приводные шестерни 12.
Движения поршня 7 преобразуются во вращение коленвала 11 при помощи шатуна 8 и кривошипа. Этим кривошипом служит «колено» на валу (смотри рисунок), именно поэтому вал и называется коленчатым. В связи с тем, что воздействие на поршень происходит не постоянно, а только когда в цилиндре горит топливо. У ДВС есть маховик 9, довольно массивный. Маховик как бы запасает энергию вращения и отдает ее при необходимости.
В любом двигателе много трущихся деталей, для их смазывания используют автомобильное масло. Масло это хранится в картере 10 и специальным насосом подается к трущимся деталям.
Синим цветом, показаны детали кривошипно-шатунного механизма (КШМ). Голубым – смесь топлива и воздуха. Серым – свеча зажигания. Красным – выхлопные газы.

Принцип работы ДВС

Разобрав двигатель внутреннего сгорания, его устройство, необходимо уяснить, как взаимодействуют его детали, как он работает. Знать строение еще не все, а вот как взаимодействуют механизмы, в чем преимущество дизельных автомобилей и в чем их недостатки для начинающих (для чайников) очень важно.
Ничего сложного в этом нет. Пошаговым рассмотрением процессов мы постараемся рассказать, как взаимодействуют между собой основные части двигателя при работе. Из какого материала выполнены механические составляющие ДВС.
Все автомобильные двигатели работают на одном принципе: сжигание бензина или дизельного топлива. Для чего? Для получения необходимой нам энергии, конечно. Двигатели автомобилей, иногда говорят – моторы, могут быть двухтактными и четырехтактными. Тактом считается движение поршня либо вверх, либо вниз. Говорят еще от верхней мертвой точки (ВМТ), до нижней (НМТ). Мертвой эта точка называется потому, что поршень как бы замирает на мгновение и начинает движение в обратную сторону.
Итак, в двухтактном двигателе весь процесс (или цикл) происходит за 2 хода поршня, в четырехтактном – за 4. И совершенно не важно, бензиновый это двигатель, дизельный или работающий на газу.
Как ни странно, рассказывать принцип работы лучше на 4-х тактном бензиновом карбюраторном двигателе.

Первый такт — всасывание.

Поршень идет вниз и затягивает за собой смесь из воздуха и топлива. Эта смесь готовится в отдельном устройстве – в карбюраторе. При этом впускной, его еще называют «всасывающий» клапан, конечно, открыт. На рисунке он показан синим.

Следующий, второй такт – сжатие смеси.

Поршень поднимается вверх от НМТ до ВМТ. При этом растет давление и, естественно, температура над поршнем. Но этой температуры недостаточно, для того, чтобы смесь самовоспламенилась. Для этого служит свеча. Она выдает искру в нужный момент. Обычно это 6…8 угловых градусов не доходя до ВМТ. Для начала понимания процесса можно предположить, что искра зажигает смесь точно в верхней точке.

Третий такт – расширение продуктов сгорания.

При сгорании столь энергоемкого топлива, продуктов сгорания в цилиндре очень мало, а вот усилие появляется только потому, что воздух нагрелся при повышении температуры, а значит, расширился, в нашем случае увеличил давление. Именно это давление и совершает нужную работу. Нужно знать, что нагревая воздух на 273 0С, получаем увеличение давления практически в 2 раза. Температура зависит от того сколько топлива сжечь. Максимальная температура внутри рабочего цилиндра может достигать 2500 0С при работе ДВС на полной мощности.

Четвертый такт последний.

После него опять будет первый. Поршень направляется от НМТ к ВМТ. При этом выпускной клапан открыт. Цилиндр очищается, выбрасывая все что сгорело, и что не сгорело, в атмосферу.
Что касается дизельного двигателя, то все основные детали с карбюраторным практически одинаковы. Ведь и тот и другой, это двигатель внутреннего сгорания. Исключение составляет смесеобразование. В карбюраторном смесь готовится отдельно, в том самом карбюраторе. А вот в дизельном – смесь готовиться непосредственно в цилиндре, перед сжиганием. Топливо (солярка) подается специальным насосом в определенный момент времени. Зажигание смеси происходит от самовоспламенения. Температура внутри цилиндра в дизеле гораздо выше, чем в карбюраторном ДВС. По этой причине детали там детали мощнее и система охлаждения лучше. Необходимо отметить, что, несмотря на высокую температуру внутри цилиндра, рабочая температура двигателя никогда не повышается выше 90…95 0С. Иногда, детали дизельных двигателей делают из более твердого металла, что позволяет снизить массу, но увеличивает цену ДВС. Однако, коэффициент полезного действия (КПД) в дизельном двигателе выше. То есть он более экономичен и дороговизна деталей себя окупает.
У дизельного ДВС ресурс выше, если соблюдать правила эксплуатации. Особенно часто механизмы дизелей выходят из строя из-за плохого топлива.
Схема работы дизельного двигателя представлена на рисунке слева. В третьем такте подача топлива показана в момент ВМТ, хотя это и не совсем так.
Системы ДВС обеспечивающие их работоспособность практически одинаковы: система смазки, топливная система, система охлаждения и система газообмена. Есть еще несколько, но они не относятся к главным.
Глядя на устройство любого двигателя внутреннего сгорания можно подумать, что все детали выполнены из стали. Это далеко не так. Корпуса бывают и чугунные и выполненные из алюминиевого сплава, а вот поршни из чугуна не делают, они либо стальные, либо из высокопрочного алюминиевого сплава. Зная общее устройство данного двигателя внутреннего сгорания и условия работы его деталей, очевидно, что и клапана и головку цилиндра нужно делать прочными, поскольку они должны выдерживать давление внутри цилиндра более 100 атмосфер. А вот поддон, где собирается масло не несет на себе особой механической нагрузки и выполняется из тонкой листовой стали или алюминия.
Характеристики ДВС
Когда говорят об автомобиле, то обычно, в первую очередь отмечают двигатель внутреннего сгорания, не его устройство, а его мощность. Она (мощность) измеряется как обычно (по-старинке) в лошадиных силах или (по-современному) киловаттах. Безусловно, чем больше мощность, тем быстрее автомобиль набирает скорость. И в принципе экономичность тем выше, тем двигатель машины более мощный. Однако, это только тогда, когда двигатель постоянно работает на номинальных (экономически оправданных) оборотах. Но на малых скоростях (при неиспользовании полной мощности) КПД сильно падает и если на номинальных режимах дизельный двигатель имеет 40…42% КПД, то на малых только 7%. Бензиновый двигатель не может похвастаться даже этим. Использование полной мощности позволяет экономить топливо. По этой причине расход топлива на 100 километров в малолитражных автомобилях ниже. Этот показатель может составлять и 5 и даже 4 л/100 км. Расход у мощных внедорожников может составлять и 10 и даже 15 л/100 км.
Еще одним показателем для автомобилей является разгон от 0 км/час до 100 км/час. Конечно, чем мощнее двигатель, тем быстрее разгон автомобиля, но про экономичность при этом говорить вообще не приходится.
Итак, двигатель внутреннего сгорания устройство которого Вы теперь знаете, совсем не кажется сложным. И на вопрос «ДВС – что это такое?» Вы можете ответить «Это то, что я знаю».

Двигатель автомобиля может выглядеть как большая запутанная мешанина металлических частей, трубок и проводов для непосвященных. В то же время двигатель — это «сердце» почти любого автомобиля — 95% всех машин работают на двигателе внутреннего сгорания.

В этой статье мы обсудим работу двигателя внутреннего сгорания: его общий принцип, изучим конкретные элементы и фазы работы двигателя, узнаем, как именно потенциальная топлива преобразуется во вращательную силу, и постараемся ответить на следующие вопросы: как работает двигатель внутреннего сгорания, какие бывают двигатели и их типы и что означают те или иные параметры и характеристики двигателя? И, как всегда, всё это просто и доступно, как дважды два.

Главная цель бензинового двигателя автомобиля заключается в преобразовании бензина в движение, чтобы Ваш автомобиль мог двигаться. В настоящее время самый простой способ создать движение от бензина — это попросту сжечь его внутри двигателя. Таким образом, автомобильный «движок» является двигателем внутреннего сгорания — т.е. сгорание бензина происходит внутри него.

Существуют различные виды двигателей внутреннего сгорания. Дизельные двигатели являются одной из форм, а газотурбинные — совсем другой. Каждый из них имеет свои преимущества и недостатки.

Ну, как Вы заметите, раз существует двигатель внутреннего сгорания, то должен существовать и двигатель внешнего сгорания. Паровой двигатель в старомодных поездах и пароходах как раз таки и является лучшим примером двигателя внешнего сгорания. Топливо (уголь, дерево, масло, любое другое) в паровой машине горит вне двигателя для создания пара, и пар создаёт движение внутри двигателя. Разумеется, двигатель внутреннего сгорания является намного более эффективным (как минимум потребляет гораздо меньше топлива на километр пути автомобиля), чем внешнего сгорания, кроме того, двигатель внутреннего сгорания намного меньше по размерам, чем эквивалентный по мощности двигатель внешнего сгорания. Это объясняет, почему мы не видим ни одного автомобиля, похожего на паровоз.

А теперь давайте посмотрим более подробно, как же работает двигатель внутреннего сгорания.

Давайте рассмотрим принцип, лежащий в любом возвратно-поступательном движении двигателя внутреннего сгорания: если Вы поместите небольшое количество высокоэнергичного топлива (например, бензина) в небольшое закрытое пространство и зажжёте его (это топливо), то выделится невероятное количество энергии в виде расширяющегося газа. Вы можете использовать эту энергию, к примеру, для приведения в движение картофелины. В этом случае энергия преобразуется в движение этой картофелины. Например, если Вы в трубу, у которой один конец плотно закрыт, а другой — открыт, нальёте немного бензина, а затем засунете картофелину и подожжёте бензин, то его взрыв спровоцирует приведение в движение этой картофелины за счёт выдавливания её взрывающимся бензином, таким образом, картофелина подлетит высоко в небо, если Вы направите трубу вверх. Это мы кратко описали принцип действия старинной пушки. Но Вы также можете использовать такую энергию бензина в более интересных целях. Например, если Вы можете создать цикл взрывов бензина в сотни раз в минуту, и если Вы сможете использовать эту энергию в полезных целях, то знайте, что у Вас уже есть ядро ​​для двигателя автомобиля!

Почти все автомобили в настоящее время используют то, что называется четырёхтактным циклом сгорания для преобразования бензина в движение. Четырёхтактный цикл также известен как цикл Отто — в честь Николая Отто, который изобрел его в 1867 году. Итак, вот они, эти 4 такта работы двигателя:

  1. Такт впуска топлива
  2. Такт сжатия топлива
  3. Такт сгорания топлива
  4. Такт выпуска отработавших газов

Вроде бы уже всё понятно из этого, не так ли? Вы можете посмотреть ниже на рисунке, что элемент, который называется поршень, заменяет картошку в описанной нами ранее «картофельной пушке». Поршень соединен с коленчатым валом с помощью шатуна. Только не пугайтесь новых терминов — их, на самом деле не так много в принципе работы двигателя!

На рисунке буквами обозначены следующие элементы двигателя:

A — Распределительный вал
B — Крышка клапанов
C — Выпускной клапан
D — Выхлопное отверстие
E — Головка цилиндра
F — Полость для охлаждающей жидкости
G — Блок двигателя
H — Маслосборник
I — Поддон двигателя
J — Свеча зажигания
K — Впускной клапан
L — Впускное отверстие
M — Поршень
N — Шатун
O — Подшипник шатуна
P — Коленчатый вал

Вот что происходит, когда двигатель проходит свой ​​полный четырёхтактный цикл:

  1. Начальное положение поршня — в самом верху, в этот момент открывается впускной клапан, и поршень движется вниз, таким образом, засасывая в цилиндр приготовленную смесь бензина и воздуха. Это такт впуска. Всего лишь крошечная капля бензина должна смешаться с воздухом, чтобы всё это работало.
  2. Когда поршень достигает своей нижней точки, то впускной клапан закрывается, а поршень начинает перемещаться обратно вверх (бензин оказывается в «западне»), сжимая эту смесь из топлива и воздуха. Сжатие впоследствии сделает взрыв мощнее.
  3. Когда поршень достигает верхней точки своего хода, свеча зажигания испускает искру, порождённую напряжением более десятка тысяч Вольт, чтобы зажечь бензин. Происходит детонация, и бензин в цилиндре взрывается, с невероятной силой толкая поршень вниз.
  4. После того, как поршень снова достигает дна своего хода, настаёт очередь открываться выпускному клапану. Затем поршень движется вверх (это происходит уже по инерции) и отработавшая смесь бензина и воздуха выходит через выхлопное отверстие из цилиндра, чтобы отправиться в своё путешествие до выхлопной трубы и далее в верхние слои атмосферы.

Теперь, когда клапан снова в самом верху, двигатель готов к следующему циклу, так что он всасывает следующую порцию смеси воздуха и бензина, чтобы ещё сильнее раскрутить коленчатый вал, который, собственно и передаёт своё кручение далее через трансмиссию к колёсам. Теперь посмотрите ниже, как работает двигатель во всех своих четырёх тактах.

Более наглядно работу двигателя внутреннего сгорания Вы можете увидеть на двух анимациях ниже:

Как работает двигатель — анимация

Обратите внимание, что движение, которое создаётся работой двигателя внутреннего сгорания, является вращением, в то время как движение, создаваемое «картофельной пушкой», является линейным (прямым). В двигателе линейное движение поршней преобразуется во вращательное движение коленчатого вала. Вращательное движение нам нужно, потому что мы планируем повернуть наши колёса автомобиля.

Теперь давайте посмотрим на все части, которые работают вместе в дружной команде, чтобы это произошло, начиная с цилиндров!

Ядром двигателя является цилиндр с поршнем, который двигается вверх и вниз внутри цилиндра. Двигатель, описанный выше, имеет один цилиндр. Казалось бы, что ещё нужно для автомобиля?! А вот и нет, автомобилю для комфортной езды на нём нужны по меньшей мере ещё 3 таких цилиндра с поршнями и всеми необходимыми этой парочке атрибутами (клапанами, шатунами и так далее), а вот один цилиндр подойдёт разве что для большинства газонокосилок. Посмотрите — ниже на анимации Вы увидите работу 4-хцилиндрового двигателя:

Типы двигателей

Автомобили чаще всего имеют четыре, шесть, восемь и даже десять, двенадцать и шестнадцать цилиндров (последние три варианта устанавливают, в основном на спортивные автомобили и болиды). В многоцилиндровом двигателе все цилиндры, как правило, расположены одним из трёх способов:

  • Рядный
  • V-образный
  • Оппозитный

Вот они — все три типа расположения цилиндров в двигателе:

Рядное расположение 4-х цилиндров

Оппозитное расположение 4-х цилиндров

V-образное расположение 6 цилиндров

Различные конфигурации имеют разные преимущества и недостатки с точки зрения вибрации, стоимости производства и характеристик формы. Эти преимущества и недостатки делают их более подходящими для использования некоторых конкретных транспортных средств. Так, 4-хцилиндровые двигатели редко имеет смысл делать V-образными, таким образом, они обычно рядные; а 8-цилиндровые двигатели делают чаще с V-образным расположением цилиндров.

Теперь давайте наглядно посмотрим, как работает система впрыска топлива, масло и другие узлы в двигателе:

Давайте рассмотрим некоторые ключевые детали двигателя более подробно:

А теперь внимание! На основе всего прочитанного посмотрим на полный цикл работы двигателя со всеми его элементами:

Полный цикл работы двигателя

Почему двигатель не работает?

Допустим, Вы выходите утром к машине и начинаете её заводить, но она не заводится . Что может быть не так? Теперь, когда Вы знаете, как работает двигатель, можно понять основные вещи, которые могут помешать двигателю завестись. Три фундаментальные вещи могут случиться:

  • Плохая топливная смесь
  • Отсутствие сжатия
  • Отсутствие искры

Да, есть ещё тысячи незначительных вещей, которые могут создать проблемы, но указанная «большая тройка» является чаще всего следствием или причиной одной из них. На основе простого представления о работе двигателя мы можем составить краткий список того, как эти проблемы влияют на двигатель.

Плохая топливная смесь может быть следствием одной из причин:

  • У Вас попросту закончился в баке бензин, и двигатель пытается завестись от воздуха.
  • Воздухозаборник может быть забит, поэтому в двигатель поступает топливо, но ему не хватает воздуха, чтобы сдетонировать.
  • Топливная система может поставлять слишком много или слишком мало топлива в смесь, а это означает, что горение не происходит должным образом.
  • В топливе могут быть примеси (а для российского качества бензина это особенно актуально), которые мешают топливу полноценно гореть.

Отсутствие сжатия — если заряд воздуха и топлива не могут быть сжаты должным образом, процесс сгорания не будет работать как следует. Отсутствие сжатия может происходить по следующим причинам:

  • Поршневые кольца изношены (позволяя воздуху и топливу течь мимо поршня при сжатии)
  • Впускные или выпускные клапаны не герметизируются должным образом, снова открывая течь во время сжатия
  • Появилось отверстие в цилиндре.

Отсутствие искры может быть по ряду причин:

  • Если свечи зажигания или провод, идущий к ним, изношены, искра будет слабой.
  • Если провод повредился или попросту отсутствует или если система, которая посылает искру по проводу, не работает должным образом.
  • Если искра происходит либо слишком рано или слишком поздно в цикле, топливо не будет зажжено в нужное время, и это может вызвать всевозможные проблемы.

И вот ещё ряд причин, по которым двигатель может не работать, и здесь мы затронем некоторые детали за пределами двигателя:

  • Если аккумулятор мёртв, Вы не сможете прокрутить двигатель, чтобы запустить его.
  • Если подшипники, которые позволяют коленчатому валу свободно вращаться, изношены, коленчатый вал не сможет провернуться, поэтому двигатель не сможет работать.
  • Если клапаны не открываются и не закрываются в нужное время или не работают вообще, воздух не сможет войти, а выхлопы — выйти, поэтому двигатель опять-таки не сможет работать.
  • Если кто-то из хулиганских побуждений засунул картошку в выхлопную трубу, выпускные газы не смогут выйти из цилиндра, и двигатель снова не будет работать.
  • Если в двигателе недостаточно масла, то поршень не сможет двигаться вверх и вниз свободно в цилиндре, что затруднит или сделает невозможным нормальную работу двигателя.

В правильно работающем двигателе все эти факторы находятся в пределах допуска. Как Вы можете видеть, двигатель имеет ряд систем, которые помогают ему сделать свою работу преобразования топлива в движение безупречной. Мы же рассмотрим различные подсистемы, используемые в двигателях, в следующих разделах.

Большинство подсистем двигателя может быть реализована с использованием различных технологий, и лучшие технологии могут значительно повысить производительность двигателя. Вот почему развитие автомобилестроения продолжается высочайшими темпами, ведь конкуренция среди автоконцернов достаточно велика, чтобы вкладывать большие деньги в каждую дополнительно выжатую лошадиную силу из двигателя при том же объёме. Давайте посмотрим на различные подсистемы, используемые в современных двигателях, начиная с работы клапанов в двигателе.

Как работают клапаны?

Система клапанов состоит из, собственно, клапанов и механизма, который открывает и закрывает их. Система открытия и закрытия их называется распределительным валом . Распределительный вал имеет специальные детали на своей оси, которые движут клапаны вверх и вниз, как показано на рисунке ниже.

Большинство современных двигателей имеют то, что называют накладными кулачками . Это означает, что вал расположен над клапанами, как Вы видите на рисунке. Старые двигатели используют распределительный вал, расположенный в картере возле коленчатого вала. Распределительный вал, крутясь, двигает кулачок выступом вниз таким образом, чтобы он продавливал клапан вниз, создавая зазор для прохода топлива или выпуска отработавших газов. Ремень ГРМ или цепной привод приводится в движение коленчатым валом и передаёт кручение от него к распределительному валу так, что клапаны находятся в синхронизации с поршнями. Распределительный вал всегда крутится в один-два раза медленнее коленчатого вала. Многие высокопроизводительные двигатели имеют четыре клапана на цилиндр (два для приёма топлива внутрь и два для вытяжки отработавшей смеси).

Как работает система зажигания?

Система зажигания производит заряд высокого напряжения и передаёт его к свечам зажигания с помощью проводов зажигания. Заряд сначала проходит к катушке зажигания (эдакому дистрибьютору, который распределяет подачу искры по цилиндрам в определённое время), которую Вы можете легко найти под капотом большинства автомобилей. Катушка зажигания имеет один провод, идущий в центре и четыре, шесть, восемь проводов или больше в зависимости от количества цилиндров, которые выходят из него. Эти провода зажигания отправляют заряд к каждой свече зажигания. Двигатель получает такую искру по времени таким образом, что только один цилиндр получает искру от распределителя в один момент времени. Такой подход обеспечивает максимальную гладкость работы двигателя.

Как работает охлаждение?

Система охлаждения в большинстве автомобилей состоит из радиатора и водяного насоса. Вода циркулирует через проходы (каналы) вокруг цилиндров, а затем проходит через радиатор, чтобы тот её максимально охладил. Однако, существуют такие модели автомобилей (в первую очередь Volkswagen Beetle (Жук)), а также большинство мотоциклов и газонокосилок, которые имеют двигатель с воздушным охлаждением. Вы вероятно, видел такие двигатели с воздушным охлаждением, сбоку которых расположены эдакие плавники — ребристая поверхность, украшающие снаружи каждый цилиндр, чтобы помочь рассеять тепло.

Воздушное охлаждение делает двигатель легче, но горячее, и как правило, уменьшается срок службы двигателя и общая производительность. Так что теперь Вы знаете, как и почему Ваш двигатель остаётся не перегретым.

Как работает пусковая система?

Повышение производительности Вашего двигателя является большим делом, но важнее то, что именно происходит, когда Вы поворачиваете ключ, чтобы запустить его ! Пусковая система состоит из стартера с электродвигателем. Когда Вы поворачиваете ключ зажигания, стартер крутит двигатель на несколько оборотов, чтобы процесс горения начал свою работу, и остановить его смог только поворот ключа в обратную сторону, когда перестаёт подаваться искра в цилиндры, и двигатель, таким образом, глохнет.

Стартер же имеет мощный электродвигатель, который вращает холодный двигатель внутреннего сгорания. Стартер — это всегда довольно мощный и, следовательно, «кушающий» ресурсы аккумулятора двигатель, ведь должен преодолеть:

  • Всё внутреннее трение, вызванное поршневыми кольцами и усугубляющееся холодным непрогретым маслом.
  • Давление сжатия любого цилиндра (цилиндров), которое происходит в процессе такта сжатия.
  • Сопротивление, оказываемое открытием и закрытием клапанов распределительным валом.
  • Все иные процессы, непосредственно связанные с двигателем, в том числе сопротивление водяного насоса, масляного насоса, генератора и т.д.

Мы видим, что стартеру необходимо очень много энергии. Автомобиль чаще всего использует 12-вольтовую электрическую систему, и сотни ампер электричества должны поступать в стартер.

Как работает впрыск и смазочная система?

Когда дело доходит ежедневного обслуживания автомобиля, Ваша первая забота, вероятно, состоит в проверке количества бензина в Вашем автомобиле. А как бензин попадает из топливного бака в цилиндры? Топливная система двигателя высасывает бензин из бака с помощью топливного насоса, который находится в баке, и смешивает его с воздухом так, чтобы надлежащая смесь воздуха и топлива могла протекать в цилиндры. Топливо поставляется в одном из трёх распространённых способов: карбюратор, впрыск топлива и система непосредственного впрыска топлива.

Карбюраторы на сегодняшний день сильно устарели, и их не помещают в новые модели автомобилей. В инжекторном двигателе нужное количество топлива впрыскивается индивидуально в каждый цилиндр либо прямо в впускной клапан (впрыск топлива) или непосредственно в цилиндр (непосредственный впрыск топлива).

Масло также играет важную роль. Идеально и правильно смазанная система гарантирует, что каждая подвижная часть в двигателе получает масло так, что она может легко перемещаться. Две главные части, нуждающиеся в масле — это поршень (а, точнее, его кольца) и любые подшипники, которые позволяют таким элементам, как коленчатый и другие валы, свободно вращаться. В большинстве автомобилей масло всасывается из масляного поддона масляным насосом, проходит через масляный фильтр для удаления частиц грязи, а затем брызгается под высоким давлением на подшипники и стенки цилиндра. Затем масло стекает в отстойник, где снова собирается, и цикл повторяется.

Система выпуска отработавших газов

Теперь, когда мы знаем о ряде вещей, которые мы положили (налили) в свой ​​автомобиль, давайте посмотрим на другие вещи, которые выходят из него. Система выпуска включает в себя выхлопную трубу и глушитель. Без глушителя Вы бы услышали звук тысяч маленьких взрывов из своей ​​выхлопной трубы. Глушитель гасит звук. Выхлопная система также включает в себя каталитический нейтрализатор, который использует катализатор и кислород, чтобы сжечь всё неиспользованное топливо и некоторые другие химические веществ в выхлопных газах. Таким образом, Ваш автомобиль соответствует определённым евростандартам по уровню загрязнения воздуха.

Что ещё есть, кроме всего вышеперечисленного в автомобиле? Электрическая система состоит из аккумулятора и генератора . Генератор подключен к двигателю ремнём и вырабатывает электроэнергию для зарядки аккумулятора. Аккумулятор выдаёт 12-вольтовый заряд электрической энергии, доступной ко всему в машине, нуждающемуся в электроэнергии (системе зажигания, магнитоле,

Современный двигатель внутреннего сгорания далеко ушел от своих прародителей. Он стал крупнее, мощнее, экологичнее, но при этом принцип работы, устройство двигателя автомобиля, а также основные его элементы остались неизменными.

Двигатели внутреннего сгорания, массово применяемые на автомобилях, относятся к типу поршневых. Название свое этот тип ДВС получил благодаря принципу работы. Внутри двигателя находится рабочая камера, называемая цилиндром. В ней сгорает рабочая смесь. При сгорании смеси топлива и воздуха в камере увеличивается давление, которое воспринимает поршень. Перемещаясь, поршень преобразует полученную энергию в механическую работу.

Как устроен ДВС

Первые поршневые моторы имели лишь один цилиндр небольшого диаметра. В процессе развития для увеличения мощности сначала увеличивали диаметр цилиндра, а потом и их количество. Постепенно двигатели внутреннего сгорания приняли привычный нам вид. Мотор современного автомобиля может иметь до 12 цилиндров.

Современный ДВС состоит из нескольких механизмов и вспомогательных систем, которые для удобства восприятия группируют следующим образом:

  1. КШМ – кривошипно-шатунный механизм.
  2. ГРМ – механизм регулировки фаз газораспределения.
  3. Система смазки.
  4. Система охлаждения.
  5. Система подачи топлива.
  6. Выхлопная система.

Также к системам ДВС относятся электрические системы пуска и управления двигателем.

КШМ – кривошипно-шатунный механизм

КШМ – основной механизм поршневого мотора. Он выполняет главную работу – преобразует тепловую энергию в механическую. Состоит механизм из следующих частей:

  • Блок цилиндров.
  • Головка блока цилиндров.
  • Поршни с пальцами, кольцами и шатунами.
  • Коленчатый вал с маховиком.


ГРМ – газораспределительный механизм

Чтобы в цилиндр поступало нужное количество топлива и воздуха, а продукты сгорания вовремя удалялись из рабочей камеры, в ДВС предусмотрен механизм, называемый газораспределительным. Он отвечает за открытие и закрытие впускных и выпускных клапанов, через которые в цилиндры поступает топливо-воздушная горючая смесь и удаляются выхлопные газы. К деталям ГРМ относятся:

  • Распределительный вал.
  • Впускные и выпускные клапаны с пружинами и направляющими втулками.
  • Детали привода клапанов.
  • Элементы привода ГРМ.

ГРМ приводится от коленчатого вала двигателя автомобиля. С помощью цепи или ремня вращение передается на распределительный вал, который посредством кулачков или коромысел через толкатели нажимает на впускной или выпускной клапан и по очереди открывает и закрывает их

В зависимости от конструкции и количества клапанов на двигатель может быть установлен один или два распределительных вала на каждый ряд цилиндров. При двухвальной системе каждый вал отвечает за работу своего ряда клапанов — впускных или выпускных. Одновальная конструкция имеет английское название SOHC (Single OverHead Camshaft). Систему с двумя валами называют DOHC (Double Overhead Camshaft).

Во время работы мотора его детали соприкасаются с раскаленными газами, которые образуются при сгорании топливо-воздушной смеси. Чтобы детали двигателя внутреннего сгорания не разрушались из-за чрезмерного расширения при нагреве, их необходимо охлаждать. Охладить мотор автомобиля можно с помощью воздуха или жидкости. Современные моторы имеют, как правило, жидкостную схему охлаждения, которую образуют следующие части:

  • Рубашка охлаждения двигателя
  • Насос (помпа)
  • Радиатор
  • Вентилятор
  • Расширительный бачок

Рубашку охлаждения двигателей внутреннего сгорания образуют полости внутри БЦ и ГБЦ, по которым циркулирует охлаждающая жидкость. Она отбирает избыточное тепло у деталей двигателя и относит его к радиатору. Циркуляцию обеспечивает насос, привод которого осуществляется с помощью ремня от коленчатого вала.

Термостат обеспечивает необходимый температурный режим двигателя автомобиля, перенаправляя поток жидкости в радиатор либо в обход него. Радиатор, в свою очередь, призван охлаждать нагретую жидкость. Вентилятор усиливает набегающий поток воздуха, тем самым увеличивая эффективность охлаждения. Расширительный бачок необходим современным моторам, так как применяемые охлаждающие жидкости сильно расширяются при нагреве и требуют дополнительного объема.

Система смазки ДВС

В любом моторе есть множество трущихся деталей, которые необходимо постоянно смазывать, чтобы уменьшить потери мощности на трение и избежать повышенного износа и заклинивания. Для этого существует система смазки. Попутно с ее помощью решается еще несколько задач: защита деталей двигателя внутреннего сгорания от коррозии, дополнительное охлаждение деталей мотора, а также удаление продуктов износа из мест соприкосновения трущихся частей. Систему смазки двигателя автомобиля образуют:

  • Масляный картер (поддон).
  • Насос подачи масла.
  • Масляный фильтр с .
  • Маслопроводы.
  • Масляный щуп (индикатор уровня масла).
  • Указатель давления в системе.
  • Маслоналивная горловина.

Насос забирает масло из масляного картера и подает его в маслопроводы и каналы, расположенные в БЦ и ГБЦ. По ним масло поступает в места соприкосновения трущихся поверхностей.

Система питания

Система подачи для двигателей внутреннего сгорания с воспламенением от искры и от сжатия отличаются друг от друга, хотя и имеют ряд общих элементов. Общими являются:

  • Топливный бак.
  • Датчик уровня топлива.
  • Фильтры очистки топлива – грубой и тонкой.
  • Топливные трубопроводы.
  • Впускной коллектор.
  • Воздушные патрубки.
  • Воздушный фильтр.

В обеих системах имеются топливные насосы, топливные рампы, форсунки подачи топлива, но в силу различных физических свойств бензина и дизельного топлива конструкция их имеет существенные различия. Сам принцип подачи одинаков: топливо из бака с помощью насоса через фильтры подается в топливную рампу, из которой попадает в форсунки. Но если в большинстве бензиновых двигателей внутреннего сгорания форсунки подают его во впускной коллектор мотора автомобиля, то в дизельных оно подается непосредственно в цилиндр, и уже там смешивается с воздухом. Детали, обеспечивающие очистку воздуха и поступление его цилиндры – воздушный фильтр и патрубки – тоже относятся к топливной системе.

Система выпуска

Система выпуска предназначена для отвода отработанных газов из цилиндров двигателя автомобиля. Основные детали, ее составляющие:

  • Выпускной коллектор.
  • Приемная труба глушителя.
  • Резонатор.
  • Глушитель.
  • Выхлопная труба.

В современных двигателях внутреннего сгорания выхлопная конструкция дополнена устройствами нейтрализации вредных выбросов. Она состоит из каталитического нейтрализатора и датчиков, сообщающихся с блоком управления двигателем. Выхлопные газы из выпускного коллектора через приемную трубу попадают в каталитический нейтрализатор, затем через резонатор в глушитель. Далее через выхлопную трубу они выбрасываются в атмосферу.

В заключение необходимо упомянуть системы пуска и управления двигателем автомобиля. Они являются важной частью двигателя, но их необходимо рассматривать вместе с электрической системой автомобиля, что выходит за рамки этой статьи, рассматривающей внутреннее устройство двигателя.

Принцип работы ДВС современного типа простыми словами

Современные двигатели работают по достаточно простой схеме, которая была изобретена целый век назад. Единственное, что подверглось сильному изменению после производства первого двигателя внутреннего сгорания, это система питания. С карбюраторов и прочих не слишком эффективных средств подачи топлива промышленность перешла на инжектор для бензиновых двигателей. Дизельные агрегаты обладают отдельным типом впрыска через систему с повышенным давлением. Все последние разработки в технологиях работы ДВС являются мелочными дополнениями к уже известной конструкции, которые призваны обеспечить либо автоматическую регулировку определенных параметров работы, либо определенную экономию топлива.

Тем не менее, суть двигателя остается прежней. По части работы двигателя внутреннего сгорания сегодня мы обсудим отдельно службу бензинового и дизельного силового агрегата, а также обсудим некоторые особенности использования бензинового двигателя в гибридных устройствах. Также затронем тему турбины в различных агрегатах, ее типов и смысла использования. Ознакомившись со всеми тонкостями работы современных силовых агрегатов внутреннего сгорания, вы поймете, что нынешние ДВС фактически ничем не отличаются от классических устройств.

Содержание

Бензиновый двигатель внутреннего сгорания — тонкости работы

Двигатель на бензиновом топливе представляет собою классический вариант силового агрегата, который может работать только на очищенном и качественном бензине, производимом из нефти. Современные двигатели работают только на бензине с октановым числом 95 или даже 98. Залив в хороший агрегат бензин плохого качества, вы можете приобрести массу проблем.

Топливо подается в агрегат с помощью бензонасоса, а количество подачи регулируется специальной системой впрыска. Инжекторы обладают тонкими форсунками, которые распыляют топливо в системе, позволяя его полностью сжечь в камерах сгорания. После подачи топлива по трубке на систему инжектора происходят следующие процессы:

  • инжектор распыляет бензин, превращая его в облако пара, а также смешивает получившиеся частицы с воздухом;
  • смесь бензина и кислорода попадает дальше в камеру сгорания, где в верхней части поджигается свечей зажигания;
  • подожженный бензин быстро воспламеняется, формируя определенной мощности взрыв с конкретным давлением и усилием;
  • камера сгорания исключительно герметична, потому сила этого взрыва направляется на рабочую плоскость поршня;
  • от мощности удара поршень опускается вниз и приводит в движение коленчатый вал, на котором закреплены другие поршни;
  • с помощью неоднократного повторения такого процесса происходит постоянное вращение двигателя.

Если топливо не распыляется должным образом, поскольку форсунки забиты или поломаны, один из цилиндров не будет давать нужной мощности, поскольку топливо не сможет поджигаться и нормально выполнять свои функции. В таком случае двигатель теряет мощность и значительно увеличивает расход. Также в таком агрегате крайне важна фильтрация воздуха.

Турбина в бензиновых двигателях представляет собой механизм усиленной подачи воздуха, за счет чего на определенных режимах работы увеличивается мощность агрегата без увеличения потребления топлива. Интенсивная подача воздуха с разными значениями позволяет компаниям достигать невероятных технических характеристик вполне стандартных бензиновых агрегатов.

Дизельный силовой агрегат — второй тип ДВС

Еще один важный тип двигателя, который стал прекрасной альтернативой бензиновому агрегату в обыденной и коммерческой эксплуатации, — это дизельный силовой агрегат. Его стандартными преимуществами считается менее активный расход топлива и очень ощутимая тяга. Такие выгоды дают возможность полностью переформатировать стиль поездки, изменить привычки управления автомобилем.

Дизельный силовой агрегат подает топливо также через форсунки со значительным распылением. Это требует высокой чистоты дизельного топлива и значительной безопасности работы системы подачи топлива, поскольку жидкость подается на форсунки в достаточно большом давлении. Принцип работы агрегата несколько отличается от бензинового:

  • топливо подается на распыление в гораздо большем давлении, оно прогревается еще до входа в камеры сгорания;
  • под воздействием значительного давления поршней в камерах сгорания топливо самовоспламеняется;
  • создаваемая при этом энергия производит толчок поршня в нижнее положение, выводя при этом другие поршни вверх;
  • для работы двигателя требуется меньше топлива, а вот подача воздуха имеет большое значение;
  • по данной причине в дизельных двигателях практически всегда присутствует турбина, распространены только турбодизели;
  • агрегат создает очень завидную мощность поршней, потому даже на низких оборотах он обладает большой тягой.

Определенная специфика работы дизельного двигателя вызывает и некоторые особенности его эксплуатации. В частности, водителю придется научиться раньше переключать передачи, довольствоваться низкими оборотами и контролировать тягу машины. Современные турбодизели потребляют на 15-20 процентов меньше топлива на ту самую мощность, чем бензиновые агрегаты.

Объемистые и тяговитые дизельные двигатели в промышленности могут работать не только на продуктах нефтеобработки. Многие агрегаты приспособлены даже на сжигание сырой нефти, а также принимают в качестве топлива природные биомасла, которые воспламеняются при сильном давлении. Это может стать одним из будущих перспективных моментов автомобилестроения.

Бензиновый гибридный двигатель — электричество в моде

Не так давно на рынок начали поступать гибридные автомобили. Это машины, у которых силовой агрегат состоит из двух частей. Первая часть не отличается от стандартных бензиновых агрегатов, но зачастую не столь объемистая и мощная. А вторая часть представлена электродвигателями в разных количествах и расположениях.

Батареи для электродвигателя оснащены отдельным генератором, который заряжается от работы бензинового агрегата. Также энергия берется из рекуперации энергии торможения и прочих процессов, которые обычно теряются в стандартном исполнении. Гибрид работает по следующей схеме:

  • в стандартных ситуациях городской поездки используются только электромоторы, вы ведете электромобиль;
  • когда энергия батарей на исходе, в дело включается бензиновый двигатель, нагнетающий запас в аккумуляторах;
  • также при резком нажатии на педаль газа включаются сразу все двигатели, давая огромную энергию;
  • при полной разрядке батарей ДВС продолжает работать и весьма экономично везет вас в нужном направлении;
  • у некоторых гибридных автомобилей есть выход для зарядки батарей от обычной электрической сети.

Такие технологии являются дыханием будущего, поскольку экономия на гибридных автомобилях ощутима. Большой внедорожник с такой установкой может затрачивать всего 5-6 литров топлива, независимо от выбранного режима поездки. Хороший двигатель внутреннего сгорания обеспечивает быструю зарядку батарей.

Сегодня активно развивается применение гибридных установок на основе дизельного двигателя. В таком случае расход опускается до невероятных 2-3 литров на 100 километров. Впрочем, технологии гибридного использования знают и расход в 1 литр на 100 километров, который является эталонным для современных производителей автомобилей. Предлагаем изучить принцип работы гибридного двигателя на следующем видео:

Подводим итоги

Сегодня покупатель автомобилей имеет большой выбор технологий, которые для него будут оптимальными во всех отношениях. Подобрать лучшее решение будет непросто, поскольку производители расписывают преимущества своих предложений в самых неожиданных аспектах. Иногда правильно преподнесенная технология кажется нам самым важным элементом автомобиля, но на самом деле не занимает и части технического потенциала транспорта.

Потому многие покупатели просто становятся жертвами рекламного влияния, покупая те или иные технологии и оплачивая их в полной мере. Сегодня лучше отказаться от рекламы при выборе типа машины. Положитесь на собственные впечатления и ощущения, на решения, которые вам нравятся больше всего. В каждом типе двигателя и силовой установки есть свои преимущества и недостатки. Расскажите о главных преимуществах двигателя в вашем автомобиле.

Принцип действия двигателя внутреннего сгорания

Двигатель внутреннего сгорания — это тепловая машина, в которой химическая энергия топлива преобразуется в тепловую энергию и в механическую работу непосредственно в рабочем цилиндре. Преобразование тепловой энергии в механическую происходит путем расширения продуктов сгорания. Рассмотрим принцип работы ДВС на примере карбюраторного двигателя, схема которого нада на рис. 1.

Рис. 1 Схема работы 4-тактного карбюраторного двигателя

Радиус кривошипа здесь обозначен буквой R, ход поршня – S (S = 2R). Рабочий цикл двигателя осуществляется за 2 оборота коленчатого вала или на 4 полных хода поршня (4 такта). Поэтому двигатель – 4-тактный. Справа на рисунке приведена диаграмма работы двигателя в осях “давление p – ход поршня S” (или объем V, описываемый поршнем при движении). Рассмотрим последовательность тактов, начиная с точки «o» диаграммы цикла, когда поршень находится в верхней мертвой точке (ВМТ), всасывающий клапан открыт, давление в цилиндре равно давлению окружающей среды po:

Последовательность тактов

  • Впуск (линия oa) — поршень движется от верхней мертвой точки (ВМТ) к нижней мертвой точке (НМТ), впускной клапан открыт, выпускной клапан — закрыт. В цилиндр поступает горючая смесь (воздух и пары бензина), получаемая в смесителе-карбюраторе, расположенном на всасывающем патрубке двигателя. В конце такта (в НМТ) впускной клапан закрывается.
  • Сжатие (линия ac) — поршень движется от НМТ к ВМТ, оба клапана закрыты, давление и температура рабочего тела в цилиндре по ходу поршня возрастает.
  • Рабочий ход (линия zb) — в конце хода сжатия у ВМТ горючая смесь воспламеняется с помощью электрической свечи, происходит процесс быстрого горения при постоянном объеме (линия cz и затем — расширение газов (zb) с совершением поршнем полезной работы при его перемещении от ВМТ к НМТ. Оба клапана закрыты.
  • Выпуск (линия bao) — в конце рабочего хода у НМТ открывается выпускной клапан. В этот момент давление газа в цилиндре больше давления окружающего воздуха po. Поэтому продукты сгорания выходят с большой скоростью в атмосферу, давление в цилиндре резко падает (линия ba). Оставшиеся в цилиндре продукты сгорания выталкиваются при движении поршня от НМТ к ВМТ через открытый выпускной клапан. У ВМТ выпускной клапан закрывается, открывается впускной клапан. Цикл повторяется сначала.

В 4-х тактном дизеле последовательность тактов — та же, что и в карбюраторном двигателе. Однако в период впуска в цилиндр поступает не горючая смесь, а свежий заряд воздуха. Топливо подается в цилиндр в мелкораспыленном виде в конце такта сжатия (у ВМТ вблизи точки c цикла), конец подачи – в районе точки z цикла. Топливный насос высокого давления подает топливо в цилиндр через распылитель форсунки в мелкораспыленном виде. Топливо самовоспламеняется в объеме камеры сжатия Vc. Часть топлива, поданного в цилиндр до самовоспламенения, горит при практически постоянном объеме (линия cz1). Поскольку топливо продолжает подаваться в цилиндр после начала воспламенения – оно сгорает при примерно постоянном давлении в начальный период рабочего хода (линия z1z). Теоретическая диаграмма работы такого 4-тактного дизеля дана на рис. 2.

Рис. 2 Диаграмма работы 4-тактного двигателя

В остальном цикл аналогичен циклу карбюраторного двигателя.

Рекомендуется к прочтению: Режимы обкатки судовых ДВС

В 2-тактном двигателе рабочий цикл осуществляется за 1 оборот коленчатого вала (2 хода поршня). Рассмотрим принцип его действия на примере 2-тактного крейцкопфного дизеля с контурной продувкой цилиндра (рис. 3).

Рис. 3 Схема 2-тактного крейцкопфного дизеля

В нижней части втулки цилиндра имеются продувочные А и выпускные В окна. Примем, что выпускные окна несколько выше продувочных. Открытием и закрытием окон управляет поршень рабочего цилиндра. В конце рабочего хода поршень своей верхней кромкой открывает выпускные окна В, давление в цилиндре в этот момент выше атмосферного. Поэтому под действием разности давления продукты сгорания выбрасываются из цилиндра в атмосферу (линия ba на теоретической диаграмме работы 2-тактного дизеля, рис. 4). Эта фаза рабочего цикла называется “свободным выпуском“.

Рис. 4 Диаграмма работы 2-тактного дизеля

Продувочные окна А открываются при дальнейшем нисходящем ходе поршня к НМТ. В этот момент давление в цилиндре станет примерно равным давлению в продувочном ресивере. Предварительно сжатый воздух из продувочного ресивера через окна А поступает в цилиндр и выталкивает из него оставшиеся продукты сгорания через окна В. Эта фаза очистки называется “принужденным выпуском”.

Одновременно с выталкиванием продуктов сгорания свежий воздух заполняет объем цилиндра и частично выходит вместе с отработавшими газами в атмосферу. Эту фазу называют “продувкой” рабочего цилиндра. Принужденный выпуск и продувка протекают одновременно от момента открытия продувочных окон при движении поршня к НМТ до их полного закрытия при движении поршня от НМТ к ВМТ (линия аоа на диаграмме).

Читайте также: Испытания судовых ДВС

Процесс очистки цилиндра от продуктов сгорания и наполнения его свежим зарядом носит название “газообмен”. Как видно, в 2-тактном дизеле газообмен осуществляется лишь на части хода поршня, при его нахождении в районе НМТ.

После закрытия продувочных и выпускных окон в 2-тактном двигателе начинается процесс сжатия и далее — как у 4-тактного двигателя.

Индикаторная работа Li – это полезная работа газов в цилиндре за цикл, определяемая в масштабе mF площадью Facz1zb диаграммы acz1zb на рисунках 2-4:

Li = mF Facz1zb.           Форм. 1

Рабочий объем цилиндра Vs – это объем, описываемый поршнем диаметром D при ходе S:

Vs = πD2/4·S.           Форм. 2

Среднее индикаторное давление pmi – это отношение индикаторной работы Li к рабочему объему цилиндра Vs:

pmi = Li/Vs.           Форм. 3

Иначе: среднее индикаторное давление – это условное давление, постоянное на всем ходе поршня которое совершает ту же работу, что и переменное давление газов в цилиндре.

Полный объем цилиндра Vn – объем цилиндра при положении поршня в НМТ:

Vn = Vc+Vs,          Форм. 4

где:

  • Vc – объем камеры сжатия.

Степень сжатия ε – отношение объемов в точках a и c цикла (рис. 2):

ε = Va/Vc.          Форм. 5

Степень предварительного расширения ρ – отношение объемов в точках z и c:

ρ = Vz/Vc.          Форм. 6

Степень последующего расширения δ – отношение объемов в точках b(a) и z:

δ = Va/Vz = ε/ρ.         Форм. 7

Степень повышения давления λ – отношение давлений в точках z и c:

λ = Pz/Pc.          Форм. 8

Эти понятия используются при анализе циклов как 2-тактных, так и 4-тактных ДВС.

Сноски

Sea-Man

Февраль, 13, 2015 3392 0

5 / 5 ( 7 голосов )

Двигатель внутреннего сгорания: устройство, принцип работы, виды


Люди постоянно пытаются построить экономичный и надёжный мотор. До сих пор идея об изобретении вечного двигателя не даёт покоя многим изобретателям. Неудачные разработки исчезли в веках. Но в результате проб и ошибок появилось несколько типов двигательных установок. Эти механизмы успешно нами эксплуатируются.

Все известные двигатели используют разные виды энергии, которую затем преобразуют в движение. В качестве приводной тяги может служить электроэнергия, вода и тепло. Поэтому они разделяются на следующие типы:

  • электродвигатели;
  • гидравлические машины;
  • тепловые агрегаты.

Тепловые моторы основаны на преобразовании тепловой энергии в работу. В таких машинах применён один из двух способов сгорания топлива: внешний и внутренний.

В школе наверняка всем рассказывали о машинах, работающих на пару. Они как раз и представляют вид тепловых двигателей с внешней камерой сгорания. Первые паровые механизмы были построены ещё в середине XIX века. Сейчас паровые машины практически исчезли из нашей жизни. Они уступили место двигателям внутреннего сгорания (ДВС).

Принципиально ДВС отличаются от паровых машин местом размещения камеры сгорания. В механизмах с внутренним сгоранием эти камеры расположены в самих агрегатах. Такие моторы работают практически во всех транспортных средствах.

В этой статье приведена основная информация о принципе работы различных видов ДВС: газотурбинного, роторного, поршневого. Рассказано, как работает двигательный агрегат с внешней камерой сгорания — двигатель Стирлинга. Описана классификация и устройство двигателей внутреннего сгорания поршневого типа. Объяснено отличие двухтактного двигателя от четырёхтактного.

Принцип работы ДВС
Самым главным механизмом, установленным в каждом автомобиле, является двигатель внутреннего сгорания. Механики любят называть его сердцем автомобиля. Именно он отвечает за преобразование энергии сгорания углеводородного топлива в механическое движение. Работают ДВС на жидком или газообразном топливе.

Принцип работы ДВС прост. Небольшие порции топлива, смешанного с воздухом в нужной пропорции, поступают в камеру сгорания. В ней топливная смесь воспламеняется. Выделяемая при этом энергия приводит в движение поршни, которые вращают вал.

Все остальные узлы автомобиля предназначены либо для повышения производительности силового агрегата, либо для контроля и управления. Вспомогательные системы создают также комфорт пассажирам и водителям, при этом обеспечивая им безопасную езду.

Более чем за полуторавековую историю своего развития появились ДВС, различающиеся конструкцией, мощностью и используемым топливом.


Видео: Принцип работы двигателя внутреннего сгорания

Главная классификация ДВС

Все существующие ДВС разделены на 3 вида:

  • поршневые;
  • роторные;
  • газотурбинные.

В поршневых агрегатах рабочим органом является поршень. В роторных моторах используется движение ротора. В газотурбинных двигателях движение осуществляется турбиной.

В каждом из видов этих силовых установок конструктивно реализованы разные схемы преобразования тепловой энергии в полезную работу. Это принципиально отличает их друг от друга. Максимальная производительность силовых агрегатов зависит от того, каким образом преобразуется тепловая энергия. Каждый вид силовых агрегатов создан для эффективной работы в своей области применения.

Ниже подробно описаны конструкции этих агрегатов и физические процессы, происходящие в них. Отдельный раздел статьи посвящён двигателю Стирлинга. Он относится к механизмам с внешней камерой сгорания. Но принцип работы этого мотора по нескольким признакам похож на ДВС. Это часто вызывает путаницу.

Газотурбинный двигатель
При воспламенении топлива образуются газы, которые при нагреве расширяются. Этот факт всем известен из школьного курса физики. Указанный принцип положен в основу газотурбинной установки. Топливная смесь сгорает, и нагретый газ моментально расширяется, заставляя лопасти турбины вращаться. Чем больше температура газа, тем быстрее он увеличивается в объёмах. Эта зависимость определяет коэффициент полезного действия этого вида ДВС: чем выше температура газов, тем больше КПД.

Разработано два типа газотурбинных установок, отличающихся количеством рабочих валов. Агрегаты с двумя валами мощнее по сравнению с одновальными механизмами.

Газотурбинные двигатели устанавливают на машины, где необходима большая мощность силовой установки. Например, грузовые автомобили, корабли, самолёты и железнодорожные локомотивы.

Видео: Принцип работы газотурбинного двигателя

Роторный ДВС
В моторах этого вида реализован принцип вращения вала от кругового движения ротора. Ротором является треугольный поршень, который вращается в овальной камере – статоре. Ротор закреплён на валу с эксцентриситетом. При таком расположении во время вращения ротора в цилиндре создаются полости для тактов зажигания, сгорания и выпуска. За один оборот ротора происходит 3 такта работы.

Достоинством роторного ДВС является отсутствие шатунов, коленчатого вала и многих сопутствующих узлов. Инженеры подсчитали, что деталей в агрегате роторного типа намного меньше, чем в моторах других типов. Поэтому роторные моторы гораздо меньше других. Это является ещё одним их преимуществом.

В Японии, известной своими передовыми разработками в автомобилестроении, были сконструированы двигатели, имеющие несколько роторов. Например, японцы сконструировали агрегат, имеющий такую же мощность, что и шестипоршневой двигатель гоночного автомобиля. Но размеры многороторного движка при этом гораздо меньше.

На ранних моделях вазовских автомобилей в своё время устанавливались роторные моторы.

Роторные двигатели гораздо проще и эффективнее поршневых.  Но по непонятной причине роторные агрегаты используются очень редко.

Видео: Принцип работы роторного двигателя

Поршневой двигатель
Это – самый распространённый тип двигателя. Рассмотрим его принципиальную схему работы.

В конструкции мотора этого вида имеется несколько цилиндров, внутри каждого из них поршни совершают возвратно-поступательные движения. В обоих концах цилиндров расположены клапаны. Открываясь, клапан пропускает порцию топливной смеси в камеру сгорания, образующуюся в цилиндре перед поршнем. В это время поршень, двигаясь вверх, сжимает смесь. В расчётный момент происходит её воспламенение.  Образующиеся газы расширяются и толкают поршень в другую сторону. Несколько таких поршней закреплены на валу П-образной конструкции. Обычно такой вал называют коленчатым. За каждое движение поршня вал проворачивается на определённую величину. Цикл движения поршня от одной стороны цилиндра до другой называется тактом. Скоординированная работа поршней заставляет коленчатый вал проворачиваться на полный оборот. Такие циклы постоянно повторяются, заставляя вращаться вал с большой скоростью.

Автомобилестроители постоянно совершенствуют поршневые двигатели. Каждое усовершенствование приводит к повышению мощности двигателя. Поршневые агрегаты являются самыми надёжными из всех видов силовых установок.

Видео: Принцип работы дизельного двигателя

Двигатель Стирлинга
В качестве примера разновидности двигательного агрегата с внешней камерой сгорания можно привести так называемый двигатель Стирлинга. Своё название он получил по фамилии изобретателя – шотландского священника Роберта Стирлинга. Этот оригинальный мотор работает на основе неоднократного нагрева рабочего тела – порции воздуха.

Принцип работы внешне похож на схему ДВС. В моторе Стирлинга тоже имеется цилиндр с поршнем, который двигается по возвратно-поступательной траектории и приводит в движение кривошипно-шатунный механизм. Мало того, цилиндр имеет радиатор охлаждения как в двигателе внутреннего сгорания.

Но главным отличием двигателя Стирлинга от ДВС является отсутствие топливной смеси. Её роль в данном случае выполняет воздух, который нагревается внешним источником тепла.

Дело в том, что уже находящийся в цилиндре воздух, нагреваясь, расширяется и толкает вытеснитель, который в свою очередь двигает рабочий поршень вверх. Поршень проворачивает кривошип. Проходя через зону охлаждения, воздух сжимается, давление в цилиндре уменьшается, образуя разрежение. В это время кривошип, двигаясь дальше, возвращает поршень в нижнее положение. Так периодически чередуя циклы нагрева и остывания рабочего тела (воздуха), извлекают энергию из процесса изменения давления.

Примечательно, что такой агрегат легко превратить в тепловой насос, изменив координацию работы рабочего поршня и вытеснителя.

Двигатель Стирлинга может работать практически на любом топливе, от дров до ядерной энергии. При этом конструкция этого агрегата очень проста и надёжна. Инженеры разработали 3 типа моторов подобного рода и назвали их буквами греческого алфавита. Выше описан принцип самого простого из них: бета-типа.

Двигатель конструкции Стирлинга незаменим в тех случаях, когда появляется необходимость преобразования очень маленького перепада температур. В таких условиях ни одна газовая турбина функционировать не может. Проще говоря, установки Стирлинга могут эффективно работать от обычной переносной газовой горелки или даже спиртовки. Туристы уже оценили такие устройства. Учёные предсказывают, что двигатели Стирлинга сделают революцию в солнечной энергетике.

Видео: Принцип работы двигателя Стирлинга

Виды поршневых ДВС
Поршневые моторы классифицируются по типу используемого топлива:
  • бензиновые;
  • газовые;
  • дизельные.

Кроме того, двигатели отличаются системой зажигания. В установках, использующих принудительное зажигание, воспламенение топливной смеси производится устройствами, генерирующими искру. Их ещё называют свечами зажигания. В них периодически образуется электрическая дуга, которая и поджигает топливо в камере сгорания цилиндра. Работают свечи от электрического аккумулятора. Сложность представляет регулировка свечей. Необходимо отрегулировать свечи так, чтобы искра образовывалась точно в тот момент, когда смесь достигнет расчётного уровня сжатия.

Принудительное зажигание характерно только для бензиновых двигателей. Реже такая система применяется в двигателях, работающих на газе.

Топливная смесь может подаваться в цилиндры двумя способами: с помощью карбюратора или инжектора.

Поршневые агрегаты, использующие в качестве топлива солярку, называются дизельными и имеют другую систему воспламенения топлива в цилиндре. В дизельных установках смесь самопроизвольно воспламеняется в результате её сжатия поршнем. Отличительной особенностью дизельных двигателей является их «всеядность». Они способны работать на нескольких видах топлива. Дизели прекрасно функционируют, будучи заправлены другими горючими веществами. Например, керосином, мазутом или даже растительным маслом.

В зависимости от количества тактов рабочего цикла, различают двухтактные и четырёхтактные ДВС. Двухтактные двигатели обычно ставят на мотоциклы, мопеды или газонокосилки. Четырёхтактные моторы устанавливаются в современных автомобилях.

По пространственному расположению цилиндров ДВС тоже имеют свою классификацию.

Если цилиндры расположены на одной оси, то такие двигатели называются рядными. Обозначаются рядные моторы английским символом «R» с цифрой, указывающей на количество цилиндров.

Если цилиндры размещены под углом друг к другу, то такие агрегаты называют V-образными. Они гораздо компактнее других типов двигателей. Обычно угол между осями цилиндров составляет 120 градусов. Имеются модели V-образных моторов с другим углом между осями цилиндров.

Агрегаты, обозначаемые символом «Vr», имеют переходную конструкцию. Они обладают признаками и рядных, и V-образных двигателей.

При расположении цилиндров напротив друг друга, то есть под углом 180 градусов, двигатели называются оппозитными.

Устройство двигателя внутреннего сгорания: описание основных узлов ДВС
В этом разделе рассмотрено назначение и конструктивное исполнение отдельных узлов поршневых двигателей.

Кривошипно-шатунный механизм

Поршни в цилиндрах движутся возвратно-поступательно. Кривошип вместе с шатунами преобразуют это движение во вращение вала. Механизм называется кривошипно-шатунным (КШМ). Состоит из П-образного вала, называемого коленчатым, узла цилиндров, головки блока цилиндров (ГБЦ) и креплений.

Газораспределительная система

ГБЦ регулирует подачу обогащённой смеси в цилиндры. Процесс происходит за счёт скоординированных во времени циклов открытия и закрытия группы клапанов, осуществляющих подачу смеси и выпуск отработанных газов. Кроме этого, газораспределительная система отводит наружу выхлопные газы. Управляет клапанами распределительный вал, который связан с коленвалом зубчатой или ремённой передачей. Вращаясь, распределительный вал заставляет открываться и закрываться нужные клапана в строго определённое время.

Вся система состоит из распредвала и клапанных групп. Ремонт головки часто вызывает затруднения, так как требует тщательной установки уплотнений. При неправильно установленных прокладках произойдёт подсос воздуха, возможна также утечка топлива. Это нарушает баланс топливной смеси.

Система питания
Внутрь цилиндров подаётся не чистое горючее, а порция смеси, состоящей из обогащённого воздухом топлива. Карбюратор смешивает бензин с воздухом, то есть обогащает топливо. Затем приготовленная смесь через коллектор, называющийся впускным, попадает в камеру.

Если ДВС оборудован инжектором, то бензин под высоким давлением подается сразу во впускной коллектор. Впрыск происходит через форсунки. Бензин и воздух смешиваются не в карбюраторе, а непосредственно во впускном коллекторе.

Топливо циркулирует в системе питания за счёт работы насоса. В карбюраторных двигателях установлены механические насосы. В инжекторных — электрические.

Инжекторные двигатели обычно оснащаются электронным зажиганием. Такое зажигание эффективнее свечного, так как воспламенением топливно-воздушной смеси управляет бортовой компьютер. Для его эффективной работы в автомобиле установлены специальные датчики, собирающие все необходимые данные для компьютера.

Зажигание

[blok11]
В двигателях с карбюратором всегда имеются так называемые свечи зажигания. Они генерируют вольтову дугу, поджигающую топливную смесь. В народе такую дугу обычно называют искрой. В таких автомобилях система зажигания состоит из свечей и аккумулятора.

В двигателях на дизельном топливе процесс возгорания смеси принципиально отличается. Она самовоспламеняется. Это стало возможным благодаря уникальным свойствам дизельного топлива. Дизтопливо через форсунки под высоким давлением подаётся в цилиндр. Предварительно воздух в камере цилиндра тоже сжимается и нагревается до 700 градусов. В таких условиях солярка мгновенно самовоспламеняется.

Выхлопная система

Вывод газов наружу осуществляется системой выпуска продуктов сгорания — выхлопной системой. Токсичные газы направляются сначала в выпускной коллектор, в котором осуществляется сбор выхлопных газов от всех цилиндров. Из коллектора газ, содержащий большое количество вредных веществ, выбрасывается наружу через глушитель.

Последние модели всех автомобилей теперь выпускаются только с каталитическими нейтрализаторами. Они сильно снижают токсичность выхлопных газов, приводя их в соответствие с экологическими нормами.

Система смазки

[blok12]
В автомобиле есть много деталей вращения. Во время работы двигателя трущиеся между собой детали активно изнашиваются. Чтобы уменьшить износ и увеличить КПД двигателя, в каждом автомобиле предусмотрена замкнутая система, созданная для циркуляции смазки. Подача масла в систему осуществляет масляный насос. Перед тем, как попасть в двигатель, масло проходит через фильтр, где очищается от накопившихся загрязнений. Через систему распределения масло подаётся в подшипники коленчатого вала и в газораспределительный механизм для смазки деталей распределительного вала. Затем отработанное масло поступает в картер — специально сконструированную ёмкость в виде поддона. Из картера масло опять забирается насосом и направляется на следующий цикл смазки.

В результате работы системы смазки фильтры засоряются, что снижает степень очистки. Недостаточный уровень очистки ухудшает характеристики масла. По мере засорения фильтров давление масла начинает повышаться. Для сброса давления и безопасной работы узлов автомобиля устанавливают предохранительные, или так называемые редукционные клапаны, срабатывающие при превышении давления масла. Эти клапаны срабатывают вследствие засорения фильтров. Своевременная замена масла и фильтров является непременным условием эффективной работы ДВС.

Во время работы мотора масло нагревается, что тоже плохо отражается на работе мотора. Все мощные двигатели работают со своей системой охлаждения масла. Обычно их называют масляными радиаторами.

Системы охлаждения

[blok13]
Во время продолжительной работы двигатели могут нагреться до достаточно высоких температур. Температура внешней поверхности цилиндров достигает нескольких сотен градусов. Никакие механизмы не могут эффективно работать при таких высоких температурах. Поэтому конструкторы разработали системы для охлаждения узлов автомобиля. Принцип работы таких систем заключается в передаче тепла от нагретых частей к охлаждающей жидкости. Заметим, что состав таких жидкостей и их свойства постоянно улучшаются производителями.

Самым узнаваемым элементом системы охлаждения стал радиатор, который обычно находится в начале моторного отсека, непосредственно перед двигателем. Такое расположение позволяет радиатору дополнительно охлаждаться встречным потоком воздуха. Для повышения эффективности работы радиатора впереди него установлен мощный вентилятор.

Радиатор понижает температуру самого охлаждающего агента после того, как тот отберёт тепло от цилиндров. Вся система охлаждения состоит из термостата, помпы, небольшой расширительной ёмкости и устройства обогрева салона.

Работа системы охлаждения регулируется термостатом. Если двигатель ещё не нагрелся до критических величин, то помпа прогоняет охлаждающую жидкость по так называемому «малому» кругу, то есть только в пределах самого двигателя. Когда термостат включается, то жидкость пропускается через радиатор, охлаждаясь при этом гораздо эффективнее.

Порог срабатывания термостата обычно составляет 90 градусов. В некоторых моделях автомобилей температура срабатывания термостата может быть установлена больше или меньше этой величины.

Долговременная работа любого автомобиля невозможна без эффективной системы охлаждения.

Четырехтактный ДВС

[blok14]
Число тактов работы — одна из важнейших характеристик любого ДВС. Далее приведено описание взаимодействия поршня с клапанами поочерёдно в каждом такте. Напомним, 1 цикл — это 4 такта.

В первом такте выполняется впуск смеси. Топливо смешивается с воздухом. Поршень двигается к наивысшей точке. В камере сгорания создаётся область низкого давления — разрежение. Впускной клапан открывает отверстие в камере для подачи смеси. Коленвал начинает первый оборот.

Во втором такте смесь сжимается. Впускной клапан закрывается. Поршень, достигнув наивысшей точки, сжимает обогащённую топливную смесь. Коленвал завершает первый оборот.

Рабочий ход выполняется в третьем такте. Обогащённая смесь поджигается. В бензиновых двигателях поджигание производится электрической дугой от свечи. В дизельных — топливо воспламеняется самостоятельно в процессе сжатия. Облако расширяющихся газов заставляет поршень двигаться вниз. Начало второго оборота коленвала.

В четвёртом такте происходит выпуск. Открывается выпускной клапан. Газы выводятся в коллектор, а затем выбрасываются наружу. Поршень начинает двигаться вверх. Вал завершает второй оборот.

Таким образом, за 1 рабочий цикл этот двигатель совершает 4 такта, во время которых вал проворачивается дважды.

Видео: Принцип работы четырёхтактного двигателя

Двухтактный мотор

[blok15]
В этих двигателях сжатие и рабочий ход совершаются также как в четырёхтактных. Но очистка и заполнение цилиндров топливной смесью происходит за очень короткое время в момент нахождения поршня в самом нижнем положении. Если в четырёхтактном двигателе смесь попадает в камеру сгорания через открытые отверстия клапанов, то в этом моторе очередная порция смеси поступает в цилиндр через специальные отверстия, называемыми окнами. Они открываются и закрываются телом поршня. Процессы наполнения полостей цилиндра новой смесью и удаления продуктов сгорания называются продувкой.

Для осуществления продувки внутренняя полость цилиндра напрямую связана с КШМ. По сути, поршень двигается в одном пространстве с кривошипом. Под ним образуется полость, которую называют кривошипной камерой или картером. Эта камера тоже участвует в процессах газообмена. В ней периодически создаётся разрежение. Это позволяет поступать новой порции смеси через впускное отверстие.

Такая конструкция позволяет двигателю развивать в 1,5 раза большую мощность по сравнению с другими моторами аналогичного объёма при тех же оборотах двигателя. Но есть и ряд недостатков.

  • Детали в таком двигателе работают с большей интенсивностью, то есть быстрее изнашиваются.
  • Особое значение придаётся герметизации всех механизмов, работающих практически в одном пространстве: поршня, цилиндра и кривошипа.
  • Так как в картере нельзя устроить масляную ванну, то смазку поршня и других деталей осуществляют добавлением масла в топливо.
  • Перепады давления смеси в цилиндре не так велики, поэтому для повышения производительности двигателя часто используют принудительную продувку.

Рабочий цикл осуществляется в течение одного оборота коленвала.

Видео: Принцип работы двухтактного двигателя


[blok16]

Вам также будет интересно почитать:

курсов PDH онлайн. PDH для профессиональных инженеров. ПДХ Инжиниринг.

«Мне нравится широта ваших курсов HVAC; не только экологичность или энергосбережение

курсы.»

 

 

Рассел Бейли, ЧП

Нью-Йорк

«Это укрепило мои текущие знания и научило меня еще нескольким новым вещам

для раскрытия мне новых источников

информации.»

 

Стивен Дедак, ЧП

Нью-Джерси

«Материал был очень информативным и организованным. Я многому научился, и они были

очень быстро отвечают на вопросы.

Это было на высшем уровне. Буду использовать

еще раз. Спасибо.»

Блэр Хейворд, ЧП

Альберта, Канада

«Легкий в использовании веб-сайт.Хорошо организовано. Я действительно воспользуюсь вашими услугами снова.

Я передам вашу компанию

имя другим на работе.»

 

Рой Пфлейдерер, ЧП

Нью-Йорк

«Справочный материал был превосходным, и курс был очень информативным, тем более что я думал, что уже знаком

с реквизитами Канзас

Авария в городе Хаятт.»

Майкл Морган, ЧП

Техас

«Мне очень нравится ваша бизнес-модель. Мне нравится возможность просмотреть текст перед покупкой. Я нашел класс

информативный и полезный

на моей работе.»

Уильям Сенкевич, Ч.Е.

Флорида

«У вас отличный выбор курсов и очень информативные статьи.Вы

— лучшее, что я нашел.»

 

 

Рассел Смит, ЧП

Пенсильвания

«Я считаю, что такой подход позволяет работающему инженеру легко зарабатывать PDH, предоставляя время для просмотра

материал.»

 

Хесус Сьерра, ЧП

Калифорния

«Спасибо, что разрешили мне просмотреть неправильные ответы.На самом деле

человек узнает больше

от сбоев.»

 

Джон Скондрас, ЧП

Пенсильвания

«Курс был хорошо составлен, и использование тематических исследований является эффективным

способ обучения.»

 

 

Джек Лундберг, ЧП

Висконсин

«Я очень впечатлен тем, как вы представляете курсы; т.э., что позволяет

студент для ознакомления с курсом

материал до оплаты и

получение викторины.»

Арвин Свангер, ЧП

Вирджиния

«Спасибо, что предлагаете все эти замечательные курсы. Я, конечно, выучил и

очень понравилось.»

 

 

Мехди Рахими, ЧП

Нью-Йорк

«Я очень доволен предлагаемыми курсами, качеством материала и простотой поиска и

подключение к Интернету

курсы.»

Уильям Валериоти, ЧП

Техас

«Этот материал в значительной степени оправдал мои ожидания. Курс был легким для понимания. Фотографии в основном давали хорошее представление о

обсуждаемые темы.»

 

Майкл Райан, ЧП

Пенсильвания

«Именно то, что я искал. Нужен 1 балл по этике, и я нашел его здесь.»

 

 

 

Джеральд Нотт, ЧП

Нью-Джерси

«Это был мой первый онлайн-опыт получения необходимых кредитов PDH. Это был

информативно, выгодно и экономично.

Очень рекомендую

всем инженерам.»

Джеймс Шурелл, ЧП

Огайо

«Я ценю, что вопросы относятся к «реальному миру» и имеют отношение к моей практике, и

не основано на какой-то непонятной секции

законов, которые не применяются

до «обычная» практика.»

Марк Каноник, ЧП

Нью-Йорк

«Отличный опыт! Я многому научился, чтобы использовать его в своем медицинском устройстве

организация.»

 

 

Иван Харлан, ЧП

Теннесси

«Материал курса имеет хорошее содержание, не слишком математический, с хорошим акцентом на практическое применение технологии.»

 

 

Юджин Бойл, П.Е.

Калифорния

«Это был очень приятный опыт. Тема была интересной и хорошо представлена,

а онлайн формат был очень

доступный и простой

использование. Большое спасибо.»

Патрисия Адамс, ЧП

Канзас

«Отличный способ добиться соответствия непрерывному образованию PE в рамках временных ограничений лицензиата.»

 

 

Джозеф Фриссора, ЧП

Нью-Джерси

«Должен признаться, я действительно многому научился. Распечатанная викторина помогает во время

просмотр текстового материала. я

также оценил просмотр

предоставленных фактических случая.»

Жаклин Брукс, ЧП

Флорида

«Документ Общие ошибки ADA в проектировании помещений очень полезен.

тест действительно требовал исследования в

документ но ответы были

легко доступны.»

Гарольд Катлер, ЧП

Массачусетс

«Это было эффективное использование моего времени. Спасибо за разнообразие выбора

в дорожной технике, что мне нужно

для выполнения требований

Сертификация PTOE.»

Джозеф Гилрой, ЧП

Иллинойс

«Очень удобный и доступный способ заработать CEU для выполнения моих требований в штате Делавэр.»

 

 

Ричард Роудс, ЧП

Мэриленд

«Узнал много нового о защитном заземлении. До сих пор все курсы, которые я проходил, были отличными.

Надеюсь увидеть больше 40%

курсы со скидкой.»

 

Кристина Николас, ЧП

Нью-Йорк

«Только что сдал экзамен по радиологическим стандартам и с нетерпением жду дополнительных

курсы. Процесс прост, и

намного эффективнее, чем

необходимость путешествовать.»

Деннис Мейер, ЧП

Айдахо

«Услуги, предоставляемые CEDengineering, очень полезны для профессионалов

Инженеры для получения блоков PDH

в любое время.Очень удобно.»

 

Пол Абелла, ЧП

Аризона

«Пока все было отлично! Поскольку я постоянно работаю матерью двоих детей, у меня не так много

пора искать куда

получить мои кредиты от.»

 

Кристен Фаррелл, ЧП

Висконсин

«Это было очень информативно и поучительно.Легко для понимания с иллюстрациями

и графики; определенно получается

проще  впитать все

теории.»

Виктор Окампо, инженер.

Альберта, Канада

«Хороший обзор принципов полупроводников. Мне понравилось проходить курс по адресу

мой собственный темп во время моего утра

метро

на работу.»

Клиффорд Гринблатт, ЧП

Мэриленд

«Просто найти интересные курсы, скачать документы и получить

викторина. Я бы очень рекомендую

вам в любой PE нуждающийся

Единицы CE.»

Марк Хардкасл, ЧП

Миссури

«Очень хороший выбор тем во многих областях техники.»

 

 

 

Рэндалл Дрейлинг, ЧП

Миссури

«Я заново узнал то, что забыл. Я также рад принести пользу в финансовом плане

от ваш рекламный адрес электронной почты который

сниженная цена

на 40%.»

Конрадо Касем, П.Е.

Теннесси

«Отличный курс по разумной цене. Буду пользоваться вашими услугами в будущем.»

 

 

 

Чарльз Флейшер, ЧП

Нью-Йорк

«Это был хороший тест, и он фактически показал, что я прочитал профессиональную этику

Коды

и Нью-Мексико

правила.»

 

Брун Гильберт, П.Е.

Калифорния

«Мне очень понравились занятия. Они стоили времени и усилий.»

 

 

 

Дэвид Рейнольдс, ЧП

Канзас

«Очень доволен качеством тестовых документов. Буду использовать CEDengineerng

при необходимости

сертификация.»

 

Томас Каппеллин, П.Е.

Иллинойс

«У меня истек срок действия курса, но вы все равно выполнили обязательство и дали

мне то, за что я заплатил — много

спасибо!»

 

Джефф Ханслик, ЧП

Оклахома

«CEDengineering предлагает удобные, экономичные и актуальные курсы

для инженера.»

 

 

Майк Зайдл, П.Е.

Небраска

«Курс был по разумной цене, а материал был кратким и

хорошо организовано.»

 

 

Глен Шварц, ЧП

Нью-Джерси

«Вопросы соответствовали урокам, а материал урока

хороший справочный материал

для дизайна под дерево.»

 

Брайан Адамс, П.Е.

Миннесота

«Отлично, я смог получить полезную информацию с помощью простого телефонного звонка.»

 

 

 

Роберт Велнер, ЧП

Нью-Йорк

«У меня был большой опыт прохождения курса «Строительство прибрежных зон — Проектирование»

Корпус Курс и

очень рекомендую.»

 

Денис Солано, ЧП

Флорида

«Очень понятный, хорошо организованный веб-сайт. Материалы курса этики штата Нью-Джерси очень понравились

прекрасно приготовлено.»

 

 

Юджин Брекбилл, ЧП

Коннектикут

«Очень хороший опыт. Мне нравится возможность скачивать учебные материалы на

обзор где угодно и

когда угодно.»

 

Тим Чиддикс, ЧП

Колорадо

«Отлично! Поддерживайте широкий выбор тем на выбор.»

 

 

 

Уильям Бараттино, ЧП

Вирджиния

«Процесс прямой, никакой чепухи. Хороший опыт.»

 

 

 

Тайрон Бааш, П.Е.

Иллинойс

«Вопросы на экзамене были пробными и демонстрировали понимание

материала. Тщательный

и комплексный.»

 

Майкл Тобин, ЧП

Аризона

«Это мой второй курс, и мне понравилось то, что курс предложил мне, что

поможет в моей линии

работы.»

 

Рики Хефлин, ЧП

Оклахома

«Очень быстрая и простая навигация. Я определенно воспользуюсь этим сайтом снова.»

 

 

 

Анджела Уотсон, ЧП

Монтана

«Прост в исполнении. Нет путаницы при подходе к сдаче теста или записи сертификата.»

 

 

 

Кеннет Пейдж, П.Е.

Мэриленд

«Это был отличный источник информации о нагревании воды с помощью солнечной энергии. Информативный

и отличное освежение.»

 

 

Луан Мане, ЧП

Коннетикут

«Мне нравится подход к подписке и возможности читать материалы в автономном режиме, а затем

вернись, чтобы пройти тест.»

 

 

Алекс Млсна, П.Е.

Индиана

«Я оценил количество информации, предоставленной для класса. Я знаю

это вся информация, которую я могу

использование в реальных жизненных ситуациях.»

 

Натали Дерингер, ЧП

Южная Дакота

«Материалы обзора и образец теста были достаточно подробными, чтобы я мог

успешно завершено

курс.»

 

Ира Бродская, ЧП

Нью-Джерси

«Веб-сайт прост в использовании, вы можете скачать материал для изучения, а затем вернуться

и пройти тест. Очень

удобный а на моем

собственное расписание.»

Майкл Гладд, ЧП

Грузия

«Спасибо за хорошие курсы на протяжении многих лет.»

 

 

 

Деннис Фундзак, ЧП

Огайо

«Очень легко зарегистрироваться, получить доступ к курсу, пройти тест и распечатать PDH

сертификат

. Спасибо за создание

процесс простой.»

 

Фред Шайбе, ЧП

Висконсин

«Положительный опыт.Быстро нашел подходящий мне курс и закончил

PDH за один час в

один час.»

 

Стив Торкилдсон, ЧП

Южная Каролина

«Мне понравилась возможность загрузки документов для ознакомления с содержанием

и пригодность до

имея платить за

материал

Ричард Ваймеленберг, ЧП

Мэриленд

«Это хорошее пособие по ЭЭ для инженеров, не являющихся электриками.»

 

 

 

Дуглас Стаффорд, ЧП

Техас

«Всегда есть место для улучшения, но я ничего не могу придумать в вашем

процесс, которому требуется

улучшение.»

 

Томас Сталкап, ЧП

Арканзас

«Мне очень нравится удобство прохождения викторины онлайн и получения немедленного

Сертификат

 

 

Марлен Делани, ЧП

Иллинойс

«Обучающие модули CEDengineering — очень удобный способ доступа к информации по

многие различные технические области внешние

по собственной специализации без

необходимость путешествовать.»

Гектор Герреро, ЧП

Грузия

Принцип работы двигателей внутреннего сгорания

Чтобы двигатель работал правильно, он должен непрерывно выполнять некоторый цикл операций. Принцип работы двигателей с искровым зажиганием (SI) был изобретен Николаусом А. Отто в 1876 году; следовательно, двигатель SI также называют двигателем Отто. Принцип работы двигателя с воспламенением от сжатия (ДВС) был открыт Рудольфом Дизелем в 1892 году, поэтому двигатель ВД также называют дизельным двигателем.

Принцип работы двигателей SI и CI практически одинаков, за исключением процесса сгорания топлива, происходящего в обоих двигателях. В двигателях SI сгорание топлива происходит за счет искры, создаваемой свечой зажигания, расположенной в головке блока цилиндров. Топливо сжимается до высокого давления, и его сгорание происходит при постоянном объеме. В двигателях с ЦЗ сгорание топлива происходит из-за сжатия топлива до чрезмерно высокого давления, при котором не требуется искра для инициирования воспламенения топлива.В этом случае сгорание топлива происходит при постоянном давлении.

Двигатели SI и CI могут работать как в двухтактном, так и в четырехтактном цикле. Оба цикла описаны ниже:

  1. Четырехтактный двигатель : В четырехтактном двигателе рабочий цикл завершается четырьмя ходами поршня внутри цилиндра. Четыре такта 4-тактного двигателя: всасывание топлива, сжатие топлива, рабочий ход или рабочий ход и такт выпуска.В 4-тактных двигателях мощность вырабатывается, когда поршень совершает такт расширения. За четыре такта двигателя совершается два оборота коленчатого вала двигателя.

  2. Двухтактный двигатель : В случае двухтактного двигателя такты всасывания и сжатия происходят одновременно. Точно так же такты расширения и выпуска происходят одновременно. Мощность вырабатывается во время такта расширения. При совершении двух ходов поршня производится один оборот коленчатого вала двигателя.

В 4-тактных двигателях топливо сжигается один раз за два оборота колеса, а в 2-тактных двигателях топливо сжигается один раз за один оборот колеса. Следовательно, КПД 4-тактных двигателей выше, чем у 2-тактных двигателей. Однако мощность двухтактных двигателей больше, чем у четырехтактных.

Будущее двигателя внутреннего сгорания

Карлос Гон, генеральный директор Nissan и Renault, заявил, что к 2020 году на автомобили с батарейным питанием будет приходиться 10% мировых продаж новых автомобилей.Г-н Гон, конечно же, планирует представить как минимум четыре электромобиля в ближайшие три года. Однако независимые аналитики, такие как Тим Уркхарт из IHS Global Insight, считают, что в 2020 году автомобили с батарейным питанием останутся на уровне менее одного процента от общего числа новых автомобилей.

Дело в том, что электромобили сегодня непомерно дороги — одна только батарея в электромобиле может стоить 20 000 долларов — и будет оставаться таковой еще какое-то время. Более того, электромобили не испытаны в реальном мире.Если автопроизводители и собираются делать ставку на эту технологию, они будут делать это очень постепенно. Даже по оптимистичному мнению Гона, двигатели внутреннего сгорания (ДВС) будут использоваться в 90% автомобилей 2020 года. Коей Сага, глава Toyota по передовым технологиям (включая электромобили), идет дальше: «По моему личному мнению, я думаю, что мы никогда не откажемся от двигателя внутреннего сгорания».

Но это будут уже не те двигатели внутреннего сгорания, которые сегодня используются в транспортных средствах. Поскольку федеральные стандарты экономии топлива ужесточатся на 35 процентов в течение следующих пяти лет, эффективность ДВС должна резко повыситься, а если нет, то мы все будем вынуждены ездить на эконобоксах.

Пообщавшись с ведущими инженерами по силовым агрегатам и некоторыми независимыми изобретателями, мы рассмотрели некоторые технологии, позволяющие добиться такого повышения эффективности.

Распыление топлива непосредственно в камеры сгорания бензинового двигателя вместо его впускных отверстий не является новой идеей — она использовалась в немецком истребителе ME109 времен Второй мировой войны. Mitsubishi Galant для японского рынка был первым автомобилем, в котором непосредственный впрыск сочетался с форсунками с компьютерным управлением в 1996 году.Прямой впрыск (DI) стоит дороже, чем впрыск через порт, потому что топливо распыляется при давлении 1500–3000 фунтов на квадратный дюйм, а не 50–100 фунтов на квадратный дюйм, а форсунки должны выдерживать давление и теплоту сгорания.

Но у DI есть ключевое преимущество: благодаря впрыску топлива непосредственно в цилиндр во время такта сжатия охлаждающий эффект испаряющегося топлива не рассеивается до того, как свеча зажигания сработает. В результате двигатель более устойчив к детонации — преждевременному и близкому к взрыву сгоранию топлива, производящему стук и удары поршней давлением и теплом — и поэтому может работать с более высокой степенью сжатия — около 12:1. вместо 10.5:1. Это само по себе улучшает экономию топлива на два-три процента.

Кроме того, система прямого впрыска обеспечивает возможность сжигания обедненной смеси, поскольку струя топлива может быть ориентирована таким образом, что рядом со свечой зажигания всегда находится горючая смесь. Это может повысить эффективность на пять процентов.

Несколько европейских автопроизводителей уже используют эту стратегию экономичного сжигания топлива. К сожалению, сжигание обедненной смеси вызывает более высокие выбросы NOx (оксидов азота) в выхлопных газах, что противоречит более жестким ограничениям, установленным в Америке.Катализаторам, способным решить эту проблему, не нравится высокое содержание серы в американском бензине. Новые катализаторы обещают сократить выбросы. Между тем, ожидается, что непосредственный впрыск станет универсальным к 2020 году.

Современные двигатели достигают уровней мощности, о которых мы могли только мечтать 20 лет назад. Недостатком является то, что во время обычного вождения большинство двигателей бездельничают, а двигатели мощностью 300 л.Когда дроссельная заслонка двигателя едва приоткрыта, во впускном коллекторе возникает сильный вакуум. Во время такта впуска, когда поршни всасывают этот вакуум, эффективность страдает.

Классическое решение этой проблемы — сделать двигатель меньше. Небольшой двигатель работает тяжелее, работает с меньшим вакуумом и, следовательно, более эффективен. Но маленькие двигатели производят меньше энергии, чем большие.

Чтобы получить мощность большого двигателя при небольшой экономии топлива, многие компании обращаются к двигателям меньшего размера с турбонагнетателями, непосредственным впрыском топлива и регулируемыми фазами газораспределения.Эти три технологии работают вместе, принося общую пользу.

Нагнетание дополнительного воздуха в камеры сгорания двигателя с помощью турбонагнетателя определенно увеличивает мощность; производители автомобилей делают это годами. Но в прошлом, чтобы избежать вредной детонации, двигателям с турбонаддувом требовалась более низкая степень сжатия, что снижало эффективность.

Как мы видели, непосредственный впрыск топлива помогает решить эту проблему за счет охлаждения всасываемого заряда для минимизации детонации.Во-вторых, если изменение фаз газораспределения увеличивает время, когда и впускной, и выпускной клапаны открыты, турбокомпрессор может пропускать свежий воздух через цилиндр, чтобы полностью удалить горячие остаточные газы из предыдущего цикла сгорания. И поскольку форсунки впрыскивают топливо только после закрытия клапанов, оно не выходит через выпускной клапан.

Первым двигателем в Америке со всеми тремя этими элементами был базовый 2,0-литровый четырехцилиндровый двигатель Audi A4 2006 года выпуска. У него была 10.Степень сжатия 5: 1 — такая же высокая, как и у многих безнаддувных двигателей, несмотря на пиковое давление наддува 11,6 фунтов на квадратный дюйм. Он производил 200 лошадиных сил и 207 фунт-фут крутящего момента.

Система Ford EcoBoost — это не что иное, как непосредственный впрыск и турбонаддув. Дэн Капп, директор Ford по разработке передовых силовых агрегатов, говорит, что эта технология будет распространяться на легковые и грузовые автомобили компании. «Ничто другое не обеспечивает двузначного повышения эффективности использования топлива по разумной цене».

В будущем Ford рассчитывает заменить свой 5.4-литровый V-8 с 3,5-литровым EcoBoost V-6; его 3,5-литровый V-6 с 2,2-литровым рядным четырехцилиндровым двигателем EcoBoost; и его 2,5-литровый рядный четырехцилиндровый двигатель с 1,6-литровым рядным четырехцилиндровым двигателем EcoBoost. При каждом уменьшении пиковая мощность должна быть одинаковой, крутящий момент на низких оборотах должен быть выше примерно на 30 процентов, а экономия топлива должна быть выше на 10-20 процентов. Единственным недостатком будет дополнительная плата в размере 1000 долларов или около того к цене автомобилей с турбонаддувом DI для оплаты дополнительного оборудования.

БМВ, Мерседес, Тойота и Фольксваген планируют аналогичные двигатели, некоторые из которых используют нагнетатели вместо турбонагнетателей.Турбонаддув с непосредственным впрыском будет продолжать расширяться.

Позже в этом десятилетии мы увидим второе поколение этих двигателей с более высоким давлением наддува. Это позволит дополнительно уменьшить размеры двигателя, чтобы добиться дополнительного 10-процентного повышения эффективности.

Чтобы это произошло, потребуется рециркуляция охлажденных выхлопных газов для контроля детонации и либо ступенчатые турбины, либо турбины с изменяемой геометрией, чтобы ограничить обычное отставание. Эти технологии уже используются в дизельных двигателях, но более высокие температуры выхлопных газов газовых двигателей создают проблемы с долговечностью, которые необходимо решить, прежде чем автопроизводители смогут внедрить эти технологии.

Еще один способ повысить эффективность большого двигателя — отключить некоторые из его цилиндров. Поскольку дроссельная заслонка должна быть открыта шире, чтобы получить ту же мощность от остальных цилиндров, разрежение во впускном коллекторе снижается, а эффективность повышается.

В реальном вождении это может привести к улучшению экономии топлива на пять процентов при довольно низких затратах. Эта технология особенно рентабельна для двухклапанных двигателей с толкателем, поэтому мы видели переменный рабочий объем на двигателях GM и Chrysler V-8.

Honda использует переменный рабочий объем на своих 24-клапанных двигателях V-6, но дополнительное оборудование для закрытия множества клапанов увеличивает стоимость. Кроме того, отключение некоторых цилиндров на V-6 создает больше проблем с вибрацией и шумом, чем на V-8, потому что V-6 имеют более грубые импульсы зажигания и худший баланс. Активные опоры двигателя и регулируемые впускные коллекторы, необходимые для решения этих проблем, увеличивают дополнительные расходы.

Простейшая реализация системы изменения фаз газораспределения началась около 25 лет назад с использованием двухпозиционного опережения или замедления впускного или выпускного распределительного вала двигателя для лучшего соответствия условиям работы двигателя.Сегодня большинство двигателей DOHC с четырьмя клапанами на цилиндр имеют бесступенчатую регулировку фаз как на впускном, так и на выпускном распределительных валах.

Около 20 лет назад Honda представила более сложный подход со своей системой VTEC, которая переключалась между двумя (а позже и тремя) отдельными наборами кулачков — один для работы на высокой скорости, а другой — на низкой. VTEC также может просто отключить один из двух впускных клапанов цилиндра при небольших нагрузках. В 2001 году компания BMW сделала еще один шаг вперед, представив систему Valvetronic, которая может непрерывно изменять ход открытия впускных клапанов для оптимизации мощности и эффективности двигателя.Кроме того, такое обширное управление впускными клапанами служит заменой дроссельной заслонки, которая устраняет вакуум и, следовательно, снижает насосные потери.

Хотя они обеспечивают преимущества в эффективности, системы с регулируемой высотой подъема сложны и дороги. Продолжается разработка чисто электронных систем, которые могли бы заменить распределительные валы и просто открывать и закрывать клапаны двигателя в соответствии с компьютером. Но электронные механизмы открытия клапана также дороги и потребляют значительную мощность. Вице-президент GM Powertrain Дэн Хэнкок предполагает, что двухступенчатый механизм подъема клапана может обеспечить 90 процентов преимуществ полностью регулируемого подъема.Более того, Капп из Ford говорит, что преимущества регулируемого подъема клапана в сочетании с EcoBoost (DI turbo) ограничены.

С другой стороны, BMW, со своей последней 3,0-литровой рядной шестеркой с прямым впрыском топлива (N55), которая заменяет твин-турбо (N54) во всей линейке, сделала именно это, добавив Valvetronic к своим DI-двигателям. турбо конфигурация. Говорят, что в сочетании с переходом от шестиступенчатого автомата к восьмиступенчатому это изменение обеспечивает на 10 процентов больше миль на галлон.

Возможно, ответом станет система Fiat Multiair, конструкция с регулируемой высотой подъема с гидравлическим приводом, которая гораздо менее сложна, чем механические системы, такие как у BMW.Ожидайте скоро увидеть Multiair на будущих автомобилях Chrysler.

Эта технология, сокращенно HCCI, представляет собой комбинацию принципов работы газового двигателя и дизеля. Когда требуется большая мощность, двигатель HCCI работает как обычный бензиновый двигатель, при этом сгорание инициируется свечой зажигания. При более скромных нагрузках он работает скорее как дизель, при этом сгорание инициируется просто давлением и теплотой сжатия.

В дизельном двигателе сгорание начинается, когда топливо впрыскивается поршнем в верхней части такта сжатия, а сгорание регулируется скоростью впрыска топлива. Однако с HCCI топливо уже впрыскивается и смешивается с воздухом до начала такта сжатия.

Поскольку только сжатие инициирует сгорание, это больше похоже на большой взрыв, чем даже на резкий рабочий ход дизеля. Если двигатель сделать достаточно прочным, чтобы он не разорвался на части, это делает HCCI как минимум таким же тяжелым, как дизель.Ключевым моментом является достижение достаточного контроля горения, чтобы цикл HCCI можно было использовать в максимально широком диапазоне скоростей и нагрузок, чтобы получить преимущества эффективности.

Один из способов расширить режим HCCI — использовать переменную степень сжатия, что Mercedes и сделал на своем экспериментальном двигателе Dies-Otto. Но другие инженеры, такие как Хэнкок из GM, хотели бы избежать этого осложнения. «Чтобы заставить HCCI работать, нам нужен очень хороший контроль над процессом сгорания с более быстрым компьютером управления двигателем и обратной связью по давлению сгорания.”

Все это звучит сложно, но отдача может быть 20-процентным улучшением экономии топлива без сажевых уловителей и катализаторов NOx, которые необходимы дизелям. Этого достаточно, чтобы поддерживать интерес крупных игроков. Хэнкок предполагает, что HCCI может быть запущен в производство к концу этого десятилетия, возможно, в качестве эффективного двигателя для подключаемого гибрида, поскольку для питания генератора ему нужно работать только в небольшом диапазоне оборотов.

Выключение двигателя при остановке на светофоре определенно может сэкономить топливо.Легко запрограммировать компьютер управления двигателем, чтобы он выключал двигатель, когда скорость автомобиля падала до нуля, и перезапускал его, когда водитель убирал ногу с педали тормоза. Возможно, потребуется усилить стартер и аккумулятор, чтобы выдерживать более частое использование, но это не техническая проблема.

Mazda придумала более простой способ достижения подвига «стоп-старт». В своей системе, называемой i-stop, компьютер останавливает двигатель, когда один из поршней проходит верхнюю часть такта сжатия.Для перезапуска в цилиндр впрыскивается топливо, зажигается свеча зажигания, и двигатель мгновенно снова запускается.

К сожалению, в то время как эти системы могут сэкономить до пяти процентов расхода топлива в городских условиях, тестовые циклы Агентства по охране окружающей среды демонстрируют только однопроцентную выгоду из-за ограниченного времени простоя. В результате большинство производителей неохотно вкладывают средства в технологию, которая мало что делает для достижения целей CAFE, независимо от реальной выгоды.

Одним из недостатков этанола на основе кукурузы является то, что современные двигатели с гибким топливом, как правило, не в полной мере используют 95-октановое число E85.Но легко представить себе турбодвигатель с прямым впрыском второго поколения, который работает с более высоким давлением наддува при сжигании E85. Такой двигатель может быть вдвое меньше нынешней безнаддувной силовой установки со значительно более высокой топливной экономичностью. А при заправке чистым бензином компьютер просто снижал наддув. Двигатель потерял бы некоторую мощность, но без ущерба для долговечности или топливной экономичности.

Более радикальным способом использования более высокого октанового числа этанола является «система повышения этанола» (EBS), над которой работают несколько профессоров Массачусетского технологического института, а также Нил Ресслер, бывший топ-менеджер Ford по технологиям.

Концепция проста. Начните с двигателя DI-turbo и добавьте к нему обычную систему впрыска топлива через порт. Затем добавьте второй, небольшой топливный бак и заполните его E85. При умеренных нагрузках двигатель работает на бензине и с распределенным впрыском. Но когда вы требуете большей мощности и появляется наддув, система прямого впрыска впрыскивает E85. Мало того, что E85 имеет более высокое октановое число, чем бензин, он также обладает более сильным охлаждающим эффектом. Это обеспечивает безопасную работу с наддувом выше 20 фунтов на квадратный дюйм.

Форд проявил серьезный интерес к проекту.Для пикапа 5,0-литровый двигатель EBS с двойным турбонаддувом может заменить 6,7-литровый дизель в грузовике Super Duty. Он будет развивать ту же мощность и крутящий момент, достигать аналогичной эффективности использования топлива и будет дешевле в производстве, потому что ему не нужна какая-либо дорогостоящая дополнительная обработка выхлопных газов, как у дизельного двигателя.

При нормальном использовании расход E85 составит менее 10 процентов от расхода бензина. Таким образом, вы экономите много газа, потребляя лишь немного этанола. Двигатель EBS кажется технически исправным и уже прошел предварительные испытания.Мы ожидаем, что он будет запущен в производство в той или иной форме в течение следующих пяти лет.

Воображаемых концепций новых двигателей пруд пруди. Наш технический директор обычно держит толстый файл, полный их, с пометкой «чокнутые двигатели». Большинство из них даже не доходят до стадии прототипа. И даже те, которые строятся, как правило, выгорают из-за проблем, связанных с долговечностью, сложностью конструкции или эффективностью. Те немногие, кто преодолеет эту стадию, вступят в тяжелую борьбу с автопроизводителями, которые вложили миллиарды в создание обычных двигателей с проверенной надежностью и производительностью.

Одной из немногих новых концепций двигателя, которая выглядит многообещающе, является двухтактный двигатель OPOC от EcoMotors. OPOC расшифровывается как «оппозитный цилиндр с оппозитным поршнем». Чтобы визуализировать двигатель, начните с горизонтально оппозитного четырехцилиндрового двигателя, такого как у Subaru Legacy. Затем выдвиньте цилиндры и снимите головки цилиндров, чтобы освободить место для второго набора поршней внутри каждого цилиндра, которые движутся в противоположную сторону от обычных поршней. Длинные шатуны передают движение этих дополнительных поршней на коленчатый вал.

Как и в типичном двухтактном двигателе, дыхание происходит через порты по бокам цилиндров. Но в двигателе OPOC впускные и выпускные отверстия находятся на противоположных концах цилиндров. По мере движения поршней выхлопные газы открываются перед впускными отверстиями, и турбонагнетатели продувают воздух через цилиндры, чтобы вытолкнуть выхлопные газы и заполнить их чистым воздухом. Поскольку для этого двигателю требуется положительное давление, турбонагнетатели имеют электродвигатели, которые приводят их в действие на низких оборотах, когда энергия выхлопа низкая.

Хотя первыми двигателями OPOC были дизельные двигатели, эта концепция также может работать с бензином. В любом случае инжектор прямого впрыска топлива находится в середине цилиндра, где две головки поршня почти сходятся, и именно там должна быть свеча зажигания в газовой версии.

Если дизайн OPOC кажется радикальным, его поддерживают солидные люди. Дизайнером двигателя является Петер Хофбауэр, бывший главный инженер по двигателям Volkswagen. Генеральным директором EcoÂMotors является Дон Ранкл, бывший топ-менеджер Delphi и GM.Президентом является Джон Колетти, легендарный бывший глава подразделения Ford SVT. И выдающийся производитель выхлопных газов Алекс Борла входит в совет директоров. Большая часть финансирования компании поступает от Винода Хосла, мегаинвестора из Силиконовой долины.

К настоящему времени прототипы двигателя OPOC показали эффективность на 12-15% выше, чем у обычных поршневых двигателей, в первую очередь из-за отсутствия головок цилиндров, что исключает большую поверхность, через которую теплота сгорания передается охлаждающей жидкости, и отсутствие клапанного механизма, снижающего трение примерно на 40 процентов.

Кроме того, поскольку каждый двухцилиндровый четырехпоршневой модуль идеально сбалансирован, в четырехцилиндровой версии двигателя можно полностью разъединить одну пару цилиндров при небольших нагрузках. Это не только снижает насосные потери, но и полностью устраняет трение от неисправного цилиндра, повышая эффективность использования топлива еще на 15 процентов.

Пока Колетти говорит, что явных проблем нет: «Выбросы выглядят хорошо, как и расход масла.Меня ничего не беспокоит». Ранкл добавляет, что из-за меньшего количества деталей — без головок и клапанов — двигатель должен быть на 20 процентов дешевле в производстве, чем современный V-6. «Мы работаем над двумя семействами двигателей. EM100d — это дизель с диаметром цилиндра 100 мм, развивающий 325 лошадиных сил, а EM65ff имеет диаметр цилиндра 65 мм и развивает мощность около 75 лошадиных сил в двухцилиндровом варианте на бензине».

Двигатель снят с производства через несколько лет. Для небольшой развивающейся компании без огромных инвестиций в обычные двигатели — например, китайские или индийские — двигатель OPOC привлекателен.Военный контракт также проложил бы путь к приемлемости для гражданского населения.

Как уже упоминалось, возможность изменить степень сжатия работающего двигателя поможет заставить работать HCCI. В большинстве таких схем каким-либо образом изменяется либо ход поршня двигателя, либо расстояние от коленчатого вала до камеры сгорания. Оба подхода механически проблематичны. Умные инженеры Lotus придумали более простой способ изменения компрессии двигателя.Они создали головку блока цилиндров с подвижной частью — они называют ее шайбой — которая может проходить в камеру сгорания. При полностью втянутой шайбе степень сжатия составляет 10:1. Когда он расширяется в головку, он уменьшает объем камеры сгорания, тем самым увеличивая соотношение до 40: 1. Для этой шайбы есть место, потому что двигатель, который Lotus называет «Всеядным», является двухтактным без каких-либо клапанов. Вместо этого впускные и выпускные потоки происходят через отверстия в стенках цилиндров. Впрыск топлива происходит непосредственно в цилиндр через пневматическую систему, разработанную Orbital для другого двухтактного двигателя, над которым компания работала около 30 лет.Lotus утверждает, что двигатель Omnivore может широко работать в режиме HCCI и обеспечивает 10-процентный прирост эффективности использования топлива по сравнению с современными бензиновыми двигателями с непосредственным впрыском топлива. Из-за переменной степени сжатия он также может работать на различных видах топлива, отсюда и его название. На данный момент двигатель представляет собой только одноцилиндровый исследовательский проект. Умно, но будет ли он продвигаться дальше, еще неизвестно.

Этот контент создается и поддерживается третьей стороной и импортируется на эту страницу, чтобы помочь пользователям указать свои адреса электронной почты.Вы можете найти дополнительную информацию об этом и подобном контенте на сайте piano.io.

Что такое двигатель внутреннего сгорания и как он работает?

Что такое двигатель внутреннего сгорания?

Двигатель внутреннего сгорания (ДВС) — тепловая машина, в которой сгорание топлива с окислителем (обычно воздухом) происходит в камере сгорания, являющейся составной частью контура протока рабочего тела.

В двигателе внутреннего сгорания расширение газов высокой температуры и высокого давления, образующихся при сгорании, оказывает прямое воздействие на некоторые компоненты двигателя.Сила обычно прикладывается к поршням, лопастям турбины, ротору или соплу.

Эта сила перемещает компонент на расстояние, преобразует химическую энергию в полезную кинетическую энергию и используется для приведения в движение, перемещения или приведения в движение всего, к чему прикреплен двигатель. Это заменяет двигатель внешнего сгорания для применений, где важны вес или размер двигателя.

Термин «двигатель внутреннего сгорания» обычно относится к двигателю с прерывистым сгоранием, например к более популярным четырехтактным и двухтактным поршневым двигателям, а также к таким вариантам, как шеститактный поршневой двигатель и роторный двигатель Ванкеля.

Второй класс двигателей внутреннего сгорания использует непрерывное сгорание: газовые турбины, реактивные двигатели и большинство ракетных двигателей, каждый из которых представляет собой двигатель внутреннего сгорания по тому же принципу, что описан ранее. Огнестрельное оружие также является формой двигателя внутреннего сгорания, хотя оно настолько специализировано, что обычно рассматривается как отдельная категория.

Напротив, в двигателях внешнего сгорания, таких как паровые двигатели или двигатели Стирлинга, энергия отдается рабочему телу, которое не состоит из продуктов сгорания, смешивается с ними или загрязнено ими.Рабочие тела для двигателей внешнего сгорания включают воздух, горячую воду, воду под давлением или даже жидкий натрий, который нагревается в котле.

Подробнее: Что такое двигатель внешнего сгорания?

ДВС обычно работают на энергоемких видах топлива, таких как бензин или дизельное топливо, а также на жидкостях, изготовленных из ископаемого топлива. Хотя существует множество стационарных приложений, большинство ДВС используются в мобильных приложениях и являются основным источником питания для транспортных средств, таких как автомобили, самолеты и лодки.

Кто изобрел двигатель внутреннего сгорания?

В 1823 году Сэмюэл Браун запатентовал первый в США двигатель внутреннего сгорания для промышленного применения; один из его двигателей перекачивал воду по Кройдонскому каналу с 1830 по 1836 год.

Первый коммерчески успешный двигатель внутреннего сгорания был создан Этьеном Ленуаром около 1860 года, а первый современный двигатель внутреннего сгорания был создан в 1876 году Николаусом Отто. В 1872 году американец Джордж Брайтон изобрел первый коммерческий двигатель внутреннего сгорания на жидком топливе.

Этьен Ленуар родился в Мюсси-ла-Виль в 1822 году, который тогда находился в Люксембурге, а сейчас является частью Бельгии. В начале 1850-х он иммигрировал в Париж, Франция, где работал инженером и экспериментировал с электричеством.

В 1860 году он запатентовал газовый одноцилиндровый двигатель внутреннего сгорания, который установил на трехколесной повозке. Хотя он работал достаточно хорошо, он не экономил топливо, издавал много шума и часто перегревался. Двигатель полностью отключился бы, если бы для его охлаждения не подавалась вода, а для хранения газообразного топлива требовался бак.

В 1863 году он построил трехколесную повозку, работавшую на бензине. Во время демонстрации в Париже автомобиль преодолел расстояние в 11 км примерно за 3 часа, что соответствует средней скорости 3 км/ч.

Совсем не быстро! Что так впечатляло карету, как не то, что она так медленно двигалась? Что ж, тот факт, что он приводился в движение мотором, а не лошадью или мулом, делал его настоящей инновацией. Его двигатели были относительно успешными: всего было построено около 500 двигателей, но оставляли место для значительных улучшений.

Ленуар стал гражданином Франции в 1870 году за помощь французам во время франко-прусской войны. В 1881 году он получил орден Почетного легиона за выдающиеся достижения в области телеграфии. Хотя Ленуар практически изобрел автомобиль, в последние годы жизни Ленуар был беден. Он умер во Франции в 1900 году.

Как работает двигатель внутреннего сгорания?

В двигателе внутреннего сгорания (ДВС) воспламенение и сгорание топлива происходят внутри самого двигателя.Горение, также известное как горение, является основным химическим процессом выделения энергии из топливно-воздушной смеси. Затем двигатель преобразует часть энергии сгорания в работу.

Двигатель состоит из неподвижного цилиндра и подвижного поршня. Расширяющиеся газы сгорания толкают поршень, который, в свою очередь, вращает коленчатый вал. После того, как поршень сжимает топливно-воздушную смесь, искра воспламеняет ее, вызывая сгорание. Расширение продуктов сгорания толкает поршень во время рабочего такта.

В конечном счете, через систему шестерен в трансмиссии это движение приводит в движение колеса автомобиля.

В настоящее время производятся два типа двигателей внутреннего сгорания: бензиновый двигатель с искровым зажиганием и дизельный двигатель с воспламенением от сжатия. Большинство из них четырехтактные, что означает, что для завершения цикла требуется четыре хода поршня. Цикл включает в себя четыре различных процесса: впуск, сжатие, сгорание и рабочий ход и выпуск.

Бензиновые двигатели с искровым зажиганием и дизельные двигатели с воспламенением от сжатия различаются по способу подачи и воспламенения топлива.В двигателе с искровым зажиганием топливо смешивается с воздухом и затем всасывается в цилиндр в процессе впуска. После того как поршень сжимает топливно-воздушную смесь, искра воспламеняет ее и вызывает сгорание.

Расширение продуктов сгорания толкает поршень во время рабочего такта. В дизельном двигателе воздух просто всасывается в двигатель, а затем сжимается. Затем дизельные двигатели распыляют топливо в подходящем дозированном количестве в горячий сжатый воздух, который воспламеняет его.

Применение двигателей внутреннего сгорания

Двигатели внутреннего сгорания являются наиболее широко применяемыми и широко используемыми в настоящее время энергетическими устройствами.Примеры включают бензиновые двигатели, дизельные двигатели, газотурбинные двигатели и ракетные двигательные установки.

IC Engine имеет много применений, таких как,

    • бензиновые двигатели: автомобиль, морской, самолет
    • газовые двигатели: газовые двигатели: дизельные двигатели: автомобильные, железные дороги, мощность, морская
    • газовые турбины : Силовые, авиационные, промышленные, морские

    Классификация двигателей внутреннего сгорания

    В настоящее время производятся два типа двигателей внутреннего сгорания: бензиновый двигатель с искровым зажиганием и дизельный двигатель с воспламенением от сжатия.Большинство из них являются двигателями с четырехтактным циклом, что означает, что для завершения цикла необходимо четыре хода поршня.

    Двигатели внутреннего сгорания можно классифицировать по используемому топливу, термодинамическому циклу, типу зажигания, типу системы охлаждения, расположению цилиндров, способу наддува и т. д. Сейчас мы изучим это подробно.

    1) В соответствии с циклом работы:

    Мы знаем, что двигатели внутреннего сгорания преобразуют химическую энергию в механическую в циклическом режиме. Существует много термодинамических циклов, например.Цикл Карно, цикл Отто, цикл Дизеля, цикл Ренкина и т. д. Двигатели внутреннего сгорания работают по трем циклам: циклу Отто, циклу Дизеля и двойному циклу. В соответствии с этим двигатели внутреннего сгорания можно разделить на следующие типы.

    1. Двигатель с циклом Отто:

    Он также известен как двигатель с искровым зажиганием или двигатель с постоянным объемом подвода тепла, бензиновый двигатель и т. д. В этом цикле происходит подвод тепла (сжигание топлива) и отвод (выхлоп). при постоянном объеме, а расширение и сжатие происходят при изоэнтропическом.Эти двигатели дают малую мощность на высокой скорости.

    2. Двигатель дизельного цикла

    Он известен как двигатель с воспламенением от сжатия, дизельный двигатель, двигатель постоянного давления и т. д. В этом цикле подвод тепла (сжигание топлива) происходит при постоянном давлении, а отвод тепла происходит при постоянный объем. Этот двигатель дает высокую мощность на малых оборотах.

    3. Дуэльный цикл Двигатель:

    Двойной цикл представляет собой комбинацию цикла Отто и дизельного цикла.В этом двигателе подвод тепла происходит как при постоянном объеме, так и при постоянном давлении в некотором соотношении.

    Некоторые двигатели работают по циклу Стирлинга и циклу Эрикссона, но они не используются в коммерческих целях.

    2) По типу используемого топлива:

    Большинство из нас знает об этих двигателях. Это бензиновые двигатели и дизельные двигатели. В настоящее время в двигателях внутреннего сгорания также используется газообразное топливо, такое как сжиженный нефтяной газ, сжатый природный газ, водород и т. д. Эти двигатели называются нетрадиционными двигателями.

    3) По способу заправки:

    Под заправкой понимается то, как происходит поступление топливно-воздушной смеси.Это можно классифицировать следующим образом.

    1.
    Натуральный атмосферный двигатель :

    В данном двигателе подача топливовоздушной смеси (двигатель SI) или только воздуха (двигатель CI) происходит за счет перепада давления внутри цилиндра и атмосферного давления .

    2.
    Двигатели с наддувом:

    В этом двигателе для подачи заряда внутрь цилиндра используется отдельный компрессор. Этот компрессор работает от мощности двигателя (связанного с коленчатым валом с ременной передачей).

    3.
    Двигатель с турбонаддувом:

    В этом двигателе используется турбина, которая всасывает воздух в цилиндр и работает за счет энергии выхлопных газов. Это также похоже на наддув, но компрессор приводится в действие турбиной, которая вращается выхлопными газами.

    4) По зажиганию:

    В двигателе внутреннего сгорания воспламенение заряда может происходить двумя способами. В первом для воспламенения топлива используется отдельная свеча зажигания или любое другое устройство (двигатель с искровым зажиганием), а в другом — воспламенение топлива за счет тепла, выделяемого при сжатии или топливе (двигатель с воспламенением от сжатия).

    Таким образом, согласно этим методам, доступны два двигателя: двигатель с искровым зажиганием или двигатель SI (бензиновый двигатель) и двигатель с воспламенением от сжатия или двигатель CI (дизельный двигатель).

    5) В зависимости от типа системы зажигания:

    В бензиновых двигателях для воспламенения топлива использовалась свеча зажигания. Эта искра на свече зажигания, производимая системой зажигания. По системе зажигания различают два типа двигателей. Первый — это двигатель с зажиганием от батареи (используйте батарею для создания искры), а другой — двигатель с зажиганием от магнето (используйте небольшой генератор для создания искры).

    6) В соответствии с конструкцией двигателя:

    1.
    Поршневой двигатель:

    В этом типе двигателя используется поршень, совершающий возвратно-поступательное движение за счет силы давления, создаваемой при сгорании топлива. Коленчатый вал преобразует это возвратно-поступательное движение во вращательное. Большинство автомобильных двигателей являются поршневыми.

    Подробнее: Что такое поршневой двигатель?

    2.
    Роторный двигатель:

    В роторном двигателе используется ротор.На этот ротор действует сила давления, возникающая при сгорании топлива, которая дополнительно вращает колесо. Двигатель Ванкеля является одним из типов роторных двигателей. Эти двигатели в настоящее время не используются в автомобильных двигателях.

    7) В зависимости от охлаждения:

    В двигателях внутреннего сгорания используются два типа охлаждения: воздушное охлаждение и водяное охлаждение. Таким образом, двигатели представляют собой двигатели с воздушным охлаждением или двигатели с водяным охлаждением. Обе эти системы охлаждения имеют свои преимущества, о которых мы поговорим позже. Моторное масло также служит охлаждающей средой.

    8) По ходу двигателя:

    Мы знаем, что ход – это максимальное расстояние, которое поршень может пройти внутри цилиндра или между ВМТ и НМТ. Если двигатель движется от ВМТ к НМТ, это называется одним тактом. Если он возвращается в BDC, это называется двумя ударами. Коленчатый вал совершает один оборот за два такта. Согласно ему, были изобретены три типа двигателей.

    1. Двухтактный двигатель:

    В этом двигателе коленчатый вал совершает один оборот за один рабочий такт.Этот двигатель дает большую мощность по сравнению с другими. Он используется в стрелках, кораблях, генераторах и т. д.

    Подробнее: Что такое двухтактный двигатель? и что такое четырехтактный двигатель?

    2. Четырехтактные двигатели:

    Этот двигатель обеспечивает два оборота коленчатого вала за один рабочий такт. Они дают низкую мощность, но высокий КПД. Он используется в автомобилях, грузовиках, мотоциклах и т. д.

    3. Шеститактные двигатели:

    Эти двигатели находятся в процессе разработки.Как следует из названия, он дает три оборота коленчатого вала за один рабочий такт.

    9) По компоновке двигателя:

    Эти двигатели лучше понять по схемам, чем по словам.

    Часто задаваемые вопросы.

    Что такое двигатель внутреннего сгорания?

    Двигатель внутреннего сгорания (ДВС или двигатель внутреннего сгорания) — тепловая машина, в которой сгорание топлива происходит с окислителем (обычно воздухом) в камере сгорания, являющейся составной частью контура протока рабочего тела.

    Кто изобрел двигатель внутреннего сгорания?

    В 1823 году Сэмюэл Браун запатентовал первый двигатель внутреннего сгорания для промышленного применения в США; один из его двигателей перекачивал воду по Кройдонскому каналу с 1830 по 1836 год.

    Первый коммерчески успешный двигатель внутреннего сгорания был создан Этьеном Ленуаром примерно в 1860 году, а первый современный двигатель внутреннего сгорания был создан в 1876 году Николаусом Отто. В 1872 году американец Джордж Брайтон изобрел первый коммерческий двигатель внутреннего сгорания на жидком топливе .

    Как работает двигатель внутреннего сгорания?

    Двигатель состоит из неподвижного цилиндра и подвижного поршня. Расширяющиеся газы сгорания толкают поршень, который, в свою очередь, вращает коленчатый вал. После того, как поршень сжимает топливно-воздушную смесь, искра воспламеняет ее, вызывая сгорание. Расширение продуктов сгорания толкает поршень во время рабочего такта.

    Каково применение двигателя внутреннего сгорания?

    IC Engine имеет много применений Как:

    • бензиновые двигатели: автомобиль, морской, самолет
    • 0
    • газовые двигатели: газовые двигатели: дизельные двигатели: автомобильные, железные дороги, мощность, морская
    • газовые турбины : Power, Aircraft, Industrial, Marine

    Какие существуют три типа двигателей внутреннего сгорания?

    В настоящее время используются три основных типа двигателей внутреннего сгорания:

    1. Двигатель с искровым зажиганием , который используется в основном в автомобилях;
    2. Дизельный двигатель , который используется в больших транспортных средствах и промышленных системах, где повышение эффективности цикла дает ему преимущество перед более компактным и легким двигателем с искровым зажиганием; и
    3. Газовая турбина , которая используется в самолетах благодаря высокому соотношению мощность/масса, а также используется для стационарного производства электроэнергии.

    Какое значение имеет двигатель внутреннего сгорания?

    Разработка двигателя внутреннего сгорания помогла освободить людей от тяжелейшего ручного труда, сделала возможным создание самолетов и других видов транспорта, а также произвела революцию в производстве электроэнергии.

    В чем разница между двигателями IC и SI?

    Si двигатель представляет собой двигатель внутреннего сгорания, работающий по принципу искрового зажигания. Он использует бензин и использует цикл Отто. Дизельный двигатель (Ci) также является двигателем внутреннего сгорания, который использует дизельное топливо и работает по дизельному циклу.

    Где используются двигатели внутреннего сгорания?

    Двигатели внутреннего сгорания (ДВС) являются наиболее распространенной формой тепловых двигателей, поскольку они используются в транспортных средствах, лодках, кораблях, самолетах и ​​поездах. Они названы так потому, что топливо воспламеняется, чтобы совершать работу внутри двигателя. Та же топливно-воздушная смесь выбрасывается в виде выхлопных газов.

    Что такое степень взрыва в двигателе внутреннего сгорания?

    AFR — массовое отношение воздуха к топливу в двигателе внутреннего сгорания. Для бензиновых двигателей стехиометрическое соотношение A/F равно 14.7:1, что означает 14,7 частей воздуха на одну часть топлива. Это зависит от типа топлива.

    Что такое температура в двигателе внутреннего сгорания?

    Температура продуктов сгорания в цилиндре двигателя достигает 1500-2000°С, что выше температуры плавления материала корпуса цилиндра и головки двигателя. (Платина, металл с одной из самых высоких температур плавления, плавится при 1750°C, железо при 1530°C, а алюминий при 657°C.)

    Какая смесь лучше бедная или богатая?

    Основное различие между бедной и богатой топливной смесью заключается в том, что мы используем бедную смесь для максимальной эффективности, а богатую смесь используем для максимальной мощности двигателя.Мы используем термины «бедная» и «богатая» топливные смеси для описания процессов сгорания в двигателях и промышленных печах.

    Что такое богатая топливная смесь?

    Обогащенная смесь – это топливно-воздушная смесь, содержащая чрезмерное количество топлива. Богатая смесь обеспечивает достаточное количество топлива, чтобы израсходовать весь кислород в цилиндре. В богатой смеси много бензина и мало воздуха.

    Что появилось первым дизель или бензин?

    Бензин приобрел известность в 1892 году, в то время как дизелю потребовалось немного больше времени, поскольку некоторые источники указывают на 1893 год, когда он был впервые использован и признан источником топлива.Имея это в виду, бензин был технически первым, поскольку он завоевал популярность и коммерческий успех быстрее, чем его дизельный аналог.

    Какова функция поршня в двигателе внутреннего сгорания?

    Поршень является основной частью двигателей внутреннего сгорания. Он совершает возвратно-поступательное движение и преобразует тепловую энергию в механическую энергию. Он перемещается вверх и вниз внутри цилиндра, когда двигатель вырабатывает мощность. Назначение поршня — выдерживать расширение газов и направлять его на коленчатый вал.

    Что такое автомобиль с ДВС?

    Транспортное средство с ДВС означает обычное транспортное средство, работающее исключительно на двигателе внутреннего сгорания.

    Двигатель внутреннего сгорания или электронного двигателя более эффективен?

    Двигатель внутреннего сгорания имеет КПД около 35-45 %. По сравнению с двигателем внешнего сгорания имеет КПД около 15-25 %. Стоимость топлива для двигателя внутреннего сгорания относительно высока. По сравнению с двигателем внешнего сгорания стоимость топлива относительно невелика.

    СВЯЗАННЫЕ СООБЩЕНИЯ

    Двигатель внутреннего сгорания | Энциклопедия.com

    Принципы

    Структура двигателя внутреннего сгорания

    Ресурсы

    Двигатель внутреннего сгорания – это любой тепловой двигатель, который получает механическую энергию путем сжигания химической энергии (топлива) в замкнутом пространстве (камере сгорания). Изобретение и разработка двигателя внутреннего сгорания в девятнадцатом веке оказали глубокое влияние на человеческую жизнь. Двигатель внутреннего сгорания представляет собой относительно небольшой и легкий источник энергии, который он производит.Использование этой мощности сделало возможным создание практичных машин, начиная от самой маленькой модели самолета и заканчивая самым большим грузовиком. Электричество часто вырабатывается двигателями внутреннего сгорания. Газонокосилки, бензопилы и генераторы также могут использовать двигатели внутреннего сгорания. Важным устройством на основе двигателя внутреннего сгорания является автомобиль.

    Однако основные принципы работы всех двигателей внутреннего сгорания остаются неизменными. Топливо сжигается внутри камеры, обычно цилиндра. Энергия, создаваемая сгоранием или сжиганием топлива, используется для движения устройства, обычно поршня, через камеру.Прикрепив поршень к валу вне камеры, движение и сила поршня могут быть преобразованы в другие движения.

    Горение – это сжигание топлива. Когда топливо сгорает, оно выделяет энергию в виде тепла, которое вызывает расширение газа. Это расширение может быть быстрым и мощным. Силу и движение расширения газа можно использовать для толкания объекта. Встряхнуть банку газировки — это способ увидеть, что происходит, когда газ расширяется. Встряхивание вызывает реакцию углекислого газа — шипение газировки, которое, когда банка открыта, выталкивает газированную жидкость из банки и через отверстие.

    Однако простое сжигание топлива не очень полезно для создания движения. Зажигание спички, например, сжигает кислород в окружающем ее воздухе, но поднявшееся тепло рассеивается во всех направлениях и, следовательно, дает очень слабый толчок. Чтобы расширение газа, вызванное горением, было полезным, оно должно происходить в ограниченном пространстве. Это пространство может направлять или направлять движение расширения; он также может увеличить свою силу.

    Цилиндр представляет собой полезное пространство для направления силы сгорания.Круглая внутренняя часть цилиндра позволяет газам легко течь, а также увеличивает силу движения газов. Круговое движение газов также может способствовать втягиванию воздуха и паров в цилиндр или их обратному вытеснению. Ракета — это простой пример использования внутреннего сгорания в цилиндре. В ракете нижний конец цилиндра открыт. Когда топливо внутри цилиндра взрывается, газы быстро расширяются к отверстию, создавая толчок, необходимый для того, чтобы оттолкнуть ракету от земли.

    Эта сила может быть еще более полезной. Его можно заставить толкать объект внутри цилиндра, заставляя его двигаться через цилиндр. Пуля в пистолете — пример такого объекта. Когда горючее, в данном случае порох, взрывается, возникающая сила проталкивает пулю через цилиндр или ствол пистолета. Это движение полезно для некоторых вещей; однако его можно сделать еще более полезным. Замыкая концы цилиндра, можно управлять движением предмета, заставляя его двигаться вверх и вниз внутри цилиндра.Затем это движение, называемое возвратно-поступательным движением, можно использовать для выполнения других задач.

    Двигатели внутреннего сгорания обычно используют возвратно-поступательное движение, хотя газотурбинные, ракетные и роторные двигатели являются примерами других типов двигателей внутреннего сгорания. Однако поршневые двигатели внутреннего сгорания являются наиболее распространенными и используются в большинстве автомобилей, грузовиков, мотоциклов и других машин с двигателем.

    Основными компонентами двигателя внутреннего сгорания являются цилиндр, поршень и коленчатый вал.К ним присоединены другие компоненты, которые повышают эффективность возвратно-поступательного движения и преобразуют это движение во вращательное движение коленчатого вала. Топливо должно быть подано в цилиндр, а выхлоп, образующийся при взрыве топлива, должен быть обеспечен выходом из цилиндра. Также должно быть произведено воспламенение или зажигание топлива. В поршневом двигателе внутреннего сгорания это делается одним из двух способов.

    Дизельные двигатели также называют двигателями с компрессией, потому что они используют сжатие для самовоспламенения топлива.Воздух сжимается, то есть выталкивается в небольшое пространство в цилиндре. Сжатие заставляет воздух нагреваться; когда топливо попадает в горячий сжатый воздух, топливо взрывается. Давление, создаваемое сжатием, требует, чтобы дизельные двигатели были более прочными и, следовательно, более тяжелыми, чем бензиновые двигатели, но они более мощные и требуют менее дорогого топлива. Дизельные двигатели обычно используются в крупных транспортных средствах, таких как грузовики и тяжелая строительная техника, или в стационарных машинах, но в 2000-х годах они находят свое применение и в автомобилях по мере совершенствования технологий и поиска потребности в менее дорогом топливе.

    Бензиновые двигатели также называют двигателями с искровым зажиганием, потому что они зависят от электрической искры, вызывающей взрыв топлива в цилиндре. Легче дизельного двигателя, газовый двигатель требует топлива более высокой степени очистки (таким образом, более дорогого).

    В двигателе цилиндр размещается внутри блока цилиндров, достаточно прочного, чтобы сдерживать взрывы топлива. Внутри цилиндра находится поршень, который точно подходит к цилиндру. Поршни обычно имеют куполообразную форму сверху и полые снизу.Поршень прикреплен через шатун, установленный в полом дне, к коленчатому валу, который преобразует движение поршня вверх и вниз в круговое движение. Это возможно, потому что коленчатый вал не прямой, а имеет изогнутую часть (по одной на каждый цилиндр), называемую кривошипом.

    Аналогичная конструкция приводит в движение велосипед. При езде на велосипеде верхняя часть ноги человека сродни поршню. От колена до ступни нога действует как шатун, который крепится к коленчатому валу кривошипом или педальным узлом велосипеда.Когда сила воздействует на верхнюю часть ноги, эти части приходят в движение. Возвратно-поступательное движение голени преобразуется во вращательное или вращательное движение коленчатого вала.

    Обратите внимание, что при езде на велосипеде нога совершает два движения, одно вниз и одно вверх, чтобы завершить цикл вращения педалей. Это так называемые инсульты. Поскольку двигателю также необходимо всасывать топливо и снова выбрасывать топливо, большинство двигателей используют четыре такта для каждого цикла, который совершает поршень. Первый такт начинается, когда поршень находится в верхней части цилиндра, называемой головкой цилиндра.Когда он вытягивается, он создает вакуум в цилиндре. Это связано с тем, что поршень и цилиндр образуют герметичное пространство. Когда поршень опускается, пространство между ним и головкой цилиндра увеличивается, а количество воздуха остается прежним. Этот вакуум помогает подавать топливо в цилиндр, подобно действию легких. Поэтому этот такт называется тактом впуска.

    Следующий такт, называемый тактом сжатия, происходит, когда поршень снова выталкивается вверх внутри цилиндра, сжимая или сжимая топливо во все более и более плотном пространстве.Сжатие топлива к верхней части цилиндра вызывает нагрев воздуха, который также нагревает топливо. Сжатие топлива также облегчает его воспламенение и делает результирующий взрыв более мощным. Для расширяющихся газов взрыва меньше места, а это значит, что они будут сильнее давить на поршень, чтобы вырваться.

    В верхней части такта сжатия топливо воспламеняется, вызывая взрыв, толкающий поршень вниз. Этот ход называется рабочим ходом, и это ход, при котором вращается коленчатый вал.Последний такт, такт выпуска, снова поднимает поршень, который выбрасывает выхлопные газы, образовавшиеся в результате взрыва, из цилиндра через выпускной клапан. Эти четыре удара также обычно называют «сосать, сжимать, хлопать и дуть». Двухтактные двигатели исключают такты впуска и выпуска, совмещая их с тактами сжатия и рабочего хода. Это позволяет использовать более легкий и мощный двигатель относительно размера двигателя, требуя менее сложной конструкции. Однако двухтактный цикл является менее эффективным методом сжигания топлива.Остаток несгоревшего топлива остается внутри цилиндра, что препятствует сгоранию. Двухтактный двигатель также воспламеняет свое топливо в два раза чаще, чем четырехтактный двигатель, что увеличивает износ деталей двигателя. Поэтому двухтактные двигатели используются в основном там, где требуется двигатель меньшего размера, например, на некоторых мотоциклах и с небольшими инструментами.

    Для горения требуется присутствие кислорода, поэтому для воспламенения топливо необходимо смешать с воздухом. Дизельные двигатели подают топливо непосредственно для реакции с горячим воздухом внутри цилиндра.Однако двигатели с искровым зажиганием сначала смешивают топливо с воздухом вне цилиндра. Это делается либо через карбюратор, либо через систему впрыска топлива. Оба устройства испаряют бензин и смешивают его с воздухом в соотношении около 14 частей воздуха на каждую часть бензина. Дроссельная заслонка в карбюраторе регулирует количество воздуха, смешиваемого с топливом; на другом конце дроссельная заслонка контролирует, сколько топливной смеси будет отправлено в цилиндр.

    Вакуум, создаваемый при движении поршня вниз через цилиндр, втягивает топливо в цилиндр.Поршень должен точно входить в цилиндр, чтобы создать этот вакуум. Резиновые компрессионные кольца, вставленные в канавки поршня, обеспечивают герметичность. Бензин поступает в цилиндр через впускной клапан. Затем бензин сжимается в цилиндре следующим движением поршня, ожидая воспламенения.

    Двигатель внутреннего сгорания может иметь от одного до двенадцати или более цилиндров, все они действуют вместе в точно рассчитанной последовательности для привода коленчатого вала.Велосипедиста на велосипеде можно описать как двухцилиндровый двигатель, каждая нога которого помогает другой в создании мощности для движения велосипеда и в подтягивании друг друга в цикле гребков. Автомобили обычно имеют четырех-, шести- или восьмицилиндровые двигатели, хотя также доступны двухцилиндровые и двенадцатицилиндровые двигатели. Количество цилиндров влияет на объем двигателя; то есть общий объем топлива, прошедшего через цилиндры. Больший рабочий объем позволяет сжигать больше топлива, создавая больше энергии для привода коленчатого вала.

    Искра подается через свечу зажигания, помещенную в головку блока цилиндров. Искра вызывает взрыв бензина. Свечи зажигания содержат два металлических конца, называемых электродами, которые входят в цилиндр. Каждый цилиндр имеет свою свечу зажигания. Когда электрический ток проходит через свечу зажигания, ток переходит от одного электрода к другому, создавая искру.

    Этот электрический ток возникает в батарее. Однако ток батареи недостаточно силен, чтобы создать искру, необходимую для воспламенения топлива.Поэтому он проходит через трансформатор, который значительно увеличивает его напряжение или силу. Затем ток может быть направлен на свечу зажигания.

    Однако в случае двигателя с двумя или более цилиндрами искра должна подаваться на каждый цилиндр по очереди. Последовательность воспламенения цилиндров должна быть рассчитана таким образом, чтобы, пока один поршень находился в такте рабочего хода, другой поршень находился в такте сжатия. Таким образом, сила, действующая на коленчатый вал, может поддерживаться постоянной, что позволяет двигателю работать плавно.Количество цилиндров влияет на плавность работы двигателя; чем больше цилиндров, тем постояннее усилие на коленчатом валу и тем ровнее будет работать двигатель.

    Момент зажигания цилиндров контролируется распределителем. Когда ток поступает в распределитель, он направляется к свечам зажигания по проводам, по одному на каждую свечу зажигания. Механические распределители, по сути, представляют собой вращающиеся роторы, которые по очереди подают ток в каждый вывод. Электронные системы зажигания используют компьютерные компоненты для выполнения этой задачи.

    В самых маленьких двигателях используется аккумулятор, который при разрядке просто заменяется. Однако в большинстве двигателей предусмотрена возможность подзарядки аккумулятора с использованием движения вращающегося коленчатого вала для выработки тока обратно в аккумулятор.

    Поршень или поршни толкают вниз и тянут вверх коленчатый вал, заставляя его вращаться. Такой переход от возвратно-поступательного движения поршня к вращательному движению коленчатого вала возможен потому, что для каждого поршня коленчатый вал имеет кривошип, т. е. участок, поставленный под углом к ​​возвратно-поступательному движению положения.На коленчатом валу с двумя или более цилиндрами эти кривошипы также расположены под углом друг к другу, что позволяет им действовать согласованно. Когда один поршень толкает кривошип вниз, второй кривошип толкает поршень вверх.

    Большое металлическое колесообразное устройство, называемое маховиком, прикреплено к одному концу коленчатого вала. Его функция заключается в поддержании постоянного движения коленчатого вала. Это необходимо для четырехтактного двигателя, потому что поршни выполняют рабочий ход только один раз за каждые четыре такта.Маховик обеспечивает импульс для перемещения коленчатого вала до тех пор, пока он не получит следующий рабочий ход. Он делает это, используя инерцию, то есть принцип, согласно которому движущийся объект стремится оставаться в движении. Как только маховик приводится в движение вращением коленчатого вала, он будет продолжать двигаться и вращать коленчатый вал. Однако чем больше цилиндров у двигателя, тем меньше ему нужно будет полагаться на движение маховика, потому что большее количество поршней будет поддерживать вращение коленчатого вала.

    Когда коленчатый вал вращается, его движение можно приспособить для самых разных целей, прикрепив шестерни, ремни или другие устройства. Колеса можно заставить вращаться, пропеллеры можно заставить вращаться, а двигатель можно использовать просто для выработки электроэнергии. К коленчатому валу также прикреплен дополнительный вал, называемый распределительным валом, который открывает и закрывает впускные и выпускные клапаны каждого цилиндра в соответствии с четырехтактным циклом поршней. Кулачок — это колесо, имеющее форму яйца, с длинным и коротким концами.К распределительному валу крепятся несколько кулачков, в зависимости от количества цилиндров двигателя. Поверх кулачков установлены толкатели, по два на каждый цилиндр, которые открывают и закрывают клапаны. Когда распределительный вал вращается, короткие концы позволяют толкателям отходить от клапана, заставляя клапан открываться; длинные концы кулачков толкают штоки обратно к клапану, снова закрывая его. В некоторых двигателях, называемых двигателями с верхним расположением распредвала, распределительный вал опирается непосредственно на клапаны, что устраняет необходимость в узле толкателя.Двухтактные двигатели, поскольку впуск и выпуск достигаются за счет движения поршня по каналам или отверстиям в стенке цилиндра, не требуют распределительного вала.

    Еще два компонента могут управляться коленчатым валом: системы охлаждения и смазки. Взрыв топлива создает сильное тепло, которое может быстро привести к перегреву двигателя и даже плавлению, если оно не рассеивается или не отводится должным образом. Охлаждение достигается двумя способами: через систему охлаждения и, в меньшей степени, через систему смазки.

    Существует два типа систем охлаждения. В системе жидкостного охлаждения используется вода, которую часто смешивают с антифризом для предотвращения замерзания. Антифриз снижает температуру замерзания, а также повышает температуру кипения воды. Вода, которая очень хорошо собирает тепло, прокачивается вокруг двигателя через ряд проходов, содержащихся в рубашке. Затем вода циркулирует в радиаторе, который содержит множество трубок и тонких металлических пластин, увеличивающих площадь поверхности воды. Вентилятор, прикрепленный к радиатору, пропускает воздух по трубкам, еще больше снижая температуру воды.И насос, и вентилятор приводятся в действие движением коленчатого вала.

    В системах с воздушным охлаждением для отвода тепла от двигателя используется воздух, а не вода. Большинство мотоциклов, многие небольшие самолеты и другие машины, при движении которых создается сильный ветер, используют системы с воздушным охлаждением. В них металлические ребра прикреплены к внешней стороне цилиндров, создавая большую площадь поверхности; когда воздух проходит над ребрами, тепло, отдаваемое металлическим ребрам от цилиндра, уносится воздухом.

    Смазка двигателя жизненно важна для его работы. Движение деталей друг относительно друга вызывает сильное трение, которое вызывает нагрев и износ деталей. Смазочные материалы, такие как масло, создают тонкий слой между движущимися частями. Прохождение масла

    КЛЮЧЕВЫЕ ТЕРМИНЫ

    Инерция — Тенденция движущегося объекта оставаться в движении и тенденция покоящегося объекта оставаться в покое.

    Возвратно-поступательное движение — Движение, при котором объект перемещается вверх и вниз или вперед и назад.

    Вращательное движение — Движение, при котором объект вращается.

    через двигатель также помогает отводить часть выделяемого тепла.

    Коленчатый вал в нижней части двигателя упирается в картер. Он может быть заполнен маслом, или отдельный масляный поддон под картером служит резервуаром для масла. Насос подает масло через проходы и отверстия к различным частям двигателя. Поршень также оснащен резиновыми маслосъемными кольцами, в дополнение к компрессионным кольцам, для подачи масла вверх и вниз внутри цилиндра.Двухтактные двигатели используют масло как часть топливной смеси, обеспечивая смазку двигателя и устраняя необходимость в отдельной системе.

    КНИГИ

    Кроул, Дэниел А. Понимание взрывов . Нью-Йорк: Центр безопасности химических процессов, Американский институт инженеров-химиков, 2003.

    Ниссен, Уолтер, Р. Процессы сжигания и сжигания . Нью-Йорк: Марсель Деккер, 2002.

    Полицер, Питер и Джейн С. Мюррей, ред. Энергетические материалы . Амстердам, Нидерланды и Бостон, Массачусетс: Elsevier, 2003.

    ML Cohen

    The Gale Encyclopedia of Science Cohen, M.

    Список типов двигателей с внутренним двигателем [детали, работа, применение] PDF

    В этой статье вы узнаете, что такое Двигатели внутреннего сгорания его Запчасти , Принцип работы , Типы двигателей внутреннего сгорания. И разница между двигателями и ДВС.

    А также скачать PDF-файл этой статьи в конце.

    Двигатели внутреннего сгорания

    Как следует из названия, двигатели внутреннего сгорания (сокращенно Двигатель внутреннего сгорания ) — это двигатели, в которых сгорание топлива происходит внутри цилиндра двигателя.

    Другими словами, двигатели внутреннего сгорания — это те двигатели, в которых сгорание топлива происходит внутри цилиндра двигателя за счет искры.Это бензиновые, дизельные и газовые двигатели.

    Двигатель представляет собой устройство, которое, используя химическую энергию топлива, преобразует ее в тепловую энергию путем сгорания для производства механической работы. Мы видели в паровых машинах, что топливо подается в цилиндр. Он в виде пара. Который уже прогрет и готов к работе в цикле сгорания двигателя.

    Разница между паровыми двигателями и двигателями внутреннего сгорания.

    Ниже приведены различия между паровым двигателем и двигателем внутреннего сгорания:

    Читайте также: Какие существуют типы теплообменников и их применение?

    Типы двигателей
    1. Двигатели внешнего сгорания (EC)
    2. Двигатели внутреннего сгорания (IC)

    Двигатели внешнего сгорания — Если сгорание топлива происходит вне цилиндра двигателя, это двигатель внешнего сгорания .Пример: паровая турбина, газовая турбина, паровая турбина и т. д.

    Двигатели внутреннего сгорания – Если сгорание топлива происходит внутри цилиндра двигателя, это двигатель внутреннего сгорания. Пример: бензиновый двигатель, дизельный двигатель.

    Типы двигателей внутреннего сгорания

    Ниже приводится список типов двигателей внутреннего сгорания (классифицированных по разным методам):

    1. Используемый рабочий цикл
      1. Двухтактный двигатель
      2. Четырехтактный двигатель 9450 Топливо, использованные
        1. Petrol
        2. Дизеля
        3. газа Двигатель
      3. природы термодинамики Цикл Б
        1. Отто Цикл
        2. Дизеля цикл
        3. двойного цикл
      4. методов охлаждения
        1. воздушное охлаждение
        2. водяного охлаждение
      5. Скорость двигателя
        1. высокоскоростной Engine
        2. Engine Engine
        3. Engine Engine
        4. с низкоскоростным двигателем
      6. 0
      7. приложение
        1. стационарный двигатель
        2. автомобильный двигатель
        3. портативный двигатель
        4. Aero Engine
      8. Способ зажигания
        1. Двигатель с искровым зажиганием
        2. компрессионный зажигательный двигатель
      9. Расположение цилиндра двигателя
        1. горизонтальный двигатель
        2. Engine
        3. Engine
        4. V-типа Engine

    , следующие основные части двигателя внутреннего сгорания:

    1.Цилиндр
    • Цилиндр изготовлен из стали или алюминиевых сплавов.
    • В этом поршень совершает движения для развития мощности.
    • Выдерживает высокое давление и температуру.

    2. Головка цилиндра
    • Головка цилиндра устанавливается в верхней части цилиндра.
    • Изготавливается из стали или алюминиевых сплавов.
    • Изготавливается литьем.
    • Медная или асбестовая прокладка устанавливается между цилиндром и головкой цилиндра для обеспечения герметичности.

    3. Поршень
    • Изготовлен из алюминиевых сплавов.
    • Основной функцией является передача усилия, возникающего при горении заряда, на шатун.

    4. Поршневые кольца
    • Это круглые кольца, изготовленные из специальных стальных сплавов.
    • размещаются в кольцевых канавках поршня.
    • Два комплекта колец: верхнее кольцо предотвращает утечку продуктов сгорания в нижнюю часть, а нижнее кольцо предотвращает утечку масла в цилиндр двигателя.
    • Сохраняют эластичность даже при более высокой температуре.
    • Кольца снабжены воздухонепроницаемым уплотнением.

    Читайте также: Поршневые кольца: Типы поршневых колец

    5. Клапаны
    • Предусмотрены на головке блока цилиндров,
    • Впускной клапан используется для подачи свежей смеси в цилиндр.
    • Выпускной клапан используется для удаления продуктов сгорания из цилиндра.

    6. Шатун
    • Является связующим звеном между поршнем и коленчатым валом.
    • Функция шатуна заключается в передаче усилия от поршня к коленчатому валу.

    7. Коленчатый вал
    • Изготовлен из специальных стальных сплавов.
    • Функция коленчатого вала заключается в преобразовании возвратно-поступательного движения поршня во вращательное с помощью шатуна.

    8. Картер
    • Картер изготовлен из чугуна.
    • Удерживает цилиндр и коленчатый вал двигателя.
    • Также служит поддоном (местом для хранения) смазочного масла.

    9. Маховик
    • Это большое сплошное колесо, установленное на коленчатом валу двигателя внутреннего сгорания.
    • Основной функцией маховика является поддержание постоянной скорости.
    • Запасает избыточную энергию во время работы и отдает во время такта сжатия.

    Принцип работы двигателей внутреннего сгорания

    В двигателях внутреннего сгорания (двигателях внутреннего сгорания) сгорание происходит внутри цилиндра, поэтому тепловая энергия топлива непосредственно преобразуется в механическую работу.

    Двигатель внутреннего сгорания имеет более высокий тепловой КПД, чем тепловой КПД двигателей ЕС. В двигателях внутреннего сгорания, когда двигатель внутреннего сгорания работает непрерывно, можно рассматривать цикл, начинающийся с любых тактов.

    Мы знаем, что когда двигатель возвращается к исходному такту, мы говорим, что один цикл завершен. Двигатель внутреннего сгорания имеет четыре шага для завершения одного цикла следующим образом:

    Такт всасывания В этом такте пары топлива в правильной пропорции подаются в цилиндр двигателя.

    Такт сжатия   В этом такте пары топлива сжимаются в цилиндре двигателя.

    Такт расширения   В этом такте сжигание паров топлива свечой зажигания происходит в верхней части цилиндра двигателя. при сгорании топлива резко повышается давление из-за расширения продуктов сгорания в цилиндре двигателя. Повышение давления толкает поршень с большой силой и вращает коленчатый вал.Коленчатый вал, в свою очередь, приводит в движение соединенную с ним машину.

    Такт выпуска В этом такте выхлопные газы выбрасываются из цилиндра двигателя, чтобы освободить место для свежих паров топлива.

    Разница между бензиновым двигателем и дизельным двигателем

    Основное различие между бензиновым двигателем и дизельным двигателем заключается в том, что бензиновый двигатель всасывает смесь бензина и воздуха во время такта всасывания. А дизельный двигатель всасывает только воздух во время такта всасывания.

    Бензиновый двигатель работает по циклу Отто. Его легко запустить, он легче и дешевле, у него высокие эксплуатационные расходы и низкие затраты на техническое обслуживание.

    Дизельный двигатель работает по дизельному циклу. Его трудно запустить, он тяжелее и дороже, у него низкие эксплуатационные расходы и высокие затраты на техническое обслуживание.

    Тепловой КПД бензиновых двигателей составляет около 26%. Это высокоскоростные двигатели, которые используются в легковых автомобилях. Где тепловой КПД дизельных двигателей составляет около 40%. Это тихоходные двигатели, которые используются в большегрузных автомобилях.

    Применение двигателей внутреннего сгорания

    Ниже приведены области применения двигателей внутреннего сгорания:

    1. Двигатели внутреннего сгорания используются в дорожных транспортных средствах, таких как скутеры, мотоциклы, автобусы и т. д.
    2. Он также используется в самолетах.
    3. Двигатель внутреннего сгорания обычно используется в моторных лодках.
    4. Двигатель внутреннего сгорания находит широкое применение в небольших машинах, таких как газонокосилки, бензопилы и переносные двигатели-генераторы.

    Итак, теперь мы надеемся, что развеяли все ваши сомнения относительно двигателя внутреннего сгорания.Если у вас все еще есть какие-либо сомнения по поводу « типов двигателей IC », вы можете задать их в комментариях.

    Вот и все, спасибо за прочтение. Если вам понравилась наша статья, поделитесь ею с друзьями.

    Загрузите PDF-файл этой статьи:

    Подпишитесь на нашу рассылку, чтобы получать уведомления, когда мы загружаем новые статьи.

    Читать далее:

    Двигатели внутреннего сгорания 24-421



    Лекция:

    День и время: вторник и четверг, 13:30–14:50
    Адрес: SH 220

    Часы работы инструктора:

    Время: Четверг: 12:00–13:00
    Адрес: Scaife Hall 319

    TA Часы работы:

    Время: Среда: 17:00–18:00
    Адрес: SH 203

    Описание курса:

    Этот курс обеспечит понимание принципов работы обычных и усовершенствованных двигателей внутреннего сгорания (ДВС).Особое внимание будет уделено термодинамическим, гидромеханическим аспектам и аспектам внутреннего сгорания двигателя внутреннего сгорания. Пройдя этот курс, студенты смогут получить общее представление о том, как конфигурация системы сгорания, поток жидкости в цилиндрах, химические характеристики топлива, теплопередача двигателя и смешивание топлива и воздуха в цилиндрах влияют на производительность и выбросы загрязняющих веществ от автомобилей. и двигатели внутреннего сгорания для тяжелых условий эксплуатации. Студенты будут анализировать данные, полученные от многотопливного бензинового двигателя с переменной степенью сжатия.Студенты также выполнят моделирование системы сгорания дизельного двигателя с использованием вычислительной гидродинамики (CFD).
    Предпосылки: Термодинамика, гидромеханика или эквивалент
    Учебник:
    • Основы двигателя внутреннего сгорания, Джон Хейвуд
    Оценка:
    • Домашнее задание (40%)
    • Анализ лабораторных данных и отчетность (10%)
    • Проект CFD (20%)
    • Экзамен 1 (15%)
    • Экзамен 2 (15%)
    Предварительный план программы: ————————————————— ——————-
    27 августа — 07 декабря (15 недель)
    ————————————————— ——————-
    1 неделя Введение и принципы работы
    История двигателей внутреннего сгорания, расположение поршней, двухтактные и четырехтактные циклы, типы систем сгорания
    Неделя 2 Геометрические и эксплуатационные параметры
    Геометрическая терминология двигателя, взаимосвязь движений кривошипа и поршня, введение в важные рабочие параметры
    Неделя 3 Система впуска и обработка воздуха
    Расположение клапанов, движение и синхронизация клапанов, различные потери во впускной системе, объемный КПД, факторы, влияющие на объемный КПД, наддув наддувочного воздуха (нагнетатель по сравнению с турбонагнетателем)
    Неделя 4 Топливо и термохимия
    Моторные топлива и их химические характеристики, химия реакций горения, расчет теплотворной способности топлива, максимальная температура пламени, анализ выхлопных газов двигателя
    Неделя 5 Термодинамический анализ циклов двигателя
    Воздушные стандартные циклы Отто и Дизеля, цикл Брайтона, сравнение идеальных и реальных циклов, введение в сверхрасширенный цикл, максимально возможная работа
    6 неделя Двигатель с искровым зажиганием (SI)
    Дозирование топлива и приготовление смеси, искровое зажигание, развитие пламени, аномальное сгорание, влияние параметров двигателя на мощность и детонацию
    Неделя 7 Двигатель с воспламенением от сжатия (CI)
    Конфигурации системы сгорания, впрыск топлива, разбрызгивание, различные фазы сгорания дизельного топлива, структура пламени, анализ скорости горения
    Неделя 8 Взаимодействие гидромеханики с горением-I
    Генерация турбулентности, кувыркающиеся и закрученные течения
    18 октября Экзамен 1
    Неделя 9 Гидромеханическое взаимодействие с Combustion-II
    Связь потока в цилиндре и сгорания, концепции ламинарной и турбулентной скоростей горения

    Формирование и контроль загрязнителей
    Виды загрязняющих веществ, источники загрязняющих веществ в двигателях SI и CI, технологии снижения образования загрязняющих веществ, очистка отработавших газов

    Неделя 10 Введение в передовые концепции двигателя
    Бензиновые двигатели с непосредственным впрыском, двигатели HCCI, двухтопливные двигатели, знакомство с гибридными автомобилями, последовательные и параллельные гибридные системы
    Неделя 11 Компьютерное моделирование двигателей внутреннего сгорания
    Цель моделирования, феноменологические модели для SI и сгорания дизельного двигателя, введение в анализ двигателя CFD, обучение настройке анализа сгорания дизельного двигателя в коммерческом программном обеспечении CFD.После этого обучения студенты смогут работать над вычислительным проектом.
    Неделя 12 Теплопередача двигателя
    Поток энергии в двигателе внутреннего сгорания, различные режимы теплопередачи, влияние теплопередачи на КПД двигателя при различных скоростях и нагрузках

    Утилизация отработанного тепла двигателей внутреннего сгорания
    Термодинамический анализ энергетического баланса, внедрение двигателя Стерлинга и термоэлектрики для рекуперации тепла

    Неделя 13 Рабочие характеристики двигателя и производительность
    Различная мощность в зависимости от числа оборотов в минуту, влияние угла опережения зажигания и соотношения топливо/воздух на мощность и КПД, влияние рециркуляции отработавших газов на эффективность и синхронизацию ОБТ, влияние степени сжатия и объема двигателя на эффективность, характеристики двигателя
    Неделя 14 Газотурбинные двигатели
    Анализ цикла Брайтона, конструкция и характеристики камеры сгорания
    04 декабря Презентации проектов CFD
    06 декабря Экзамен 2
    .

Добавить комментарий

Ваш адрес email не будет опубликован.