Дизель двигатель: Устройство дизельных двигателей | Yanmar Russia

Содержание

Дизельный двигатель В-2

А. Протасов, рисунок А. Краснова

Прославленный танковый дизель был создан на Харьковском паровозостроительном заводе (ХПЗ) имени Коминтерна в 1939 г. Мотор, получивший обозначение В-2, устанавливался перед войной на советских лёгких быстроходных колёсно-гусеничных танках БТ-7М, средних танках Т-34 и тяжелых КВ-1 и КВ-2, а также на тяжелом гусеничном артиллерийском тягаче «Ворошиловец». В военное время его ставили на средние танки Т-34, тяжелые KB и ИС, а также на самоходные артиллерийские установки (САУ) на их базе. В послевоенные годы этот двигатель модернизировался, и современные танковые моторы являются его прямыми потомками.

Технические особенности В-2 наглядно демонстрируют пути, которыми развивалась техническая мысль в целом и моторостроение в частности в преддверии Второй мировой войны.

Проектировать этот двигатель начали в дизельном отделе ХПЗ в 1931 г. под руководством начальника отдела К.Ф. Челпана. Активное творческое участие в работе принимали А.К. Башкин, И.С. Бер, Я.Е. Вихман и др. Поскольку опыта разработки танкового быстроходного дизеля не было, они начали его проектирование широким фронтом: прорабатывались три схемы расположения цилиндров – одно- и двухрядного (V-образного), а также звездообразного. Послеобсуждения и оценки каждой схемы отдали предпочтение 12-цилиндровой V-образной конструкции. При этом проектируемый двигатель, получивший первоначальное обозначение БД (быстроходный дизель), был схож с авиационными карбюраторными двигателями М5 и М17Т, устанавливавшимися на лёгких колёсно-гусеничных танках БТ. Это закономерно: предполагалось, что мотор будет выпускаться в танковом и авиационном вариантах.

Разработка велась поэтапно. Сначала создали одноцилиндровый двигатель и проверяли его в работе, а затем изготовили двухцилиндровую секцию, имевшую главный и прицепной шатуны. В 1932 г., добившись её устойчивой работы, приступили к разработке и испытаниям 12-цилиндрового образца, получившего обозначение БД-2 (быстроходный дизель второй), которые были закончены в 1933 г. Осенью 1933 г. БД-2 выдержал первые государственные стендовые испытания и был установлен на лёгком колёсно-гусеничном танке БТ-5. Ходовые испытания дизелей БД-2 на БТ-5 начались в 1934 г. Одновременно продолжалось совершенствование двигателя и устранение обнаруженных недостатков. В марте 1935 г. члены ЦК компартии и правительства ознакомились в Кремле с двумя танками БТ-5 с дизелями БД-2. В том же месяце последовало решение правительства о строительстве при ХПЗ цехов для их изготовления.

Для оказания технической помощи в Харьков были направлены из Москвы инженеры из Центрального института авиационных моторов (ЦИАМ) М.П. Поддубный, Т.П. Чупахин и другие, имевшие опыт проектирования авиационных дизелей, а также начальник кафедры двигателей Военной академии механизации и моторизации Красной Армии проф. Ю.А. Степанов и его сотрудники.

Руководство подготовкой серийного производства доверили И.Я. Трашутину и Т.П. Чупахину. К концу 1937 г. на испытательный стенд был установлен новый доведённый дизель, получивший к тому времени обозначение В-2. Проведённые в апреле-мае 1938 г. государственные испытания показали, что можно начинать его мелкосерийное производство, которым стал руководить С.Н. Махонин. В 1938 г. на ХПЗ изготовили 50 двигателей В-2, а в январе 1939 г. дизельные цеха ХПЗ отделились и образовали самостоятельный моторостроительный за вод, получивший позднее № 75. Чупахин стал главным конструктором этого завода, а Трашутин – начальником конструкторского бюро. 19 декабря 1939 г. начался крупносерийный выпуск отечественных быстроходных танковых дизелей В-2, принятых в производство распоряжением Комитета обороны вместе с танками Т-34 и КВ.

За разработку двигателя В-2 Т.П. Чупахину была присуждена Сталинская премия, а осенью 1941 г. завод № 75 награжден Орденом Ленина. В то время этот завод был эвакуирован в Челябинск и слился с челябинским Кировским заводом (ЧКЗ). Главным конструктором ЧКЗ по дизельным двигателям назначили И.Я. Трашутина.

Необходимо упомянуть и об авиационном варианте В-2А, судьба которого сложилась драматически. К началу серийного производства основной модели самолёт-разведчик, на котором предполагалось устанавливать В-2А, устарел, а переделывать основную модель В-2 в чисто танковую было нецелесообразно. Это потребовало бы дополнительного времени, которого у наших моторостроителей не было: надвигалась Вторая мировая война, и Красной Армии требовались – срочно и в большом количестве – новые танки с противоснарядной бронёй и мощными дизелями.

В-2 так и пошел «на поток» с алюминиевым картером и блоками цилиндров, с длинным носком коленчатого вала и упорным шарикоподшипником, способным передавать усилие от воздушного винта картеру двигателя. Уместно заметить, что самолёт-разведчик Р-5 успешно летал с двигателем В-2А.

Существовала и другая модификация этого двигателя – В-2К, отличавшаяся повышенной до 442 кВт (600 л.с.) мощностью. Увеличение мощности достигалось за счёт повышения степени сжатия на 0,6–1 ед., увеличения частоты вращения коленчатого вала на 200 мин–1 (до 2 000 мин–1) и подачи топлива. Модификация первоначально предназначалась для установки на тяжелых танках KB и изготавливалась на ленинградском Кировском заводе (ЛКЗ) по документации ХПЗ. Массогабаритные показатели по сравнению с базовой моделью не изменились.

В предвоенное время на заводе № 75 были созданы и другие модификации этого двигателя – В-4, В-5, В-6 и другие, максимальная мощность которых находилась в довольно широких пределах – от 221 до 625 кВт (300–850 л.с.), которые предназначались для установки на лёгких, средних и тяжелых танках.

Перед Великой Отечественной войной танковые дизели изготавливались заводом № 75 в Харькове и ЛКЗ в Ленинграде. С началом войны их стал изготавливать Сталинградский тракторный, завод № 76 в Свердловске и ЧКЗ (Челябинск). Однако танковых дизелей не хватало, и в конце 1942 г. в Барнауле срочно построили завод № 77. Всего же эти заводы в 1942 г. изготовили 17 211 шт., в 1943 г. – 22 974 и в 1944 г. – 28 136 дизельных двигателей.

В-2 относился к быстроходным 4-тактным бескомпрессорным, с непосредственным впрыском топлива 12-цилиндровым тепловым машинам жидкостного охлаждения, имеющим Vобразное расположение цилиндров с углом развала 60°.

Картер состоял из верхней и нижней половин, отлитых из силумина, с плоскостью разъёма по оси коленчатого вала. В нижней половине картера имелись два углубления (передний и задний маслозаборники) и передача к масляному и водяному насосам и топливоподкачивающей помпе, крепящихся снаружи картера. К верхней половине картера крепились на анкерных шпильках левый и правый блоки цилиндров вместе с их головками. В корпусе рубашки каждого блока цилиндров, изготовленного из силумина, устанавливались по шесть стальных азотированных мокрых гильз.

В каждой головке цилиндров были два распредвала и по два впускных и выпускных клапана (т.е. по четыре!) на каждый цилиндр. Кулачки распределительных валов действовали на тарелки толкателей, установленных непосредственно на клапанах. Сами валы были полыми, по внутренним сверлениям подводилось масло к их опорам и к тарелкам клапанов. Выпускные клапаны не имели специального охлаждения. Для привода распредвалов использовали вертикальные валы, каждый из которых работал с двумя парами конических шестерён.

Коленчатый вал изготавливался из хромоникельвольфрамовой стали и имел восемь коренных и шесть шатунных пустотелых шеек, располагавшихся попарно в трёх плоскостях под углом 120°. Коленчатый вал имел центральный подвод смазки, при котором масло подводилось в полость первой коренной шейки и по двум сверлениям в щеках проходило во все шейки. Развальцованные в выходных отверстиях шатунных шеек медные трубки, выходившие к центру шейки, обеспечивали поступление на трущиеся поверхности центрифугированного масла. Коренные шейки работали в толстостенных стальных вкладышах, залитых тонким слоем свинцовистой бронзы. От осевых перемещений коленвал удерживался упорным шарикоподшипником, установленным между седьмой и восьмой шейками.

Поршни – штампованные из дюралюминия. На каждом установлены пять чугунных поршневых колец: два верхних компрессионных и три нижних маслосбрасывающих. Поршневые пальцы – стальные, полые, плавающего типа, удерживаемые от осевого перемещения дюралюминиевыми заглушками.

Шатунный механизм состоял из главного и прицепного шатунов. Из-за кинематических особенностей этого механизма ход поршня прицепного шатуна был на 6,7 мм больше, чем у главного, что создавало небольшое (около 7%) различие в степени сжатия в левом и правом рядах цилиндров. Шатуны имели двутавровое сечение. Нижняя головка главного шатуна к верхней его части крепилась с помощью шести шпилек. Шатунные вкладыши были стальными тонкостенными, залитыми свинцовистой бронзой.

Пуск двигателя был дублированным, состоявшим из двух, действующих независимо систем – электрического стартера мощностью 11 кВт (15 л.с.) и пуска сжатым воздухом из баллонов. На некоторых двигателях вместо обычных электростартеров устанавливали инерционные с ручным приводом из боевого отделения танка. Система пуска сжатым воздухом предусматривала наличие распределителя воздуха и пускового автоматического клапана на каждом цилиндре. Максимальное давление воздуха в баллонах составляло 15 МПа (150 кгс/см2), а поступавшего в распределитель – 9 МПа (90 кгс/см2) и минимальное – 3 МПа (30 кгс/см2).

Для подкачки топлива под избыточным давлением 0,05–0,07 МПа (0,5–0,7 кгс/см

2) в питающую полость насоса высокого давления использовалась помпа коловратного типа. Насос высокого давления НК-1 – рядный 12-плунжерный, с двухрежимным (позже всережимным) регулятором. Форсунки закрытого типа с давлением начала впрыска 20 МПа (200 кгс/см2). В системе топливоподачи имелись также фильтры грубой и тонкой очистки.

Система охлаждения – закрытого типа, рассчитанная на работу под избыточным давлением 0,06–0,08 МПа (0,6–0,8 кгс/см2), при температуре кипения воды 105–107°С. В неё входили два радиатора, центробежный водяной насос, сливной кран, заливной тройник с паровоздушным клапаном, центробежный вентилятор, закрепленный на маховике двигателя, и трубопроводы.

Система смазки – циркуляционная под давлением с сухим картером, состоявшая из трёхсекционного шестерённого насоса, масляного фильтра, двух масляных баков, ручного подкачивающего насоса, уравнительного бачка и трубопроводов. Масляный насос состоял из одной нагнетающей секции и двух откачивающих. Давление масла перед фильтром составляло 0,6–0,9 МПа (6–9 кгс/см2). Основной сорт масла – авиационное МК летом и МЗ зимой.

Анализ параметров двигателей В-2 показывает , что они отличались от карбюраторных намного лучшей топливной экономичностью, большой габаритной длиной и сравнительно небольшой массой. Это объяснялось более совершенным термодинамическим циклом и «близким родством» с авиационными моторами, предусматривавшим длинный носок коленвала и изготовление большого числа деталей из алюминиевых сплавов.

Технические характеристики двигателей В-2
Двигатель В-2 В-2К
Год выпуска 1939
Тип Танковый, быстроходный, бескомпрессорный, с непосредственным впрыском топлива
Число цилиндров 12
Диаметр цилиндров, мм 150
Ход поршня, мм:
  • – основного шатуна
  • – прицепного шатуна

180
186,7
Рабочий объём, л 38,88
Степень сжатия 14 и 15 15 и 15,6
Мощность, кВт (л.с.), при мин–1 368 (500) при 1 800 442 (600) при 2 000
Максимальный крутящий момент Нм (кгс·м) при 1 200 мин–1 1 960 (200) 1 960 (200)
Минимальный удельный расход топлива, г/кВт·ч, (г/л.с.·ч) 218 (160) 231 (170)
Габариты, мм 1 558х856х1 072
Масса (сухая), кг 750

Следует сказать несколько слов о мировом приоритете. В отечественной военно-исторической литературе можно встретить мнение, что В-2 был первым в мире танковым дизелем. Это не совсем так. Он входит в «первую тройку» танковых дизелей. Его «соседями» были 6-цилиндровый двигатель жидкостного охлаждения «Заурер» мощностью 81 кВт (110 л.с.), устанавливавшийся с 1935 г. на польском лёгком танке 7ТР, и 6-цилиндровый дизель воздушного охлаждения «Мицубиси» АС 120 VD мощностью 88 кВт (120 л.с.), устанавливавшийся с 1936 г. на японском лёгком танке 2595 «Ха-го».

От своих «соседей» В-2 отличался значительно большей мощностью. Некоторая задержка с началом его серийного производства объяснялась, в том числе и стремлением советских моторостроителей основательно испытать двигатель в войсках, чтобы уменьшить количество «детских болезней». И мотор пользовался заслуженным доверием у советских воинов.

Проблемы и недостатки дизельного двигателя

Еще совсем недавно дизельные двигатели были прерогативой грузовиков, тяжелых внедорожников и коммерческого транспорта, но совсем с недавнего времени, старушку Европу начали покорять и маленькие турбомоторчики, устанавливаемые на компактные легковые автомобили. Оно и верно, за счет более высокого КПД дизельного мотора с меньшего объема можно снять большее количество крутящего момента и при этом еще сэкономить на топливе и порадовать экологов.

Дизельный двигатель BMW

Дизельные моторы все больше и больше отвоевывают долю на рынке, тем не менее, несмотря на все плюсы, потребители относятся к дизелю с большим недоверием, по-прежнему отдавая предпочтение проверенным бензиновым моторам. Почему же? Давайте разбираться!

1. Первый и самый очевидный минус дизельного двигателя кроется не в самом двигателе, а в топливе, на котором он работает. Все дело в том, что дизельное топливо имеет очень низкий порог по замерзанию, и уже в -30С превращается в желе, а арктическое ДТ привозят далеко не в каждый регион. Вязкую массу, очень трудно прокачать топливному насосу по системе, ввиду чего завести мотор в мороз становится очень сложно. К тому же плунжерные пары в ТНВД (топливный насос высокого давления) смазывается топливом, и снижение текучести вызывает сухое трение подвижных пар. Эта проблема на некоторых внедорожниках уже штатно решена подогревом топливных магистралей и топливного фильтра.

Замерзшая солярка

В дополнение к этому на дизельные автомобили устанавливают предпусковые жидкостные подогреватели, чтобы исключить холодные запуски двигателя, и так же для удаления из топлива воды и твердых частиц устанавливают специальные устройства – сепараторы, так как плохое дизельное топливо может угробить ТНВД и форсунки, а замена или ремонт этих деталей может сильно пошатнуть финансовое благополучие владельца.

Если бензиновый мотор плохим топливом убить на самом деле достаточно сложно, то на дизеле будет достаточно одной заправки некачественным топливом, чтобы привести в негодность топливную аппаратуру. Помимо плохого топлива, стоит учесть то, что на территории РФ даже хорошее дизельное топливо на сетевых федеральных автозаправочных станциях содержит большое количество серы и механических примесей, что дополнительно понижает ресурс топливной системы. Чтобы исключить возможные проблемы по топливу, рекомендуют производить периодически промывку топливного бака.

2. В продолжении темы эксплуатационных недостатков, стоит упомянуть о долгом прогреве до рабочей температуры, и как следствие долго прогревающиеся салоны автомобилей, так как в радиатор печки долгое время поступает холодный антифриз. На современных дизельных автомобилях эту проблему частично решили установкой дополнительных электрических подогревателей тип «Фен», когда воздух нагревается мощным электротеном, и уже нагретый воздух по средствам вентилятора по воздуховодам идет в салон авто.

Дополнительный подогреватель , который устанавливается под панель в воздуховод

3. На версиях моторов с турбинами следует не забывать о том, что она имеет жидкостное охлаждение (масленое) и нагреваемая выхлопными газами до придельных температур, после того как двигатель глушится, подача масла прекращается, и турбина начинает остывать без охлаждения, ввиду чего в ее корпусе могут появиться трещины. Для избежания этого, на автомобили устанавливаются турбо таймеры. Это устройства, которые после выключения двигателя, какое-то время его не глушат, до остывания турбокомпрессора.

4. Дизельные моторы очень чувствительны к качеству масла. Следует выбирать масло не только по вязкости, но и по температуре вспышки, а лучше не выдумывать велосипед, и лить то, что рекомендует завод изготовитель.

Двигатель TDI и моторное масло

Так как у нас в стране дизельное топливо имеет высокую концентрацию серы, что приводит к его более скорому окислению, ввиду чего масло теряет смазывающие свойства, что может вызывать задиры на стенках цилиндров и повышенный износ шеек валов и вкладышей. Капитальный ремонт современного дизельного мотора процедура недешевая, к тому же многие из них не имеют ремонтных размеров и приходится прибегать в русской смекалке. Такой ремонт не всегда может вернуть мотору заводские характеристики и просто продлевает на какое-то время ему жизнь. Чтобы всего этого избежать, рекомендуют вне зависимости от того, что рекомендует дилер и производитель авто, производить замену масла в моторе с интервалом раз в 5-7 тысяч километров.

В остальном дизельный мотор не особо отличается от бензинового. При покупке дизельного автомобиля в попытке сэкономить, следует четко понимать то, что стоимость технического обслуживания и расходных материалов выше, чем для бензинового мотора, да и чтобы все с мотором было хорошо, ТО следует производить вдвое чаще, чем на бензине. Да и стоимость дизельного топлива сейчас в плотную подобралась к бензину АИ-95, так что экономия пару литров топлива, имеет два конца и в итоге придется отдать куда больше на обслуживание дизельного ДВС и топливной аппаратуры и в случае ремонта придется дополнительно выложить кругленькую сумму.

Единственное, на чем можно реально сэкономить, так это на транспортном налоге, так как имея сопоставимые динамические характеристики бензиновый и дизельный моторы, дизель будет иметь меньше лошадиных сил, и больше крутящего момента, а как сказал Генри Форд: «Лошадиные силы продают автомобиль, а крутящий момент выигрывает гонки».

У дизельного мотора есть свой ряд преимуществ и недостатков, и если брать машину с дизельным мотором новую, и самому заниматься ее обслуживанием, делать все то, что продлевает мотору жизнь, то эксплуатация такого автомобиля будет приносить только положительные эмоции.

С уважением, Андрей Червяков.

Читайте также:

Достоинства и недостатки дизеля 1.5 dCi

Бензиновый или дизельный двигатель — что выбрать?

Моторное масло для дизельных двигателей: характеристики, классификация

Дизельное моторное масло имеет свою специфику, поэтому оно и выделяется в отдельный класс. В первую очередь это связано с ухудшенными условиями сгорания топлива – смесеобразование происходит уже в конце такта сжатия. Также нужно учитывать повышенное давление в цилиндрах, из-за чего продукты неполного сгорания активнее проникают в картер. При работе мотора на высокосернистом топливе темпы старения масла, в сравнении с бензиновыми двигателями, значительно возрастают.

ROLF Lubricants GmbH, разрабатывая новые сорта специализированных дизельных масел, делает упор на повышенную стабильность, применяет эффективные пакеты диспергирующих и моющих присадок.

Характеристики дизельных масел

Основной характеристикой масла для дизельных двигателей (с эксплуатационной точки зрения) является вязкость. Ее изменение в зависимости от температуры определяет применимость продукта для конкретного двигателя, а также возможность всесезонного использования.

Принятая как де-факто классификация SAE обеспечивает удобство маркировки и сравнения характеристик масел. В ней все масла для автомобилей делятся на зимние, летние и всесезонные. Характеристики вязкости разбиты по диапазонам на несколько классов, получающих символическое числовое обозначение. Чем индекс класса выше, тем больше вязкость масла. Например, масло SAE 5W-40 по сравнению с 5W-30 имеет одинаковые низкотемпературные свойства, но оно более вязкое при работе двигателя. У 5W-30 кинематическая вязкость при 100 °С должна находиться в интервале 9,3–12,5 мм2/с, а у 5W-40 в интервале 12,5–16,3 мм2/с.

Чтобы отличить «зимний» индекс вязкости, к маркировке добавляется суффикс W. У всесезонных масел указываются и «зимнее», и «летнее» обозначения. Так, моторное масло SAE 10W-40 удовлетворяет требованиям класса 10W для низких температур и аналогично по рабочим характеристикам на прогретом моторе летним маслам SAE 40 (с дополнениями, введенными стандартом SAE J300 в 2007 году).

Выбирать моторное масло для дизельного двигателя необходимо по простому принципу – индекс «летней» вязкости должен соответствовать требованиям производителя авто. От этого зависят рабочее давление в системе смазки на прогретом двигателе, эффективность разбрызгивания масла коленчатым валом на стенки цилиндров и так далее. Увеличивать вязкость допустимо только при жесткой эксплуатации, повышенных температурах, на двигателях с ощутимым износом. Индекс низкотемпературной вязкости во многом определяется климатом региона, в котором эксплуатируется автомобиль. Чем ниже температуры зимой, тем меньше должен быть индекс низкотемпературной вязкости: от 20W в жарком климате до 0W в северных широтах.

По перечню эксплуатационных свойств моторное масло для дизеля выделяется:

  • повышенным щелочным числом. Если это допускается классом качества, так как масло активно набирает кислотные соединения. Особенно это актуально при износе ЦПГ и работе на дизтопливе неудовлетворительного качества;
  • активной работой диспергирующих и моющих присадок. Масло должно надежно удерживать в себе сажу, очищать двигатель от нагара, позволяя масляному фильтру отделить частицы загрязнений;
  • отличными противоизносными свойствами. Для дизельных моторов характерны высокие нагрузки на КШМ уже при низких оборотах, когда давление масла в смазочных каналах меньше всего;
  • термостабильностью. Несмотря на то, что дизельный мотор за счет высокого КПД «холоднее» бензинового, в ряде точек масло может нагреваться значительно выше рабочей температуры самого двигателя. Особенно это характерно для мощных турбодизелей.

Качественное моторное масло для дизельных автомобилей производится с добавлением сбалансированного и сложного пакета присадок. Особенно это характерно для специализированных продуктов, которые должны соответствовать актуальным экологическим нормам. Также они должны быть рассчитаны на применение многокомпонентных катализаторов и сажевых фильтров в системе выпуска отработанных газов.

Классификация дизельного моторного масла

Для более удобного подбора масла по характеристикам двигателя следует ориентироваться на системы стандартизации смазочных материалов. Старейшая из них и наиболее распространенная – система American Petroleum Institute (API). В ней масла для дизельных двигателей входят в отдельную группу с префиксом С (Commercial). Аналогично группе масел S для бензиновых двигателей, каждый новый принимаемый стандарт получает обозначение следующей буквой латинского алфавита. При этом требования нового стандарта жестче, чем у предыдущего и/или вводятся дополнительные. Важно, что стандарт обеспечивает совместимость масел в прямом направлении – продукты, изготовленные по новым стандартам, могут применяться в ранее разработанных дизелях.

Однако из-за того, что дизельные двигатели на автомобилях и спецтехнике могут работать и по четырехтактному, и по двухтактному циклу, маркировка класса качества может усложняться еще и указанием на тактность агрегата. Например, масла класса API CF-2 рассчитаны именно на двухтактные моторы, в то время как API CF-4 – на четырехтактные. Между собой они не взаимозаменяемы.

Европейская система ACEA изначально выделяла дизельные масла в группу B, стандарты нумеровались численно в порядке принятия. Но после введения норм Euro и увеличения сложности систем снижения токсичности были созданы две новые группы классов:

  • ACEA C – масла для двигателей, соответствующих экологическим нормам Euro 4 и выше. Стандарт включает в себя специфические требования к зольности, содержанию фосфора и серы, рассчитан преимущественно на легковой транспорт;
  • ACEA E – система классификации масел для тяжелого дизельного транспорта. Масла этой группы не имеют взаимозаменяемости по порядку индексов, подбор ведется по прямому соответствию требованиям производителя техники.

Типы базовых масел

Изначально моторные масла для дизельных двигателей производились на минеральной базе – продуктах переработки нефти. Более того, низкооборотным дизелям с малой удельной мощностью, в сравнении с бензиновыми, дольше подходили масла на минеральной основе. Более жесткие классы качества вводились медленнее. Для коммерческого транспорта с его значительными годовыми пробегами очень важно было и то, что минеральные масла имеют наименьшую стоимость.

Одновременно из-за неудовлетворительной стабильности минеральной базы она должна была дополняться все большим объемом присадок, доводящих качество моторного масла до соответствующего уровня. С распространением турбодизелей, где нагрузки значительно выросли в сравнении с низкофорсированными атмосферными моторами, возникла и потребность в более стабильных и качественных моторных маслах.

Синтетика, производимая на гидрокрекинговой или полиальфаолефиновой базе, создала возможность не только увеличить удельную мощность двигателей, но и улучшить экологические характеристики дизелей. Современные нормы экологии уже невозможно обеспечить исключительно за счет управления смесеобразованием двигателя. Помимо катализаторов, используются специфические системы именно для дизелей (сажевые фильтры, впрыск мочевины). Такие моторы нуждаются в отдельных маслах, производство которых на минеральной базе просто нерентабельно из-за высоких требований к испаряемости, зольности и содержанию фосфора.

Компромиссный вариант – полусинтетика, при производстве которой в минеральную базу вводится достаточный объем синтетического масла. При сохранении демократичной цены полусинтетическое масло становится стабильнее минерального, может соответствовать более жестким классам качества. В случаях, когда использование полусинтетики допустимо по требованиям производителя автомобиля, она дает заметное снижение стоимости эксплуатации машины без особого влияния на ресурс мотора.

Дизельное масло для турбированных двигателей

Специфика дизельных двигателей, описанная выше, наиболее ярко выражена на примере моторов с турбонаддувом. У них увеличиваются и удельные нагрузки, и объем продуктов неполного сгорания топлива, попадающих в масло. Появляются и специфические требования:

  • работоспособность в парах трения «сталь – медные сплавы». В то время как в самом ДВС цветных сплавов такого типа практически нет, подшипники скольжения большинства турбокомпрессоров изготавливаются именно из бронзы. Учитывая, что рабочие обороты турбин доходят до сотен тысяч в минуту, масло в турбокомпрессорном двигателе должно обеспечивать эффективность защиты подшипников;
  • минимальная коксуемость. Турбокомпрессор после работы двигателя на большой нагрузке достаточно долго сохраняет высокую температуру, в то время как поток масла прекращается почти сразу же после остановки мотора. Чрезмерное образование отложений в этом случае быстро выведет турбину из строя. В связи с этим и появились различные типы турботаймеров, которые дают турбине остыть на холостых оборотах. Несмотря на распространение турбокомпрессоров с водяным охлаждением, минимальная коксуемость масла по-прежнему важна.

Полезные советы

Распространенное мнение о возможности оценки качества моторного масла по скорости его потемнения в корне неверно, даже если речь идет о дешевой «минералке». Потемнение дизельного моторного масла возникает неизбежно из-за проникновения в него сажи и, напротив, сигнализирует об эффективной работе диспергирующих присадок.

При выборе моторного масла для современных двигателей с сажевыми фильтрами (DPF) необходимо в обязательном порядке использовать сорта с зольностью, соответствующей требованиям производителя техники. Если сервисная документация допускает использование среднезольных масел (MidSAPS), также могут применяться и малозольные LowSAPS-масла. Но, если в сервисной книжке указано использование только малозольных моторных масел, применение MidSAPS не допускается, так как в таком случае уже возможно снижение срока службы сажевого фильтра.  Так же на срок службы сажевого фильтра влияет дизельное топливо, чем больше в нем серы, тем скорее DPF выйдет из строя, вне зависимости от зольности моторного масла.

Моторные масла ROLF для дизельных двигателей

ROLF OPTIMA 15W-40 SL/CF

Всесезонное минеральное масло для всех типов бензиновых и дизельных двигателей. Обеспечивает высокие защитные и моющие свойства.

Подробнее

Три цилиндра: самый маленький дизель Минского моторного завода | Тракторист-Моторист

===

Газодизельный мотор ММЗ-3LDTG на выставке

Газодизельный мотор ММЗ-3LDTG на выставке

===

Разработкой трёхцилиндрового дизельного двигателя на ММЗ (Минский моторный завод) начинали заниматься ещё в 1990-е годы.

Но тогда проект не был доведен до логического завершения, и лишь с началом производства на Минском тракторном заводе малогабаритных тракторов серии «320», на ММЗ вновь вернулись к проектированию малолитражного мотора.

И только летом 2012 года новый трёхцилиндровый дизельный двигатель ММЗ-3LD был торжественно запущен в производство. Возглавлял работы над новым двигателем главный конструктор завода Сергей Севиздрал.

===

Испытание нового 3-цилиндрового мотора на ММЗ, 2012 год

Испытание нового 3-цилиндрового мотора на ММЗ, 2012 год

===

Справка:

Минский моторный завод был основан в июле 1963 года. Является крупнейшим производителем дизельных двигателей в Восточной Европе (всего за годы производства было выпущено более 5 миллионов дизельных моторов).
В настоящее время в состав холдинга ПО «ММЗ» входит пять заводов и два сельскохозяйственных предприятия, на которых трудятся более пяти тысяч человек.

===

Трёхцилиндровый двигатель ММЗ-3LD

Трёхцилиндровый двигатель ММЗ-3LD

===

Главные проблемы трёхцилиндрового мотора – неуравновешенность и, как следствие, повышенная вибрация, были решены при помощи коленвала с заранее созданными дисбалансами.

Двигатель ММЗ-3LD имеет объём 1,6 литра (диаметр цилиндра – 87 мм, ход поршня – 90 мм). Мощность двигателя составляет 35 лошадиных сил при 3000 об/мин, максимальный крутящий момент – 100 Нм при 1700 об/мин.

На двигатель установили топливный насос высокого давления и форсунки известной чешской компании «Motorpal», блок цилиндров нового мотора – с «мокрыми» гильзами, масса двигателя – 220 кг.

3-цилиндровый двигатель ММЗ-3LD объёмом 1,6 литра

3-цилиндровый двигатель ММЗ-3LD объёмом 1,6 литра

===

После прохождения всесторонних испытаний на тракторах «Беларус-320», в 2013 году двигатели ММЗ-3LD экологического класса S3A были запущены в серийное производство.

Кроме атмосферного мотора, на ММЗ выпускаются и турбированные трёхцилиндровые двигатели номинальной мощностью 42 и 49 лошадиных сил, а также был разработан специальный газодизельный мотор ММЗ-3LDTG.

===

Что касается стоимости трёхцилиндровых моторов ММЗ, то она сопоставима со стоимостью аналогичных дизельных двигателей китайского производства – то есть, вполне конкурентоспособна.

Двигатель ММЗ-3LD на тракторе Беларус-320

Двигатель ММЗ-3LD на тракторе Беларус-320

===

Помимо тракторов МТЗ «Беларус-320» малолитражные трёхцилиндровые двигатели ММЗ устанавливаются на недорогие компактные тракторы «Беларус-311» про которые вы можете прочитать в этой статье: «Беларус» или «китаец» – вот в чём вопрос: выбираем мощный минитрактор

***

В заключение отметим, что на выставке «Белагро-2019» Минский моторный завод представил новый двигатель ММЗ-4DTI для внедорожной техники – это потомок «героя» нашего рассказа, которому добавили один цилиндр, увеличив объём до 2,1 литра, а мощность – до 72 лошадиных сил (с турбонаддувом).

===

Спасибо за внимание.

Дизельный двигатель — New World Encyclopedia

Дизельный двигатель, построенный компанией MAN AG в 1906 году.


Дизельный двигатель представляет собой двигатель внутреннего сгорания, использующий воспламенение от сжатия , в котором топливо воспламеняется при впрыске в воздух в камере сгорания, сжатый до температуры, достаточно высокой для воспламенения. Напротив, в бензиновых двигателях используется цикл Отто, в котором топливо и воздух обычно смешиваются перед поступлением в камеру сгорания и воспламеняются от свечи зажигания, что делает воспламенение от сжатия нежелательным (детонация двигателя).Двигатель работает по циклу Дизеля, названному в честь немецкого инженера Рудольфа Дизеля, изобретшего его в 1892 году на основе двигателя с горячей колбой и на который он получил патент 23 февраля 1893 года.

Двигатель

Diesel предназначен для использования различных видов топлива, включая угольную пыль и арахисовое масло. Он продемонстрировал это на выставке 1900 Exposition Universelle (Всемирная выставка) с использованием арахисового масла.

Патент Рудольфа Дизеля 1893 года на конструкцию его двигателя.

Как работают дизельные двигатели

При сжатии любого газа повышается его температура — метод воспламенения топлива в дизельных двигателях.Воздух всасывается в цилиндры и сжимается поршнями со степенью сжатия до 25:1, что намного выше, чем в двигателях с искровым зажиганием. Ближе к концу такта сжатия дизельное топливо впрыскивается в камеру сгорания через форсунку (или распылитель). Топливо воспламеняется от контакта с воздухом, который из-за сжатия был нагрет до температуры около 700–900 градусов по Цельсию (°C) (1300–1650 по Фаренгейту (°F)). Возникающее в результате сгорание вызывает повышенный нагрев и расширение в цилиндре, что увеличивает давление и перемещает поршень вниз.Шатун передает это движение на коленчатый вал для преобразования линейного движения во вращательное движение для использования в качестве мощности в различных приложениях. Подача воздуха в двигатель обычно регулируется механическими клапанами в головке блока цилиндров. Для увеличения выходной мощности большинство современных дизельных двигателей оснащены турбокомпрессором, а в некоторых производных — нагнетателем для увеличения объема всасываемого воздуха. Использование доохладителя/промежуточного охладителя для охлаждения всасываемого воздуха, который был сжат и, таким образом, нагрет турбонагнетателем, увеличивает плотность воздуха и обычно приводит к повышению мощности и эффективности.

В холодную погоду запуск дизельных двигателей может быть затруднен, так как холодный металл блока цилиндров и головки отводит тепло, образующееся в цилиндре во время такта сжатия, что препятствует воспламенению. В некоторых дизельных двигателях используются небольшие электрические нагреватели, называемые свечами накаливания внутри цилиндра, которые помогают воспламенять топливо при запуске. Некоторые даже используют резистивные сетчатые нагреватели во впускном коллекторе для нагрева впускного воздуха до тех пор, пока двигатель не достигнет рабочей температуры. Подогреватели блока цилиндров (электрические резистивные нагреватели в блоке цилиндров), подключенные к коммунальной сети, часто используются, когда двигатель выключен на длительное время (более часа) в холодную погоду, чтобы сократить время запуска и износ двигателя.Дизельное топливо также склонно к «парафинизации» в холодную погоду, что означает затвердевание дизельного топлива до кристаллического состояния. Кристаллы накапливаются в топливе (особенно в топливных фильтрах), что в конечном итоге приводит к нехватке топлива в двигателе. Для решения этой проблемы используются маломощные электронагреватели в топливных баках и вокруг топливопроводов. Кроме того, большинство двигателей имеют систему «проливного возврата», с помощью которой любое избыточное топливо из топливного насоса и форсунок возвращается в топливный бак. После прогрева двигателя возврат теплого топлива предотвращает образование парафина в баке.В последнее время топливная технология улучшилась, так что благодаря специальным присадкам образование парафина больше не происходит во всех климатических условиях, кроме самых холодных.

Важным компонентом всех дизельных двигателей является механический или электронный регулятор, который ограничивает скорость двигателя, контролируя скорость подачи топлива. В отличие от двигателей с циклом Отто, поступающий воздух не дросселируется, и дизельный двигатель без регулятора скорости может легко превысить скорость. Системы впрыска топлива с механическим управлением приводятся в действие зубчатой ​​передачей двигателя.В этих системах используется комбинация пружин и грузов для управления подачей топлива в зависимости от нагрузки и скорости. Современные дизельные двигатели с электронным управлением контролируют подачу топлива и ограничивают максимальное число оборотов в минуту (об/мин) с помощью электронного модуля управления (ECM) или электронного блока управления (ECU). ECM/ECU получает сигнал частоты вращения двигателя от датчика и управляет количеством топлива и моментом начала впрыска с помощью электрических или гидравлических приводов.

Контроль времени начала впрыска топлива в цилиндр является ключом к минимизации выбросов и максимальной экономии топлива (эффективности) двигателя.Время обычно измеряется в единицах угла поворота коленчатого вала поршня до верхней мертвой точки (ВМТ). Например, если ECM/ECU инициирует впрыск топлива, когда поршень находится на 10 градусов перед ВМТ, считается, что начало впрыска или момент времени соответствует 10 градусам до ВМТ. Оптимальное время будет зависеть от конструкции двигателя, а также от его скорости и нагрузки.

Опережение начала впрыска (впрыск до того, как поршень достигнет ВМТ) приводит к более высокому давлению и температуре в цилиндре и более высокому КПД, но также приводит к более высоким выбросам оксидов азота NOx из-за более высоких температур сгорания.С другой стороны, задержка начала впрыска приводит к неполному сгоранию и выделению видимого черного дыма, состоящего из твердых частиц (PM) и несгоревших углеводородов (HC).

Хронология ранней истории

  • 1862: Николаус Отто разрабатывает свой угольный двигатель, похожий на современный бензиновый двигатель.
  • 1891: Герберт Акройд Стюарт из Блетчли совершенствует свой масляный двигатель и сдает в аренду Хорнсби из Англии права на производство двигателей. Они строят первые двигатели с холодным пуском и воспламенением от сжатия.
  • 1892: Двигатель Хорнсби № 101 построен и установлен на гидроузле. Сейчас он находится в музее грузовиков MAN в Северной Англии.
  • 1892: Рудольф Дизель разрабатывает свой двигатель типа тепловой машины Карно, который сжигает порошкообразную угольную пыль. Его нанял гений холодильного дела Карл фон Линде, затем мюнхенский производитель чугуна MAN AG, а затем швейцарская компания Sulzer по производству двигателей. Он заимствует у них идеи и оставляет наследство всем фирмам.
  • 1892: Джон Фрёлих строит свой первый сельскохозяйственный трактор с масляным двигателем.
  • 1894: Витте, Рид и Фэрбенкс начинают производство масляных двигателей с различными системами зажигания.
  • 1896: Хорнсби производит дизельные тракторы и железнодорожные двигатели.
  • 1897: Winton производит и управляет первым построенным в США газовым автомобилем; позже он строит дизельные заводы.
  • 1897: Mirrlees, Watson & Yaryan построили первый британский дизельный двигатель по лицензии Рудольфа Дизеля. Сейчас он выставлен в Музее науки в Южном Кенсингтоне, Лондон.
  • 1898: Буш устанавливает двигатель типа Rudolf Diesel на своей пивоварне в Сент-Луисе. Это первое в Соединенных Штатах. Рудольф Дизель совершенствует свой двигатель с запуском от сжатия, патентует и лицензирует его. Этот двигатель, изображенный выше, находится в немецком музее.
  • 1899: Дизель передает лицензию на свой двигатель строителям Burmeister & Wain, Krupp и Sulzer, которые становятся известными строителями.
  • 1902: Ф. Рундлоф изобретает двухтактный картерный двигатель с продувкой и горячим термометром.
  • 1902: Компания Forest City начала производство дизельных генераторов.
  • 19:03: Корабль Gjoa пересекает заполненный льдом Северо-Западный проход с помощью керосинового двигателя Dan.
  • 1904: Франция построила первую дизельную подводную лодку Z.
  • 1908: Bolinder-Munktell начинает производство двухтактных двигателей с термометром.
  • 1912: Построен первый дизельный корабль MS Selandia. SS Fram, флагман полярного исследователя Амундсена, переоборудован под дизель AB Atlas.
  • 1913: Fairbanks Morse начинает производство полудизельного двигателя модели Y. Подводные лодки ВМС США используют блоки NELSECO.
  • 1914: Немецкие подводные лодки оснащены дизелями MAN. Военная служба подтверждает надежность двигателя.
  • 1920-е годы: рыболовный флот переходит на масляные двигатели. Появляются дизели Atlas-Imperial of Oakland, Union и Lister.
  • 1924: Появление первых дизельных грузовиков.
  • 1928: Канадские национальные железные дороги используют маневровый дизель на своих складах.
  • 1930-е: Клесси Камминс начинает с голландских дизельных двигателей, а затем строит свои собственные грузовики и роскошный автомобиль Duesenberg на гоночной трассе Дейтона.
  • 1930-е годы: Caterpillar начинает производить дизельные двигатели для своих тракторов.
  • 1933: Citroën представил Rosalie, легковой автомобиль с первым в мире коммерчески доступным дизельным двигателем, разработанным совместно с Гарри Рикардо.
  • 1934: General Motors запускает исследовательский центр дизельных двигателей GM.Компания производит дизельные железнодорожные двигатели — Pioneer Zephyr — и основывает подразделение General Motors Electro-Motive Division, которое становится важным производителем двигателей для десантных кораблей и танков во время Второй мировой войны. Затем GM применяет эти знания для контроля над рынком, выпуская свои знаменитые Green Leakers для автобусов и железнодорожных двигателей.
  • 1936: Mercedes-Benz выпускает дизельный автомобиль 260D. ATSF открывает дизельный поезд Super Chief.
  • 1936: Дирижабль «Гинденбург» оснащен дизельными двигателями.

Впрыск топлива в дизельных двигателях

Системы раннего впрыска топлива

Современный дизельный двигатель представляет собой сочетание творений двух изобретателей. Во всех основных аспектах он соответствует оригинальной конструкции Diesel, в которой топливо воспламеняется при сжатии при чрезвычайно высоком давлении внутри цилиндра. Однако почти во всех современных дизельных двигателях используется так называемая система впрыска твердого топлива, изобретенная Гербертом Акройдом Стюартом для его двигателя с горячим термометром (двигатель с воспламенением от сжатия, который предшествует дизельному двигателю и работает немного иначе).Твердый впрыск — это когда топливо поднимается до экстремального давления с помощью механических насосов и доставляется в камеру сгорания с помощью форсунок, активируемых давлением, в почти твердой струе. Оригинальный двигатель Дизеля впрыскивал топливо с помощью сжатого воздуха, который распылял топливо и нагнетал его в двигатель через сопло. Это называется инъекцией воздушной струи. Размер газового компрессора, необходимого для питания такой системы, делал ранние дизельные двигатели очень тяжелыми и большими для их выходной мощности, а необходимость привода компрессора еще больше снижала выходную мощность.Ранние морские дизели часто имели вспомогательные двигатели меньшего размера, единственной целью которых было приводить в действие компрессоры для подачи воздуха в инжекторную систему главного двигателя. Такая система была слишком громоздкой и неэффективной для использования в дорожных автомобилях.

Твердотопливные системы впрыска легче, проще и допускают гораздо более высокие обороты, поэтому повсеместно используются в автомобильных дизельных двигателях. Системы воздушного дутья обеспечивают очень эффективное сгорание в условиях низкой скорости и высокой нагрузки, особенно при работе на некачественном топливе, поэтому в некоторых крупных судовых двигателях используется этот метод впрыска.Воздушный впрыск также повышает температуру топлива в процессе впрыска, поэтому его иногда называют впрыском горячего топлива. Напротив, впрыск твердого топлива иногда называют впрыском холодного топлива.

Поскольку в подавляющем большинстве современных дизельных двигателей используется впрыск твердого топлива, приведенная ниже информация относится к этой системе.

Механический и электронный впрыск

В старых двигателях используется механический топливный насос и узел клапана, который приводится в движение коленчатым валом двигателя, обычно от ремня ГРМ или цепи.В этих двигателях используются простые форсунки, которые в основном представляют собой очень точные подпружиненные клапаны, которые открываются и закрываются при определенном давлении топлива. Узел насоса состоит из насоса, который нагнетает топливо, и дискового клапана, который вращается со скоростью, равной половине частоты вращения коленчатого вала. Клапан имеет одно отверстие для подачи топлива под давлением с одной стороны и по одному отверстию для каждой форсунки с другой. Когда двигатель вращается, тарелки клапанов выстраиваются в линию и подают порцию топлива под давлением к форсунке в цилиндре, который вот-вот войдет в рабочий такт.Клапан форсунки принудительно открывается под давлением топлива, и дизель впрыскивается до тех пор, пока клапан не сместится, и давление топлива в этой форсунке не прекратится. Скорость двигателя контролируется третьим диском, который поворачивается всего на несколько градусов и управляется рычагом дроссельной заслонки. Этот диск изменяет ширину отверстия, через которое проходит топливо, и, следовательно, как долго форсунки остаются открытыми до прекращения подачи топлива, что контролирует количество впрыскиваемого топлива.

В более современном методе используется отдельный топливный насос, который постоянно подает топливо под высоким давлением к каждой форсунке.Затем каждая форсунка имеет соленоид, который управляется электронным блоком управления, что позволяет более точно контролировать время открытия форсунки, которое зависит от других условий управления, таких как частота вращения двигателя и нагрузка, что приводит к повышению производительности двигателя и экономии топлива. Эта конструкция также механически проще, чем комбинированная конструкция насоса и клапана, что делает ее в целом более надежной и менее шумной, чем ее механический аналог.

Как механические, так и электронные системы впрыска могут использоваться как с прямым, так и с непрямым впрыском.

Непрямой впрыск

Дизельный двигатель с непрямым впрыском подает топливо в камеру вне камеры сгорания, называемую форкамерой, где начинается сгорание, а затем распространяется в основную камеру сгорания, чему способствует турбулентность, создаваемая в камере. Эта система обеспечивает более плавную и тихую работу, а поскольку сгоранию способствует турбулентность, давление в форсунках может быть ниже, что во времена систем механического впрыска позволяло работать на высоких скоростях, подходящих для дорожных транспортных средств (обычно до скорости около 4000 об / мин).Во время разработки высокоскоростного дизельного двигателя в 1930-х годах различные производители двигателей разработали собственный тип камеры предварительного сгорания. Некоторые, такие как Mercedes-Benz, имели сложную внутреннюю конструкцию. Другие, такие как камера предварительного сгорания Lanova, использовали механическую систему для регулировки формы камеры в зависимости от условий запуска и работы. Однако наиболее часто используемой конструкцией оказалась серия вихревых камер «Комета», разработанная Гарри Рикардо, в которой использовалась сферическая камера, состоящая из двух частей, с узким «горлом» для создания турбулентности.Большинство европейских производителей высокоскоростных дизельных двигателей использовали камеры типа Comet или разработали свои собственные версии (Mercedes много лет оставался с собственной конструкцией), и эта тенденция продолжается с нынешними двигателями с непрямым впрыском.

Прямой впрыск

В современных дизельных двигателях используется один из следующих методов прямого впрыска:

Распределительный насос прямого впрыска

Первые воплощения дизелей с непосредственным впрыском использовали роторный насос, очень похожий на дизели с непрямым впрыском; однако форсунки были установлены в верхней части камеры сгорания, а не в отдельной камере предварительного сгорания.Примерами являются такие автомобили, как Ford Transit, Austin Rover Maestro и Montego с их двигателем Perkins Prima. Проблема с этими транспортными средствами заключалась в резком шуме, который они издавали, и выбросах твердых частиц (дыма). Это причина того, что в основном этот тип двигателя был ограничен коммерческими автомобилями, за исключением легковых автомобилей Maestro, Montego и Fiat Croma. Расход топлива был примерно на 15–20 процентов ниже, чем у дизелей с непрямым впрыском топлива, чего для некоторых покупателей было достаточно, чтобы компенсировать дополнительный шум.

Прямой впрыск Common Rail

В более старых дизельных двигателях ТНВД распределительного типа, регулируемый двигателем, подает топливо к форсункам, которые представляют собой просто форсунки, через которые дизельное топливо впрыскивается в камеру сгорания двигателя.

В системах Common Rail отсутствует ТНВД-распределитель. Вместо этого насос сверхвысокого давления хранит резервуар с топливом под высоким давлением — до 1800 бар (180 МПа, 26 000 фунтов на кв. Дюйм) — в «общей топливной рампе», по сути, в трубке, которая, в свою очередь, разветвляется на управляемые компьютером клапаны форсунок, каждый из которых из которых содержит прецизионно обработанное сопло и поршень, приводимый в действие соленоидом или даже пьезоэлектрическими приводами (в настоящее время, например, используются Mercedes в их высокой выходной мощности 3.0L V6 дизель с общей топливной рампой).

Большинство европейских автопроизводителей имеют дизельные двигатели Common Rail в своих модельных рядах, даже для коммерческих автомобилей. Некоторые японские производители, такие как Toyota, Nissan и недавно Honda, также разработали дизельные двигатели с системой Common Rail.

Агрегат прямого впрыска
Блок прямого впрыска

также впрыскивает топливо непосредственно в цилиндр двигателя. Однако в этой системе форсунка и насос объединены в один блок, расположенный над каждым цилиндром.Таким образом, каждый цилиндр имеет собственный насос, питающий собственную форсунку, что предотвращает колебания давления и обеспечивает более равномерный впрыск. Этот тип системы впрыска, также разработанный Bosch, используется Volkswagen AG в автомобилях (где она называется «Pumpe-Düse System», буквально «система насос-форсунка»), а также Mercedes Benz (PLD) и большинством крупных компаний. производители дизельных двигателей для больших коммерческих двигателей (CAT, Cummins, Detroit Diesel). Благодаря недавним улучшениям давление насоса было увеличено до 2050 бар (205 МПа), что обеспечивает параметры впрыска, аналогичные системам Common Rail.

Опасность травмы при подкожной инъекции

Поскольку многие системы впрыска топлива дизельных двигателей работают при чрезвычайно высоком давлении, существует риск получения травмы при подкожном впрыскивании топлива, если топливную форсунку снять со своего места и эксплуатировать на открытом воздухе.

Типы дизельных двигателей

Ранние дизельные двигатели

Рудольф Дизель планировал, что его двигатель заменит паровой двигатель в качестве основного источника энергии для промышленности. В качестве таких дизельных двигателей в конце 19-го и начале 20-го веков использовалась та же базовая компоновка и форма, что и у промышленных паровых двигателей, с цилиндрами с длинным каналом, внешним клапанным механизмом, крестообразными подшипниками и открытым коленчатым валом, соединенным с большой маховик.Меньшие двигатели будут построены с вертикальными цилиндрами, в то время как большинство промышленных двигателей среднего и большого размера будут построены с горизонтальными цилиндрами, как и паровые двигатели. В обоих случаях двигатели могли быть построены с более чем одним цилиндром. Самые большие ранние дизели напоминали паровой двигатель с поршневым двигателем тройного расширения, имея высоту в десятки футов с вертикальными цилиндрами, расположенными в линию. Эти ранние двигатели работали на очень низких скоростях — отчасти из-за ограничений их инжекторного оборудования с воздушным дутьем, а отчасти из-за того, что они были совместимы с большей частью промышленного оборудования, предназначенного для паровых двигателей — диапазоны скоростей от 100 до 300 об / мин были обычным явлением.Двигатели обычно запускались путем подачи сжатого воздуха в цилиндры для вращения двигателя, хотя двигатели меньшего размера можно было запустить вручную.

В первые десятилетия двадцатого века, когда большие дизельные двигатели впервые устанавливались на корабли, двигатели имели форму, аналогичную распространенным в то время составным паровым двигателям, с поршнем, соединенным с шатуном через крейцкопф. несущий. Следуя практике паровых двигателей, были сконструированы четырехтактные дизельные двигатели двойного действия для увеличения выходной мощности, с сгоранием, происходящим с обеих сторон поршня, с двумя комплектами клапанного механизма и впрыском топлива.Эта система также означала, что направление вращения двигателя можно было изменить на противоположное, изменив синхронизацию форсунок. Это означало, что двигатель можно было соединить напрямую с гребным винтом без коробки передач. Несмотря на то, что дизельный двигатель двойного действия производил большую мощность и был очень эффективным, основная проблема заключалась в обеспечении хорошего уплотнения в месте, где шток поршня проходил через дно нижней камеры сгорания к подшипнику крейцкопфа. К 1930-м годам оказалось, что устанавливать турбокомпрессоры на двигатели проще и надежнее, хотя крейцкопфы по-прежнему используются для уменьшения нагрузки на подшипники коленчатого вала и износа цилиндров в больших длинноходных соборных двигателях.

Современные дизельные двигатели

Существует два класса дизельных и бензиновых двигателей: двухтактные и четырехтактные. Большинство дизелей обычно используют четырехтактный цикл, а некоторые более крупные дизели работают по двухтактному циклу, в основном огромные двигатели на кораблях. В большинстве современных локомотивов используется двухтактный дизель, соединенный с генератором, который вырабатывает ток для привода электродвигателей, что устраняет необходимость в трансмиссии. Для достижения рабочего давления в цилиндрах двухтактные дизели должны использовать наддув от турбокомпрессора или нагнетателя.Дизельные двухтактные двигатели идеально подходят для таких применений из-за их высокой удельной мощности — с вдвое большим числом рабочих ходов на один оборот коленчатого вала по сравнению с четырехтактными двигателями они способны производить гораздо большую мощность на рабочий объем.

Обычно ряды цилиндров используются в количестве, кратном двум, хотя может использоваться любое количество цилиндров, если нагрузка на коленчатый вал уравновешена для предотвращения чрезмерной вибрации. Рядный 6-цилиндровый двигатель наиболее распространен в двигателях средней и большой мощности, хотя также распространены V8 и рядный 4-цилиндровый двигатель.Двигатели малой мощности (обычно считаются двигателями объемом менее 5 литров), как правило, являются 4- или 6-цилиндровыми типами, причем 4-цилиндровый тип является наиболее распространенным типом, используемым в автомобилях. Также были произведены 5-цилиндровые дизельные двигатели, представляет собой компромисс между плавностью хода 6-цилиндрового двигателя и компактными размерами 4-цилиндрового двигателя Дизельные двигатели для небольших заводских машин, лодок, тракторов, генераторов и насосов могут быть 4-, 3-, 2-цилиндровыми. , с одноцилиндровым дизельным двигателем, оставшимся для легкой стационарной работы.

Стремление улучшить удельную мощность дизельного двигателя привело к созданию нескольких новых цилиндров, позволяющих извлекать больше мощности из заданной мощности. Двигатель Napier Deltic с тремя цилиндрами, расположенными в форме треугольника, каждый из которых содержит два поршня противоположного действия, а весь двигатель имеет три коленчатых вала, является одним из наиболее известных. Компания Commer van из Соединенного Королевства разработала аналогичную конструкцию для дорожных транспортных средств. Двигатель Commer имел три горизонтальных рядных цилиндра, каждый с двумя поршнями противоположного действия, и двигатель имел два коленчатых вала.Хотя обе эти конструкции преуспели в производстве большей мощности при заданной мощности, они были сложными и дорогими в производстве и эксплуатации, и когда в 1960-х годах технология турбокомпрессора улучшилась, это оказалось гораздо более надежным и простым способом извлечения большей мощности.

В качестве примечания: до 1949 года компания Sulzer начала экспериментировать с двухтактными двигателями с давлением наддува до шести атмосфер, в которых вся выходная мощность отводилась от выхлопной турбины. Двухтактные поршни приводили в движение поршни воздушного компрессора, образуя объемный газогенератор.Противоположные поршни были соединены рычагами вместо коленчатых валов. Несколько таких агрегатов можно было бы соединить вместе для подачи энергетического газа на одну большую выходную турбину. Общий тепловой КПД был примерно в два раза выше, чем у простой газовой турбины. (Источник Modern High-Speed ​​Oil Engines Volume II CW Chapman, опубликованный The Caxton Publishing Co. Ltd., перепечатанный в июле 1949 г.)

Карбюраторные модели двигателей с воспламенением от сжатия

Простые двигатели с воспламенением от сжатия предназначены для модельных двигателей.Это очень похоже на типичный двигатель со свечами накаливания, который работает на смеси метанола (метилового спирта) и смазки (обычно касторового масла) (и иногда нитрометана для улучшения характеристик) с нитью накаливания для обеспечения воспламенения. Вместо свечи накаливания головка имеет регулируемый контрпоршень над поршнем, образующий верхнюю поверхность камеры сгорания. Этот контрпоршень удерживается регулировочным винтом, управляемым внешним рычагом (или иногда съемным шестигранным ключом).Используемое топливо содержит эфир, который является очень летучим и имеет чрезвычайно низкую температуру воспламенения, в сочетании с керосином и смазкой, а также очень небольшой долей (обычно 2 процента) присадки, улучшающей воспламенение, такой как амилнитрат или предпочтительно изопропилнитрат в настоящее время. Двигатель запускается путем снижения компрессии и настройки обогащения смеси в распылителе с помощью регулируемого игольчатого клапана, постепенно увеличивая компрессию при прокручивании двигателя. Компрессия увеличивается до тех пор, пока двигатель не заработает.Затем смесь можно обеднить и увеличить компрессию. По сравнению с двигателями со свечами накаливания, модельные дизельные двигатели демонстрируют гораздо более высокую экономию топлива, что увеличивает выносливость в зависимости от количества перевозимого топлива. Они также обладают более высоким крутящим моментом, что позволяет вращать гребной винт большего или большего шага на более низкой скорости. Поскольку сгорание происходит задолго до того, как открывается выпускное отверстие, эти двигатели также значительно тише (без глушителя), чем двигатели со свечами накаливания аналогичного объема.По сравнению с двигателями со свечами накаливания, модельные дизели сложнее дросселировать в широком диапазоне мощностей, что делает их менее подходящими для моделей с радиоуправлением, чем двух- или четырехтактные двигатели со свечами накаливания, хотя эта разница, как утверждается, менее заметна при использование современных двигателей с портами Шнерле.

Преимущества и недостатки по сравнению с двигателями с искровым зажиганием

Мощность и экономия топлива

Дизельные двигатели

более экономичны, чем бензиновые (бензиновые) двигатели той же мощности, что приводит к меньшему расходу топлива.Обычный запас составляет на 40 процентов больше миль на галлон для эффективного турбодизеля. Например, текущая модель _koda Octavia, использующая двигатели Volkswagen Group, имеет комбинированный рейтинг в евро 38 миль на галлон США (6,2 литра на 100 км (л/100 км)) для 102 базовых лошадиных сил (л.с.) (76 киловатт). (кВт)) бензиновый двигатель и 54 мили на галлон (4,4 л/100 км) для дизельного двигателя мощностью 105 л.с. (75 кВт). Однако такое сравнение не учитывает, что дизельное топливо более плотное и содержит примерно на 15 процентов больше энергии.Скорректировав цифры для Octavia, можно обнаружить, что общая энергоэффективность дизельной версии все еще примерно на 20 процентов выше, несмотря на снижение веса дизельного двигателя. При сравнении двигателей относительно малой мощности для веса автомобиля (таких как двигатели мощностью 75 лошадиных сил (л.с.) для Volkswagen Golf) общее преимущество дизельного двигателя в энергоэффективности снижается еще больше, но все же составляет от 10 до 15 процентов.

В то время как более высокая степень сжатия способствует повышению эффективности, дизельные двигатели гораздо более экономичны, чем бензиновые (бензиновые) двигатели при малой мощности и на холостом ходу.В отличие от бензинового двигателя, у дизеля отсутствует дроссельная заслонка во впускной системе, которая закрывается на холостом ходу. Это создает паразитное сопротивление поступающему воздуху, снижая эффективность бензиновых/бензиновых двигателей на холостом ходу. Из-за более низких тепловых потерь дизельные двигатели имеют меньший риск постепенного перегрева при длительной работе на холостом ходу. Например, во многих приложениях, таких как судостроение, сельское хозяйство и железные дороги, дизели остаются без присмотра в течение многих часов, а иногда и дней. Эти преимущества особенно привлекательны в локомотивах.

Дизельные двигатели без наддува тяжелее бензиновых двигателей той же мощности по двум причинам. Во-первых, требуется дизельный двигатель большего рабочего объема, чтобы производить ту же мощность, что и бензиновый двигатель. По сути, это связано с тем, что дизель должен работать на более низких оборотах двигателя. Дизельное топливо впрыскивается непосредственно перед воспламенением, поэтому у топлива остается мало времени, чтобы найти весь кислород в цилиндре. В бензиновом двигателе воздух и топливо смешиваются на протяжении всего такта сжатия, что обеспечивает полное смешивание даже при более высоких оборотах двигателя.Вторая причина большего веса дизельного двигателя заключается в том, что он должен быть прочнее, чтобы выдерживать более высокие давления сгорания, необходимые для воспламенения, и ударную нагрузку от детонации воспламенительной смеси. В результате совершающая возвратно-поступательное движение масса (поршень и шатун) и результирующие силы, ускоряющие и замедляющие эти массы, тем больше, чем тяжелее, крупнее и прочнее деталь, и действуют законы убывающей отдачи прочности компонентов. , масса компонента и инерция — все это вступает в игру для создания баланса смещения, оптимальной средней выходной мощности, веса и долговечности.

Тем не менее, именно такое качество сборки позволило некоторым энтузиастам добиться значительного увеличения мощности двигателей с турбонаддувом за счет довольно простых и недорогих модификаций. Бензиновый двигатель аналогичного размера не может обеспечить сравнимое увеличение мощности без значительных переделок, потому что стандартные компоненты не смогут выдерживать более высокие нагрузки, воздействующие на них. Поскольку дизельный двигатель уже создан, чтобы выдерживать более высокие уровни нагрузки, он является идеальным кандидатом для настройки производительности с небольшими затратами.Однако следует отметить, что любая модификация, которая увеличивает количество топлива и воздуха, проходящего через дизельный двигатель, повысит его рабочую температуру, что сократит срок его службы и увеличит требования к интервалу обслуживания. Это проблемы с более новыми, более легкими, высокопроизводительными дизельными двигателями, которые не «перестроены» в степени старых двигателей и вынуждены обеспечивать большую мощность в двигателях меньшего размера.

Добавление турбокомпрессора или нагнетателя к двигателю в значительной степени способствует увеличению экономии топлива и выходной мощности, уменьшая упомянутое выше ограничение скорости впуска топлива и воздуха для данного объема двигателя.Давление наддува у дизелей может быть выше, чем у бензиновых двигателей, а более высокая степень сжатия позволяет дизельному двигателю быть более эффективным, чем сопоставимый двигатель с искровым зажиганием. Хотя теплотворная способность топлива немного ниже (45,3 МДж/кг (мегаджоулей на килограмм) по сравнению с бензином (45,8 МДж/кг), дизельное топливо намного плотнее, и топливо продается по объему, поэтому дизельное топливо содержит больше энергии на литр или галлон. Повышенная экономия топлива дизельного двигателя по сравнению с бензиновым двигателем означает, что дизель производит меньше углекислого газа (CO2) на единицу расстояния.В последнее время прогресс в производстве и изменения в политическом климате повысили доступность и осведомленность о биодизеле, альтернативе дизельному топливу, полученному из нефти, с гораздо более низким суммарным выбросом CO2 из-за поглощения CO2 растениями, используемыми для производства. топливо.

Выбросы

Дизельные двигатели

производят очень мало угарного газа, поскольку они сжигают топливо в избытке воздуха даже при полной нагрузке, и в этот момент количество впрыскиваемого топлива за цикл по-прежнему составляет около 50 процентов от стехиометрического.Однако они могут выделять черную сажу (или, точнее, твердые частицы дизельного топлива) из своих выхлопных газов, которые состоят из несгоревших углеродных соединений. Это часто вызвано изношенными форсунками, которые недостаточно распыляют топливо, или неисправной системой управления двигателем, которая позволяет впрыскивать больше топлива, чем может быть полностью сожжено за отведенное время.

Предел полной нагрузки дизельного двигателя при нормальной эксплуатации определяется «пределом черного дыма», за пределами которого топливо не может полностью сгорать; поскольку «предел черного дыма» все еще значительно беднее стехиометрического, можно получить больше мощности, превысив его, но в результате неэффективное сгорание означает, что дополнительная мощность достигается за счет снижения эффективности сгорания, высокого расхода топлива и плотных облаков дыма. дым, так что это делается только в специализированных приложениях (таких как буксировка трактора), где эти недостатки не имеют большого значения.

Аналогичным образом, при запуске из холодного состояния эффективность сгорания двигателя снижается, поскольку холодный блок двигателя отбирает тепло из цилиндра в такте сжатия. В результате топливо не сгорает полностью, что приводит к сине-белому дыму и снижению выходной мощности до тех пор, пока двигатель не прогреется. Это особенно касается двигателей с непосредственным впрыском, которые менее термически эффективны. При электронном впрыске время и продолжительность последовательности впрыска можно изменить, чтобы компенсировать это.Старые двигатели с механическим впрыском могут иметь ручное управление для изменения времени или многофазные свечи накаливания с электронным управлением, которые остаются включенными в течение периода времени после запуска, чтобы обеспечить чистое сгорание — свечи автоматически переключаются на более низкую мощность, чтобы предотвратить они выгорают.

Частицы размером, обычно называемым PM10 (частицы размером 10 микрометров или меньше), вызывают проблемы со здоровьем, особенно в городах. Некоторые современные дизельные двигатели оснащены сажевыми фильтрами, которые улавливают черную сажу и при насыщении автоматически регенерируются путем сжигания частиц.Другие проблемы, связанные с выхлопными газами (оксиды азота, оксиды серы), можно уменьшить за счет дополнительных инвестиций и оборудования; некоторые дизельные автомобили теперь имеют каталитические нейтрализаторы в выхлопе.

Мощность и крутящий момент

Для коммерческого использования, требующего буксировки, перевозки грузов и других тяговых задач, дизельные двигатели, как правило, имеют более желательные характеристики крутящего момента. Дизельные двигатели, как правило, имеют довольно низкий пик крутящего момента в своем диапазоне скоростей (обычно между 1600–2000 об/мин для двигателя небольшой мощности и ниже для более крупного двигателя, используемого в грузовике).Это обеспечивает более плавный контроль над большими нагрузками при запуске из состояния покоя и, что особенно важно, позволяет дизельному двигателю работать с более высокими нагрузками на низких скоростях, чем бензиновый/бензиновый двигатель, что делает их гораздо более экономичными для этих приложений. Эта характеристика не очень желательна в частных автомобилях, поэтому в большинстве современных дизелей, используемых в таких автомобилях, используется электронное управление, турбокомпрессоры с изменяемой геометрией и более короткий ход поршня для достижения более широкого распределения крутящего момента в диапазоне оборотов двигателя, обычно достигая пика около 2500–3000 об/мин. .

Надежность

Отсутствие системы электрического зажигания значительно повышает надежность. Высокая долговечность дизельного двигателя также обусловлена ​​его перестроенным характером (см. Выше), а также циклом сгорания дизеля, который создает менее резкие изменения давления по сравнению с двигателем с искровым зажиганием, преимущество, которое усиливается за счет более низкие скорости вращения в дизелях. Дизельное топливо является лучшей смазкой, чем бензин, поэтому оно менее вредно для масляной пленки на поршневых кольцах и каналах цилиндров; дизельные двигатели обычно проходят 250 000 миль (400 000 км) или более без ремонта.

Качество и разнообразие топлива

В дизельных двигателях механическая система форсунок испаряет топливо (вместо форсунки Вентури в карбюраторе, как в бензиновом двигателе). Это принудительное испарение означает, что можно использовать менее летучие виды топлива. Что еще более важно, поскольку в дизельном двигателе в цилиндр вводится только воздух, степень сжатия может быть намного выше, поскольку отсутствует риск преждевременного зажигания при условии точного времени процесса впрыска. Это означает, что температура цилиндров дизельного двигателя намного выше, чем у бензинового двигателя, что позволяет использовать менее горючее топливо.

Дизельное топливо представляет собой форму легкого жидкого топлива, очень похожего на керосин, но дизельные двигатели, особенно старые или простые конструкции, в которых отсутствуют прецизионные электронные системы впрыска, могут работать на широком спектре других видов топлива. Одной из наиболее распространенных альтернатив является растительное масло из самых разных растений. Некоторые двигатели могут работать на растительном масле без модификаций, а для большинства других требуются довольно простые модификации. Биодизель — это чистое дизельное топливо, очищенное от растительного масла, и его можно использовать почти во всех дизельных двигателях.Единственными ограничениями для топлива, используемого в дизельных двигателях, являются способность топлива течь по топливопроводам и способность топлива надлежащим образом смазывать топливный насос и форсунки.

Дизель в двигателях с искровым зажиганием

Бензиновый двигатель (с искровым зажиганием) иногда может работать как двигатель с воспламенением от сжатия при нештатных обстоятельствах, явление, обычно описываемое как детонация или детонация (во время нормальной работы) или дизельная работа (когда двигатель продолжает работать после электрическая система зажигания отключена).Обычно это вызвано горячими отложениями углерода в камере сгорания, которые действуют так же, как свеча накаливания в дизельном двигателе или авиационном двигателе. Чрезмерный нагрев также может быть вызван неправильным опережением зажигания и/или соотношением топливо/воздух, что, в свою очередь, приводит к перегреву открытых частей свечи зажигания в камере сгорания. Наконец, двигатели с высокой степенью сжатия, требующие высокооктанового топлива, могут стучать при использовании низкооктанового топлива.

Характеристики топлива и жидкостей

Дизельные двигатели

могут работать на различных видах топлива, в зависимости от конфигурации, хотя наиболее распространено одноименное дизельное топливо, полученное из сырой нефти.Дизельное топливо хорошего качества можно синтезировать из растительного масла и спирта. Популярность биодизеля растет, поскольку его часто можно использовать в немодифицированных двигателях, хотя производство остается ограниченным. В последнее время биодизель из кокоса, который может производить очень перспективный метиловый эфир кокосового ореха (CME), обладает характеристиками, которые улучшают смазывающую способность и сгорание, что дает обычному дизельному двигателю без каких-либо модификаций большую мощность, меньше твердых частиц или черного дыма и более плавную работу двигателя. Филиппины являются пионерами в исследованиях CME на основе кокоса с помощью немецких и американских ученых.Дизельное топливо, полученное из нефти, часто называют нефтедизелем , если необходимо различать источник топлива.

Двигатели могут работать с полным спектром дистиллятов сырой нефти, от компримированного природного газа, спиртов, бензина, до мазута , от дизельного топлива до мазута. Тип используемого топлива представляет собой сочетание эксплуатационных требований и затрат на топливо.

Остаточное топливо представляет собой «отбросы» процесса дистилляции и представляет собой более густую, тяжелую нефть или нефть с более высокой вязкостью, настолько густую, что ее трудно перекачивать, если ее не нагреть.Остаточные мазуты дешевле чистого, очищенного дизельного топлива, хотя и грязнее. Их основные соображения касаются использования на кораблях и очень больших генераторных установках из-за стоимости большого объема потребляемого топлива, часто составляющего многие метрические тонны в час. В эту категорию можно отнести низкоочищенное биотопливо, чистое растительное масло (SVO) и отработанное растительное масло (WVO). Кроме того, использование низкокачественного топлива может привести к серьезным проблемам с техническим обслуживанием. Большинство дизельных двигателей, которыми питаются такие корабли, как супертанкеры, сконструированы таким образом, что двигатель может безопасно использовать топливо низкого качества.

Обычное дизельное топливо воспламеняется труднее, чем бензин, из-за его более высокой температуры воспламенения, но после возгорания дизельное топливо может быть очень сильным.

Дизельные установки

Использование дизельного двигателя во всем мире очень сильно зависит от местных условий и конкретного применения. Области применения, требующие надежности дизеля и высокого крутящего момента (такие как тракторы, грузовые автомобили, тяжелая техника, большинство автобусов и т. д.), встречаются практически во всем мире (очевидно, что эти применения также выигрывают от улучшенной топливной экономичности дизеля).Местные условия, такие как цены на топливо, играют большую роль в принятии дизельных двигателей — например, в Европе к концу 1950-х годов большинство тракторов были оснащены дизельными двигателями, в то время как в США дизель не доминировал на рынке до 1970-х годов. . Точно так же около половины всех автомобилей, продаваемых в Европе (где цены на топливо высоки), имеют дизельный двигатель, в то время как частные автомобили в Северной Америке практически не имеют дизельных двигателей из-за гораздо более низкой стоимости топлива и плохой репутации.

Помимо их использования на торговых судах и катерах, дизельное топливо также имеет военно-морское преимущество в отношении относительной безопасности дизельного топлива в дополнение к увеличенному запасу хода по сравнению с бензиновым двигателем.Немецкие «карманные линкоры» были самыми большими дизельными боевыми кораблями, но немецкие торпедные катера, известные как E-boats (Schnellboot) времен Второй мировой войны, также были дизельными кораблями. Обычные подводные лодки использовали их еще до Первой мировой войны. Преимуществом американских дизель-электрических подводных лодок было то, что они работали по двухтактному циклу, в отличие от четырехтактного, который использовали другие военно-морские силы.

Mercedes-Benz в сотрудничестве с Robert Bosch GmbH с 1936 года успешно выпускает легковые автомобили с дизельным двигателем, которые продаются во многих частях мира, а в 1970-х и 1980-х годах к ним присоединились другие производители.Затем последовали другие производители автомобилей: Borgward в 1952 году, Fiat в 1953 году и Peugeot в 1958 году.

В США дизель не так популярен в легковых автомобилях, как в Европе. Такие автомобили традиционно воспринимались как более тяжелые, более шумные, имеющие эксплуатационные характеристики, из-за которых они медленнее разгоняются, более закопченные, вонючие и более дорогие, чем аналогичные автомобили с бензиновым двигателем. С конца 1970-х до середины 1980-х подразделения General Motors Oldsmobile, Cadillac и Chevrolet производили маломощные и ненадежные дизельные версии своих бензиновых двигателей V8, что является одной из веских причин такой репутации.Dodge с его всегда известными рядными шестицилиндровыми дизельными двигателями Cummins, устанавливаемыми в пикапах (примерно с конца 1980-х годов), действительно возродил привлекательность дизельных двигателей для легковых автомобилей среди американских потребителей, но превосходный и широко распространенный американский дизель серийного производства. легковой автомобиль так и не был реализован. Попытка преобразовать бензиновый двигатель в дизельный двигатель оказалась безрассудной со стороны GM. В 1980-х компания Ford Motor пробовала устанавливать дизельные двигатели на некоторые легковые автомобили, но без особого успеха.Кроме того, до введения дизельного топлива со сверхнизким содержанием серы 15 частей на миллион, которое началось 15 октября 2006 г. в США (1 июня 2006 г. в Канаде), дизельное топливо, используемое в Северной Америке, по-прежнему имело более высокое содержание серы, чем дизельное топливо, используемое в Северной Америке. топлива, используемого в Европе, фактически ограничивая использование дизельного топлива промышленными транспортными средствами, что еще больше усугубило негативный имидж. Дизельное топливо со сверхнизким содержанием серы не является обязательным до 2010 года в Соединенных Штатах. Это изображение не отражает последние разработки, особенно когда речь идет об очень высоком крутящем моменте современных дизелей на низких оборотах, характеристики которых аналогичны большим бензиновым двигателям V8, популярным в Соединенных Штатах.Легкие и тяжелые грузовики в Соединенных Штатах годами оснащались дизельными двигателями. После внедрения дизельного топлива со сверхнизким содержанием серы Mercedes-Benz начал продавать легковые автомобили под брендом BlueTec. Кроме того, другие производители, такие как Ford, General Motors, Honda, планировали продавать дизельные автомобили в США в 2008-2009 годах, разработанные с учетом более жестких требований по выбросам в 2010 году.

В Европе, где налоговые ставки во многих странах делают дизельное топливо намного дешевле бензина, автомобили с дизельным двигателем очень популярны (более половины продаваемых новых автомобилей оснащены дизельными двигателями), а новые конструкции значительно сузили разницу между бензиновыми и дизельными автомобилями в упомянутые области.Часто среди моделей с аналогичным обозначением турбодизели превосходят своих родственных автомобилей с бензиновым двигателем без наддува. В одном анекдоте рассказывается о гонщике Формулы-1 Дженсоне Баттоне, который был арестован за рулем дизельного BMW 330cd Coupé со скоростью 230 километров в час (км/ч) (около 140 миль в час (миль/ч)) во Франции, где он был слишком молод. арендовать для него автомобиль с бензиновым двигателем. Баттон сухо заметил в последующих интервью, что фактически оказал BMW услугу по связям с общественностью, поскольку никто не верил, что дизель может ездить так быстро.Тем не менее, BMW уже выиграла гонку «24 часа Нюрбургринга» в 1998 году с дизельным двигателем 3-й серии. Дизельная лаборатория BMW в Штайре, Австрия, возглавляемая Ференцем Аниситсом, занимается разработкой инновационных дизельных двигателей.

Компания Mercedes-Benz, предлагающая легковые автомобили с дизельным двигателем с 1936 года, сделала упор на дизельные автомобили с высокими эксплуатационными характеристиками в своем новом модельном ряду, как и Volkswagen со своими брендами. Citroën продает больше автомобилей с дизельными двигателями, чем с бензиновыми двигателями, поскольку французские бренды (также Peugeot) впервые представили бездымные конструкции HDI с фильтрами.Даже итальянская марка Alfa Romeo, известная своим дизайном и успешной историей в гонках, делает упор на дизели, которые также участвуют в гонках.

Несколько мотоциклов были построены с использованием дизельных двигателей, но недостатки веса и стоимости обычно перевешивают повышение эффективности в этом приложении.

В отрасли дизельных двигателей двигатели часто делятся по скорости на три неофициальные группы:

Высокоскоростной
Высокоскоростные (приблизительно 1200 об/мин и более) двигатели используются для питания грузовых автомобилей, автобусов, тракторов, автомобилей, яхт, компрессоров, насосов и небольших электрических генераторов.
Среднескоростной
Большие электрические генераторы часто приводятся в движение среднескоростными двигателями (примерно от 300 до 1200 об/мин), которые оптимизированы для работы на заданной (синхронной) скорости в зависимости от частоты генерации (50 или 60 Гц) и обеспечивают быструю реакцию на изменения нагрузки. . Среднеоборотные двигатели также используются для судовых двигателей и механических приводов, таких как большие компрессоры или насосы. Самые большие среднеоборотные двигатели, производимые сегодня (2007 г.), имеют мощность примерно до 22 400 кВт (30 000 л.с.).Среднеоборотные двигатели, производимые сегодня, в основном четырехтактные, однако некоторые двухтактные двигатели все еще производятся.
Тихоходный
(также известный как «Медленноскоростной») Самые большие дизельные двигатели в основном используются для питания кораблей, хотя наземных электростанций также очень мало. Эти чрезвычайно большие двухтактные двигатели имеют выходную мощность до 80 МВт, работают в диапазоне примерно от 60 до 120 об/мин, имеют высоту до 15 м и вес более 2000 тонн.Обычно они работают на дешевом низкокачественном «тяжелом топливе», также известном как «бункерное» топливо, которое требует нагрева на корабле для заправки и перед впрыском из-за высокой вязкости топлива. Такие крупные низкоскоростные двигатели разрабатывают такие компании, как MAN B&W Diesel (ранее Burmeister & Wain) и Wärtsilä (которая приобрела Sulzer Diesel). Они необычайно узкие и высокие из-за добавления крейцкопфа. На сегодняшний день (2007 г.) 14-цилиндровый двухтактный дизельный двигатель с турбонаддувом Wärtsilä RT-flex 96C, построенный лицензиатом Wärtsilä Doosan в Корее, является самым мощным дизельным двигателем, введенным в эксплуатацию, с диаметром цилиндра 960 мм, обеспечивающим 80.08 МВт (108 920 л.с.). Он был введен в эксплуатацию в сентябре 2006 года на борту крупнейшего в мире контейнеровоза Emma Maersk, принадлежащего группе AP Moller-Maersk.

Необычное применение

Самолет

Цеппелины Graf Zeppelin II и Hindenburg приводились в движение реверсивными дизельными двигателями . Направление работы менялось переключением шестерен на распределительном валу. С полной мощности вперед двигатели можно было остановить, переключить и вывести на полную мощность задним ходом менее чем за 60 секунд.

Дизельные двигатели были впервые испытаны на самолетах в 1930-х годах. Ряд производителей построили двигатели, наиболее известными из которых, вероятно, были радиальные двигатели с воздушным охлаждением Packard и Junkers Jumo 205, который был умеренно успешным, но оказался непригодным для боевого применения во время Второй мировой войны. Еще одним интересным послевоенным предложением стал комплекс Napier Nomad. Однако в целом более низкая удельная мощность дизелей, особенно по сравнению с турбовинтовыми двигателями, работающими на керосине, не позволяет использовать их в этом приложении.

Очень высокая стоимость авиационного газа в Европе и достижения в области автомобильных дизельных технологий привели к возрождению интереса к этой концепции. Новые сертифицированные легкие самолеты с дизельным двигателем уже доступны, и ряд других компаний также разрабатывают для этой цели новые конструкции двигателей и самолетов. Многие из них работают на легкодоступном реактивном топливе или могут работать как на реактивном топливе, так и на обычном автомобильном дизельном топливе. Чтобы получить высокое соотношение мощности и веса, необходимое для авиадвигателя, эти новые «авиадизели» обычно являются двухтактными, а некоторые, например, британский двигатель «Даир», используют поршни противоположного действия для увеличения мощности.

Автомобильные гонки

Несмотря на то, что вес и меньшая мощность дизельного двигателя, как правило, не позволяют использовать его в автомобильных гонках, многие дизели участвуют в гонках в классах, где они требуются, в основном в гонках на грузовиках и буксировке тракторов, а также в тех видах гонок, где эти недостатки менее серьезны, например, гонки с рекордами наземной скорости или гонки на выносливость. Существуют даже драгстеры с дизельным двигателем, несмотря на такие недостатки дизеля, как вес и низкие пиковые обороты.

В 1931 году Клесси Камминс установил свой дизель в гоночный автомобиль, разогнавшись до 162 км/ч в Дайтоне и 138 км/ч в гонке Indianapolis 500, где Дэйв Эванс занял на нем тринадцатое место, завершив всю гонку без пит-стопа. , полагаясь на крутящий момент и эффективность использования топлива для преодоления веса и низкой пиковой мощности.

В 1933 году Bentley 1925 года выпуска с двигателем Gardner 4LW стал первым автомобилем с дизельным двигателем, принявшим участие в ралли Монте-Карло под управлением лорда Говарда де Клиффорда. Это был лучший британский автомобиль, занявший пятое место в общем зачете.

В 1952 году Фред Агабашян выиграл поул-позицию в гонке Indianapolis 500 на 6,6-литровом дизельном автомобиле Cummins с турбонаддувом, установив рекорд скорости круга с поул-позицией — 222,108 км/ч или 138,010 миль/ч. Хотя Агабашян оказался на восьмом месте, не дойдя до первого поворота, он поднялся на пятое место за несколько кругов и бежал конкурентоспособно, пока плохо расположенный воздухозаборник автомобиля не проглотил достаточно мусора с трассы, чтобы вывести из строя турбонагнетатель на 71-м круге; он финишировал 27-м.

Поскольку дизельные автомобили с турбонаддувом стали сильнее в 1990-х годах, они также участвовали в гонках кузовных автомобилей, а BMW даже выиграла 24 часа Нюрбургринга в 1998 году с 320d против других заводских дизельных автомобилей Volkswagen и около 200 автомобилей с обычным двигателем. . Alfa Romeo даже организовала гоночную серию со своими моделями Alfa Romeo 147 1.9 JTD.

Участники ралли VW Dakar 2005 и 2006 годов оснащены собственной линейкой двигателей TDI, чтобы побороться за первую общую победу на дизеле.Между тем, пятикратный победитель гонки «24 часа Ле-Мана» Audi R8 был заменен Audi R10 в 2006 году, который оснащен двигателем V12 TDI с системой Common Rail мощностью 650 л.с. (485 кВт) и крутящим моментом 1100 Н•м (810 фунт-сила-фут). дизельный двигатель, соединенный с 5-ступенчатой ​​коробкой передач вместо 6-ступенчатой, используемой в R8, чтобы справиться с дополнительным крутящим моментом. Коробка передач считается главной проблемой, так как более ранние попытки других потерпели неудачу из-за отсутствия подходящих трансмиссий, которые могли бы достаточно долго выдерживать крутящий момент.

После победы в гонке «12 часов Себринга» в 2006 году на своем дизельном R10 компания Audi также одержала победу в гонке «24 часа Ле-Мана» 2006 года.Это первый раз, когда спортивный автомобиль может соревноваться за общие победы на дизельном топливе с автомобилями, работающими на обычном топливе или на метаноле и биоэтаноле. Однако значение этого немного уменьшается из-за того, что правила гонок ACO / ALMS поощряют использование альтернативных видов топлива, таких как дизельное топливо.

В 2007 году Audi снова одержала победу в Себринге. У нее было преимущество как в скорости, так и в экономии топлива, по сравнению со всеми остальными, включая Porsche RS Spyder, которые представляют собой специально построенные гоночные автомобили с бензиновым двигателем.После победы в Себринге можно с уверенностью сказать, что в этом году дизельные автомобили Audi снова выиграют гонку «24 часа Ле-Мана» 2007 года. Единственным конкурентом является гоночный Peugeot 908 с дизельным двигателем. Но эта машина не крутила колеса в гонках.

В 2006 году JCB Dieselmax побил рекорд наземной скорости для дизельных автомобилей, разогнавшись до средней скорости более 328 миль в час. В автомобиле использовались «два дизельных двигателя общей мощностью 1500 лошадиных сил (1120 кВт). Каждый из них представляет собой 4-цилиндровый 4,4-литровый двигатель, используемый в коммерческих целях в качестве экскаватора-погрузчика. [1]

В 2007 году SEAT — с SEAT León Mk2 на Oschersleben Motorsport Arena в Германии — стал первым производителем, выигравшим этап серии WTCC на дизельном автомобиле, всего через месяц после объявления об этом. участие в чемпионате мира по кузовным гонкам FIA с Leon TDI Успех SEAT с Leon TDI был продолжен и привел к завоеванию титулов чемпиона FIA WTCC 2009 года (как для водителей, так и для производителей).

В 2007 году Уэс Андерсон управлял дизельным пикапом Pro-Stock Chevrolet S-10 мощностью 1250 лошадиных сил, построенным Gale Banks Engineering, и установил рекорд Национальной ассоциации дизельных двигателей Hot Rod, равный 7.72 секунды на скорости 179 миль в час на четверть мили. [2]

Мотоциклы

Дизельные двигатели с традиционно плохим отношением мощности к весу, как правило, не подходят для использования в мотоциклах, для которых требуется высокая мощность, малый вес и высокая скорость вращения двигателя. Однако в 1980-х годах силы НАТО в Европе перевели все свои машины на дизельное топливо. У некоторых был парк мотоциклов, поэтому для них проводились испытания дизельных двигателей. Использовались одноцилиндровые двигатели с воздушным охлаждением, построенные Ломбардини из Италии, и они имели некоторый успех, достигая производительности, аналогичной бензиновым мотоциклам, и расхода топлива почти 200 миль на галлон.Это привело к тому, что некоторые страны переоборудовали свои велосипеды дизельными двигателями.

Разработка, проведенная Крэнфилдским университетом и калифорнийской компанией Hayes Diversified Technologies, привела к производству дизельного внедорожного мотоцикла на основе ходовой части трейлового мотоцикла Kawasaki KLR650 с бензиновым двигателем для использования в военных целях. Двигатель дизельного мотоцикла представляет собой одноцилиндровый четырехтактный двигатель с жидкостным охлаждением, рабочим объемом 584 см_ и мощностью 21 кВт (28 л.с.) с максимальной скоростью 85 миль в час (136 км/ч). Hayes Diversified Technologies обсуждала, но впоследствии отложила поставку гражданской версии примерно за 19 000 долларов США.Дорого по сравнению с аналогичными моделями.

В 2005 году Корпус морской пехоты США принял на вооружение M1030M1, мотоцикл для бездорожья, основанный на Kawasaki KLR650 и модифицированный двигателем, предназначенным для работы на дизельном топливе или реактивном топливе JP8. Поскольку другие тактические машины США, такие как внедорожник Humvee и танк M1 Abrams, используют JP8, использование мотоцикла-разведчика, работающего на том же топливе, имело смысл с логистической точки зрения.

В Индии мотоциклы производства Royal Enfield можно купить с одноцилиндровыми дизельными двигателями объемом 650 см_ на базе аналогичных используемых бензиновых (бензиновых) двигателей, поскольку дизель намного дешевле бензина и более надежен.Эти двигатели шумные и нерафинированные, но очень популярные благодаря своей надежности и экономичности.

Текущие и будущие разработки

Уже сейчас многие системы Common Rail и насос-форсунки используют новые форсунки, в которых вместо соленоида используются многослойные пьезоэлектрические кристаллы, что обеспечивает более точное управление процессом впрыска.

Турбокомпрессоры с изменяемой геометрией имеют гибкие лопатки, которые перемещаются и пропускают в двигатель больше воздуха в зависимости от нагрузки. Эта технология повышает как производительность, так и экономию топлива.Задержка наддува уменьшается, поскольку компенсируется инерция крыльчатки турбокомпрессора.

Акселерометр пилотного управления (APC) использует акселерометр для обеспечения обратной связи об уровне шума и вибрации двигателя и, таким образом, дает указание ECU впрыскивать минимальное количество топлива, которое обеспечивает тихое сгорание и по-прежнему обеспечивает требуемую мощность (особенно на холостом ходу). )

Ожидается, что в дизельных двигателях с системой Common Rail следующего поколения будет использоваться изменяемая геометрия впрыска, которая позволяет изменять количество впрыскиваемого топлива в более широком диапазоне, а также изменяемые фазы газораспределения, подобные тем, что используются в бензиновых двигателях.

В частности, в Соединенных Штатах, в связи с ужесточением норм выбросов, производители дизельных двигателей сталкиваются с серьезной проблемой. Изучаются другие методы достижения еще более эффективного сгорания, такие как HCCI (воспламенение от сжатия гомогенного заряда).

Факты о современных дизелях

(Источник: Robert Bosch GmbH)

Топливо проходит через форсунки со скоростью около 1500 миль в час (2400 км/ч)

Топливо впрыскивается в камеру сгорания менее чем за 1.5 мс — примерно столько времени, сколько вспыхивает камера.

Наименьшее количество впрыскиваемого топлива составляет один кубический миллиметр — примерно такой же объем, как головка булавки. Самый большой объем впрыска на данный момент для автомобильных дизельных двигателей составляет около 70 кубических миллиметров.

Если коленчатый вал шестицилиндрового двигателя вращается со скоростью 4500 об/мин, система впрыска должна контролировать и обеспечивать 225 циклов впрыска в секунду.

Во время демонстрационной поездки 1-литровый дизельный автомобиль Volkswagen израсходовал всего 0.89 литров топлива на 100 километров (112,36 км / л, 264 мили на галлон {США}, 317 миль на галлон {британский / английский}) — что делает его, вероятно, самым экономичным автомобилем в мире. Система впрыска топлива Bosch под высоким давлением была одним из основных факторов чрезвычайно низкого расхода топлива прототипа. Производственными рекордсменами по экономии топлива являются Volkswagen Lupo 3 L TDI и Audi A2 3 L 1.2 TDI со стандартными показателями расхода 3 литра топлива на 100 километров (33,3 км / л, 78 миль на галлон {US}, 94 миль на галлон {имперский }).Их системы впрыска дизельного топлива под высоким давлением также поставляются Bosch.

В 2001 году почти 36 процентов новых автомобилей, зарегистрированных в Западной Европе, имели дизельные двигатели. Для сравнения: в 1996 году автомобили с дизельным двигателем составляли лишь 15% новых автомобилей, зарегистрированных в Германии. Австрия лидирует в рейтинге регистраций автомобилей с дизельным двигателем с 66 процентами, за ней следуют Бельгия с 63 процентами и Люксембург с 58 процентами. Германия с 34,6% в 2001 году находилась в середине турнирной таблицы.Швеция отстает, в 2004 году только 8 процентов новых автомобилей имели дизельный двигатель (в Швеции дизельные автомобили облагаются гораздо более высокими налогами, чем эквивалентные бензиновые автомобили).

История дизельного автомобиля

Первыми серийными дизельными автомобилями были Mercedes-Benz 260D и Hanomag Rekord, представленные в 1936 году. Citroën Rosalie также производился в период с 1935 по 1937 год с чрезвычайно редким дизельным двигателем (двигатель 11UD объемом 1766 куб. см) только в Familiale. (универсал или универсал) версии. [3]

После нефтяного кризиса 1970-х турбодизели были испытаны (например, на экспериментальных и рекордных автомобилях Mercedes-Benz C111). Первым серийным автомобилем с турбодизелем в 1978 году стал 5-цилиндровый двигатель Mercedes 300 SD с 3,0-цилиндровым двигателем мощностью 115 л.с. (86 кВт), доступный только в Северной Америке. В Европе в 1979 году был представлен Peugeot 604 с турбодизелем объемом 2,3 л, а затем и Mercedes 300 TD с турбонаддувом.

Многие энтузиасты Audi утверждают, что Audi 100 TDI был первым дизельным двигателем с турбонаддувом и непосредственным впрыском, проданным в 1989 году, но это неверно, как и Fiat Croma TD-i.д. был продан с турбонаддувом и непосредственным впрыском в 1986 году, а два года спустя Austin Rover Montego.

Что было новаторским в Audi 100, так это использование электронного управления двигателем, поскольку Fiat и Austin имели чисто механически управляемый впрыск. Электронное управление непосредственным впрыском существенно повлияло на выбросы, плавность хода и мощность.

Интересно отметить, что крупными игроками на рынке автомобилей с дизельными двигателями являются те же, кто первыми разработал различные разработки (Mercedes-Benz, BMW, Peugeot/Citroën, Fiat, Alfa Romeo, Volkswagen Group), за исключением Austin Rover. — хотя предок Остина Ровера, компания The Rover Motor Company, производила дизельные двигатели малой мощности с 1956 года, когда она представила 4-цилиндровый дизельный двигатель объемом 2051 см_ для своего Land Rover 4 _ 4.

В 1998 году, впервые в истории гонок, в легендарной гонке «24 часа Нюрбургринга» абсолютным победителем стал автомобиль с дизельным двигателем: заводская команда BMW 320d, BMW E36, оснащенный современным дизельным двигателем высокого давления. технология впрыска от Robert Bosch GmbH. Низкий расход топлива и большой запас хода, позволяющие участвовать в гонках сразу 4 часа, сделали его победителем, поскольку сопоставимые автомобили с бензиновым двигателем тратили больше времени на дозаправку.

В 2006 году новый Audi R10 TDI LMP1, представленный Joest Racing, стал первым автомобилем с дизельным двигателем, выигравшим «24 часа Ле-Мана».Автомобиль-победитель также улучшил рекорд конфигурации трассы после 1990 года на 1 круг, составив 380. Однако это не дотянуло до рекордного расстояния, установленного в 1971 году, более чем на 200 км.

См. также

Примечания

Ссылки

Ссылки ISBN поддерживают NWE за счет реферальных сборов

  • Чаллен, Бернард и Родика Баранесеу. Справочник по дизельным двигателям. 2-е изд. Бистин, Массачусетс: Баттерворт-Хайнеманн, 1999. ISBN 0750621761
  • Демпси, Пол. Как ремонтировать дизельные двигатели. 2-е изд. Нью-Йорк, штат Нью-Йорк: TAB Books, 1990. ISBN 0-830661670-
  • .
  • Макарчук Андрей. Инженерия дизельных двигателей: термодинамика, динамика, проектирование и машиностроение управления. Бока-Ратон, Флорида: CRC Press, 2002. ISBN 0824707028

Внешние ссылки

Все ссылки получены 23 октября 2017 г.

Кредиты

New World Encyclopedia авторы и редакторы переписали и дополнили статью Wikipedia в соответствии со стандартами New World Encyclopedia .Эта статья соответствует условиям лицензии Creative Commons CC-by-sa 3.0 (CC-by-sa), которая может использоваться и распространяться с надлежащим указанием авторства. Упоминание должно быть выполнено в соответствии с условиями этой лицензии, которая может ссылаться как на авторов New World Encyclopedia , так и на самоотверженных добровольных участников Фонда Викимедиа. Чтобы процитировать эту статью, щелкните здесь, чтобы просмотреть список допустимых форматов цитирования. История более ранних вкладов википедистов доступна исследователям здесь:

История этой статьи с момента ее импорта в New World Encyclopedia :

Примечание. На использование отдельных изображений, лицензированных отдельно, могут распространяться некоторые ограничения.

Комбинация бензиновых и дизельных двигателей может дать лучшее из обоих миров

Дизельные двигатели могут быть более чем в два раза эффективнее, но они выбрасывают в воздух сажу и загрязняющие вещества.

Смогут ли исследователи из Аргоннской национальной лаборатории Министерства энергетики США создать союз между ними, объединив их лучшее?

Стив Чиатти, инженер-механик из Аргонна, возглавляет группу по изучению возможностей бензиново-дизельного двигателя. Результат на данный момент чище дизельного двигателя и почти в два раза эффективнее обычного бензинового двигателя.

Базовые конструкции обоих типов двигателей на самом деле относятся к 19 -му веку. Немецкому инженеру Николаусу Отто приписывают бензиновую четырехтактную конструкцию, которая используется до сих пор, но Рудольф Дизель заметил неэффективность двигателя и в 1893 году разработал собственную конструкцию. Проблема в том, что дизельные двигатели более эффективны. , но их выбросы вредны — полны сажи и смога, образующих оксиды азота или газы NOX. Бензиновые двигатели чище, но типичный газовый двигатель имеет КПД всего около 20 %, то есть только 20 % энергии топлива фактически приводит автомобиль в движение, а 80 % теряется на трение, шум, двигатель работает или выходит из строя, когда тепло в выхлопе.Но многие дизельные двигатели достигают КПД 40 процентов и выше.

Сегодня в Соединенных Штатах действуют более строгие требования к выбросам, чем где-либо еще в мире. «На самом деле, по состоянию на 2007 год в некоторых частях страны воздух, выходящий из автомобиля, чище, чем воздух, поступающий внутрь», — сказал Чиатти, и инженеры просто не смогли добиться достаточно низкого уровня выбросов дизельных двигателей. соответствовать этим стандартам. Вместо этого им необходимо использовать дорогостоящие устройства для доочистки выхлопных газов: обычно это катализатор, который уменьшает выбросы оксидов азота в выхлопной трубе путем отделения кислорода от азота.

Ciatti и его коллеги хотели очистить грязный выхлоп дизельного двигателя, но при этом сохранить высокую эффективность и лучший расход бензина. Для этого они направились в лабораторию динамометрии в Аргоннском центре исследований и разработок транспортных технологий.

Динамометр — это машина, созданная для проверки работы двигателя. По сути, это просто электродвигатель, чтобы обеспечить сопротивление «обмануть» двигатель, заставив его думать, что к нему прицеплен автомобиль. Испытательные ячейки динамометра могут быть тщательно оснащены инструментами и точно контролироваться, что значительно улучшает качество данных.

«Если вы пытаетесь протестировать новый двигатель, последнее, что вам нужно сделать, это поставить его в машину», — объяснил Чиатти. «Вся автомобильная система вводит всевозможные переменные, и вы не можете получить действительно точное сравнение между двигателями. То, с чего вы действительно хотите начать, — это динамометр».

Объедините динамометр с тестируемым двигателем, и вы получите камеру для испытаний двигателя: устройство, которое позволяет вам контролировать мельчайшие переменные, так что инженеры могут возиться с двигателем, чтобы увидеть, могут ли они улучшить его характеристики.

Они могут моделировать работу двигателя в разных автомобилях — гибридном автомобиле, электромобиле, автомобиле с бензиновым двигателем — а также измерять выбросы.

С дизельным двигателем, установленным в испытательной камере, Чиатти и его команда были готовы исследовать возможности.

В типичном двигателе поршни вращают колеса автомобиля. Каждый поршень движется взрывной силой горячего воздуха, когда топливо воспламеняется над ним в цилиндре.

И бензиновые двигатели с искровым зажиганием, и дизельные двигатели делают это, но делают это по-разному.Бензиновый двигатель сначала смешивает воздух с топливом, затем смесь сжимает и, наконец, поджигает ее свечой зажигания. В дизельном двигателе воздух сначала сжимается, а затем впрыскивается топливо; сжатие воздуха делает его достаточно горячим, чтобы воспламенить топливо без искры. Это то, что делает дизель более эффективным, а также более грязным.

С одной стороны, дизельные двигатели более эффективны, потому что они не регулируют мощность с помощью дроссельной заслонки, которая ограничивает доступ воздуха в камеру.Это означает, что топливо более равномерно смешивается с воздухом, поэтому сгорает больше. Отсутствие дроссельной заслонки также устраняет «стук в двигателе», вызванный преждевременным воспламенением топлива в двигателе, поскольку топливо подается только в камеру сгорания.

С другой стороны, введение топлива на столь позднем этапе цикла создает проблему: выбросы. Поскольку топливо сгорает легче, когда капли меньше, топливо распыляется в камеру в виде тонкого тумана. Но дизельное топливо так легко самовоспламеняется, что начинает реагировать почти сразу — задолго до того, как все топливо окажется в камере.Преднамеренно топливо не смешивается идеально с воздухом, потому что горение контролируется диффузией; но диффузия также означает, что часть воздуха и топлива преобразуется в оксиды азота и сажу.

Закиси азота образуются, когда струя пламени, создаваемая впрыском дизельного топлива, горит настолько сильно, что близлежащие молекулы азота и кислорода в воздухе начинают распадаться и вступать в реакцию. Между тем внутри горячей струи образуется сажа, потому что в топливе недостаточно кислорода для полного сгорания, вместо этого образуется сажа.

«Мы хотим объединить эффективность дизельного топлива с чистотой газа», — сказал Чиатти. «Итак, мы теряем дроссельную заслонку и свечи зажигания, потому что они снижают эффективность. Мы начинаем с дизельного двигателя и вместо него впрыскиваем бензин.

Поскольку бензин не воспламеняется сразу, как дизельное топливо, мы можем впрыскивать его несколько раз, прежде чем воспламенится топливо. Таким образом, мы можем убедиться, что большая часть или все топливо смешивается с воздухом, что значительно снижает выбросы NOX и сажу.

Производительность двигателя близка к КПД дизеля и примерно в два раза выше, чем у современных автомобильных двигателей при низких скоростях и нагрузках.

В чем подвох? Такой подход приводит к повышению эффективности и более чистым выбросам, но при этом несколько снижается удельная мощность. То есть при пиковой мощности — когда вы вдавливаете педаль акселератора в пол — двигатель не выдает столько мощности: около 75 процентов в настоящее время.

«Но если вы не будете крутить педаль до упора, — сказал Чиатти, — это не повлияет на характеристики автомобиля.Это превосходно в диапазоне мощности, в котором на самом деле ездит большинство людей.

Чиатти и его коллеги работают над тем, чтобы сделать систему достаточно предсказуемой и надежной, чтобы успешно использовать ее в коммерческом автомобиле. Argonne сотрудничает с General Motors в этом проекте.

смотреть, как люди переоборудовали дизельный двигатель для работы на бензине

  • Garage 54 отвечает на некоторые из самых странных автомобильных вопросов, на которые вы никогда не думали, что вам нужно ответить.
  • Команда «Гаража 54» переоборудовала дизельный двигатель Toyota для работы на бензине.
  • Команда тестирует дизельный двигатель, прежде чем модифицировать его, чтобы использовать все необходимое оборудование для работы на бензине.

    Бензиновые и дизельные двигатели во многом похожи: оба используют внутреннее сгорание для перемещения поршней, которые затем приводят в движение коленчатый вал, который меняет направление этой энергии. Аппаратное обеспечение также во многом похоже. Хотя есть существенных различий в том, как эти двигатели в целом работают, и огромные различия в том, что нравится каждому соответствующему топливу внутри камеры сгорания.Таким образом, как правило, сложно заставить один двигатель работать на топливе, для сжигания которого он принципиально не предназначен. Что ж, безумные ученые из «Гаража 54» пытаются сделать именно это именно так, как вы и ожидаете.

    Для тех, кто не знаком с дикими приключениями Garage 54, команда взялась за изготовление прозрачных крышек двигателя, чтобы показать нам, как масло работает в двигателе, сварила две машины вместе и поставила на Hummer забавно маленькие колеса и шины. Этот дурацкий канал на YouTube решил несколько интересных задач, но ему еще предстоит заняться подобным инженерным экспериментом.

    Люди из гаража 54 проверили компрессию четырехцилиндрового двигателя Toyota, работающего на дизельном топливе, и обнаружили, что у него по крайней мере один поврежденный цилиндр. Даже с этим поврежденным цилиндром у этого дизельного двигателя и слишком большая компрессия, чтобы бензин не детонировал. Затем команда Garage 54 разбирает двигатель, чтобы измерить камеры сгорания. Уменьшить статическую степень сжатия двигателя легко на бумаге . По сути, вам нужно сделать больше места между поршнем и камерой сгорания.Вы можете решить эту проблему, заменив поршни, заменив головку блока цилиндров или более толстые прокладки головки блока цилиндров. Конечно, в магазине Garage 54 редко случаются лучшие сценарии, и команда решила модифицировать поршни в своем двигателе, чтобы снизить степень сжатия.

    Гараж 54 Также пришлось решать еще две проблемы: индукция и искра. В старых дизельных двигателях топливо используется для управления частотой вращения двигателя, и в них нет карбюратора или корпуса дроссельной заслонки. В дизелях и отсутствует искровое зажигание.Хитрое перепрофилирование некоторых впускных коллекторов и распределителя Lada решило эти проблемы, по крайней мере, академически.

    Теперь главный вопрос: работает ли он? Что ж, посмотрите видео выше, чтобы насладиться всем этим хаосом и посмотреть, может ли эта бывшая дизельная горелка работать на другом виде топлива.

    Вы когда-нибудь пробовали экспериментировать с дурацким двигателем? Расскажите нам о своих самых смелых мечтах о внутреннем сгорании ниже.

    Этот контент создается и поддерживается третьей стороной и импортируется на эту страницу, чтобы помочь пользователям указать свои адреса электронной почты.Вы можете найти дополнительную информацию об этом и подобном контенте на сайте piano.io.

    Дизельный двигатель

    Дизельный двигатель внутреннего сгорания отличается от бензинового цикла Отто тем, что для воспламенения топлива используется более высокая степень сжатия топлива, а не свеча зажигания («воспламенение от сжатия», а не «искровое зажигание»).

    Цикл воздушного стандартного дизельного двигателя

    В дизельном двигателе воздух адиабатически сжимается со степенью сжатия, как правило, между 15 и 20.Это сжатие повышает температуру до температуры воспламенения топливной смеси, которая образуется путем впрыска топлива после сжатия воздуха.

    Идеальный воздушный стандартный цикл моделируется как обратимое адиабатическое сжатие, за которым следует процесс сгорания при постоянном давлении, затем адиабатическое расширение в виде рабочего такта и изоволюметрический выпуск. Новый заряд воздуха всасывается в конце выхлопа, как показано процессами а-е-а на диаграмме.

    Поскольку такты сжатия и рабочего хода этого идеализированного цикла являются адиабатическими, КПД можно рассчитать на основе процессов постоянного давления и постоянного объема.Входная и выходная энергии и КПД могут быть рассчитаны по температурам и удельной теплоемкости:

    Эту эффективность удобно выразить через степень сжатия r C = V 1 /V 2 и степень расширения r E = V 1 /V 5 КПД можно записать как

    , и это можно преобразовать в форму

    .

    Для стандартного воздушного двигателя с γ = 1.4, степень сжатия r C = 15 и степень расширения r E = 5, это дает идеальный КПД дизеля 56%.

    Дизельный цикл зависит от того, достаточно ли высока эта температура для воспламенения топлива при его впрыске.

    *psig — давление в фунтах на квадратный дюйм. Обычные манометры в США измеряют превышение давления в фунтах на квадратный дюйм по сравнению с атмосферным давлением.

    Дизельные двигатели

    США противCaterpillar, Inc.
    Соединенные Штаты против Cummins Engine Company
    Соединенные Штаты против Detroit Diesel Corporation
    Соединенные Штаты против Mack Trucks, Incorporated
    Соединенные Штаты против Navistar International Transportation Corporation
    Соединенные Штаты против Renault Vehicules Industriels
    Соединенные Штаты. против Volvo Truck Corporation

    Выбросы загрязняющих веществ, включая окись углерода, оксиды азота и углеводороды, из легковых и грузовых автомобилей регулируются Законом о чистом воздухе.Агентство по охране окружающей среды (EPA) публикует правила реализации требований, включая процедуры испытаний, используемые для демонстрации соблюдения предельных значений выбросов, прежде чем двигатели или транспортные средства могут быть проданы.

    С появлением бортовых компьютеров для управления работой двигателя в 1980-х годах у производителей двигателей и транспортных средств появилась возможность обойти процедуры испытаний EPA, запрограммировав компьютер для работы двигателя или транспортного средства в одном направлении при испытании EPA. сокращение некоторых загрязняющих веществ, но другой способ в реальном использовании.Производители могут сделать это, чтобы добиться большей экономии топлива в реальных условиях или по другим причинам, но изменение операции может привести к увеличению загрязнения. Эти действия незаконны. Закон о чистом воздухе и правила EPA запрещают использование «устройств защиты», которые снижают эффективность системы контроля выбросов, за исключением определенных узких обстоятельств, которые здесь не применимы.

    В 1990-х годах испытания Агентства по охране окружающей среды США показали, что производители дизельных двигателей большой мощности использовали компьютерные программы, чтобы продемонстрировать соответствие предельным значениям выбросов в ходе испытаний Агентства по охране окружающей среды, но для что увеличило выбросы оксидов азота или «NOx.

    NOx способствует образованию приземного озона (смога), сажи и пыли. Эти загрязняющие вещества могут вызывать преждевременную смерть, приступы астмы, бронхит, снижение функции легких и другие проблемы с дыханием, особенно у пожилых людей и детей. NOx также вызывает кислотные дожди, которые наносят ущерб сельскохозяйственным культурам, загрязняют питьевую воду и вызывают кислотные отложения в водоемах.

    EPA передало дело в Секцию по охране окружающей среды в начале 1998 года.Участвующими компаниями были Caterpillar Inc., Cummins Engine Company, Detroit Diesel Corporation, Mack Trucks, Inc., Navistar International Transportation Corporation, Renault Vehicules Industriels, s.a. и Volvo Truck Corporation, представляющая 95 процентов рынка дизельных двигателей большой мощности в США.

    Последовали интенсивные и высокотехнологичные переговоры, которые привели к представлению предложенных постановлений о согласии в Окружной суд США по округу Колумбия в октябре 1998 года. В июле 1999 года суд принял постановления о согласии.

    Результат

    В дополнение к выплате гражданско-правовых штрафов в размере 83,4 млн. и исключить использование устройств поражения и тем самым снизить выбросы от новых двигателей.

    Газовые и дизельные двигатели: в чем разница?

    Подъезжая к заправке, большинство из нас автоматически знает, что выбрать: газ или дизель.В конце концов, это решение принимает за вас ваш автомобиль. Но задумывались ли вы когда-нибудь, в чем разница между работой бензинового и дизельного двигателей?

    Понимание того, что происходит под капотом, является ключевой частью ухода за автомобилем. Чтобы помочь вам обрести уверенность как владельцу транспортного средства, вот наиболее важные сходства и различия между бензиновыми и дизельными двигателями.

    Как работают бензиновые и дизельные двигатели
    По своей сути бензиновые и дизельные двигатели работают по одним и тем же принципам.Оба преобразуют химическую энергию топлива в механическую энергию для создания движения. В каждом типе двигателя это преобразование происходит посредством процесса, называемого внутренним сгоранием, когда смесь топлива и воздуха сжимается внутри цилиндров двигателя для создания небольших взрывов, называемых сгоранием, которые производят энергию.

    Независимо от того, управляете ли вы автомобилем с бензиновым или дизельным двигателем, общий процесс создания мощности одинаков. В обоих типах двигателей действие можно разбить на четыре этапа: впуск, сжатие, зажигание и выпуск.Однако разница между бензиновыми и дизельными двигателями заключается в том, как каждый двигатель выполняет эти шаги.

    • Впуск:  Это первый этап процесса сгорания. На этом этапе содержимое попадает в цилиндры двигателя. В газовом двигателе это содержимое включает смесь воздуха и топлива. Однако дизельный двигатель пропускает воздух в цилиндры только на этом этапе и смешивает топливо позже.
    • Сжатие:  Прежде чем произойдет воспламенение, содержимое цилиндров необходимо сначала нагреть, сдавливая их до небольшого пространства.Поскольку бензиновый двигатель с самого начала содержит в своих цилиндрах и воздух, и топливо, компрессия должна быть ниже, иначе температура внутри цилиндров может подняться слишком сильно и вызвать самовоспламенение топлива, что приведет к серьезному повреждению двигателя. Но поскольку дизельный двигатель в этот момент содержит в своих цилиндрах только воздух, он может создать гораздо более высокую степень сжатия и, по сути, зависит от достижения цилиндрами температуры самовоспламенения на этом этапе.
    • Зажигание:  Способ зажигания каждого двигателя является одним из самых больших различий между бензиновыми и дизельными автомобилями.В бензиновом двигателе свеча зажигания создает электрический разряд, который воспламеняет топливно-воздушную смесь внутри цилиндра. Однако в дизельном двигателе нет свечи зажигания. Поскольку цилиндры в дизельном двигателе сжимают воздух выше температуры самовоспламенения, топливо воспламеняется за счет сочетания тепла и давления при впрыске.
    • Выхлоп:  Этот последний шаг одинаков как для бензиновых, так и для дизельных двигателей. После того, как топливо сгорает для производства энергии, образующиеся пары выпускаются через клапан, и весь процесс начинается сначала, повторяясь несколько раз в секунду.

    Легковые автомобили и легкие коммерческие дизельные двигатели | FEV

    Проблемы и решения

    Несмотря на успехи, достигнутые в новых альтернативных силовых технологиях, совершенно очевидно, что современные дизельные двигатели будут по-прежнему вносить значительный вклад в достижение сложных целей по сокращению выбросов CO 2 , сформулированных в ЕС, а также во многих других регионах мира. Двигатель DI-Diesel представляет собой наиболее экономичную трансмиссию для снижения выбросов CO 2 в автомобильной технике.Огромный потенциал в среднесрочной перспективе дается в сочетании с индивидуальной электрификацией вплоть до подключаемых гибридных технологий. Технология дизельных двигателей сталкивается с рядом проблем, которые будут способствовать текущему и будущему развитию конкурентоспособных и соответствующих рынку силовых установок.

    Вызовы глобального рынка для будущих дизельных силовых агрегатов:

    • Надежное соответствие даже самым строгим стандартам выбросов
    • Высочайшая эффективность, минимальный расход топлива и самый низкий уровень выбросов CO наилучшая ценность для клиента
    • Привлекательные ходовые качества
    • Улучшение удельной мощности и улучшение внешнего вида
    • Внедрение и адаптация специализированной электрической помощи

    FEV ускоряет эволюцию дизельных двигателей в этой сложной области с частично противоположным требования двумя основными способами.С одной стороны, мы разрабатываем передовые инновации в усовершенствованной архитектуре двигателей, новые концепции управления выбросами и инновационные функции управления. С другой стороны, мы помогаем всей цепочке разработки, расширяя специализированные инженерные услуги, включая передовые приложения и инструменты калибровки. Мы применяем методологии для управления дополнительными усилиями, связанными с постоянно растущим разнообразием прототипов транспортных средств, ресурсами для тестирования и инженерными усилиями. В то же время мы сосредоточены на предоставлении динамичной, ориентированной на клиента и высококачественной помощи в рамках проектов серийных автомобилей, включая интеграцию двигателей и применение для группы клиентов по всему миру.Опыт FEV варьируется от крупносерийных установок массового производства до специализированной калибровочной деятельности в премиальном сегменте рынка, включая реализацию специальных вариантов с низким содержанием CO 2 . Эти мероприятия охватывают очень амбициозный основной рынок ЕС, чрезвычайно сложный рынок США, а также активно развивающиеся развивающиеся рынки стран БРИКТ (Бразилия, Россия, Индия, Китай и Турция).

    Несколько задач

    Одна команда

    В бизнес-подразделении FEV по производству дизельных двигателей для легковых автомобилей работает более 450 высококвалифицированных технических специалистов в наших четырех инженерных центрах, выполняющих полный спектр задач по разработке, начиная с начального этапа виртуального моделирования и заканчивая области исследований и передовых инженерных разработок для своевременного выпуска окончательной СОП, включая поддержку после запуска.Эти возможности охватывают все соответствующие дисциплины, включая конструкцию двигателя и механику, комфорт, сгорание и доочистку выхлопных газов, управление двигателем, разработку программного обеспечения и OBD. Основное внимание по-прежнему уделяется своевременному предоставлению высококачественных инженерных услуг нашим клиентам по всему миру с наивысшим уровнем удовлетворенности клиентов. Это позволяет нашим клиентам находить решения, которые приводят к эффективным и инновационным современным дизельным двигателям, отвечая при этом постоянно растущим требованиям глобального рынка.

Добавить комментарий

Ваш адрес email не будет опубликован.