Принцип работы турбины на дизельном двигателе: ✅ Как работает турбина на дизельном двигателе

Содержание

Принцип работы турбины на дизельном двигателе


В свое время силовые двигатели, усиленные турбиной, встречались только на грузовых машинах, да и то не на всех. Несколько позже стали турбировать и легковые автомобили, предназначенные для гонок. В наше время моторы, оснащенные турбинами, отлично ведут себя на обычном легковом транспорте. Линейный ряд этих двигателей развивается так быстро, что простым моторам внутреннего сгорания уже ничего не осталось, чтобы уступить первенство усовершенствованным аналогам.

Содержание:

  1. Принципиальная схема
  2. Турбина с изменяемой геометрией
  3. Устройство с интеркулером
  4. Как определяется неисправность
  5. Порядок проверки

Принципиальная схема

Чтобы понимать, как работает турбина, следует ознакомиться с порядком функционирования ДВС.

Как правило, большинство моторов четырехтактные поршневые, их работа всегда под контролем клапанов впускной и выпускной групп.

Один цикл работы составляет четыре такта, которые проходят за два полных оборота коленчатого вала.
Принцип работы турбины на дизельном двигателе довольно прост и состоит из следующих действий:

  • впуск – поршень идет вниз, давая возможность проникать воздуху через впускной клапан;
  • компрессия – в этот момент горючая смесь сжимается;
  • процесс расширения – горючее входит под давлением и загорается;
  • выпуск – поршень идет вверх, выпуская газ.

Турбина с изменяемой геометрией

Работа турбонаддува может сопровождаться некоторыми сложностями:
происходит задержка усиления мощности («турбояма») в момент резкого давления на газ;

выход из такого состояния меняется резким повышением воздействия наддува («турбоподхват»).
Возникновение первого явления возможно из-за инерционности системы. Чтобы решить такую проблему, применяют:

  • турбинное устройство с изменяемой геометрией;
  • используют пару параллельных либо последовательных компрессорных устройств;
  • наддув комбинированного вида.

Турбина с изменяемой геометрией:
1 — направляющие лопатки; 2 — кольцо; 3 — рычаг; 4 — тяга вакуумного привода; 5 — турбинное колесо.

Устройство с интеркулером

При сжатии воздух изменяет не только плотность, но и температурный режим. Для сгорания топлива поступающий кислород довольно полезен, но выпускаемый горячий воздух оказывает разрушительное действие на всю систему. По этой причине используют интеркулер, своего рода радиатор, с помощью которого понижается температура. За счёт этого мощность двигателя увеличивается на 15-20 лошадиных сил.

Смысл работы устройства заключается в том, что горячие воздушные массы подвергаются охлаждению. Может быть воздушным и жидкостным.

Как определяется неисправность

Причины отказа работы турбины бывают разные, но к основным признакам этого можно отнести:
значительно понижается динамика, автомобиль «не тянет»;

  1. двигатель долго не выходит на нужную мощность;
  2. из трубы для выхлопных газов появился дымок голубого либо сизого оттенка;
  3. ощущается запах сгоревшего масла;
  4. мотор при работе «кушает» масло;
  5. под капотной крышкой появляются странные звуки;
  6. на холостом ходу движок работает нестабильно.

Порядок проверки

Если нет возможности проверить турбинное устройство в автосервисе, то это можно сделать самостоятельно, не покидая гаража.
Для начала проводится визуальный осмотр устройства. Изучается цвет дыма. Беловатые выхлопы говорят о том, что воздуховоды забиты, либо сливной масляный провод засорен. Если дым напоминает копоть, то подтверждает утечку масла. Сизость дымка говорит о том, что течет масло. После попадания в камеру, оно придает дыму сизоватость. Чтобы убедиться в своей правоте, необходимо снять фильтр очистки воздуха. Если он чист – причину искать следует в другом.

Теперь двигатель следует прогреть и приступить к очередному проверочному этапу, и пригласить на помощь напарника. Ищем патрубок, идущий от турбины к впускному коллектору. Пережав патрубок, даем команду давить на газ несколько секунд. По второй команде педаль резко отпускается. Рука, лежащая на патрубке, будет ощущать, как он расширяется. Это свидетельствует о том, что воздушное давление велико.

Если такого не происходит – турбина вышла из строя.
Проще всего, если есть датчик давления турбины. По его работе быстро определяется пригодность турбинного устройства.
Необходимо помнить, что турбина считается довольно чувствительной частью мотора, и способна утратить работоспособность по малейшим причинам. Но продлить ее срок эксплуатации возможно, организовав за двигателем минимальный уход.

Читайте также:


Узнаем как работает турбина на дизельном двигателе: особенности, устройство

Решение использовать энергию выхлопных газов для раскручивания ротора стало гениальной идеей. Она в будущем позволила разработать дизельный турбо двигатель и повысить мощность минимум на 50 процентов. При том что в процессе работы двигателя в обычном режиме процесс выброса газов снижает КПД на 40 процентов. Давайте рассмотрим, как работает турбина на дизельном двигателе, каково ее устройство.

Из истории

На самом деле идея использовать мощность выхлопных газов не давала покоя инженерам практически с самого начала изобретения ДВС. Немецкие инженеры, которые занимались строительством автомобилей и тракторов вместе с Дизелем и Даймлером, стали заниматься опытами, в ходе которых пытались повысить мощность двигателя и снизить расход горючего с помощью нагнетания сжатого воздуха на базе энергии выхлопа.

Первый турбиностроитель

Однако первый человек, который построил один из самых первых эффективных турбокомпрессоров, это отнюдь не Даймлер, и даже не Дизель. Первым инженером, построившим турбину, считается Альфред Бюхи. Патент на данное изобретение был получен в 1911 году. Первая турбина имела такую конструкцию, что эксплуатировать ее можно было только на больших судовых моторах. Применение компрессоров на дизельных авто смысла не имело.

Затем турбины стали применять в авиации. С 30-х годов в США регулярно серийно производили военные самолеты, бензиновые моторы которых комплектовались турбинами. Первый в истории грузовик, оснащенный турбированным дизелем, был построен в 38-м году.

В 60-х силами «Дженерал Моторс» были выпущены первые модели легковых «Шевроле» и «Олдсмобиль» с бензиновыми карбюраторными моторами с наддувом. Первые компрессоры, правда, не отличались большой надежностью, поэтому с автомобильного рынка они быстро исчезли.

Снова в моде

Мода на турбированные двигатели стала возвращаться. В период с 70-х до 80-х годов системы турбонаддува стали очень популярными в спортивных и гоночных авто. В фильмах той эпохи все супергерои нажимали на кнопку «турбо», и автомобиль стремительно уходил в закат. Но кино – это кино, а в реальности те первые турбокомпрессоры отставали в эффективности и технологичности, как и тормозила их скорость реакции. И эти агрегаты не только не экономили топливо, но и существенно увеличивали его расход. Тогда еще не шло речи об актуаторе турбины. Принцип работы и настройка еще не были до конца понятны.

Более-менее успешные попытки внедрить наддув в автомобильные серийные моторы проводились в 80-х компаниями «Мерседес» и SAAB. А уже затем, основываясь на этом передовом опыте, подключились и другие мировые автобренды.

В СССР также разрабатывались и внедрялись в серию турбированные моторы. Но здесь турбины применяли в тяжелых сельскохозяйственных и промышленных тракторах, на самосвалах и другой мощной технике.

Почему дизельная турбина популярнее?

Почему же она стала очень распространена именно на дизелях, а не на бензиновых ДВС? Все очень просто. Достаточно понять, как работает турбина на дизельном двигателе. Также нужно помнить, что дизель обладает более высокой степенью сжатия. Выхлопные газы дизеля более холодные. Поэтому к такой турбине предъявляются гораздо меньшие требования по жаропрочности, а эффективность наддува гораздо выше по сравнению с бензиновыми двигателями.

Устройство наддува

Наддув состоит из двух отдельных частей. Это непосредственно турбина и компрессор. Турбина необходима для преобразования энергии выхлопных газов. Компрессор отвечает за подачу сжатого воздуха в камеры сгорания.

Чем больше сжатого воздуха будет подано в цилиндры дизельного мотора, тем больше топлива двигатель сможет потребить за единицу времени. Как результат – значительное повышение мощности без увеличения объемов. Отсюда становится понятно, как проверить турбину на дизельном двигателе – патрубок от коллектора к компрессору должен раздуваться при повышении оборотов.

В основе системы лежит ротор, который крепится на оси. Вся эта конструкция заключена в корпус, способный выдержать высокие температуры. Ротор также изготовлен из жаропрочных сплавов – он без перерывов контактирует с выхлопными газами высокой температуры.

Ось и крыльчатка турбины или колесо с лопастями при работе двигателя вращаются. Частота вращения очень высокая. При этом крыльчатка и ось вращаются в разных направлениях. За счет этого осуществляется более плотный прижим двух элементов друг к другу. Поток газов попадает в выпускной коллектор, а затем в специальный канал – он имеется в корпусе компрессора. Корпус имеет форму улитки. Когда газы пройдут через эту улитку, то затем они на большой скорости подаются к ротору. Это и есть принцип работы турбины на дизельном двигателе.

Ось нагнетателя вращается в специальных подшипниках скольжения. Смазка осуществляется от системы смазки двигателя. Чтобы масло не убегало, турбина оснащается уплотнительными прокладками и кольцами. Эти прокладки защищают узел от прорыва воздуха и газов, а также предотвращают их смешивание. Естественно, полностью исключить возможность попадания газов в воздух не получается, но и большая необходимость в этом отсутствует.

Как это работает?

Мы познакомились с устройством механизма. Теперь стоит узнать, как работает турбина на дизельном двигателе автомобиля.

Чем больше топлива сгорит за одну единицу времени, тем больше воздуха нужно закачать в двигатель. Сам мотор не способен справиться с получением избыточного количества сжатого воздуха. Это и есть основная задача системы турбонаддува – нужно наращивать подачу воздуха в камеру сгорания. Нагнетание осуществляется за счет преобразования энергии выхлопных газов в полезную работу. Прежде чем газы вылетят в трубу, они пройдут через турбину и компрессор. Вот как работает турбина. Принцип действия ее прост для понимания.

Процесс прохождения газов заставляет раскручиваться крыльчатку турбины. Она имеет лопасти. Среднее число оборотов составляет более 150 тысяч оборотов в минуту. На этом же валу, что и крыльчатка, крепится и вал компрессора. Сила, полученная в результате преобразования энергии газов, применяется для значительного повышения давления воздуха. Это позволяет подавать в цилиндры намного больше горючего, что и дает значительный прирост мощности и коэффициента полезного действия дизельного силового агрегата.

Вот как работает турбина на дизельном двигателе автомобиля. На самом деле по принципу и устройству данные механизмы очень похожи на бензиновые турбины.

Актуаторы

Много десятков лет понадобилось инженерам, чтобы разработать и построить эффективный нагнетатель. Это только теоретически выглядит очень хорошо. На самом деле все значительно сложней.

При резком нажатии на газ роста оборотов двигателя нужно подождать. Обороты начинают расти через некоторое время. Повышение давления газов, раскручивание крыльчатки турбины, закачивание сжатого воздуха проходит постепенно. Это турбояма, и победить эту проблему не получалось. Но с проблемой все-таки справились внедрением клапанов или актуаторов. Один нужен для перепускания лишнего воздуха через трубопровод из коллектора, второй – для выхлопных газов. Клапан позволяет сбрасывать лишнее давление, когда мотор работает на высоких оборотах. Давайте посмотрим, как работает актуатор турбины дизельного двигателя.

Принцип работы

Главная задача, которую должен он решить, – это снижение давления на высоких оборотах. Клапан установлен в выпускном коллекторе. Работает он крайне просто. При росте оборотов и давления вакуумный клапан пускает газы мимо крыльчатки турбины. В этот момент актуатор открывается, и газы выходят через него. Через клапаны всасывается больше воздуха, чем нужно, чтобы максимально разогнать компрессор.

Возможна регулировка актуатора турбины. Способы и особенности заключатся в замене пружины, настройке конца клапана и в монтаже буст-контроллера. Это позволяет регулировать работу турбины.

Турбодизель ‒ работа турбины дизельного двигателя – ПРОТРАК

Одним из “ноу-хау” в совершенствовании работы дизельных двигателей стало применение турбодизелей, которые позволяют топливу сгорать в полном объеме и, соответственно, выделять при этом еще больше энергии.

Принцип работы турбины на дизельном двигателе заключается в нагнетании воздуха, который находится в камерах сгорания за счет энергии отработанных газов. Система турбонадува состоит из турбокомпрессора, интеркулера (охладителя) и самой турбины.

Устройство турбины обеспечивает поступление газов через приемный патрубок, который соединяется с выпускным клапаном. Газы раскручивают турбину, которая находится на одном валу с компрессором. Раскрученный компрессор нагнетает воздух под высоким давлением в цилиндры через клапаны впуска.

Чем выше будут обороты, тем больше воздуха поступает в цилиндры, что позволяет топливу сгорать в полном и значительно большем объеме и выделять больше энергии.

Роль интеркулера в данном процессе заключается в охлаждении поступающего воздуха, что приводит к сокращению занимаемого им объема. А значит, обеспечивает еще большее количество кислорода, которое поступает в двигатель за один такт.

Среди тех, кто по достоинству оценил плюсы турбированных двигателей, любители быстрой езды, а также те, кто предпочитает экономичную езду. Действительно, наличие турбин позволяет сократить расход топлива в расчете на общее количество лошадиных сил и обеспечивает впечатляющую разгонную динамику при ускорении.

Стоимость капитального ремонта дизельного двигателя определяется исходя из  марки автомобиля и его параметров. Более подробно вы можете уточнить по телефонам, или обратившись к нашим специалистам по адресу:

СТО ПРОТРАК — Грузовой сервис и грузовой магазин:

г. Екатеринбург, Полевской тракт 19 км, дом 16 (база №16)

Тел.: 8 (800) 511-58-20 многоканальный 

график работы: пн-пт: 10:00-22:00 сб-вс: выходной

Как проверить турбину дизельного двигателя при покупке?

Гениальная идея использования выхлопных газов для разгона ротора позволила создать турбированный дизельный двигатель внутреннего сгорания и увеличить его мощность на 40–50%. Это притом, что во время работы в обычном режиме выброс газов сопровождается снижением коэффициента полезного действия в пределах 30 — 40%.

Принцип работы турбины дизельного двигателя основан на увеличении количества воздуха, смешиваемого с топливом и поступающего в камеру сгорания. За один и тот же период времени и при равных объемах цилиндров, двигатель с турбонаддувом может сжечь большее количество топлива, чем движок, не оснащенный таким устройством. А значит, его мощность и КПД в единицу времени значительно возрастет.

Рассмотрим устройство турбины дизельного двигателя, как работает, и каким образом достигаются такие показатели.

Конструктивные элементы системы

Для осуществления возложенных функций, система турбонаддува состоит из двух основных частей:

  1. Компрессор;
  2. Турбина.

Компрессор служит для нагнетания атмосферного воздуха в систему подачи топлива. Он состоит из корпуса и расположенной в нем крыльчатки, которая, вращаясь, всасывает воздух. Чем выше ее скорость вращения, тем больше объем принятого воздуха. Увеличению скорости способствует работа турбины.

Она также состоит из корпуса с крыльчаткой (ротором), которая приводится в движение выхлопными газами. В корпусе газы проходят через специальный канал, имеющий форму улитки, что позволяет им увеличить скорость.

Устройство системы турбонаддува

На практике турбонаддув применяется как на моторах, использующих дизельное топливо, так и на бензиновых. Однако наиболее часто эта система встречается именно на дизельном двигателе, поскольку для них характерна высокая степень сжатия, меньшая температура выхлопа и низкие обороты коленчатого вала. Более высокая степень сжатия обеспечивает повышение мощности турбированного двигателя и увеличивает его КПД.

В бензиновых моторах температура отработавших газов выше, что может спровоцировать эффект детонации, приводящий к быстрому износу поршневой группы. Для предотвращения этого явления необходимо использовать бензин с более высоким октановым числом, что не всегда является экономически выгодным.

Принцип работы турбины

Система турбонаддува состоит из следующих элементов:

  • Воздухозаборник;
  • Воздушный фильтр;
  • Перепускной клапан — регулирует подачу отработавших газов;
  • Дроссельная заслонка — регулирует подачу воздуха на впуске;
  • Турбокомпрессор — повышает давление воздуха во впускной системе. Состоит из турбинного и компрессорного колес;
  • Интеркулер — охлаждает воздух, способствуя лучшему наполнению цилиндров и снижению вероятности детонации;
  • Датчики давления — фиксирует давление наддува в системе;
  • Впускной коллектор — распределяет воздух по цилиндрам;
  • Соединительные патрубки — необходимы для крепления элементов системы между собой.

Как работает турбонаддув дизельного двигателя

Ротор турбины и крыльчатка компрессора жестко закреплены на одном валу. Таким образом, скорость вращения ротора передается крыльчатке. Круг замыкается:

  • Через компрессор воздух из атмосферы, смешиваясь с топливом, подается в цилиндры двигателя;
  • Смесь сгорает, приводя в движение поршни, и образовавшиеся в результате газы поступают в выпускной коллектор;
  • Здесь они принимаются в корпус турбины, разгоняются в канале и на выходе взаимодействуют с ротором, заставляя его вращаться;
  • Ротор через вал передает вращение крыльчатке компрессора, которая всасывает в корпус атмосферный воздух.

Получается взаимосвязанная схема работы, когда количество всасываемого воздуха зависит от скорости вращения крыльчатки и, наоборот, крыльчатка вращается быстрее при большем количестве забираемого воздуха.

Принцип работы турбонаддува имеет два момента, называемые турбоямой и турбоподхватом.

Первый момент характеризуется задержкой в работе турбины после увеличения подачи топлива нажатием на педаль газа, так как для разгона ротора выхлопными газами требуется время.

Вслед за турбоямой наступает момент турбоподхвата, когда разогнавшийся ротор резко увеличивает подачу воздуха в цилиндры, повышая мощность двигателя.

Особенности эксплуатации турбированных двигателей

На режимах разгона автомобиля в силу инерционности системы возникает явление, получившее название «турбояма». Сущность явления заключается в следующем:

  • Автомобиль движется с небольшой постоянной скоростью.
  • Турбина вращается в соответствующем режиме.
  • При резком нажатии на педаль ускорения в цилиндры двигателя подается больше топлива.
  • После его сгорания образуются отработавшие газы, которые с большей силой воздействуют на турбину и увеличивают мощность двигателя. Однако происходит это с некоторой временной задержкой.

Таким образом, между моментом нажатия на педаль и фактическим ускорением автомобиля присутствует некоторая временная задержка — «турбояма». Также данное явление проявляется в виде недостатка крутящего момента на малых оборотах двигателя.

Виды систем турбонаддува

Производители разработали различные способы избавления от «турбоямы»:

  • Турбина с изменяемой геометрией. Конструкция предусматривает изменение сечения входного канала. За счет этого выполняется регулирование потока отработавших газов.
  • Два турбокомпрессора, установленных последовательно (Twin Turbo). На каждый режим работы (обороты двигателя) предусматривается свой компрессор.
  • Два турбокомпрессора, установленных параллельно (Bi Turbo). Схема разбиения на две турбины снижает инерцию системы, и турбояма становится не так ощутима.
  • Комбинированный наддув. Устройство предусматривает и механический, и турбонаддув. Первый включается при низких оборотах, второй при высоких.

Что такое турботаймер и для чего он необходим

Другой стороной инерционности системы с турбокомпрессором является необходимость снижать обороты постепенно. Нельзя резко выключать зажигание после того, как двигатель работал на высоких оборотах. Это обусловлено тем, что подшипники будут продолжать вращение, а поскольку масло не будет подаваться в систему — возникнет повышенное трение. Оно, в свою очередь, спровоцирует быстрый износ вала турбины.

Для решения этой проблемы применяется турботаймер. Это устройство устанавливается на приборной панели и подключается в цепь зажигания. После выключения зажигания ключом система запускает таймер, который глушит двигатель спустя некоторое время, давая возможность турбине снизить обороты до приемлемых значений.

Регулировка давления наддува

Турбонаддув дизельного двигателя повышает его мощность за счет возрастания давления выхлопных газов, являющихся результатом увеличения числа оборотов и интенсивности работы мотора. Этот же процесс повышает давление наддува. Если его не регулировать, то на самых высоких оборотах оно может достичь опасных значений, приводящих к поломкам и механическим повреждениям.

Регулировка давления производится с помощью выпускного предохранительного клапана, а контроль максимально допустимого значения — с помощью мембраны и пружины определенной жесткости.

Суть работы: при достижении предельного значения давления, мембрана, установленная в корпусе компрессора, преодолевает воздействие пружины и открывает регулировочный клапан.

Давление регулируют как на стороне компрессора, так и на стороне турбины:

  1. Работающий турбокомпрессор сбрасывает в атмосферу через выпускной клапан излишки забранного воздуха, тем самым снижая давление.
  2. В турбине клапан выпускает отработанные газы под воздействием мембраны компрессора, когда давление всасываемого воздуха достигает максимального уровня. Благодаря этому, ротор вращается с установленной скоростью, а компрессор не забирает лишний воздух и не увеличивает давление.

Второй вариант расположения клапана позволяет изготавливать системы меньших габаритов. Кроме того, турбонагнетатель с клапаном в компрессоре подвержен чрезмерному нагреву из-за повышенной температуры выпускаемого воздуха, что негативно сказывается на эффективности его работы.

Поэтому турбонаддув дизельного двигателя чаще оснащают регулировочным клапаном в турбине, а регулировку в компрессоре используют в качестве дополнения.

Устройство турбины дизельного двигателя – что может ей угрожать?

Ни для кого не секрет, что составляющей частью горючей смеси является воздух, и для вытягивания литра топлива требуется как минимум 15 литров воздуха. Так что даже слабые турбированные движки способны работать так же, как и более мощные агрегаты, но не оснащенные данной системой. Правда, есть и некоторые недостатки, ведь устройство турбины дизельного двигателя довольно сложное, и иногда ее стоимость составляет около 10 % стоимости всей машины, так что в случае ее поломки владельцу придется изрядно потратиться.

Самыми распространенными проблемами дизельных турбин являются: недостаточное количество масла либо же загрязнение самой конструкции. В этом случае возникает повышенное трение, приводящее к износу и, как следствие, нарушениям работы всей системы. Также довольно часто на лопатки турбинного или компрессорного колеса попадают посторонние предметы: отломавшиеся части поршней ДВС, клапанов, воздушных фильтров, а также болты, шайбы, гайки и т. д.

Кроме того, не самым благоприятным образом отражаются и неисправности в системе смазки и, конечно же, повышенная температура отработанных газов. Еще одна причина, по которой турбокомпрессоры выходят из строя – неисправность соплового аппарата (заклинивание). Это может быть вызвано выходом из строя электрического или вакуумного привода, отвечающего за изменение геометрии, или попаданием в этот механизм масла и сажи из движка.

Система смазки

Смазка вала турбонагнетателя осуществляется смазочной системой двигателя.

На вал устанавливают уплотнительные кольца, предотвращающие проникновение масла в полости корпусов компрессора и турбины. Они же предохраняют корпуса от перегрева. Но герметичность обеспечивается не столько уплотнениями, сколько разностью величины давления в различных частях агрегата. Эту разницу давлений создает турбинная ось (вал), имеющая неравномерный диаметр.

Особая форма литья корпуса, в котором расположен вал, также способствует удержанию масла.

Если мотор не развивает требуемую мощность, это может быть симптомом неисправности турбонаддува. Наиболее часто встречающиеся проблемы — загрязнение воздушного фильтра или потеря герметичности впускного коллектора. Кроме потери мощности, их можно диагностировать по несвойственному для исправной машины цвету и количеству дыма, выходящего из выхлопной трубы.

Зачем в автомобиле нужен интеркулер

Практически любой современный дизельный двигатель оснащается интеркулером. Несмотря на всевозможные разновидности подобных устройств, основное их назначение остаётся неизменным – понижение температуры нагнетаемого воздуха. Как правило, промежуточный охладитель устанавливается непосредственно после турбины. Воздух, проходя через трубки представленного устройства отдаёт большую часть тепла и, будучи охлажденным, поступает в камеру сгорания двигателя.

Охлажденная воздушная смесь обладает большей плотностью. Такая консистенция наиболее оптимальна с точки зрения эффективной работы любого двигателя. Чем больше плотность воздушной смеси, тем значительнее объём поступившего в камеру сгорания воздуха. Такая смесь будет способствовать более высокому давлению внутри цилиндров, что существенно повысит КПД дизельного двигателя.

Сама конструкция интеркулера выполнена таким образом, чтобы проходящий через него воздух не встречал на своём пути каких-либо препятствий. В противном случае, это бы повлекло за собой снижения давления, нагнетаемого турбиной воздуха, что неблагоприятно отразилось бы на эффективной работе мотора.

Недостатки турбокомпрессоров

Принцип работы турбины на дизельном двигателе создает и негативные факторы:

  • Повышенный расход горючего. Возможность сжечь большее количество солярки за счет увеличенного объема подачи воздуха, вместе с мощностью повышает и «прожорливость» машины. Уменьшить аппетит до разумных пределов позволяет правильная регулировка системы.
  • Положительные стороны наддува приводят к многократному повышению температуры во время такта сжатия, что может вызвать детонацию в двигателе. Решается эта проблема установкой охладителей, регуляторов и прочих элементов.

Как проверить работоспособность турбины на дизеле?

Если вы отмечаете, что тяга упала или из турбокомпрессора слышен неестественный свист или скрежет, то это может послужить поводом для того, чтобы проверить, насколько правильно и точно работает турбина.
Автовладельцы, имеющие немалый опыт, уже успели составить свой список примет, которые указывают на необходимость проверки и ремонта устройства, но желательно использовать предназначенные для этого сервисные инструменты, если не работает турбина на дизеле.

Для того чтобы произвести испытание, вам потребуется иметь при себе манометр.

Как проверить, работает ли турбина на дизеле

Проанализировать работоспособность турбины на дизеле можно по следующим признакам:

Источник: https://carsbiz.ru/buy/proverka-dizelnogo-motora-pered-pokupkoy.html

Правила эксплуатации

Чтобы в полной мере использовать ресурс турбины дизельного мотора и продлить ее срок службы, необходимо выполнять ряд условий:

  • Регулярно менять масло в системе, чтобы не допустить попадания абразива в маслопровод и его засорения.
  • Применять только качественное масло, имеющее сертификат, той марки, которая соответствует указанной в паспортных данных двигателя.
  • Прогревать мотор перед началом движения и не давать холодному двигателю высоких нагрузок.
  • Никогда резко не отключать движок, а после остановки автомобиля давать ему возможность поработать несколько секунд на холостых оборотах.

Достоинства и недостатки системы турбонаддува

Подводя итоги, можно выделить плюсы и минусы использования на моторе турбонаддува. В числе достоинств:

  • увеличение мощности двигателя;
  • повышение КПД двигателя;
  • снижение расхода топлива.

К минусам можно отнести:

  • низкий крутящий момент на малых оборотах двигателя;
  • более высокая стоимость;
  • более сложное обслуживание и эксплуатация.

Воплощение идеи по использованию выхлопных газов с целью разгона ротора позволила увеличить мощность дизельного мотора примерно на 30%. Мотор, на который установлен турбонаддув, называется турбодизелем.

Устройство компрессора

Компрессор имеет корпус и колесо (ротор). Корпус компрессора алюминиевый. Ротор крепится на оси турбины аналогично крыльчатке. Колесо компрессора имеет лопасти, материалом изготовления которых также является алюминий. Задачей компрессорного колеса становится забор воздуха, который проходит через его центр.

Форма лопастей заставляет воздух отбрасываться к стенкам корпуса компрессора, благодаря чему происходит его сжатие. Далее поток сжатого воздуха подается во впускной коллектор двигателя.

Немного о турбокомпрессоре

Турбокомпрессор или его ещё называют «газотурбинный нагнетатель»

(
Centrifugal compressors
или очень популярно называть
«Turbocharger»
) — это осевой или центробежный компрессор, что функционирует вместе с турбиной. Это конструктивный основной элемент в автомобилях с газотурбированными двигателями.

Давление во впускной системе можно повысить при помощи установки турбокомпрессора, использующего энергию отработавших газов. При его использовании масса воздуха, имеющегося в камерах сгорания, увеличивается. Механический нагнетатель не так эффективен, как турбированный компрессор газов, потому что мощность двигателя не используется для привода.

Тем не менее, после установки центробежной турбины некоторые потери мощности неизбежны. Отработавшие газы из цилиндров не находят выхода, так как турбина преграждает их путь наружу. На двигатель приходится большая нагрузка по очистке цилиндров, вследствие того, что в выпускном тракте создаётся огромное давление. На эту задачу тратится некоторая часть мощности двигателя авто. Конечно, эта потеря ничтожна в сравнении с приростом мощности двигателя объёмом в 30–40%.

После установки центробежной турбины, можно столкнуться с ещё одной проблемой, которая в обиходе называется турбояма. Выходная мощность двигателя изменяется с отставанием от смены давления отработавших газов. Главными факторами, из-за которых образуется турбояма, являются силы трения, инерционность и нагрузка турбины.

Основные неисправности — признаки и причины

Сразу стоит оговориться, что основная причина поломок — это несвоевременное техническое обслуживание агрегата, его рекомендуется проводить минимум один раз в год. Следующая причина — низкое качество масла, либо его несвоевременная замена. Третья — попадание в устройство посторонних предметов (например, мелких камушков). Наконец, четвёртая — банальный износ отдельных компонентов турбины, ведь у каждого оборудования есть свой срок эксплуатации. Теперь опишем признаки, которые могут говорить о неисправности.

Чёрный дым из выхлопной трубы. Топливо сгорает в интеркулере или нагнетающей магистрали. Скорее всего — неисправность системы управления.

Сизый дым. Возможно, из-за нарушения герметизации турбины масло просачивается в камеру сгорания.

Белый дым. Сливной маслопровод загрязнился, потребуется его чистка.

Повышенный расход топлива. Воздух не доходит до компрессора.

Увеличен расход масла. Нужно проверить стыки патрубков — возможно, нарушена герметичность.

Уменьшение динамики разгона. Скорее всего вышла из строя система управления, из-за чего возник недостаток кислорода.

Посторонний свист, скрежет или шумы. Это может быть изменение зазора ротора, дефект в корпусе, утечка воздуха между двигателем и турбиной, либо загрязнение маслопровода.

Всегда нужно соблюдать правила эксплуатации агрегата — это снизит вероятность появления поломки и продлит срок службы устройства. Следует придерживаться нескольких простых правил:

  • следите за качеством топлива и масла;
  • не забывайте вовремя менять масло и фильтры;
  • начинайте движение только после того, как движок прогреется;
  • после прекращения движения нужно дать мотору поработать на холостых, а не сразу его выключать.

И, конечно же, следует регулярно проходить ТО.

Устройство турбокомпрессора


Устройство турбокомпрессора:1
— корпус компрессора;
2
— вал ротора;
3
— корпус турбины;
4
— турбинное колесо;
5
— уплотнительные кольца;
6
— подшипники скольжения;
7
— корпус подшипников;
8
— компрессорное колесо. Турбинное колесо вращается в корпусе, имеющем специальную форму. Оно выполняет функцию передачи энергии отработавших газов компрессору. Турбинное колесо и корпус турбины изготавливают из жаропрочных материалов (керамика, сплавы). Компрессорное колесо засасывает воздух, сжимает его и затем нагнетает его в цилиндры двигателя. Оно также находится в специальном корпусе. Компрессорное и турбинное колеса установлены на валу ротора. Вращение вала происходит в подшипниках скольжения. Используются подшипники плавающего типа, то есть зазор имеют со стороны корпуса и вала. Моторное масло для смазки подшипников поступает через каналы в корпусе подшипников. Для герметизации на валу устанавливаются уплотнительные кольца. Для лучшего охлаждения турбонагнетателей в некоторых бензиновых двигателях применяется дополнительное жидкостное охлаждение. Для охлаждения сжимаемого воздуха предназначен интеркулер — радиатор жидкостного или воздушного типа. За счет охлаждения увеличивается плотность и соответственно давление воздуха. В управлении системой турбонаддува основным элементом является регулятор давления. Это перепускной клапан, который ограничивает поток отработавших газов, перенаправляя часть его мимо турбинного колеса, обеспечивая нормальное давление наддува.

Что такое турбина и турбонаддув — устройство и принцип работы.

С того момента, как появилась такая профессия, как автомобильный конструктор, возникла проблема увеличения мощности моторов. По всем законам физики, мощность мотора напрямую зависит от количества горючего, что сжигается за один цикл. Чем больше горючего при этом расходуется, тем мощность выше. Но, возникает вопрос – как увеличить количество лошадиных сил под капотом своего автомобиля? Тут есть несколько нюансов.

Для того чтобы происходил процесс горения необходим кислород. Благодаря этому становится ясно, что горит нечистое топливо, а его смесь с кислородом. При этом вся смесь должна быть в определенном балансе. Например, что касается бензиновых моторов, то топливо к воздуху смешивается в пропорции 1 к 15. При этом берется во внимание состав горючего и режим его работы.

Видно, что кислорода требуется в 15 раз больше, чем самого топлива. Из этого следует, что увеличение подачи топлива ведет за собой и обязательное увеличение подачи кислорода. Зачастую двигатели самостоятельно засасывают воздух из-за разницы в давлении между атмосферой и цилиндром. Отсюда появляется и прямая зависимость между объемом цилиндра и воздуха, который попадает в него. Именно таким образом и поступала американская автомобильная промышленность, которая выпускает большие двигатели с огромнейшим расходом топлива. Но, есть ли возможность в одинаковый объем загнать, как можно больше воздуха?

Такой способ есть и его впервые изобрел Готтлиб Вильгельм Даймлер. Один из основателей компании Daimler Chrysler. Немец достаточно сильно разбирался в двигателях и уже в 1885 году понял, каким образом можно загнать туда больше кислорода. Он придумал загонять воздух в мотор при помощи специального нагнетателя, который был в виде компрессора, что получал вращение от моторного вала и благодаря этому сжатый воздух успешно загонялся в цилиндры.

Все изменилось, когда швейцарский инженер-изобретатель — Альфред Бюхи сделал сенсационное открытие. Он был главным при создании дизельного двигателя в Sulzer Brothers и он никак не мог свыкнуться с той мыслью, что двигатели были очень тяжелыми и габаритными, а мощности выдавали недостаточно. При этом он не хотел заимствовать энергию двигателя. Благодаря этому в 1905 году Альфред Бюхи получил патент на первое на планете устройство, которое было создано для нагнетания, что применяло энергию для двигателя, выдаваемую выхлопными газами. Другими словами, он создал — турбонаддув.

Данная идея была очень проста и гениальна. Выхлопные газы задают вращение колесу с лопатками точно также, как ветер вращает лопасти мельницы. Отличие только в том, что данное колесо меньшего размера, а лопастей больше. Это колесо имеет название – ротор турбины, который находится на одном и том же валу, где располагается и колесо компрессора. Поэтому турбонагнетатель можно поделить на две части, первая из которой — это ротор, а вторая – компрессор. Ротор вращается благодаря выхлопным газам, а, в свою очередь, компрессор работает, как вентилятор и благодаря этому дополнительный воздух поступает в мотор. Полностью вся конструкция имеет название турбонагнетатель или турбокомпрессор.

При этом, кислород, что попадает в мотор, необходимо дополнительно охладить, это необходимо делать для того, чтобы увеличить давление, при этом загнав в цилиндр больше воздуха. Из-за того, что сжать холодный воздух по сравнению с теплым — намного легче.

Кислород, который проходит через турбину, сам по себе нагревается из-за сжатия, а также из-за некоторых нагретых частей турбонаддува. Подаваемый в мотор воздух, охлаждается с применением промежуточного охладителя. Воздух, проходя через радиатор, отдает свое тепло в атмосферу. При этом холодный воздух плотнее загоняется в цилиндр в большем количестве.

Чем больше газа проникает в турбину, тем она чаще вращается, и соответственно больше воздуха проникает в сам цилиндр и увеличивается мощность. Стоит сказать, что эффективность именно такого метода, по сравнению с приводным турбонаддувом, в том что для того, чтобы обслужить себя, нагнетатель тратит от энергии двигателя, около 1.5%. Это обусловлено тем фактом, что энергия к турбинному ротору поступает не благодаря замедлению выхлопного газа, а за счет его охлаждения. При этом потраченная энергия повышает коэффициент полезного действия двигателя. Благодаря этому автомобиль с нагнетателем становится максимально экономичным, по сравнению с остальными похожими двигателями примерно одинаковой мощности.

Вращение ротора в турбине может быть до 200 тысяч оборотов в минуту, следующий факт относится к раскаленным газам, которые доходят до 1000 градусов по Цельсию. Из всего этого следует тот факт, что нагнетатель, который может сдержать подобные нагрузки долгое время создать достаточно сложно и дорого.

Из-за этого нагнетатель был популярен исключительно во времена Второй Мировой Войны и только в самолетах. В 50-х годах компания из Америки (Caterpillar) смогла встроить нагнетатель к тракторному двигателю, а специалисты из компании Cummins смогли создать первые турбодизельные двигатели для грузовых машин. На легковых машинах, которые получили серийное производство, такие двигатели стали появляться гораздо позже. Это произошло в 1962 году, практически сразу появилось две модели Chevrolet Corvair Monza и Oldsmobile Jetfire.

Стоит добавить, что проблематичность и высокая стоимость конструкции, не являются главными недостатками. Сама по себе эффективность работы турбонаддува, напрямую зависит от максимального числа оборотов двигателя. Из-за того, что на малых оборотах, выхлопных газов производится недостаточное количество, соответственно ротор не раскручивается на максимально возможную мощность и, как следствие, дополнительный кислород практически не задувается в цилиндры. Поэтому зачастую происходит так, что до 3 000 оборотов мотор не тянет, но уже после 4-5 тысяч оборотов, он резко «стреляет», эта проблема называется – турбоямой. При этом размер турбины напрямую зависит на ее разгон. Чем она больше, тем разгон дольше. Именно из-за этого, те двигатели, что имеют большую мощность и соответственно турбину высокого давления зачастую испытывают проблемы связанные с турбоямой. А те турбины, которые создают низкое давление, практически не имеют никаких проблем с провалом тяги, но при этом и мощность они могут поднять достаточно маленькую по отношению с первыми.

Практически полностью избавиться от такой проблемы, как турбояма может помочь схема с последовательным надувом, когда на достаточно малых оборотах мотора, работает маленький малоинерционный турбокомпрессор. Маленький – увеличивает тягу на низких оборотах, в то время, как большой включается во время, когда обороты начинают расти, вместе с давлением на выпуске. Еще сто лет назад систему последовательного наддува применяли в суперкаре Porsche 959. На данный момент же, такие системы применяются во многих марках, начиная от Land Rover и BMW, а в бензиновых моторах фирмы Volkswagen эту роль играет приводной нагнетатель.

На заводских двигателях зачастую применяют одиночный турбокомпрессор twin-scroll, в народе его называют «парой улиток». Каждая из таких улиток заполняется выхлопами, от разных цилиндров. Но, даже, несмотря на это, обе улитки подают выхлопные газы в одну турбину, в итоге максимально качественно раскручивая ее, как на больших, так и на малых оборотах.

Но зачастую все-таки можно встретить исключительно пару одинаковых турбокомпрессоров, которые параллельно друг от друга обслуживают отдельные цилиндры. Это является стандартной схемой, для стандартных V-образных турбодвигателей, где каждый блок имеет свой турбонаддув. Даже, несмотря на то, что мотор V8 компании M GmbH, который впервые был установлен на Bmw X6 M и X5 M оборудован перекрестным выпускным коллектором, позволял турбокомпрессору паре улиток получать газы выхлопа из цилиндров, которые находились в разных блоках.

Для того чтобы турбокомпрессор работал на максимуме своих возможностей, при всех диапазонах оборотов, можно поменять геометрию рабочей части. Исходя из оборотов, что производит улитка, там работают специальные лопатки и изменяется в некоторых дозволенных пределах форма сопла. Благодаря этому, мы имеем «супертурбину», которая отлично может работать во всех диапазонах оборотов. Такие схемы были продуманы и оговорены достаточно давно, но реализовать их на деле, появилась возможность лишь недавно. Стоит, при этом отметить, что изначально турбины, на которой поменяна геометрия, появилась исключительно на дизельном моторе, благодаря тому, что температура выхлопных газов, намного меньше. Что касается бензиновых двигателей, то первым был Porsche 911 Turbo.

Саму конструкцию турбодвигателя привели в максимальную комплектацию, относительно недавно и их актуальность сильно возросла. При этом сами турбокомпрессоры оказались актуальными не только, как для форсирования двигателя, но и для увеличения экономичности и экологичности выхлопа.

Как работает турбо? Объяснение принципа работы турбокомпрессора

Термин «турбокомпрессор» знаком вам, когда вы говорите о гоночных автомобилях и высокопроизводительных спортивных автомобилях. Их также нередко можно найти в более крупных дизельных двигателях. Турбина — это устройство, которое может увеличить мощность двигателя без увеличения его веса. Как работает турбо и делает ли это возможным? И какие особенности сделали их такими популярными?

Что такое турбокомпрессор?

Люди из 1980-х, вероятно, лучше знакомы со словом «турбо», потому что в то время оно применялось к множеству продуктов, таких как турбоскейтборды, турбобритвы и многое другое.Но это не то, что произвело революцию в автомобильной промышленности.

Турбокомпрессор — это турбина с принудительной индукцией, которая повышает эффективность и выходную мощность двигателя внутреннего сгорания за счет подачи дополнительного воздуха в камеру сгорания.

Если вам кажется немного сложным понять как работает турбо , обратите внимание на тот факт, что двигатель работает на смеси топлива и воздуха. Когда турбонагнетатель подает в камеру больше воздуха, он смешивается с большим количеством топлива, в результате чего вырабатывается больше мощности.Он переправляет воздух, сжимая его, используя энергию выхлопных газов, выходящих из двигателя.

Турбодвигатель. Источник: Fast Car

Различные типы турбонагнетателей?

В автомобильной промышленности используются различные типы турбокомпрессоров:

Одинарный – Турбо

Когда речь идет о одинарных турбонагнетателях, большинство людей думают о нем как о турбокомпрессоре. Автомеханики, изменяя размер элемента внутри турбины, могут создавать различные характеристики крутящего момента.В то время как маленькие турбины могут увеличить мощность на низких оборотах и ​​быстрее вращаться, большие турбины повышают уровень максимальной мощности. Оба они являются экономически эффективными инструментами повышения эффективности и мощности двигателя. Не говоря уже о том, что благодаря небольшому размеру они позволяют двигателям меньшего размера повысить рабочие характеристики по сравнению с двигателями большего размера. Недостатком Single-Turbo является то, что он может хорошо работать только в узком диапазоне оборотов. Другим недостатком является то, что будет турбо-задержка до того, как турбо начнет работать.

Твин-турбо

Как и в названии, на двигатель установлен второй турбокомпрессор. Таким образом, второй турбонаддув обеспечивает более высокую мощность и более широкий диапазон оборотов. Чтобы быть более конкретным, меньшая турбина работает на низких оборотах, а большая — на более высоких. В результате твин-турбо отличается высокой сложностью и стоимостью.

Турбокомпрессор с изменяемой геометрией

Турбокомпрессор с изменяемой геометрией, или VGT, представляет собой кольцо из лопаток аэродинамической формы, установленных внутри турбины.Эти внутренние лопасти вращаются с целью изменения угла закрутки газа. Наиболее впечатляющей особенностью турбокомпрессора с изменяемой геометрией является способность согласовать площадь турбины с радиусом оборотов двигателя для поддержания максимальной производительности. В результате это может уменьшить турбо-задержку и сгладить диапазон крутящего момента. С другой стороны, VGT ограничен в применениях с бензиновыми двигателями. Причиной этого являются комплектующие из экзотических материалов. Это требование, поскольку VGT должен выдерживать высокие температуры выхлопных газов.По этой причине это исключает возможность присоединения VGT к роскошным двигателям.

Турбокомпрессор Twin-Scroll с регулируемой скоростью

Этот турбокомпрессор, также называемый VTS, сочетает в себе турбокомпрессор с изменяемой геометрией и турбонаддув с двойной спиралью. В этой специальной комбинации регулируемый турбокомпрессор с двойной спиралью представляет собой более надежную альтернативу, а также более дешевую для владельцев автомобилей.

Электрические турбонагнетатели

Если вы ищете решение для удаления турбо лага, электрический турбокомпрессор — ваше главное оружие.Помогая турбокомпрессорам там, где обычный турбокомпрессор не самый лучший, электрический турбокомпрессор работает за счет добавления электродвигателей, вращающих компрессор турбокомпрессора до тех пор, пока мощность от объема выхлопных газов не станет достаточно высокой для запуска турбокомпрессора. И это самый совершенный турбокомпрессор, так как он решает все проблемы обычных турбокомпрессоров.

Как работает турбо?

Принцип работы турбокомпрессора почти аналогичен реактивному двигателю. Реактивный двигатель поглощает холодный воздух через переднюю часть, выталкивает его в камеру для смешивания и сжигания с топливом, а затем выбрасывает горячий воздух через заднюю сторону.
Когда горячий воздух выходит из двигателя, он вращает турбину, которая, в свою очередь, приводит в действие воздушный насос или компрессор, расположенный в передней части двигателя. Он нагнетает воздух в двигатель и обеспечивает правильное сгорание топлива.

Как работает турбо в двигателе автомобиля? Он использует почти тот же принцип реактивного двигателя. Он состоит из двух основных частей – турбины и компрессора. Когда одна часть вращается, другая вращается вместе с ней, потому что они связаны друг с другом. Выхлопные газы выбрасываются из двигателя, когда топливо сгорает внутри камеры сгорания.Газы спускаются в трубу и вращают турбину, которая вращается со значительно большими скоростями и заставляет компрессор (который на самом деле является турбиной в обратном направлении) вращаться. Эта цепочка действий накачивает больше воздуха в цилиндр двигателя, позволяя сжигать больше топлива и производить больше мощности каждую секунду.

Может возникнуть вопрос, почему турбонагнетатели не перегреваются, несмотря на то, что они работают при экстремальных температурах и выдерживают огромные нагрузки по давлению. Ответ — интеркулер. С каждым турбокомпрессором имеется промежуточный охладитель, который охлаждает нагнетаемый горячий воздух.Система охлаждения масла заботится о турбине и не дает ей перегреваться.

Почти все современные автомобили с дизельными двигателями оснащены турбонагнетателями, потому что дизельные двигатели прочнее бензиновых и имеют более простые впускные коллекторы.

Как работает турбонагнетатель? (Кратко)

Чтобы кратко объяснить это, пошаговые процедуры как работает турбо :

  1. Воздухозаборник двигателя всасывает холодный воздух и направляет его в компрессор.
  2. Компрессор сжимает поступающий воздух и нагревает его. Затем выдувает горячий воздух.
  3. Горячий воздух охлаждается при прохождении теплообменника и поступает в воздухозаборник цилиндра.
  4. Холодный воздух сгорает внутри камеры сгорания быстрее из-за переноса большего количества кислорода.
  5. Из-за сжигания большего количества топлива выработка энергии будет увеличиваться быстрее, и двигатель сможет передавать больше мощности на колеса.
  6. Горячие отработанные газы покидают камеру и проходят мимо турбины на выпускном отверстии.
  7. Турбина вращается с высокой скоростью и также раскручивает компрессор, так как оба установлены на одном валу.
  8. Выхлопные газы покидают автомобиль через выхлопную трубу. Они тратят меньше энергии, чем двигатель без турбонагнетателя.
VW Beetle использует двигатель с турбонаддувом. Источник: VW

Каковы преимущества турбокомпрессоров?

Дополнительная мощность, безусловно, является ключевым преимуществом турбокомпрессоров, но это не единственное их преимущество. Еще одним выгодным преимуществом является топливная экономичность.Двигатель с турбонаддувом использует гораздо меньше топлива для производства той же мощности по сравнению со стандартными двигателями. По этой причине Ford использует в некоторых своих моделях 1,0-литровый турбодвигатель вместо 1,6-литрового бензинового двигателя. Точно так же вы увидите 4-цилиндровый двигатель с турбонаддувом вместо 6-цилиндрового и V6 с турбонаддувом, заменяющий V8 во многих новых моделях.

Автомобили с турбонаддувом на самом деле лучше, чем обычные автомобили с бензиновым двигателем, потому что они потребляют меньше топлива и сжигают масло более чисто, чтобы меньше загрязнять воздух.

Еще одним преимуществом использования турбокомпрессоров является то, что они позволяют двигателю развивать больший крутящий момент в более низком диапазоне оборотов, что дает автомобилю преимущество при движении по городу. Дополнительный крутящий момент пригодится для легкого зажима зазоров.

Еще одно приятное преимущество двигателей с турбонаддувом — их тихий характер. Они амортизируют звук впуска и позволяют автомобилю ездить по улицам, не издавая раздражающих звуков.

          УЗНАТЬ БОЛЬШЕ

Турбокомпрессор в сравнении с нагнетателем

Если вы понимаете как работает турбо , вы также поймете принцип работы нагнетателя.Оба устройства выполняют одну и ту же работу — производят больше энергии из двигателя автомобиля. Однако принцип их работы разный. Турбина работает, когда выхлопные газы вращают турбину, а нагнетатель вырабатывает мощность от вращающегося коленчатого вала. Этот принцип работы на самом деле менее эффективен, потому что он использует энергию двигателя автомобиля, в то время как турбо использует потраченную впустую энергию.

Автомобиль с наддувным двигателем. Источник: DriveTribe

. Тем не менее, нагнетатели могут обеспечить лучшую реакцию дроссельной заслонки из-за их более прямого и механического соединения с двигателем.В отличие от турбо, здесь нет задержки отклика.

Какие модели автомобилей оснащены двигателем с турбонаддувом?

Автомобили с дизельным двигателем в основном имеют двигатель с турбонаддувом. Кроме того, большинство автопроизводителей имеют в своей линейке продукции одну или две модели с турбонаддувом. Например, Renault-Nissan обозначил свои турбодизельные двигатели как dCi, а турбобензиновые — как TCi, то есть TDI и TSI для Volkswagen и TDCI и Ecoboost для Ford соответственно.

Надеюсь, эта статья будет вам полезна.Если у вас есть какие-либо вопросы по машине, не стесняйтесь оставлять нам комментарии в поле ниже, мы ответим на них для вас.

 

Часто задаваемые вопросы

Преимущества турбокомпрессоров привлекательны для многих водителей и автовладельцев. По этой причине вопросы об этой удивительной автомобильной детали различны. Для лучшего понимания наши автомобильные эксперты помогут вам ответить на следующие наиболее распространенные вопросы: 

Кто изобретатель турбокомпрессора?

Альфред Дж.Бючи ​​(1879-1959) является отцом этой невероятной автомобильной детали. Он работает автомобильным инженером в компании Gebrüder Sulzer Engine Company в Винтертуре, Швейцария. Альфред создал турбокомпрессор перед Первой мировой войной и опубликовал его в Германии в 1905 году. Его вклад в турбокомпрессор настолько велик, что он продолжал улучшать его конструкцию до самой своей смерти.

В чем недостаток двигателей с турбонаддувом?

Самый главный недостаток турбодвигателя — расход топлива. Поскольку компрессор нагнетает в камеру сгорания больше воздуха, чем двигатель, использующий только атмосферное давление, в двигатель будет отправлено больше топлива.Это дает двигателю гораздо большую потенциальную мощность, но при этом сжигает так много энергии.

На сколько миль хватает турбин?

Турбина, конечно, увеличивает мощность, но она не может обеспечивать мощность вечно, так как увеличивает расход топлива. В отличие от больших двигателей, которые могут развивать мощность все время, автовладельцам необходимо тщательно обдумывать использование турбонаддува. Турбина обычно длится около 75 000 миль, прежде чем выпустить облако черного дыма. Рекомендуется не форсировать его до этого момента.

Оценка влияния модернизации выхлопной турбины для узкого рабочего диапазона VGT на характеристики дизельных двигателей с вспомогательным турбонагнетателем 2019-01-0326

Образец цитирования: Сонг, К., Упадхьяй Д., Ху Л. и Се Х., «Оценка влияния модернизации выхлопной турбины для узкого рабочего диапазона VGT на производительность дизельных двигателей с вспомогательным турбонагнетателем», Технический документ SAE 2019- 01-0326, 2019 г., https://doi.org/10.4271/2019-01-0326.
Скачать ссылку

Автор(ы): Кан Сон, Девеш Упадхьяй, Лянцзюнь Ху, Хуэй Се

Филиал: Тяньцзиньский университет, Исследовательская лаборатория Форда, Ford Motor Company

Страницы: 11

Событие: Опыт Всемирного конгресса WCX SAE

ISSN: 0148-7191

Электронный ISSN: 2688-3627

(PDF) Принципы работы газовой турбины

Эффективность цикла Брайтона довольно низкая, прежде всего потому, что значительное количество

подводимой энергии выбрасывается в окружающую среду.Эта израсходованная энергия обычно находится при относительно высокой температуре, и поэтому ее можно эффективно использовать для производства энергии.

Одним из возможных применений является комбинированный цикл Брайтона-Ренкина, в котором выхлопные газы с высокой температурой

, выходящие из газовой турбины, используются для подачи энергии в котел

цикла Ренкина, как показано на рис. 3.12. Обратите внимание, что температура T

9

газов цикла Брайтона, выходящих из котла, меньше температуры T

3

пара цикла Ренкина

, выходящего из котла; это возможно в противоточном теплообменнике

котла.

7.7 Одновальная и многовальная конструкция

Газовая турбина может иметь одновальную или многовальную конфигурацию. В одновальном случае

газовая турбина спроектирована с примерно одинаковыми перепадами давления

на всех ступенях расширения, которые механически соединены с газовым компрессором

и генератором и работают на частоте вращения генератора (обычно 3600 или 1800 об/мин для

электрические системы 60 Гц и 3000 или 1500 об/мин для электрических систем 50 Гц).В многовальной конфигурации

компрессор приводится в действие механически набором расширительных ступеней, размеры которых позволяют производить механическую работу, необходимую для компрессора

, так что этот вал не соединен с электрическим генератором. и может

вращаться с разной скоростью. Воздух, производимый этим газогенератором, нагревается и

направляется в турбогенератор: последнюю ступень расширения на отдельном

валу, который вращается

с оптимальной скоростью генератора.Газотурбинные электростанции с комбинированным циклом (ПГУ)

Поставщики

конфигурируют турбогенераторы в различных конфигурациях.

Конфигурации с несколькими и одним валом позволяют оптимизировать производительность предприятия, капитальные вложения, доступ для строительства и обслуживания, удобство эксплуатации и минимальные требования к пространству.

Разработка больших газовых турбин F-класса за последнее десятилетие

шла рука об руку с усилиями производителей по стандартизации конфигураций парогазовых электростанций

(ПГУ), стремясь наилучшим образом использовать новую технологию.Одновальная силовая передача

(SSPT) была впервые задумана для приложений, использующих газовые турбины

мощностью более 250 мегаватт. Только позже концепция была расширена до меньших

единиц

в диапазоне 60 мегаватт. Новая компоновка ССПТ позволила построить одиночные

блоков мощностью до 450 МВт. SSPT внесли наибольший вклад в электростанции

, стремясь к экономии затрат и сокращению времени проекта и, следовательно, к снижению рисков. В схемах

ССПТ газовая турбина и паровая турбина соединены с общим генератором

на одном валу, тогда как в многовальных блоках силовой передачи (МШПТ) до

три газовые турбины и выделенные им котлы и генераторы совместно обычная паровая турбина

(см.7.11). SSPT и MSPT созданы для рынков с частотой 50 и 60 Гц.

Основными преимуществами новой концепции, отмеченными производителями, являются более

операционная гибкость, меньшая занимаемая площадь, упрощенное управление, более короткое время запуска, более

стандартизированных периферийных систем, а также более высокая эффективность и доступность. Эта разработка требует, чтобы, в дополнение к новым техническим вопросам, связанным с газовой турбиной

160 7 Принципы работы газовой турбины

Структура и принцип работы двигателей — английский язык-

Структура и принцип работы двигателей



Мы широко использовали тепловые двигатели с момента их изобретения в 17 веке.Есть много видов двигателей, и они используются в нашей жизни. На этом занятии представлены структура, принцип и характеристики тепловых двигателей и источника энергии.

Поршневой паровой двигатель

Поршневая паровая машина — первая машина, получившая практическое применение. Этот двигатель получает механическую мощность за счет статического давления пара. После промышленной революции он долгое время использовался в качестве источника энергии для промышленности и транспорта.Но он заменен двигателями внутреннего сгорания и в настоящее время не используется.
Как правило, паровая машина состоит из котла, нагревателя, поршня, цилиндра, конденсатора и водяного насоса, как показано на рисунке справа. Впускной и выпускной клапан расположены в верхней части цилиндра.


Двигатель Стирлинга

Двигатель Стирлинга состоит из двух поршней, как показано на рисунке справа. Это двигатель внешнего сгорания с замкнутым циклом, в котором рабочий газ многократно используется без какого-либо клапана.Запоминающейся характеристикой этого двигателя является то, что для достижения высокой эффективности используется регенератор. В те дни изобрели двигатель, который назывался «двигатель горячего воздуха» вместе с двигателем Ericsson, описанным ниже. После многих усовершенствований двигатели Стирлинга в настоящее время получили высокую мощность и высокий КПД за счет использования гелия или водорода под высоким давлением в качестве рабочего газа. Но этот двигатель еще не нашел практического применения, потому что у него есть несколько проблем, таких как большой вес и высокая стоимость производства.


Двигатель Эрикссон

Дж. Эрикссон разработал несколько двигателей путем реформирования двигателя Стирлинга (в наши дни его называют двигателем горячего воздуха). Один из них сегодня называется двигателем Ericsson. Это двигатель внешнего сгорания открытого цикла с двумя клапанами на подающем цилиндре и силовом цилиндре, как показано на рисунке справа. Также в большинстве двигателей, изобретенных Дж. Эриксуном, использовались регенераторы.


Бензиновый двигатель

В настоящее время бензиновый двигатель (двигатель с искровым зажиганием) широко используется в качестве источника энергии для автомобилей.По принципу работы этого двигателя смесь газов топлива и воздуха сжимается в цилиндре в первую очередь. И газ взрывается при использовании свечи зажигания и генерирует выходную мощность. В качестве хороших характеристик двигателя можно реализовать меньший и легкий двигатель, а также возможность высокой скорости двигателя и большой мощности. Кроме того, обслуживание двигателя очень простое.


Паровая турбина

Паровая турбина имеет вращающиеся лопатки вместо поршня и цилиндра поршневой паровой машины.Этот двигатель используется в качестве источника энергии на тепловых и атомных электростанциях. Паровая турбина использует динамическое давление пара и преобразует тепловую энергию в механическую энергию, тогда как поршневой паровой двигатель использует статическое давление пара. Оба двигателя используют энергию, полученную при расширении пара.


Дизельный двигатель


Дизельный двигатель (двигатель с воспламенением от сжатия) — это двигатель внутреннего сгорания, а также бензиновый двигатель, который широко используется в качестве источника энергии для кораблей и автомобилей.Принцип действия этого двигателя заключается в том, что воздух поступает в цилиндр и сначала адиабатически сжимается до высокой температуры. Когда туманы топлива впрыскиваются в высокотемпературный цилиндр, они автоматически сгорают, и двигатель получает выходную мощность. Он может получить более высокий КПД, чем у бензинового двигателя, при высокой степени сжатия. Кроме того, этот двигатель имеет экономическое преимущество, поскольку может использовать в качестве топлива недорогую легкую нефть и тяжелую нефть. Однако у него могут быть такие проблемы, как сильные вибрации и шумы, а также увеличение веса двигателя из-за высокого давления в цилиндре.


Газовая турбина

По принципу работы газовой турбины рабочий газ (воздух) сначала сжимается компрессором и нагревается за счет энергии сгорания топлива. Рабочий газ становится высокой температуры и высокого давления. Двигатель преобразует энергию рабочего газа в энергию вращения лопастей, используя взаимодействие газа с лопастями.
Как показано на рисунке ниже, существует два типа газовых турбин.Один тип открытого цикла (внутренний тип), а другой тип замкнутого цикла (внешний тип). Основными компонентами обоих типов являются воздушный компрессор, камера сгорания и турбина.
Газовая турбина может работать с большим расходом газа, чем у поршневых двигателей внутреннего сгорания, поскольку в ней используется непрерывное сгорание. Тогда газовая турбина подходит в качестве двигателя большой мощности. Газовая турбина для самолетов (называемая реактивным двигателем) использует это преимущество.



Ракетный двигатель

Ракетный двигатель получает газ сгорания высокой температуры и высокого давления из топлива и окислителя в камере сгорания.Газ сгорания становится высокоскоростным при адиабатическом расширении через сопло и выбрасывается в заднюю часть двигателя. Движущая сила получается за счет реакции высокоскоростного газа.
Реактивный двигатель и ракетный двигатель получают движущую силу одинаковым образом, используя реакцию рабочего газа. Однако отличие от реактивного двигателя состоит в том, что в ракетном двигателе весь газ включает в себя и сам окислитель. Тогда он может получить движущую силу, даже если нет воздуха, поэтому он используется в качестве источника движущей силы в космосе.


Топливный элемент

Вышеупомянутые тепловые двигатели преобразуют энергию топлива в механическую энергию за счет тепловой энергии. С другой стороны, топливный элемент напрямую преобразует химическую энергию топлива в электрическую энергию.
Топливный элемент состоит из анода и катода, разделенных слоем электролита. Когда горючее подается на анод, а окислитель на катод, вырабатывается электрическая энергия.

Принцип работы турбокомпрессора. Детали и принципы проектирования

Принцип работы турбокомпрессора определяется принципами конструкции, которые мы сейчас объясним в этом подробном и эффективном объяснении:

Турбокомпрессор состоит из турбины и компрессора. связаны общей осью. На вход турбины поступают выхлопные газы из выпускного коллектора двигателя, приводящие во вращение колесо турбины. Это вращение приводит в действие компрессор, сжимающий окружающий воздух и подающий его к воздухозаборнику двигателя.

Целью турбокомпрессора является улучшение соотношения размера и мощности двигателя за счет устранения одного из его основных ограничений. В безнаддувном автомобильном двигателе используется только ход поршня вниз, чтобы создать область низкого давления для всасывания воздуха в цилиндр. Поскольку количество молекул воздуха и топлива определяет потенциальную энергию, необходимую для опускания поршня во время такта сгорания, а также ввиду относительно постоянного давления атмосферы, в конечном счете будет установлен предел количеству воздуха и, следовательно, топлива, заполняющего поршень. камера сгорания.Эта способность наполнять цилиндр воздухом и есть его объемный КПД. Поскольку турбокомпрессор увеличивает давление в точке, где воздух поступает в цилиндр, а количество воздуха, подаваемого в цилиндр, в значительной степени зависит от времени и давления, по мере увеличения давления будет втягиваться больше воздуха. Давление на впуске при отсутствии турбонагнетателя, определяемое атмосферой, можно контролируемо повышать с помощью турбонагнетателя.

Применение компрессора для повышения давления в точке впуска воздуха в цилиндр часто называют принудительной индукцией.Центробежные нагнетатели работают так же, как турбо; однако энергия для вращения компрессора берется из выходной энергии вращения коленчатого вала двигателя, а не из выхлопных газов. По этой причине турбокомпрессоры в идеале более эффективны, поскольку их турбины на самом деле являются тепловыми двигателями, преобразующими часть кинетической энергии выхлопных газов, которая в противном случае была бы потрачена впустую, в полезную работу. Нагнетатели используют выходную энергию для достижения чистого выигрыша, который достигается за счет части общей мощности двигателя.

Компоненты

Турбокомпрессор состоит из четырех основных компонентов. Каждое колесо турбины и крыльчатки содержится в собственном сложенном коническом корпусе на противоположных сторонах третьего компонента, вращающегося узла центральной ступицы (CHRA).

Кожухи, установленные вокруг крыльчатки компрессора и турбины, собирают и направляют поток газа через вращающиеся колеса. Размер и форма могут определять некоторые рабочие характеристики всего турбонагнетателя. Площадь конуса к радиусу от центральной ступицы выражается как отношение (AR, A/R или A:R).Часто один и тот же базовый узел турбокомпрессора будет доступен у производителя с несколькими вариантами AR для корпуса турбины, а иногда и для крышки компрессора. Это позволяет разработчику системы двигателя адаптировать компромиссы между производительностью, реакцией и эффективностью в зависимости от применения или предпочтений. Оба корпуса напоминают раковины улиток, поэтому турбокомпрессоры иногда на сленге называют злыми улитками.

Размеры турбины и крыльчатки также определяют количество воздуха или выхлопных газов, которые могут проходить через систему, и относительную эффективность их работы.Как правило, чем больше колесо турбины и колесо компрессора, тем больше пропускная способность. Размеры и формы могут различаться, а также кривизна и количество лопастей на колесах.

Вращающийся узел центральной ступицы содержит вал, соединяющий рабочее колесо компрессора и турбину. Он также должен содержать систему подшипников для подвешивания вала, позволяющую ему вращаться с очень высокой скоростью с минимальным трением. Например, в автомобильных приложениях CHRA обычно использует упорный подшипник или шариковый подшипник, смазываемый постоянной подачей моторного масла под давлением.CHRA также можно считать «водяным охлаждением», поскольку он имеет точки входа и выхода для циркуляции охлаждающей жидкости двигателя. Модели с водяным охлаждением позволяют использовать охлаждающую жидкость двигателя для охлаждения смазочного масла, избегая возможного закоксовывания масла из-за сильного нагрева турбины.

Наддув

Наддув относится к увеличению давления в коллекторе, создаваемому турбокомпрессором во впускном тракте или, в частности, во впускном коллекторе, которое превышает нормальное атмосферное давление. Это также уровень наддува, показанный на манометре, обычно в барах, фунтах на квадратный дюйм или, возможно, в кПа.Это показатель дополнительного давления воздуха, которое достигается по сравнению с тем, которое было бы достигнуто без принудительной индукции. Давление во впускном коллекторе не следует путать с количеством или «весом» воздуха, который может подавать турбокомпрессор.

Давление наддува ограничено, чтобы вся система двигателя, включая турбонаддув, оставалась в расчетном рабочем диапазоне за счет управления перепускным клапаном, который отводит выхлопные газы от турбины со стороны выпуска. В некоторых автомобилях максимальный наддув зависит от октанового числа топлива и регулируется электронным способом с помощью датчика детонации, см. Автоматический контроль производительности (APC).

Многие дизельные двигатели не имеют перепускной заслонки, поскольку количество энергии выхлопа напрямую зависит от количества топлива, впрыскиваемого в двигатель, а небольшие изменения давления наддува не влияют на работу двигателя.

Wastegate

При вращении на относительно высокой скорости турбина компрессора всасывает большой объем воздуха и нагнетает его в двигатель. Когда объемный поток на выходе турбокомпрессора превышает объемный расход двигателя, давление воздуха во впускной системе начинает расти, что часто называют наддувом.Скорость, с которой вращается узел, пропорциональна давлению сжатого воздуха и общей массе перемещаемого воздушного потока. Поскольку турбодвигатель может вращаться до оборотов, намного превышающих необходимые или безопасные, скорость необходимо контролировать. Вестгейт — наиболее распространенная механическая система управления скоростью, которая часто дополняется электронным регулятором наддува. Основная функция вестгейта — позволить части выхлопных газов обходить турбину при достижении заданного давления на впуске.

Топливная эффективность

Так как турбокомпрессор увеличивает удельную мощность двигателя, двигатель также производит больше отработанного тепла. Иногда это может быть проблемой при установке турбокомпрессора на автомобиль, который не предназначен для работы с высокими тепловыми нагрузками. Это дополнительное отработанное тепло в сочетании с более низкой степенью сжатия (точнее, степенью расширения) двигателей с турбонаддувом способствует несколько более низкому тепловому КПД, что оказывает небольшое, но прямое влияние на общую эффективность использования топлива.

Еще одна форма охлаждения, оказывающая наибольшее влияние на эффективность использования топлива: охлаждение заряда. Даже с учетом преимуществ промежуточного охлаждения общая компрессия в камере сгорания больше, чем в атмосферном двигателе. Чтобы избежать детонации при одновременном извлечении максимальной мощности из двигателя, обычной практикой является добавление дополнительного топлива в заряд с единственной целью охлаждения. Хотя это кажется нелогичным, это топливо не сжигается. Вместо этого он поглощает и уносит тепло, когда переходит из фазы жидкого тумана в пар газа.Кроме того, поскольку он плотнее другого инертного вещества в камере сгорания, азота, он имеет более высокую удельную теплоемкость и большую теплоемкость. Он «держит» это тепло до тех пор, пока оно не выделится в потоке выхлопных газов, предотвращая разрушительный стук. Это термодинамическое свойство позволяет производителям достигать хорошей выходной мощности на обычном насосном топливе за счет экономии топлива и выбросов. Оптимальное соотношение воздух-топливо (A/F) для полного сгорания бензина составляет 14,7:1. Обычное соотношение A/F в двигателе с турбонаддувом при полном расчетном наддуве составляет примерно 12:1.Иногда используются более богатые смеси, когда в конструкции системы есть недостатки, такие как каталитический нейтрализатор, который имеет ограниченную выносливость при высоких температурах выхлопных газов, или двигатель имеет слишком высокую степень сжатия для эффективной работы с заданным топливом.

Наконец, эффективность самого турбокомпрессора может влиять на эффективность использования топлива. Использование небольшого турбонагнетателя даст быстрый отклик и небольшую задержку на низких и средних оборотах, но может задушить двигатель на стороне выпуска и создать огромное количество тепла, связанного с насосом, на стороне впуска при повышении оборотов.Большой турбонагнетатель будет очень эффективен при высоких оборотах, но не является реальным применением для уличного автомобиля. Технологии с регулируемыми лопастями и шарикоподшипниками могут сделать турбонаддув более эффективным в более широком рабочем диапазоне, однако другие проблемы не позволили этой технологии появиться в большем количестве дорожных автомобилей (см. Турбокомпрессор с изменяемой геометрией ). В настоящее время Porsche 911 (997) Turbo является единственным производимым бензиновым автомобилем с турбокомпрессором такого типа. Одним из способов использования преимуществ различных режимов работы двух типов турбонагнетателей является последовательный турбонаддув, в котором используется небольшой турбонагнетатель при низких оборотах и ​​больший при высоких оборотах.

Системы управления двигателем большинства современных автомобилей могут контролировать наддув и подачу топлива в зависимости от температуры заряда, качества топлива и высоты над уровнем моря, а также других факторов. Некоторые системы более сложны и нацелены на более точную подачу топлива в зависимости от качества сгорания. Например, система Trionic-7 от Saab обеспечивает немедленную обратную связь о возгорании, когда оно происходит, с помощью электрического заряда.

Новый 2,0-литровый двигатель FSI с турбонаддувом от Volkswagen/Audi включает в себя технологию сжигания обедненной смеси и непосредственный впрыск для экономии топлива в условиях низкой нагрузки.Это очень сложная система, включающая множество движущихся частей и датчиков для управления характеристиками воздушного потока внутри самой камеры, что позволяет использовать послойный заряд с превосходным распылением. Непосредственный впрыск также имеет огромный эффект охлаждения наддува, что позволяет двигателям использовать более высокие степени сжатия и давления наддува, чем типичный турбодвигатель с портовым впрыском.

Детали автомобильной конструкции

Закон идеального газа гласит, что если все остальные переменные остаются постоянными, то при повышении давления в системе увеличивается и температура.Здесь существует одно из негативных последствий турбонаддува — повышение температуры воздуха, поступающего в двигатель за счет сжатия.

Турбина вращается очень быстро; максимальный пик составляет от 80 000 до 200 000 об / мин (с использованием малоинерционных турбин, 150 000–250 000 об / мин) в зависимости от размера, веса вращающихся частей, развиваемого давления наддува и конструкции компрессора. Такие высокие скорости вращения могут вызвать проблемы со стандартными шарикоподшипниками, что приведет к выходу из строя, поэтому в большинстве турбонагнетателей используются жидкостные подшипники.Они имеют текущий слой масла, который подвешивает и охлаждает движущиеся части. Масло обычно берется из контура моторного масла. В некоторых турбокомпрессорах используются невероятно точные шарикоподшипники, которые обеспечивают меньшее трение, чем жидкостные подшипники, но они также подвешены в демпфированных жидкостью полостях. Более низкое трение означает, что вал турбокомпрессора может быть изготовлен из более легких материалов, что уменьшает так называемую турбо-задержку или задержку наддува. Некоторые автопроизводители используют турбокомпрессоры с водяным охлаждением для увеличения срока службы подшипников. Это также может объяснить, почему многие тюнеры модернизируют свои стандартные турбины с опорным подшипником (например, T25), в которых используется упорный подшипник с углом поворота 270 градусов и латунный подшипник скольжения, который имеет только 3 масляных канала, до подшипника с поворотом на 360 градусов, который имеет более мощный упорный подшипник. и шайба с 6 масляными каналами для улучшения потока, отклика и эффективности охлаждения.Турбокомпрессоры с фольгированными подшипниками находятся в разработке. Это устранит необходимость в системах охлаждения подшипников или подачи масла, тем самым устранив наиболее распространенную причину отказа, а также значительно уменьшив турбо-задержку.

Для управления давлением воздуха на верхней палубе поток выхлопных газов турбонагнетателя регулируется перепускным клапаном, который перепускает избыточные выхлопные газы, поступающие в турбину турбонагнетателя. Он регулирует скорость вращения турбины и мощность компрессора. Вестгейт открывается и закрывается сжатым воздухом от турбины (давление на верхней палубе) и может подниматься с помощью соленоида для регулирования давления, подаваемого на мембрану вестгейта.Этим соленоидом можно управлять с помощью автоматического контроля производительности, электронного блока управления двигателем или компьютера управления наддувом. Другой метод повышения давления наддува заключается в использовании обратных и выпускных клапанов, чтобы поддерживать давление на мембране ниже, чем давление в системе. Некоторые турбокомпрессоры (обычно называемые турбокомпрессорами с изменяемой геометрией) используют набор лопастей в корпусе выхлопной трубы для поддержания постоянной скорости газа на турбине, такой же тип управления, который используется на турбинах силовых установок.Эти турбокомпрессоры имеют минимальное запаздывание, имеют низкий порог наддува (с полным наддувом до 1500 об / мин) и эффективны при более высоких оборотах двигателя; они также используются в дизельных двигателях. [2] Во многих конфигурациях этим турбинам даже не нужен вестгейт. Мембрана, идентичная мембране вестгейта, управляет лопастями, но требуемый уровень контроля немного отличается.

Первым серийным автомобилем, в котором использовались эти турбины, был выпущенный ограниченным тиражом Shelby CSX-VNT 1989 года, по сути, Dodge Shadow, оснащенный двигателем 2.Бензиновый двигатель 2л. В Shelby CSX-VNT использовалась турбина Garrett, названная VNT-25, потому что в ней используется тот же компрессор и вал, что и в более распространенном Garrett T-25. Этот тип турбины называется турбиной с регулируемым соплом (VNT). Производитель турбокомпрессоров Aerocharger использует термин «турбинное сопло с переменным сечением» (VATN) для описания этого типа турбинного сопла. Другие общие термины включают турбину с изменяемой геометрией (VTG), турбину с изменяемой геометрией (VGT) и турбину с изменяемой лопастью (VVT). В 1990 году этот турбокомпрессор использовался в ряде других автомобилей Chrysler Corporation, включая Dodge Daytona и Dodge Shadow.Эти двигатели производили 174 лошадиных силы и 225 фунт-футов крутящего момента, ту же мощность, что и стандартные 2,2-литровые двигатели с промежуточным охлаждением, но с крутящим моментом на 25 фунт-футов больше и более быстрым началом (меньше турбо-запаздывание). Однако двигатель Turbo III без VATN или VNT выдавал 224 лошадиные силы. Причины, по которым Chrysler не продолжает использовать турбокомпрессоры с изменяемой геометрией, неизвестны, но основной причиной, вероятно, было стремление общественности к двигателям V6 в сочетании с увеличением доступности двигателей V6, разработанных Chrysler.[3] Porsche 911 Turbo 2006 года оснащен 3,6-литровым оппозитным шестицилиндровым двигателем с двойным турбонаддувом, а также используемыми турбинами BorgWarner с изменяемой геометрией (VGT). Это важно, потому что, хотя VGT уже несколько лет используются на передовых дизельных двигателях и на Shelby CSX-VNT, эта технология впервые применяется на серийном бензиновом автомобиле с тех пор, как в 1989 году было произведено 1250 двигателей Dodge. 90. Некоторые утверждали, что это связано с тем, что в бензиновых автомобилях температура выхлопных газов намного выше (чем в дизельных автомобилях), и это может оказать неблагоприятное воздействие на тонкие подвижные лопасти турбонагнетателя; эти агрегаты также дороже, чем обычные турбокомпрессоры.Инженеры Porsche утверждают, что решили эту проблему с новым 911 Turbo.

Существует также тип турбонагнетателя, называемый центробежным (или просто с ременным приводом), он в чем-то похож на стандартный турбонагнетатель, а в чем-то на нагнетатель. Поскольку он имеет ременный привод (выхлоп не используется), задержки никогда не бывает, однако наддув не является «бесплатным», как со стандартным турбонаддувом. «Цена» — это дополнительное сопротивление кривошипу, что приводит к потере эффективности. Преимущества: отсутствие задержек, простота настройки, поскольку не требуются модификации выхлопной системы, и, вероятно, более легкий доступ для обслуживания.

Как работает дизельный резервный генератор? —

Генераторы

обеспечивают непрерывный поток электроэнергии для любого здания или оборудования в любом месте в любое время.

Дизель-генераторы

служат для различных целей, в том числе для личного пользования. Вы думали об инвестировании в резервный генератор? Вот подробнее о том, как они работают и какую пользу они могут вам принести!

Что такое дизельный резервный генератор?

Дизельный резервный генератор, также известный как генераторная установка, представляет собой часть оборудования, состоящую из дизельного двигателя и электрического генератора/генератора переменного тока.Эти два элемента работают вместе, чтобы преобразовать дизельное топливо в электрическую энергию. Оттуда любой, кому требуется электричество, может получить к нему доступ, даже если он не подключен к электросети.

Большинство резервных дизель-генераторов являются дополнительным источником энергии. Их цель — включить и обеспечить вас электроэнергией, если ваша электросеть выйдет из строя во время шторма или в часы пик.

 

Как работает дизельный резервный генератор?

Дизельный резервный генератор использует дизельное топливо в качестве источника топлива.Дизель горит при гораздо более высокой температуре по сравнению с другими источниками топлива, что делает его более эффективным и мощным.

Двигатель преобразует топливо в механическую энергию. Эта энергия приводит в действие генератор переменного тока, вращая ротор генератора переменного тока, который преобразует механическую энергию в электрическую.

Помимо ротора генератор содержит статор и магнитное поле между ними. Ротор будет вращаться через это магнитное поле, создавая напряжение за счет электромагнитной индукции на статоре.При подключении к нагрузке напряжение от статора будет течь в виде электрического тока, который позволяет генератору обеспечивать мощность.

Дизель-генератор работает так:

  • Воздух поступает в генератор до тех пор, пока он не сжимается, а затем впрыскивается дизельное топливо
  • Комбинация сжатого воздуха и дизельного топлива вызывает воспламенение воздуха, запуская генератор
  • Тепло от двигателя преобразуется в механическую энергию, где оно поступает в генератор переменного тока и преобразует энергию в электричество

Резервный дизельный генератор может работать часами, днями и даже неделями при надлежащем обслуживании и подаче топлива.

Свяжитесь с компанией Central States Diesel Generators уже сегодня.


Позвоните нам! 262-955-7655 | (М) 847-997-8090|[email protected]

Элементы резервного генератора

Мощные компоненты генератора нуждаются в корпусе и нескольких других компонентах, чтобы обеспечить бесперебойную работу генератора.

Генератор содержит двигатель, генератор переменного тока и другие мелкие компоненты в корпусе из стали или алюминия.Это защищает генератор от элементов, а также приглушает шум. Корпус должен способствовать охлаждению генератора и быть устойчивым к коррозии.

Другие части генератора включают аварийный автоматический переключатель и панель управления. Основание генератора опирается на антивибрационную систему для снижения шума и защиты целостности генератора.

В топливном баке хранится дизельное топливо. В зависимости от типа генератора в корпусе может находиться топливный бак или он может быть отдельным.

Портативный и резервный генератор

Генераторы

бывают разных размеров и мощностей в зависимости от их назначения. Большие резервные портативные генераторы, используемые для питания целых больниц в чрезвычайных ситуациях, намного больше, чем портативный генератор, который вы используете для своего кемпера. Два основных типа генераторов, с которыми вы столкнетесь, — это портативные и резервные генераторы.

Портативные и дизельные резервные генераторы

могут выполнять ту же задачу, обеспечивая питание, когда вы находитесь вне сети.Когда дело доходит до удобства и стоимости, резервный и портативный генераторы имеют разные преимущества и недостатки.

Портативные автономные дизельные генераторы

Портативные генераторы обычно стоят дешевле, производят меньше энергии и, как правило, более шумные, чем их резервные дизельные аналоги. Большинство из них используют бензин в качестве источника топлива, но вы можете найти и такие, которые работают на дизельном топливе, сжиженном пропане или природном газе. В зависимости от размера генератора он может сжигать от 12 до 20 галлонов топлива в день.

Преимущество переносного генератора в том, что его можно относительно легко перемещать. Вы можете держать их в безопасности и вне поля зрения в хранилище, когда вы их не используете. Они потребуют, чтобы вы вручную подключили их к вашему дому или кемперу через переключатели.

Если вам необходимо использовать портативный генератор в ненастную погоду, вам необходимо накрыть его защитным покрытием.

Резервные генераторы

Наиболее заметная разница между переносным и резервным генератором заключается в том, что последний является стационарным.Профессионал навсегда установит их с защитой от атмосферных воздействий за пределами вашего дома, офиса или рабочего места.

Самым большим преимуществом резервного генератора является то, что он автоматически включается при отключении питания. Эти генераторы обеспечивают достаточную мощность, чтобы вы могли одновременно запитать все в вашем доме или на рабочем месте.

Резервные дизельные генераторы

более эффективны благодаря топливу, позволяющему им работать дольше. Варианты с природным газом и пропаном могут работать еще дольше.

Более высокий уровень мощности и эффективности, предлагаемый дизельными резервными генераторами, имеет высокую цену. За дополнительную плату вы получаете надежность, удобство и более производительный генератор. Другие изгибы дизельного резервного генератора включают:

  • Топливная эффективность
  • Надежность
  • Масштабируемая конструкция
  • Локальное и удаленное использование
  • Автоматический контроль загрузки
  • Надежная сборка
  • Низкий уровень выбросов

Несмотря на отличные характеристики, большинство людей выбирают портативный генератор из-за его цены.Если вам нужно что-то более мощное и долговечное для вашего дома или бизнеса, лучшим выбором будет дизельный резервный генератор.

Использование резервного переносного генератора

Дополнительная мощность и надежность дизельного резервного генератора позволяют ему работать в самых разных ситуациях и при использовании. Несколько вариантов использования генератора включают:

  • Обеспечение резервного питания вашего дома
  • Энергия для вашего бизнеса
  • Сельское хозяйство, фермерство и животноводство
  • Предложение электроэнергии в отдаленных районах
  • Предложение энергии для особых мероприятий, таких как свадьбы и концерты
  • Кемпинг
  • Горнодобывающая промышленность
  • Ярмарки и карнавалы
  • Праздничные дисплеи
  • Катание на лодках

Дизельные генераторы идеально подходят для любой ситуации, когда вам нужна электроэнергия, но вы не можете подключиться к обычной электросети.

Найдите резервные дизельные генераторы уже сегодня!

Вы ищете надежный источник питания для работы дома или на работе? Дизельный резервный генератор предлагает множество преимуществ, разработанных для удовлетворения практически любых потребностей с дополнительным удобством. Инвестирование в резервный дизельный генератор обеспечит бесперебойную работу вашего дома или офиса.

Есть вопросы или хотите узнать больше о генераторах, которые мы предлагаем? Свяжитесь с нами сегодня! Мы будем рады помочь вам со всеми вашими потребностями в генераторе.

Турбокомпрессор: определение, функции, части, типы, работа

Слышали ли вы о высокомощном входном устройстве в двигателе внутреннего сгорания, ну секрет турбокомпрессора . Он также известен как turbo , который был изобретен в начале двадцатого века инженером из Швейцарии Альфредом Бучи. Он представил прототип для увеличения мощности дизельных двигателей.

Сегодня турбонаддув стал стандартным устройством для большинства бензиновых и дизельных двигателей.Все еще продолжаются исследования способов улучшения конструкции турбокомпрессоров для повышения производительности при снижении производственных затрат. Даже несмотря на то, что напряжения, вызванные вибрацией, и работа подшипников являются основными факторами отказа. По этой причине ротодинамический анализ должен быть важной частью процесса проектирования турбокомпрессора, ну, может быть!

В автомобильном двигателе мощность вырабатывается в камере сгорания при всасывании топливно-воздушной смеси, верно! После сжатия смесь выбрасывается в виде выхлопных газов, которые становятся отходами и даже загрязняют атмосферу.Но вместо того, чтобы выхлопные газы были бесполезными, турбокомпрессор использует их, чтобы двигатель работал быстрее. Позволь мне объяснить.

Читать Все, что вам нужно знать об автомобильном поршне

Сегодня мы рассмотрим определение, функции, применение, детали, историю, схему, типы, принцип работы, а также преимущества и недостатки турбокомпрессора. Эта статья широка, поэтому я призываю вас прочитать ее, чтобы получить знания.

Турбокомпрессор Определение

Турбокомпрессор представляет собой приводное от турбины устройство индукции силы, которое повышает эффективность и выходную мощность двигателей внутреннего сгорания за счет нагнетания дополнительного сжатого воздуха в камеру сгорания.Эта индукция горячего воздуха, кажется, работает, потому что компрессор может нагнетать больше воздуха и пропорционально больше топлива в камеру сгорания, чем при нормальном атмосферном давлении.

Турбокомпрессор — это устройство, установленное на двигателе транспортного средства для повышения общей эффективности и повышения производительности двигателя. турбокомпрессоры первоначально были известны как турбонагнетатели , так как все устройства принудительной индукции классифицируются как нагнетатели. Нагнетатель — это термин, обозначающий устройство принудительной индукции с механическим приводом.

Разница между турбокомпрессором и обычным нагнетателем заключается в том, что турбокомпрессор приводится в действие турбиной, приводимой в движение выхлопными газами двигателя. Принимая во внимание, что нагнетатель механически приводится в действие коленчатым валом двигателя, часто связанным с ремнем. Однако турбонагнетатели более эффективны, но менее отзывчивы. Термин Twin-charger относится к двигателю с турбонагнетателем и нагнетателем.

Прочтите Вещи, которые вы должны знать о шатуне

История

Краткая история турбокомпрессоров, заслуга основателя Альфреда Дж. Бучи (1879–1932), который работал в автомобильной мастерской компании Gebruder Sulzer Engine Company в Винтертуре, Швейцария.Проект был разработан за год до первой мировой войны и был запатентован в Германии в 1905 году. Он продолжал совершенствовать проект до самой своей смерти спустя четыре десятилетия.

Некоторые другие инженеры также заслуживают похвалы за проект турбокомпрессора. Несколькими годами ранее сэр Дугальд Кларк (1854–1932) был шотландским изобретателем двухтактного двигателя. он экспериментировал с разделением стадий сжатия и расширения внутреннего сгорания с помощью двух отдельных цилиндров.

Его эксперимент работал как наддув, увеличивая как потоки воздуха в цилиндры, так и количество топлива, которое можно было сжечь.Другие инженеры, такие как Луи Рено, Готлиб Даймлер и Ли Чедвик, также принимают участие в разработке систем наддува.

Функции турбонагнетателя

Основной функцией турбокомпрессора является повышение эффективности работы автомобильного двигателя. ниже приведены причины, по которым турбо всегда будет существовать, несмотря на некоторые его ограничения.

  • Дополнительная тяга обеспечивается без увеличения мощности двигателя.
  • Увеличить скорость работы двигателя без увеличения скорости сжигания топлива.
  • Используйте оксид углерода II (выхлопной газ) вместо того, чтобы вызывать загрязнение.

Применение турбокомпрессора

Турбокомпрессор обычно используется в автомобильных двигателях, таких как грузовики, автомобили, поезда, самолеты и строительная техника. современные версии двигателей внутреннего сгорания с циклом Отто и дизельным двигателем оснащены турбонагнетателями.

Позвольте углубиться, чтобы объяснить некоторые области применения турбокомпрессоров:

Автомобили с бензиновыми и дизельными двигателями: Как упоминалось ранее, автомобили с турбонаддувом распространены среди автомобилей с бензиновыми и дизельными двигателями для увеличения их выходной мощности при заданной мощности.Это также повышает эффективность использования топлива, позволяя использовать двигатель меньшего объема. Эти двигатели потеряли в весе около 10% и экономят до 30% расхода топлива, сохраняя при этом ту же пиковую мощность.

Первым легковым автомобилем с турбонаддувом стал вариант Oldsmobile Jetfire. Он использует компонент до 215 у.е. во всех алюминиевых двигателях V8 и в продуктах Chevrolet, называемых Corvairs. Первоначально он назывался Monza Spyder с охлаждаемым оппозитным шестицилиндровым двигателем.

Автомобили с дизельным двигателем

в значительной степени полагаются на турбокомпрессор, поскольку он повышает эффективность, управляемость и производительность дизельных двигателей.Выпускается на базе легкового автомобиля Mercedes с турбонаддувом Garrett, представленного в 1978 году.

Грузовые автомобили: С той же целью дизельные двигатели грузовых автомобилей с 1938 года оснащаются турбонаддувом.

Самолет: В течение года действие турбокомпрессора также увеличивает эффективность самолетов.

Мотоциклы: Большинство японских компаний производили высокопроизводительные мотоциклы с турбонаддувом с начала 1980-х годов. Хотя мотоциклов с турбонаддувом мало, это из-за обилия большего рабочего объема.Доступен безнаддувный двигатель, который предлагает преимущества крутящего момента и мощности двигателя меньшего объема с турбонагнетателем, но обеспечивает более линейные характеристики мощности.

Читайте: Компоненты двигателя внутреннего сгорания

Детали турбокомпрессоров

Ниже приведены основные части турбокомпрессора и их функции:

  • Картриджи (полностью собранные и сбалансированные сердечники турбонагнетателя)
  • Вакуумные приводы и пневматические приводы
  • Электронные приводы (электрические сервоприводы)
  • Корпуса компрессора (корпуса холодной секции/детали турбокомпрессора)
  • Ремкомплекты турбокомпрессора (ЗИП/комплекты для оперативного мелкого ремонта)
  • Колеса компрессора (колеса компрессора турбокомпрессора)
  • Вал и колеса (валы турбонагнетателей с турбинным колесом, роторы турбин)
  • Корпуса сопловых колец (Корпуса для элементов управления геометрией ВНТ)
  • Корпуса подшипников (корпуса картриджей, корпуса турбодвигателей)
  • Задние пластины (пластина сердечников турбокомпрессора со стороны компрессора)
  • Кольца форсунок ВНТ (Кольца с форсунками для турбокомпрессоров ВНТ, узлов контроля геометрии ВНТ)
  • Тепловые экраны (тепловые экраны сердцевины турбокомпрессора)
  • Комплекты прокладок (комплекты/комплекты прокладок турбокомпрессора)
  • Датчики привода (датчики давления, датчики положения
  • Прокладки ВНТ (внутренние прокладки для турбокомпрессоров ВНТ)
  • Корпуса турбины (корпуса горячей секции/детали турбокомпрессора)
  • Детали электронных приводов (электродвигатели, валы, шестерни сервоприводов турбокомпрессоров).

Типы турбокомпрессоров

Ниже приведены различные типы существующих турбокомпрессоров:

Одинарная турбина:

Одинарный турбокомпрессор — это самый простой, наиболее распространенный и дешевый тип турбокомпрессора из существующих. Он имеет безграничную вариативность и, будучи меньшим турбонаддувом, обеспечивает лучшее рычание на низких оборотах, поскольку они раскручиваются быстрее. Одинарная турбина имеет шарикоподшипник и подшипник скольжения, которые обеспечивают меньшее трение для вращения компрессора и турбины.

Преимущества одиночных турбонагнетателей заключаются в том, что двигатели меньшего размера также могут быть оснащены турбонаддувом, также учитывается экономичность, простота и простота установки. Это также увеличивает КПД двигателя.

Некоторые ограничения по-прежнему имеют место, несмотря на его преимущества, в том числе; имеет довольно узкий эффективный диапазон оборотов. Одиночные турбины делают выбор размера проблемой, поскольку приходится выбирать между большей мощностью на высоких оборотах или хорошим крутящим моментом на низких оборотах. Наконец, отклик может быть медленным по сравнению с другими типами турбо.

Двойные турбины:

Твин-турбо — еще один вариант, который позволяет использовать один турбонагнетатель для каждого ряда цилиндров (v8, v12 и т. д.). В качестве альтернативы можно использовать один турбокомпрессор для низких оборотов и байпас на более крупный турбокомпрессор для высоких оборотов. Две турбины одинакового размера, одна из которых используется при низких оборотах, а обе — при более высоких (14, 16). BMW x5 M и x6 M используют турбины с двойной спиралью, по одной с каждой стороны v8.

Преимущество двойного турбонаддува, когда он последовательный или с турбонаддувом на низких оборотах и ​​оба на высоких оборотах.Это обеспечивает более широкую и плоскую кривую крутящего момента, лучший крутящий момент на низких оборотах, но мощность не будет уменьшаться на высоких оборотах, как одиночная турбина. Ограничения этих турбокомпрессоров включают стоимость и сложность, поскольку количество компонентов почти удваивается. И есть другие альтернативы для достижения аналогичного результата, которые легче.

Читайте: Разница между бензиновым и дизельным двигателем

Турбина Twin-Scroll:

Турбокомпрессоры с двойной спиралью почти во всех отношениях лучше, чем турбины с одной спиралью, потому что при использовании двух спиралей импульсы выхлопа разделяются.Например, в четырехцилиндровых двигателях с порядком работы 1 3 4 2 цилиндры 1 и 4 могут питаться от одной спирали турбокомпрессора. Тогда как цилиндры 2 и 3 питаются от отдельной спирали. Назначение этих типов турбокомпрессора состоит в том, что в цилиндре имеется перекрытие. Допустим, цилиндр заканчивает свой рабочий ход, когда поршень достигает нижней мертвой точки, и выпускной клапан открывается. За это время второй цилиндр завершает такт выпуска, закрывая клапан и открывая впускной клапан.

Традиционный турбоколлектор с одной спиралью совершенно другой, давление выхлопа из первого цилиндра будет мешать второму цилиндру, втягивающему свежий воздух, из-за того, что оба выпускных клапана временно открыты.Это снижает давление, достигаемое турбонагнетателем, и влияет на количество воздуха, всасываемого вторым цилиндром.

Преимущества турбокомпрессора заключаются в том, что больше энергии передается на выхлопную турбину и достигается более широкий диапазон оборотов эффективного наддува. Это связано с разным дизайном прокрутки. По сути, перекрытие клапанов больше, не мешая очистке выхлопных газов, что приводит к большей гибкости настройки.

Ограничения

заключаются в том, что стоимость и сложность выше по сравнению с одинарными турбинами, и для этого требуется особая компоновка двигателя и конструкция выхлопа.

Турбокомпрессор с изменяемой геометрией (VGT):

Типы турбонагнетателя с изменяемой геометрией распространены на дизельных двигателях и их производство ограничено. Это связано с его стоимостью и экзотическими требованиями к материалам. Внутренние лопасти внутри турбонагнетателя изменяют отношение площади к радиусу A/R в соответствии с частотой вращения. То есть при низких оборотах низкое отношение A/R используется для увеличения скорости выхлопных газов и быстрого запуска турбонагнетателя. Если обороты растут, соотношение A/R увеличивается, чтобы увеличить поток воздуха, что приводит к низкой турбо-задержке.Это также приводит к низкому порогу наддува и широкому и плавному диапазону крутящего момента.

Преимущество этого типа турбонаддува заключается в том, что создается широкая и плоская кривая крутящего момента. Который эффективен в очень широком диапазоне оборотов. Для этого требуется одиночный турбонаддув, что упрощает установку последовательного турбонаддува в нечто более компактное. Его ограничения заключаются в том, что он используется только в дизельных двигателях, где выхлопные газы ниже, поэтому лопасти не будут разрушены головкой. При использовании турбонаддува на бензиновом двигателе будут использоваться дорогостоящие экзотические металлы для сохранения надежности.

Турбокомпрессор с регулируемой спиралью Twin Scroll:

Регулируемый турбонаддув с двойной спиралью значительно дешевле, чем VGT, что делает его предпочтительным выбором для бензиновых двигателей с турбонаддувом. Он сочетает в себе VGT с установкой с двойной спиралью, таким образом, при низкой частоте вращения одна из спиральных витков полностью закрывается, нагнетая весь воздух в другую. По мере увеличения оборотов двигателя клапан открывается, пропуская воздух в другую спираль, и достигается хорошая производительность высокого класса.

Преимущества турбокомпрессора заключаются в том, что он обеспечивает широкую и пологую кривую крутящего момента и имеет более прочную конструкцию, чем VGT.Стоимость и сложность также являются его ограничениями, а технология раньше была нежелательной.

Электрические турбонагнетатели:

Использование электродвигателя в турбокомпрессоре улучшает его характеристики и обеспечивает мгновенную форсировку двигателя. Легко создается крутящий момент на низких оборотах, устраняется запаздывание. Этот турбокомпрессор просто лучший из всех, возможно, новая версия сможет его сбить.

его преимущества заключаются в том, что создается более широкий эффективный диапазон оборотов с равномерным крутящим моментом.Потраченная энергия восстанавливается, поскольку электродвигатель подключается непосредственно к выхлопной турбине. И, как упоминалось ранее, турбо-задержку и недостаточное количество выхлопных газов можно практически устранить, вращая компрессор с помощью электроэнергии, когда это необходимо.

Сложность и стоимость являются одним из недостатков турбокомпрессора, так как теперь учитывается электродвигатель. Упаковка и вес также являются проблемой, особенно с добавлением встроенной батареи, которая при необходимости обеспечивает достаточную мощность для турбонаддува.Аналогичные преимущества можно получить и от других типов, таких как VGT или Twin-Scrolls.

Принцип действия

Имея базовые знания о том, как работает реактивный двигатель, разобраться в автомобилях с турбокомпрессором будет намного проще. Поясню, реактивный двигатель всасывает свежий воздух спереди и использует его в камере для смешивания и сжигания с топливом. Затем он выпускает горячий воздух через спину. Горячий рев проносится мимо турбины, сделанной из компактного металлического ветряка, который приводит в действие компрессор (воздушный насос) в передней части двигателя.двигатель использует его для подачи воздуха в двигатель, чтобы топливо сгорало должным образом.

Аналогичный процесс применяется к турбокомпрессору автомобильного поршневого двигателя. выхлопные газы используются для привода турбины, которая вращает воздушный компрессор, нагнетающий дополнительный воздух в цилиндры. Это приводит к тому, что за секунду сжигается больше топлива, поэтому автомобиль с турбонаддувом может производить больше энергии. Это больше энергии в секунду.

Турбокомпрессоры состоят из двух половин, соединенных между собой валом. В одном из них находится турбина, которая вращается за счет горячих выхлопных газов, в другом также находится турбина, которая всасывает воздух и сжимает его в двигателе.Это сжатие обеспечивает дополнительную мощность и эффективность двигателя. Чем больше воздуха поступает в камеру сгорания, тем больше топлива добавляется, что дает дополнительную мощность.

Обратите внимание, что сжатый воздух горячий, менее плотный и поднимается над радиаторами. Этот горячий воздух менее эффективен для сжигания топлива. Из-за этого воздух, поступающий от компрессора, перед поступлением в цилиндры нуждается в охлаждении. Вот почему горячий воздух от компрессора проходит через теплообменник, который отводит лишнее тепло, прежде чем он попадет в камеру сгорания.

Читайте: Классификация двигателей внутреннего сгорания

Откуда берется дополнительная сила и сколько можно получить

Большинство людей думают, что газотурбинный двигатель дает дополнительную мощность за счет выхлопных газов, но это не так. Выхлопной газ используется для привода компрессора, который подает воздух в камеру сгорания, позволяя двигателю каждую секунду сжигать больше топлива. Дополнительная мощность получается за счет дополнительного топлива, которое сжигается с большей скоростью.

Количество дополнительной мощности, которую дает турбонагнетатель, определяется размером компонентов.Турбокомпрессоры могут быть улучшены, чтобы сделать двигатель более мощным, в зависимости от желаемой мощности. Но есть предел совершенствованию. Цилиндры настолько велики, что они могут получить много воздуха и топлива для смешивания.

Преимущества и недостатки турбокомпрессоров

Преимущества:

Ниже приведены преимущества турбокомпрессоров:

  • Двигателю предлагается дополнительная мощность.
  • Свободная мощность передается двигателю за счет отработанных выхлопных газов.для его привода не требуется мощность двигателя.
  • Используется как в дизельных, так и в бензиновых двигателях.
  • Повышение топливной экономичности двигателей.

Недостатки:

Несмотря на преимущества турбонагнетателей, все же имеют место два основных ограничения. Ниже приведены недостатки турбокомпрессора:

Одна из серьезных проблем с турбокомпрессором известна как турбозадержка. Это произошло, когда дроссельная заслонка нажата, двигателю требуется время, чтобы разогнаться.То есть турбонагнетателям нужно время, чтобы отразить обороты двигателя.

Когда частота вращения двигателя низкая, выхлопных газов недостаточно, чтобы раскрутить компрессор и обеспечить необходимую мощность. Требуемый выхлоп будет создаваться после нажатия на педаль газа. Этот эффект уменьшается при переключении на более низкую передачу, но опытные водители иногда замечают задержку отклика.

Второе ограничение турбонагнетателей не возникает в условиях повседневной езды. Это происходит только тогда, когда двигатель доведен до предела.Тепло, выделяемое выхлопными газами, сильно нагревается и заставляет турбокомпрессор светиться красным.

Вот почему большинство спортивных автомобилей с турбонаддувом имеют вентиляционные отверстия в нижней части двигателя. Это вентиляционное отверстие поддерживает постоянную циркуляцию воздуха и охлаждает детали.

Читайте: Работа и эффективность карданного вала

В заключение мы познакомили вас с различными функциями турбокомпрессоров.

Добавить комментарий

Ваш адрес email не будет опубликован.