Клапан двигателя. Назначение, устройство, конструкция
Это деталь двигателя и одновременно крайнее звено газораспределительного механизма. Клапанная группа включает в себя: пружину, направляющую втулку, седло, механизм крепления пружины. Все эти детали работают в тяжёлых механических и тепловых условиях, испытывая колоссальные нагрузки.
Сопряжение седло-клапан, подвергается наибольшему воздействию высоких температур и ударных нагрузок. Кроме того, детали постоянно испытывают недостаток в смазке по причине высоких скоростей работы. Это вызывает их интенсивный износ.
Требования, предъявляемые к группе:
- Герметичность работы клапана в сопряжении с седлом;
- Высокий коэффициент обтекаемости, при входе и выходе рабочей смеси из камеры сгорания;
- Небольшой вес деталей группы;
- Детали должны быть высокопрочными и одновременно жёсткими;
- Стойкость к высоким температурам;
- Эффективная теплоотдача клапанов;
- Высокое сопротивление механическим и ударным нагрузкам;
- Противодействие коррозии.
Назначение и особенности устройства
Назначение клапана, открывать и закрывать отверстия в головке блока цилиндров для выпуска отработанных газов либо впуска новой рабочей смеси. К основным элементам детали относятся головка и стержень. Переход от стержня к головке служит для плавного отвода газов, чем он плавней, тем лучше будет наполнение, либо очистка камеры сгорания.
Отработанные газы, выходя из камеры сгорания, создают сильное избыточное давление, а чем меньше площадь тарелки клапана, тем меньшие нагрузки он испытывает, вот почему выпускной клапан двигателя делается меньшего диаметра, а требования к нему выше. Так, при работе, головка выпускного клапана нагревается до 800-900.°С на бензиновых двигателях и до 500-700°С на дизельных моторах, впускной, нагревается до 300°С.
Именно по этим причинам при изготовлении выпускных клапанов нужны сплавы и материалы, обладающие повышенной жаропрочностью и содержащие большое количество легирующих присадок. Клапана делают из 2-х частей: головку из жаростойкого материала, стержень из углеродистой стали. Для изготовления клапана ДВС эти заготовки сваривают и шлифуют.
Выпускные клапана, в месте контакта с цилиндром, покрывают твёрдым сплавом. Толщина сплава порядка 1,5-2,5 мм. Такое покрытие позволяет избежать коррозии.
На эффективность работы клапана большое влияние оказывает его форма. Чем более она обтекаемая, тем выше скорость входящего или выходящего заряда смеси. Чаще всего головку клапана делают плоской, для облегчения изготовления детали, удешевления её производства и сохранения жёсткости.
Однако, в двигателях, испытывающих повышенные нагрузки, например, форсированных, в связи со спецификой самого двигателя применяют впускные клапана с вогнутыми головками. Такое устройство уменьшает массу детали и инерционную силу, возникающую при работе.
Стыковка клапана с седлом осуществляется по тонкому ободку на поверхности головки цилиндров — фаске. Стандартный угол наклона фаски впускных клапанов составляет 45°, у выпускных 45° или 30°. При изготовлении головок цилиндра фаски шлифуют, а затем, при установке клапана, каждый притирают к седлу. Ширина ободка должна быть не менее 0,8мм.
Ободок не должен прерываться по всему периметру окружности тарелки клапана. Сочленение между клапаном и седлом нужно уплотнить наверняка, вот зачем угол фаски клапана, по наружной стороне фаски, делают меньше угла седла на 0,5-1°.
В некоторых двигателях, для большей сохранности изделия, применяют устройство принудительного вращения клапана. В процессе работы на фасках откладывается нагар, нарушается уплотнение, появляются механические повреждения, это резко снижает эффективность работы мотора. Проворачиваясь, клапан ДВС распределяет нагрузку равномерно по всей поверхности фаски и принудительно очищает ее.
После фаски головки, у клапана имеется специальный поясок, в виде цилиндра. Эта конструктивная особенность позволяет уберечь его от перегрева и обгорания, а так же делает головку более жёсткой. Кроме того, при притирке, диаметр клапана остаётся прежним.
Пружинное стопорное кольцо предотвращает падение клапана в камеру сгорания двигателя, в случае, если элементы крепления хвостовика поломаются.
При соприкосновении с кулачком распределительного вала, или коромыслом, торцы клапана подвергаются большим нагрузкам. Поэтому для предания им жёсткости и износостойкости, их закаливают, или надевают на них специальные колпачки из высокопрочных сплавов.
Впускные клапана снабжают специальными резиновыми маслосъёмными колпачками, для предотвращения попадания через зазор масла в камеру сгорания в период такта впуска.
Выпускные клапана, работая в экстремальных температурных режимах, могут заклинить в отверстии направляющей втулки. Что бы этого не произошло, их стержни делают меньшего диаметра вблизи головки, по сравнению с поверхностью на остальной длине.
Сухарики, удерживающие клапанные пружины, держатся за сам клапан при помощи крепления, обеспеченного выточками.
Диаметр стержня выпускных клапанов больше диаметра стержня впускных, головка клапана — меньше. Такой конструктивный приём позволяет отвести от клапана больше тепла и понизить его температуру. Однако этот приём увеличивает сопротивление потока газов, делая очистку камеры сгорания менее эффективной. При расчётах, этот параметр сложно узнать, поэтому им пренебрегают, считая давление при выпуске большим, чем давление при впуске, что компенсирует недостаток с лихвой.
Для увеличения эффекта охлаждения выпускного клапана внутри его делают пустотелым. Пустое пространство заполняют металлом с низкой температурой плавления, обычно жидким натрием. Нагреваясь от головки клапана, пары жидкого натрия поднимаются в верхнюю, боле холодную часть, забирая большую часть тепла с собой. Там они соприкасаются с менее нагретой частью стержня и отдают тепло ей.
Пружины клапана
Пружина работает в условиях больших нагрузок. Основная её задача заключается в создании надёжной и плотной стыковки клапана и седла. Испытывая нагрузки, пружина может сломаться, зачастую это происходит по причине вхождения её в резонанс. С целью предотвращения этого явления, витки пружины делают с переменным шагом.
Так же можно изготовить коническую или двойную пружину. Двойные пружины обладают дополнительным плюсом, так как наличие двух деталей повышает надёжность механизма и уменьшает общий размер пружин.
Дабы исключить возможность резонанса в двойной пружине, направление витков внутренней и внешней пружин делают разными. Так же это позволяет удержать обломки детали, в случае поломки пружины, осколки задержатся между витками.
Пружины для клапанов изготавливают из проволоки, материал которой — сталь. После придания формы, изделие закаляют и подвергают отпуску. Для повышения прочности, обдувают воздухом с добавлением абразивного материала.
Что бы избежать коррозии, пружины обрабатывают оксидом цинка или кадмия. Концы пружин шлифуют и придают им плоскую форму. Это делается для более эффективной фиксации торцов пружин со специальными неподвижными тарелками в блоке цилиндров. Тарелки изготавливают из стали с низким содержанием углерода, верхнюю тарелку фиксируют на клапане при помощи сухарика.
Втулки клапанов и их направляющие
Отвод тепла от стержня клапана и его перемещение в возвратно поступательной плоскости обеспечивают направляющие втулки. В процессе работы сами втулки подвергаются воздействию высоких температур, омываясь горячими отработанными газами. При возвратно поступательном движении клапана между ним и поверхностью втулки возникает трение. Если смазки поступает не достаточно, то трение идёт практически на сухую.
Именно по этой причине к материалу втулок применяют ряд требований, таких, как: стойкость к износу, высоким температурам, трению. Некоторые составы чугуна, алюминиевая бронза, керамика обладают всеми свойствами, необходимыми для создания детали, удовлетворяющей таким требованиям.
Для впускных клапанов, в связи с разницей в температуре нагрева, зазоры между направляющей втулкой и стержнем делаются меньше. Нижнюю часть втулки делают под конус для предотвращения заклинивания клапана.
Выточки под клапана (седла)
Долговечность и правильная работа двигателя внутреннего сгорания напрямую зависят от качества изготовления выточки под клапана. При неправильной стыковке клапана и седла не будет обеспечиваться должная герметичность камеры сгорания, и скорый выход мотора из строя неизбежен. Седла изготавливают непосредственно в головке цилиндра, в данном случае речь идёт о чугунных головках. Либо делают их вставными, из стали, например, в алюминиевых головках.
Вставные седла удерживаются в головке путём запрессовки, или развальцовки.
Количество клапанов в двигателе
Современные силовые установки наиболее часто используют конструкцию с четырьмя клапанами (двух впускных и двух выпускных) на каждый цилиндр. При открытии клапана в образовавшееся отверстие происходит заброс топливной смеси, или выход отработанных газов. Чем больше отверстие, тем эффективней будет наполнение или очистка. Соответственно коэффициент полезного действия мотора так же увеличится.
Увеличить отверстие за счёт увеличения тарелки клапана нельзя, поскольку её размер ограничен размером камеры сгорания. Поэтому для улучшения качества смесеобразования устанавливают большее количество клапанов на один цилиндр.
Встречаются схемы, в которых применяются два, три, и даже пять клапанов на цилиндр. Учитывая, что процесс наполнения более важен для работы двигателя, количество впускных клапанов в нечётных схемах всегда больше.
Как работают клапана двигателя | REMRAI.RU
Клапан, который пропускает в цилиндр смесь воздуха и топлива, называется впускным. Клапан, через который отработанные газы покидают двигатель, называется выпускным. Для эффективной работы двигателя при любой скорости эти клапаны должны открываться в определенные моменты.
За этот процесс отвечают грушевидные детали (кулачки), которые крепятся к распределительному валу, вращающемуся под действием цепи, ремня или набора шестерен.
Распределительный вал может находиться в верхней части блока. В этом случае над каждым кулачком вала располагаются небольшие металлические цилиндры (толкатели). Когда конец толкателя упирается в коромысло, кулачок воздействует на ножку клапана, который удерживается в поднятом (закрытом) состоянии с помощью сильной пружины.
Двигатель с верхним расположением распределительного вала
В подобной конструкции вал, расположенный в верхней части двигателя, работает под управлением ремня с внутренними зубьями, и контуры кулачков напрямую взаимодействует с толкателями, расположенными над клапанами.
Когда толкатель давит на кулачок, он задействует коромысло, которое ослабляет пружину и открывает клапан. При дальнейшем вращении контура пружина возвращается в первоначальное положение, и клапан закрывается. Такая конструкция характерна для двигателя с верхним расположением клапанов в головке цилиндра.
В некоторых двигателях отсутствуют толкатели, и клапаны открываются и закрываются с помощью двойных или одинарных распределительных валов.
Такая конструкция носит название двигателя с одним распределительным валом и клапанами в головке. В ней меньше подвижных частей, поэтому она является более мощной и может работать на высоких скоростях. В любом случае, между деталями присутствует зазор, чтобы клапан мог свободно закрываться и открываться, когда те расширяются при нагревании.
Зазоры между ножкой клапана и коромыслом или кулачком необходимы для нормальной работы системы, а их отсутствие может вызвать серьезные повреждения составных частей.
При слишком большом зазоре клапаны будут открываться слишком рано, а закрываться слишком поздно, что снизит мощность двигателя и увеличит уровень производимого им шума.
При малом зазоре клапаны не будут нормально закрываться, что приведет к ослаблению компрессии.
В некоторых двигателях зазоры регулируются автоматически под давлением смазочной жидкости.
Распределительный вал с толкателями
При конструкции, согласно которой распределительный вал находится в блоке цилиндров, длинные штанги толкателей воздействуют на коромысла, открывающие клапаны. Двигатели с верхним расположением клапанов в головке цилиндра считаются менее эффективными, чем двигатели с одним распределительным валом и клапанами в головке, т.к. большое количество подвижных частей ограничивает скорость, при которой двигатель может безопасно работать.
В двигателе с верхним расположением распределительного вала и штангами коленчатый вал находится в головке цилиндров.
При вращении вала каждый клапан открывается с помощью толкателя, штанги и коромысла. Клапан удерживается в закрытом состоянии пружиной.
Количество зубьев на звездочке ведущей цепи в два раза превышает количество зубьев на шестерне распределительного вала, поэтому вал вращается в два раза медленнее, чем двигатель.
Двигатель с одним распределительным валом и клапанами в головке
В некоторых моделях кулачки напрямую воздействуют на короткие рычаги, именуемые пальцами.
Двигатель с одним распределительным валом и клапанами в головке содержит меньше деталей для управления клапанами. Кулачки напрямую взаимодействуют с толкателями или короткими рычагами (пальцами), которые, в свою очередь, открывают и закрывают клапаны.
Такая система обладает меньшим весом и технической сложностью, т.к. в ней отсутствуют штанги толкателей и коромысла.
Для управления распределительным валом с помощью звездочки на коленчатом вале часто используется длинная цепь, которая иногда провисает. Эта проблема решается добавлением промежуточных звездочек и нескольких коротких цепей с большим натяжением.
Кроме того, могут быть использованы нерастягиваемые резиновые маслоупорные ремни с зубьями, которые цепляются к звездочкам на распределительном и коленчатом валах.
Как работают клапаны в двигателе?
Если Вы читали статью о работе двигателя, то знаете, что существует 4 такта работы мотора:
- впуск,
- сжатие,
- сгорание,
- выпуск.
В современных двигателях на каждый цилиндр приходится 4 клапана: два впускных и два выпускных — они работают попарно — т.е. два впускных клапана открываются одновременно и два выпускных одновременно (но отличное время от времени открытия впускных). Это контролируется распределительным валом. Во время такта впуска, когда цилиндр движется вниз, открывается пара впускных клапанов, чтобы смесь топлива и воздуха могла впрыснуться в камеру сгорания цилиндра. Затем клапан закрывается, цилиндр движется уже наверх, и, следовательно, происходит сжатие смеси. Когда цилиндр достигает верхней точки, происходит взрыв этой смеси (инициируемый свечой в бензиновых двигателях и крайней степенью сжатия в дизельных). Теперь цилиндр из-за возникшего по причине взрыва давления движется вниз, а, когда достигает крайней нижней точки, открывается пара выпускных клапанов, чтобы были выдавлены цилиндром отработавшие газы, когда тот снова начнёт двигаться вверх.
Ничего сложного, не правда ли? Но из чего состоит цепочка работы клапанов, откуда они знают, когда им открываться и закрываться. Увы и ах, но в эру умнейших компьютеров, эта операция контролируется всего лишь какими-то грушевидными отростками на валу, который приводится во вращения от коленчатого вала двигателя. Этот вал называется распределительным или распредвалом в обиходе.
К распредвалу идёт ремень или цепь ГРМ, которая имеет зубцы и предназначен для очень точной передачи оборотов коленчатого вала (который приводится в движение цилиндрами двигателя) распредвалу. На самом распредвале расположены так называемые кулачки, яйцевидные «отростки» на валу, которые и толкают клапаны в нужный момент. И вот как это выглядит:
Распределительный вал, установленный в блоке цилиндров, имеет мелкие металлические нажимные цилиндры (кулачки), расположенные выше самого клапана и металлического толкателя, который находится между клапаном и кулачком. Когда распредвал крутится, крутятся и кулачки, и когда выступающая их часть поворачивается вниз, то она толкает толкатель, который передаёт толчок клапану, который и открывается. А когда кулачок перестаёт нажимать на толкатель, пружина клапана позволяет ему подняться обратно вверх, чтобы закрыться. Это называется подвесной системой клапанов (OHV).
Впускной и выпускной клапан: описание, характеристика
Главное отличие впускного клапана от выпускного — диаметр тарелки: у впускного она больше. Почему? Потому что всасывание воздуха из атмосферы в цилиндр под действием разрежения происходит с меньшей скоростью, чем выталкивание его из цилиндра поршнем.
Все просто: количество воздуха (или топливовоздушной смеси) — одинаковое, а скорость — разная. Соответственно, там, где скорость ниже, отверстие шире, а закрывающая его тарелка — больше в диаметре.
Все это справедливо для тех клапанных механизмов, где впускных и выпускных клапанов — равное количество — по одному или по два. Впрочем, есть моторы с нечетным количеством клапанов: два впускных + один выпускной или три впускных + два выпускных. Тут все наоборот: диаметр тарелок выпускных клапанов будет больше, чем у впускных, ибо производитель компенсировал низкую скорость всасывания добавлением одного «лишнего» отверстия, а не увеличением диаметра. Подробнее о соотношении клапанов и цилиндров можно прочитать в соответствующей статье.
Второе важное отличие в конструкции клапанов — их рабочая температура. Впускные клапаны работают при 350-500 градусах, а вот выпускным тяжелее — раскаленные отработавшие газы нагревают их до 700-900 градусов. Поэтому, соответственно, выпускные клапаны часто делают более жаропрочными.
Головки (или тарелки) впускного и выпускного клапанов могут быть как одинакового диаметра, так и разного. (на автомобилях устаревших марок с малым перекрытием клапанов) -моё прим. Обычно головку впускного клапана делают большего диаметра для улучшения наполнения цилиндра. Например, размеры клапанов двигателя автомобиля ГАЗ-53А: диаметр головки впускного клапана 47 мм, а выпускного 36 мм. В дизеле КамАЗ-740 диаметр тарелки впускного клапана 51 мм, а выпускного 46 мм. Впускной большой выпускной маленький.
Выпускной клапан двигателя
Выпускной клапан — элемент ГРМ, при открытии которого происходит удаление (выпуск) отработавших газов из камеры сгорания двигателя. Выпуск газов происходит тогда, когда поршень в цилиндре двигателя направляется от нижней мертвой точки (НМТ) к верхней мертвой точке (ВМТ). В процессе работы двигателя выпускные клапаны подвергаются значительным термическим нагрузкам, так как постоянно контактируют с раскаленными отработавшими газами. Головка клапана при работе ДВС может разогреваться в пределах 600-800 градусов.
После окончания такта впуска и сжатия главным требованием в момент возгорания топлива в камере сгорания является максимальная герметичность. Впускной и выпускной клапаны закрыты. Когда поршень принял на себя энергию расширяющихся газов после возгорания топливно-воздушной смеси, из камеры сгорания необходимо удалить эти отработавшие газы. Герметизация камеры на данном этапе уже не нужна. За удаление выхлопных газов в конструкции газораспределительного механизма отвечает выпускной тарельчатый клапан, который размещен в головке блока цилиндров (ГБЦ).
На такте впуска создается разряжение, а на такте выпуска в рабочей камере сгорания двигателя образуется повышенное давление. После сгорания смеси топлива и воздуха отработавшие газы покидают камеру сгорания через открывающийся в нужный момент выпускной клапан. Сила давления позволяет газам с легкостью выйти из рабочей камеры. Этим объясняется меньший размер тарелки выпускного клапана сравнительно с тарелкой впускного клапана. На такте впуска разрежение по своей силе меньше давления на выпуске. Выхлопные газы практически выталкиваются наружу через открытый выпускной клапан.
Эффективная герметизация камеры сгорания стала возможна благодаря использованию тарельчатых клапанов в конструкции ГРМ современных ДВС. Устройство клапана простое, элемент имеет тарелку и стержень. Фаска плавно переходит в стержень, что делает клапан достаточно прочным. Коническая форма перехода заметно снижает сопротивление выхлопных газов при выходе из камеры, а также дополнительно улучшает герметизацию.
Открытие выпускного клапана происходит благодаря полученному усилию от кулачка распределительного вала. Стержень (шток) клапана находится в направляющей втулке клапана, которая запрессована в ГБЦ. Кулачок распредвала нажимает прямо на шток клапана или на рокера, от которого усилие передается на стержень. В ГБЦ также размещено седло клапана. Седло клапана представляет собой углубление, которое по своей форме соответствует верхней части тарелки клапана. Тарелка клапана и седло клапана с филигранной точностью прижимаются друг к другу. Данное решение позволяет обеспечить максимальную герметичность в тот момент, когда закрыты впускной и выпускной клапаны. Главной задачей становится исключить прорыв газов из камеры сгорания.
На верхней части стержня клапана выполнена специальная выточка. Указанная выточка является местом установки «сухаря». Данный «сухарь» представляет собой коническое кольцо, которое разрезано на две равных части. Решение необходимо для крепления тарелки пружины клапана. Если открытие клапана осуществляется за счет «толчка» от кулачка распредвала, то закрытие клапана реализовано посредством усилия пружины клапана. Указанная пружина закрывает клапан, плотно прижимая тарелку к седлу. Дополнительно имеется механизм, который осуществляет проворачивание клапана. Это необходимо для равномерного износа клапана и очистки клапана от нагара.
Выпускной клапан работает в крайне сложных условиях. Отработавшие газы вызывают сильную коррозию выпускных клапанов. Если топливо сгорает в камере не полностью, тогда это может привести к прогару клапана. Регулировка клапанного механизма является важной процедурой в процессе эксплуатации ДВС. Раннее закрытие выпускного клапана может привести к быстрому его прогару.
В процессе эксплуатации любого ДВС тарелка клапана и седло покрываются нагаром. Избежать нагара на клапанах практически не представляется возможным. Наличие нагара вызывает постоянный перегрев выпускного клапана. Рано или поздно опорная поверхность клапана начинает выгорать, что приводит к потере герметичности в камере сгорания. Результатом становится прогрессирующая потеря мощности ДВС, затрудненный пуск и т.д.
Появившиеся от перегрева микротрещины на тарелке клапана постепенно увеличиваются, так как раскаленные газы под давлением начинают прорываться наружу из камеры сгорания. Головка клапана в таких условиях деформируется и далее разрушается. Выход клапана из строя фактически означает полную потерю цилиндром двигателя своей функциональности. После замены обязательно требуется притирка клапана к седлу для максимально точного прилегания. Игнорирование процедуры или некачественное выполнение притирки клапанов приведет к быстрому выходу нового клапана из строя.
Вполне очевидно, что перегрев является серьезной проблемой выпускных клапанов. Для изготовления выпускного клапана используется особая хромоникельмолибденовая сталь. Основой является никель, который повышает устойчивость выпускного клапана к механическому разрушению. Сталь для изготовления клапанов отличается высокой жаропрочностью.
Следующим шагом по снижению термонагруженности выпускного клапана становится его конструкция, которая отличается от устройства впускных клапанов.
Стержень выпускного клапана полый, полость заполнена металлическим натрием. Натрий расплавляется и перетекает внутри стержня клапана, что позволяет улучшить теплообмен и равномерно распределить нагрев.
Выпускной клапан также может иметь дополнительную защиту, которая способна значительно продлить срок службы элемента. Единственным недостатком можно считать конечное удорожание производства детали.
Среди наиболее распространенных способов защиты отмечены:
- лазерное легирование;
- метод плазменно-порошковой наплавки;
- наплавка токами высокой частоты;
Плазменно-порошковая наплавка считается одним из наиболее экономически и практически оправданных решений. Для такой наплавки используют различные металлические порошки, в основе которых лежит кобальт или никель. Технологии нанесения покрытия разные, но главной задачей каждого из указанных способов становится наплавление тонкого слоя защиты на поверхность клапана для повышения износостойкости, устойчивости к появлению коррозионных процессов и механическому разрушению.
Впускной клапан двигателя
Впускной клапан — элемент механизма газораспределения ДВС, который отвечает за пропуск в рабочую камеру сгорания топливно-воздушной смеси или только воздуха (для дизельных ДВС или моторов с непосредственным впрыском). Впускной клапан ГРМ осуществляет открытие доступа в цилиндр двигателя, а затем перекрывает доступ перед тем моментом, когда начнется такт сжатия.
Впускные клапаны изготавливают из особой стали. К такой стали для изготовления клапанов двигателя внутреннего сгорания выдвигаются отдельные требования:
- высокая твердость поверхности;
- достаточная теплопроводность материала;
- узкий коэффициент термического расширения;
- противостояние разъедающему влиянию продуктов сгорания;
- возможность противостоять регулярным динамическим нагрузкам при высоком нагреве;
Дополнительные требования к стали для клапанов предполагают отсутствие эффекта закаливания в момент охлаждения клапана после работы в условиях высоких температур. Это означает, что при остывании сталь не должна становится хрупкой. Данным требованиям на 100% не соответствует ни одна из разработанных сегодня марок стали.
Клапаны ДВС изготавливают из высоколегированных сильхромов, что позволяет указанной детали работать в условиях высочайшего нагрева. Такой подход обеспечил нужную прочность клапана, а также возможность элемента противостоять коррозионным процессам, которые активно прогрессируют в среде его работы при высоких температурах около 600 — 800 °C.
Клапаны размещают под определенным углом (30-45 градусов) по отношению к вертикальной оси. Отличием впускного клапана от выпускного является то, что его тарелка имеет больший диаметр сравнительно с тарелкой выпускного клапана. Такое различие вызвано тем, что момент открытия впускного клапана происходит именно тогда, кода в камере сгорания появляется разрежение. В момент выпуска в цилиндре имеет место повышение давления.
Разрежение в цилиндре на впуске уступает давлению по силе на такте выпуска. Для максимально качественного и полного наполнения рабочей топливно-воздушной смесью на впуске необходимы клапана с большей пропускной способностью. Такая пропускная способность реализована посредством увеличения диаметра тарелки впускного клапана или количества впускных клапанов.
Тарелка впускного клапана со стороны рабочей камеры сгорания плоская, а со стороны распределительного вала получает форму конуса. Данный конус еще называется фаской. В момент закрытия впускного клапана фаска прилегает к седлу клапана, которое также представляет собой коническое отверстие в ГБЦ.
Точность посадки впускного клапана обеспечена благодаря использованию направляющей втулки. В указанную втулку вставляется стержень клапана, а сама втулка называется направляющей клапана. Направляющие клапанов запрессованы в корпус ГБЦ, а также дополнительно зафиксированы посредством стопорного кольца.
Современные силовые агрегаты имеют тенденцию к увеличению количества впускных клапанов на цилиндр для улучшения пропускной способности, повышения эффективности наполнения цилиндра рабочей топливно-воздушной смесью и улучшения мощностных и других характеристик ДВС.
Клапан получает внутреннюю и наружную пружины. Данные цилиндрические пружины закрепляют на стержне клапана. Открытие впускного клапана на такте впуска становится возможным благодаря тому, что усилие от кулачка распределительного вала передается на рокера (толкатель). Конструкция современных ДВС подразумевает прямое воздействие кулачка распредвала на клапан. Пружины клапана плотно закрывают (прижимают) клапан обратно после того, как рокер сбегает с толкателя или стержень клапана прекращает контактировать с кулачком распредвала.
Между распределительным валом (его кулачком) и стержнем клапана (его торцевой частью) имеется конструктивный зазор. Такой зазор (может находиться на отметке 0,3-0,05 мм) создан для компенсации теплового расширения впускного клапана.
Открытие и закрытие впускных клапанов в четко определенный момент становится возможным благодаря угловому положению распредвала, которое в точности совпадает с аналогичным положением коленчатого вала ДВС. Получается, положение распредвала в момент открытия впускных клапанов строго соответствует положению коленвала. Конструкции двигателей могут отличаться, количество распредвалов может быть разным.
Впускной клапан начинает приоткрываться немного раньше того момента, когда поршень окажется в ВМТ (высшая мертвая точка). Это означает, что в самом начале такта впуска (когда поршень начинает опускаться вниз), впускной клапан уже немного открыт. Такое решение называется опережением открытия клапана. Различные модели силовых агрегатов имеют разное опережение, а рамки колебаний находятся в пределах от 5-и до 30-и градусов.
Закрытие впускного клапана осуществляется с небольшой задержкой. Клапан закрывается в тот момент, когда поршень в цилиндре оказывается в нижней мертвой точке и далее начинается движение вверх. Цилиндр продолжает наполняться и после начала движения поршня вверх. Такое явление происходит в результате инерционного движения во впускном коллекторе.
Основными неисправностями, которые напрямую связаны с клапанами ДВС, являются: загибание клапанов, зарастание клапанов нагаром и прогар клапана. Загибание клапанов чаще всего происходит по причине обрыва ремня ГРМ. Не менее часто гнет клапана и при неправильно выставленных метках в процессе замены приводного ремня ГРМ. Менять ремень ГРМ и выставлять метки на шкивах распредвала и коленвала нужно с повышенным вниманием.
Неисправностью клапанного механизма становится образование нагара на впускных и выпускных клапанах, что проявляется в повышенном шуме в процессе работы и падении мощности ДВС. Характерно появление металлического стука в области клапанной крышки на ГБЦ, а также проблемы с клапанами выявляют по хлопкам во впускном и выпускном коллекторе.
Нагар на клапанах и седлах не позволяет элементам плотно прилегать друг к другу, что ведет к потере необходимого показателя компрессии в двигателе. Снижение компрессии означает потерю мощности ДВС. Сильный нагар также приводит к перегреву и прогару клапана.
Неисправность пружин клапана может привести к деформации ГБЦ и заеданию стержня в направляющей клапана. Неправильный тепловой зазор между рычагом и стержнем приводит к сильному стуку клапанов. В таком случае необходимо немедленно заниматься выставлением требуемого производителем теплового зазора. Автолюбители называют эту процедуру регулировкой клапанов. Регулировать клапана нужно с определенной периодичностью в процессе эксплуатации мотора, а также если указанная возможность отрегулировать клапана двигателя изначально предусмотрена конструктивно.
Впускной клапан
Впускной клапан газораспределительного механизма открывает доступ в цилиндр топливо-воздушной смеси и прекращает доступ перед началом такта сжатия. В случае с дизельным двигателем клапан пропускает в камеру сгорания только воздух.
При обрыве ремня ГРМ впускные клапана «зависают», так как распредвал перестает вращаться. Тарелки клапанов, оказавшихся открытыми, ударяются о поверхность цилиндра
Клапана располагаются под углом от 30 до 45 градусов относительно вертикальной оси. Тарелка впускного клапана больше, чем у выпускного. Разница обусловлена тем, что в момент открытия впускного клапана в камере сгорания образуется разрежение, а в момент выпуска — повышенное давление. Сила разрежения ниже силы давления, поэтому для впуска требуются клапана с большей поверхностью головки, чтобы обеспечить пропускание необходимого объема топливо-воздушной смеси.
Устройство впускного клапана
Состоит клапан из тарелки и стержня. Плоская со стороны камеры сгорания тарелка впускного клапана имеет конусную форму со стороны распредвала (фаску). При полном закрытии она плотно прилегает к «седлу» (коническому отверстию) в головке блока цилиндров. Точную посадку впускного клапана обеспечивает направляющая втулка, в которой перемещается стержень клапана. Она запрессована в корпус головки блока цилиндров и зафиксирована стопорным кольцом.
Современная тенденция в конструировании ГРМ — увеличение количества впускных клапанов на один цилиндр. Это позволяет увеличить пропускную способность цилиндра и повысить мощность двигателя
Впускной клапан имеет внутреннюю и наружную цилиндрические пружины, которые крепятся на стержне клапана.
В действие впускной клапан приводится рычагом (рокером) от кулачка распределительного вала, или, в большинстве современных двигателей непосредственно давлением кулачка. Пружина обеспечивает постоянный контакт стержня впускного клапана с концом рокера или с кулачком.
Между кулачком распределительного вала и торцом стержня клапана конструктивно закладывается зазор. Это дает возможность компенсировать тепловое расширение впускного клапана. Величина такого зазора составляет 0,3-0,05 мм.
Принцип работы впускного клапана
Своевременное открытие и закрытие впускного клапана обеспечивает угловое положение распределительного вала, точно синхронизированного с таким же угловым положением коленчатого вала. То есть, угловое положение одного строго соответствует определенному угловому положению другого.
В зависимости от модели двигателя, впускных клапанов может быть и несколько на один цилиндр.
Для радикального изменения опережения открытия клапанов необходимо приобрести комплект спортивных распредвалов
Прежде, чем поршень достигнет высшей мертвой точки, начинает открываться впускной клапан — то есть, при такте впуска, к началу движения поршня вниз, клапан уже приоткрыт. Для разных моделей двигателей существует свое опережение открытия клапана. Пределы колебаний составляют 5-30 градусов.
А вот закрытие впускного клапана происходит с некоторой задержкой, после того как поршень достигает нижней мертвой точки и начинает движение вверх. Заполнение цилиндра продолжается даже после начала движения. Это происходит вследствие инерции во впускном коллекторе.
Характерные поломки впускных клапанов
Безусловно, самой распространенной поломкой клапанов необходимо признать их загибание в результате обрыва ремня ГРМ. То же самое может произойти и без обрыва, если заменой ремня занимался непрофессионал, ошибочно выставивший метки на шкивах коленвала и распредвала (или распредвалов). Особенно опасны обрывы для современных сложных двигателей, оснащенных механизмом изменяемых фаз газораспределения и прочими высокотехнологичными системами.
Еще одна распространенная неисправность клапанного механизма зарастание впускных и выпускных клапанов нагаром. Как правило, определить проблему можно на достаточно ранней стадии по снижению мощности и хлопкам во впускном и выпускном трубопроводах, металлическому стуку в головке блока цилиндров и падению мощности двигателя.
Отложение нагара на седлах и клапанах препятствует их плотному прилеганию и уменьшает компрессию. Вследствие этого уменьшается и мощность двигателя. Поломки пружин могут вызвать неплотное прилегание клапана к седлу и приводить к деформации головки блока цилиндров, образованию раковин или заеданию стержня. Большой тепловой зазор между рычагом и стержнем клапана также ведет к появлению резкого металлического стука и падению мощности двигателя.
Материалы для производства клапанов
Для изготовления впускных клапанов используется хромистая сталь, обладающая стойкостью против коррозии в газовых средах при температурах свыше 550 °C. Этот вид стали достаточно хрупок.
Впускные и выпускные клапаны автомобильных двигателей имеют тарельчатую форму. Клапан открывается под действием клапанного механизма, управляемого эксцентриковым кулачком. Работа кулачка синхронизирована с положением поршня и периодом вращения коленчатого вала.
В связи с этим они изготавливаются из более стойких материалов, чем впускные клапаны, и соответственно стоят дороже.
Направляющая втулка клапана расположена соосно с седлом клапана, так чтобы между рабочей фаской клапана и седлом обеспечивался герметичный газонепроницаемый контакт. Рабочая фаска клапана и седло скошены под углом 30° или 45°. Это номинальные значения угла фаски. Фактические значения могут на один-два градуса отличаться от номинальных. Клапаны и седла клапанов, используемые в большинстве двигателей, имеют номинальный угол фаски, равный 45°. Клапан прижимается к седлу под действием пружины. Пружина удерживается на стержне клапана (некоторые автомеханики называют его штоком клапана) опорной тарелкой пружины, которая, в свою очередь, контрится на стержне клапана замком (сухариками). Для демонтажа клапана необходимо сжать пружину и снять сухарики. После этого можно снять пружину, манжету, и вынуть клапан из головки.
Всесторонние испытания показали, что между различными геометрическими параметрами клапанов существуют оптимальные соотношения. В двигателях с цилиндрами внутренним диаметром от 3 до 8 дюймов (от 80 до 200 мм) для впускного клапана оптимальным будет диаметр головки, составляющий приблизительно 45% внутреннего диаметра цилиндра. Оптимальный диаметр головки выпускного клапана составляет примерно 38% внутреннего диаметра цилиндра. Впускной клапан должен быть больше по размеру, чем выпускной, чтобы пропускать ту же массу газа. Больший по размеру впускной клапан управляет низкоскоростным потоком разреженного газа. В то же время выпускной клапан управляет высокоскоростным потоком сжатого газа. С таким потоком в состоянии справиться клапан меньшего размера. Вследствие этого диаметр головки выпускного клапана составляет примерно 85% диаметра головки впускного клапана. Для нормального функционирования диаметр головки клапана должен составлять приблизительно 115% диаметра клапанного окна. Клапан должен быть достаточно большим, чтобы перекрывать окно. Высота подъема клапана над седлом составляет примерно 25% диаметра головки.
Конструкции клапанов автомобиля
Головки клапанов авто (автомеханики часто называют их тарелками) могут иметь различную конструкцию, они могут быть как жесткими, так и эластичными. Жесткая головка обладает высокой прочностью, сохраняет форму и обладает высокой теплопроводностью. Она также отличается более высокой износоустойчивостью. Эластичная головка, в свою очередь, способна приспосабливаться к форме седла. Поэтому эластичный клапан надежно запечатывает окно, но перегревается, а изгибы при посадке в седло, когда клапан адаптируется к его форме, могут привести к его разрушению. В конструкции клапанов широко используется головка, над лицевой поверхностью которой выступает небольшая шляпка. Такой клапан обладает достаточно небольшим весом, высокой прочностью и теплопередачей, и чуть более высокой ценой. Эластичные головки чаще встречаются у впускных клапанов, а жесткие — у выпускных.
Попадание холодного воздуха на горячие выпускные клапаны сразу после остановки двигателя может привести к серьезным повреждениям клапанов. В двигателях, оснащенных выпускными коллекторными головками и/или прямоточными глушителями, холодному воздуху открыт прямой доступ к выпускным клапанам. Резкое охлаждение может вызвать коробление и/или образование трещин в клапане. В холодную ветреную погоду, когда ветер вдувает холодный наружный воздух прямо в систему выпуска отработавших газов, такие условия — не редкость. Противоточные глушители с длинными выхлопными трубами и каталитическим нейтрализатором отработавших газов снижают опасность возникновения такой ситуации.
Материалы из которых изготавливаются клапаны
Сплавы, материалы из которых изготавливаются выпускные клапаны автомобиля, состоят главным образом из хрома, обеспечивающего высокую жаростойкость, с небольшими добавками никеля, марганца и азотных соединений. Если требуется придать клапану особые характеристики, то он подвергается термообработке. Если конструкция клапана из однородного материала не может обеспечить необходимую прочность и жаростойкость, то его изготавливают сварным — из двух различных материалов. После обработки место соединения частей клапана невозможно различить. Головки клапанов изготавливаются из специальных сплавов, обладающих жаростойкостью, прочностью, коррозионной стойкостью, стойкостью к воздействию окиси свинца и высокой твердостью. Головки привариваются к стержням, изготовленным из материалов, обладающих высокой износостойкостью. В клапанах, предназначенных для работы в особо тяжелых условиях, на рабочую фаску головки и верхушку стержня впускного клапана автомобиля направляются твердосплавные материалы типа стеллита. Стеллит представляет собой сплав никеля, хрома и вольфрама и является немагнитным материалом. В тех случаях, когда необходимо повысить коррозионную стойкость, клапан алитируется. Алитирование рабочей фаски снижает ее износ при использовании неэтилированного бензина. На поверхности клапана формируется пленка окиси алюминия, предотвращающая приваривание стальной фаски клапана к чугунному седлу.
Клапаны с полым стержнем и деформацией седла
В некоторых типах особо мощных двигателей используются выпускные клапаны с полым стержнем, заполненным металлическим натрием. Натрий при нагреве клапана до рабочей температуры расплавляется, превращаясь в жидкость. Этот расплав плещется в канале стержня и отводит тепло от головки клапана в стержень. Далее тепло передается через направляющую втулку клапана и поглощается системой охлаждения. Монолитная конструкция впускного и выпускного клапана при правильном выборе материалов обеспечивает, как правило, хорошие эксплуатационные характеристики автомобильных двигателей.
Клапан прижимается к седлу рабочей фаской, герметично закрывая камеру сгорания. Седло обычно формируется как элемент конструкции в отливке чугунной головки блока цилиндров — такое седло называется встроенным седлом. Седла обычно подвергаются индукционной закалке, чтобы можно было использовать неэтилированный бензин. Это обеспечивает замедление износа седел в процессе эксплуатации двигателя. В процессе износа седла клапан все глубже садится в него — утапливается. В тех случаях, когда коррозионная стойкость и износостойкость должны быть особенно высокими, всегда используются вставные седла. В алюминиевых головках седла и направляющие втулки клапанов — только вставные. Необходимо отметить, что в алюминиевых головках рабочая температура седел выпускных клапанов на 180°Ф (100°С) ниже, чем в чугунных. Вставные седла используются в качестве спасительной меры при восстановлении сильно поврежденных встроенных седел клапанов.
Деформация седла является основной причиной преждевременного выхода из строя клапанов. Деформация седла клапана может быть обратимой — как результат воздействия высокой температуры и давления, или необратимой — как результат действия внутренних механических напряжений. Механическое напряжение — это сила, действующая на тело, которая стремится изменить его форму.
Создана первая в мире полностью цифровая система управления клапанами ДВС
Британская компания Camcon Automotive выпустила первую в мире электронную систему управления работой клапанов ДВС. Здесь нет ни распределительного вала, ни ременных передач или пружин, вообще ничего, что связывало бы работу конкретного клапана с состоянием двигателя. Эта технология позволяет управлять каждым клапаном независимо и создавать любые комбинации, в зависимости от поставленной задачи.
Для каждого клапана в этой системе предусмотрен персональный привод с электромотором, который позволяет открывать и закрывать его с идеальной точностью. Можно закрыть клапан на половине пути, вернуть его в исходное положение или сместить на нужное расстояние в произвольный момент времени. Система отслеживает положение всех клапанов и может идеально синхронизировать их работу между собой, перестраивая конфигурацию на лету.
Что дает эта технология? Если кратко: полный, всеобъемлющий контроль над работой ДВС. Адаптация под новый вид топлива, регулировка выхлопа, оптимизация экономии горючего при разной работе, возможность наконец-то построить гибридную силовую установку с высоким КПД. Представьте машину, которая несколько секунд движется на электротяге, а потом на мгновение переключается на ДВС, с нулевой потерей мощности и скорости, потому что бортовой компьютер идеально все рассчитал, а механическая часть теперь способна реализовать его команды!
ДВС с цифровым управлением клапанами Технология позволить использовать прогрессивную компоновку с разделением цилиндров вместо одного цельного блока
Но настоящее преимущество технологии в ее пока неизученном потенциале. Инженеры надеются, что цифровой контроль станет инструментом для изучения и решения фундаментальных проблем. Например, как сделать так, чтобы нагрузка между клапанами равномерно распределялась на сотни тысяч километров пробега и десятки лет эксплуатации, а параллельно еще и контролировался износ сопутствующих механизмов? Вариантов применения технологии в коммерческих продуктах много и Camcon Automotive ищет партнеров, которые помогли бы реализовать это лучшим образом.
[источники]
Источник — Camcon Automo
http://www.camcon-automotive.com/
https://www.techcult.ru/auto/5639-polnostyu-cifrovaya-sistema-upravleniya-klapanami
Надежность и проблемы турбомоторов с 5-ю клапанами на цилиндр
7911 | 13.12.2018
Примерно в 1980-х годах двигатели с двумя распредвалами в головке (или головках) блока шагнули в массовый сегмент и появились на гражданских автомобилях со спортивным характером. Однако производители решили не останавливаться на достигнутом: помимо головок с четырьмя клапанами на цилиндр некоторые автокомпании предложили ГБЦ, в которых на каждый цилиндр приходилось по 5 клапанов.
Инженеры компании Audi создали и начали испытывать 5-цилиндровый 25-клапанный двигатель объемом всего 2,2 литра еще в 1986 году. В начале 1988 года на этот мотор под капотом Audi 200 Turbo Quattro установил рекорд скорости на итальянской трассе Нардо: машина проехала 1000 км со средней скоростью в 326 км/ч. Мощность 25-клапанного двигателя с 5-ю цилиндрами общим рабочим объемом 2,2 литра составляла 650 л.с. при 6200 об/мин.
Выбрать и купить двигатель 1.8Т для Фольксваген, Шкода, Ауди, Сеат вы можете в нашем каталоге силовых агрегатов.
Гоночные двигатели V8 и V10 с пятью клапанами на цилиндр разработала и выпускала компания Yamaha с 1989 по 1996 годы. Их устанавливали на болиды «Формулы-1». Разумеется, инженеры Yamaha выпустили и мотоциклетные моторы с 5-клапанами на цилиндр: в 2001 году дебютировали кроссовые мотоциклы YZ250F и YZ450F, которые до 2014 и 2010 года соответственно оснащались 2-тактными 1-цилиндровыми 5-клапанными моторами.
Однако первыми представили гражданский двигатель с 5-ю клапанами на цилиндр инженеры компании Mitsubishi. В 1989 году появился крохотный 548-кубовый двигатель 3G81. Силовой агрегат дебютировал на модели Minica Dangan ZZ. Двигатель развивает от 30 до 64 л.с., существует в атмосферном и турбированном исполнении.
Компания Yamaha разрабатывала ГБЦ с 5-ю клапанами на цилиндр для компании Toyota. В частности, для установки на двигатель 4A-GE, который был представлен 1991 году. 1,6-литровая рядная 20-клапанная «четверка» с 20-ю клапанами, высокой степенью сжатия 10,5:1 и системой изменения фаз газораспределения выдавала 160 л.с.
Двигатели с 5-ю клапанами на цилиндр встречались и спортивных автомобилях, таких как Bugatti EB110, Ferrari F355, F360 и F50. Широкое распространение такие двигатели получили на автомобилях концерна VAG. Во второй половине 1990-х немецкие инженеры представили гамму моторов с 5-клапанами на цилиндр, в которую входили агрегаты объемом от 1,8 до 4,2 литра. Среди них были рядные «четверки» (атмосферные и турбированные), V6 и V8.
Зачем понадобилось доводить количество клапанов до 5 на цилиндр?
Мощность и КПД двигателя зависит от многих факторов. Также и от того, насколько быстро и легко камеры сгорания получают воздух и топливо, и насколько быстро и легко от них избавляются. В 5-клапанной конструкции 3 клапана отвечают за поступление воздуха в цилиндры. Отработавшие газы выходят через два клапана. И выходят они довольно легко, т.к. они раскалены, находятся под некоторым давлением и потому буквально самостоятельно покидают цилиндры, подгоняемые поршнем.
Как известно, от схемы с 5-ю клапанами на цилиндр отказались и сегодня таких серийных моторов нет. Как показала практика, 3 впускных клапана не всегда оправдывают себя.
Во-первых, преимущество в общем сечении впускных каналов не настолько уж и велико.
Во-вторых, лишние 5-клапнов, 5 кулачков и пружин в газораспределительном механизме – это лишняя масса и детали, которые нужно приводить в движение. Да, пружины трех клапанов менее упругие, но все же, толку не много.
В-третьих, впускные каналы трех клапанов в ГБЦ довольно узкие и создают сопротивление потоку воздуха.
В-четвертых, тремя впускными клапанами практически невозможно управлять, что пришлось делать ради соответствия экологическим нормам. Как известно, в начале двухтысячных многие автопроизводители научили свои моторы с 4-мя клапанами на цилиндр работать по 2-клапанной (вернее, даже по 3-клапанной) схеме в некоторых режимах. Оказалось, что поступление воздуха по одному из двух впускных клапанов на низких и средних оборотах обеспечивает ускорение потока, лучшее перемешивание воздуха в цилиндрах и, как результат, повышение крутящего момента.
Самая первая 20-клапанная четверка (двигатель ADR мощностью 125 л.с.) объемом 1,8 литра дебютировала на Audi A4 B5 в конце 1994 года. Через год, в декабре 1995-го, началось производство продольных 20-клапанных турбированных «четверок», которые дебютировали на все той же Audi A4 B5. В их конструкции нашли применение решения с 2,2-литрового 25-клапанного экспериментального двигателя Audi 200 Quattro.
Первая 20-клапанная «четверка» для продольной установки носит индекс AEB. В конце 1996 года под капотом Audi A3 появился двигатель AGU для поперечной установки. Это двигатели-близнецы. Они выдают по 150 л.с. Головки двигателей AEB и AGU невзаимозаменяемые: у первого она крепится болтами на 11 мм, у другого (и всех остальных двигателей 1.8T от VAG) – болтами на 10 мм.
Двигатель 1.8T с индексом AGU считается самым прочным и наиболее пригодным для тюнинга. У этого двигателя (а также у AEB, AJL, ADR,AFY) головка блока с широкими (55 мм против 43 мм) впускными каналами, 20-мм поршневым пальцем (позже устанавливали 19-мм палец), а также кованный коленвал (кованный коленвал получили все двигатели 1.8T поперечного расположения в подкапотном пространстве). Эти особенности сделали его любимцем тех, кто может и умеет «надуть» двигатель большой турбиной. Правда, наилучших результатов при тюнинге можно достичь с ЭБУ Bosch ME 7.5, которого двигатель AGU отродясь не имел, а также с установкой форсунок с «длинным носиком» и датчика давления воздуха.
Вообще потенциал 1,8-литровых турбомоторов моторов для тюнинга очень высок. Двигатели хорошо «отзываются» на чип-тюнинг и способны держать наддув от большой турбины. Без особых вмешательств в конструкцию ГБЦ и переделок цилиндро-поршневой группы с этого двигателя «снимают» до 300-350 л.с. Серьезными переделками с 1,8-литров рабочего объема специалисты снимают до 500 и даже 700 л.с. А вообще самый мощный стоковый 1.8T с оригинальной прошивкой и турбиной выдает 245 л.с., на Audi TT (двигатель BFV, который выпускался совсем не долго: с марта 2005 года по июнь 2006).
С 1996 года по 2008 год выпускали двигатели 1.8T для поперечной установки. Блоки всех этих двигателей взаимозаменямые, хотя и имеют незначительные отличия.
На нашем YouTube-канале вы можете посмотреть разборку двигателя 1.8T, снятого со Skoda Octavia RS (обозначение двигателя – AUQ) с пробегом 200 000 км.
Этот двигатель (AUQ) выдает 180 л.с. И при этом практически ничем не отличается от 150-сильного двигателя (AUM, ARX, AGN, AGU, ARX и некоторых других). Разницу в мощности дает прошивка и настройка актуаторов турбин. В частности, на более мощном двигателе актуатор позже открывает перепускной клапан, что позволяет турбине развивать более высокое давление наддува.
Двигатель AUQ помимо Skoda Octavia RS устанавливали на VW Golf, Bora, Seat Toledo, Audi TT Quattro.
Все двигатели 1.8T очень схожи. У них одинаковый диаметр цилиндра (81 мм) и ход поршня (86,4 мм), одинаковая длина шатунов (144 мм). Блоки у двигателей чугунные. ГБЦ из алюминиевого сплава. Распредвал выпускных клапанов приводится во вращение зубчатым ремнем от звездочки коленвала, а вал впускных клапанов приводится от выпускного вала цепной передачей, расположенной на задних концах валов. У всех 20-клапанных «четверок» поперечного расположения кованный коленвал.
С 1995 года до октября 1998 года все двигатели 1.8Т оснащались механическим впрыском топлива с ЭБУ Bosch M 3.8.3, катушками зажигания с внешним коммутатором и дроссельной заслонкой с тросовым приводом. Электронный дроссель, датчик давления воздуха (MAP-сенсор), ЭБУ Bosch ME 7.5 и катушки зажигания с индивидуальными (встроенными) коммутаторами впервые появились на моторе с индексом APX (225 л.с. Audi TT). Уже в 2000 году все двигатели 1.8Т перешли на новый блок управления (у всех этих двигателей свои собственные индексы-обозначения).
Приблизительно с 2000-го года на моторах 1.8Т внедрили оригинальный механизм изменения фаз газораспределения: фазовращатель как таковой отсутствует, а вот положение впускного распредвала относительно выпускного меняется за счет изменения положения цепи. Для этого используется управляемый регулируемый гидронатяжитель цепи привода впускного распредвала. Опусканием и поднятием башмака гидронатяжителя изменяется длина цепи между распредвалами. В результате впускной распредвал поворачивается относительно выпускного, который приводится от коленчатого вала, вследствие чего перекрытие клапанов уменьшается. Головки блоков двигателей AUM, AUQ, BAM, ARX, APX с управляемыми натяжителями идентичны и взаимозаменяемы.
На моторах 1.8T мощностью не более 180 л.с. используется турбокомпрессор KKK K03. На более мощных – К04. Примерно с 2000 года младшую турбину немного модифицировали – увеличили диаметр ротора компрессора примерно на 5 мм. Такая турбина известна как K03S. Соответственно при тюнинге двигатель с турбиной К03 может выдавать до 195 л.с., а с К03S – до 250 л.с. Однако турбины K03 для двигателей 1.8Т полностью взаимозаменяемые. У турбин К04 своя конфигурация фланца под выпускной коллектор.
Проблемы и надежность двигателя 1.8T 20 клапанов
20-клапанные 4-цилиндровые турбомоторы получились очень надежными и неприхотливыми. По механике обычно проблем не возникает. Сложный 20-клапанный механизм газораспределения вообще никаких проблем не создает. Этот двигатель способен пройти более 500 км, однако владелец должен быть внимателен к его обслуживанию и сервису. При высокой механической надежности у этого двигателя немало нюансов и болячек.
Двигатель 1.8T не заводится
Если двигатель Audi, Volkswagen, Skoda, Seat 1.8T не заводится или очень трудно запускается на холодную, то проблема может быть в бензонасосе, установленном в баке. Он выходит из строя или начинает работать с перебоями, что отражается на запуске двигателя. Бензонасосы двигателя 1.8T для передне- и полноприводного автомобиля немного отличаются.
Выбрать и купить бензонасос (топливный насос) для двигателя 1.8Т для Фольксваген, Шкода, Ауди, Сеат вы можете в каталоге на нашем сайте.
Двигатель 1.8T «не едет». Подсосы или утечки воздуха
Во впускной системе двигателя 1.8T очень много соединений с многочисленными хомутами, прокладками и патрубками. Если где-то возникнет подсос воздуха, неучтенного расходомером, двигатель «перестанет ехать». По ощущениям мощность падает чуть ли не на треть. В таких случаях диагностика нередко бессильна. Если все датчики в порядке, но лишний воздух нарушает смесеобразование, то искать можно долго. А поиски сводятся к опрессовке, нагнетании воздуха во впуск за расходомером и поиском утечек. Утечки бывают в самых неожиданных местах. Даже подсос через негерметично защелкнутый масляный щуп или недокрученную крышку маслозаливной горловины сказывается на производительности двигателя.
Датчик температуры охлаждающей жидкости
Еще одна причина, из-за которой двигатель 1.8T не заводится на холодную – датчик температуры охлаждающей жидкости. До 2002 года на двигателях 1.8T использовался дефектный датчик охлаждающей жидкости, который затем был заменен на улучшенный, он отличается зеленым цветом корпуса. Но все равно датчик со временем просто выходит из строя и дает некорректные данные. Обычно он врет, что температура антифриза на совершенно холодном двигателе составляет 80 градусов. ЭБУ думает, что двигатель теплый и не подает нужного «заряда» топлива для запуска.
При замене датчика ОЖ можно обнаружить антифриз в его разъёме. Течь устраняется заменой уплотнительного колечка датчика.
Расходомер воздуха
Самый важный датчик на бензиновом двигателе измеряет количество всасываемого воздуха. На 20-клапанных двигателях 1.8T мощностью от 150 до 190 л.с. используется одинаковый расходомер воздуха. Расходомер тут пленочный, очень чувствительный к загрязнению. Его можно быстро вывести из строя применением некачественного «холодного впуска» или нештатного воздушного фильтра нулевого сопротивления. Также расходомер быстро выйдет из строя при сильном повышении мощности двигателя в результате чип-тюнинга с установкой более производительной турбины.
Симптомы выхода из строя расходомера – «машина не едет», мощность упала, как будто не сняли с ручника. Здоровье расходомера легко диагностируется. Не имея под рукой диагностического сканера можно просто отсоединить клемму расходомера. Если двигатель оживет, то однозначно проблема в нем.
Однако на самом деле расходомер не выходит из строя, а загрязняется. Можно попробовать очистить средством на основе изопропилового спирта. Вообще знатоки превентивно чистят его при каждой смене моторного масла. Если чистка расходомера не помогает, то можно поменять только его вставку (06A906461L) с чувствительным пленочным элементом.
Выбрать и купить расходомер (ДМРВ, MAP-сенсор) для автомобиля с двигателем 1.8Т для Фольксваген, Шкода, Ауди, Сеат вы можете в каталоге на нашем сайте.
Течь антифриза
На заднем торце двигателя находится пластиковый тройник системы охлаждения. От старости и температуры фланец тройника деформируется, начинается течь антифриза.
Катушки зажигания
На двигателях 1.8T, появившихся с 2000 года, используются катушки зажигания со встроенными коммутаторами. Эти катушки капризные, по ним даже была отзывная кампания. Если сгорела одна из катушек, то нужно менять сразу все и как можно быстрее. При одной неисправной катушке возрастает нагрузка на остальные. В результате после замены первой сгоревшей начинают выходить из строя остальные. И так по кругу.
На двигателях до 2000 года (это все 150-сильные варианты 1.8T) обычно выходит из строя каскад во внешнем коммутаторе.
Также пропуски зажигания возникают из-за трещин в оплетке на высоковольтных проводах. О пропусках зажигания машина уведомляет морганием лампы check engine.
Выбрать и купить катушки зажигания для двигателя 1.8Т для автомобиля Фольксваген, Шкода, Ауди, Сеат вы можете в каталоге на нашем сайте.
Датчик температуры во впуске
При загрязнении маслом датчик дает неверные показания, что в итоге отражается на расходе топлива и мощности двигателя. Этот датчик поддается очистке.
Клапан N75
Производительностью турбины управляет соленоидный клапан N75. По команде блока управления клапан при помощи вакуумного актуатора открывает перепускной клапан в корпусе турбины, через который часть выхлопных газов уходят в выпуск в обход ее крыльчатки.
При неисправности клапана возникают ошибки по недодуву или передуву турбины. Отказ клапана прекрасно диагностируется, также возможно запустить его диагностику и проверить работоспособность соленоида.
Выбрать и купить клапан N75 для двигателя 1.8Т для автомобиля Фольксваген, Шкода, Ауди, Сеат вы можете в каталоге на нашем сайте.
Система вторичного воздуха
Двигатель 1.8T оснащен системой вторичного воздуха. Она представляет собой электрический насос, подающий воздух в выпускной коллектор. Подача воздуха осуществляется в течение полутора минут после запуска холодного двигателя. Свежий воздух в выпуске запускает процесс догорания топлива, что разогревает катализатор. То есть, это чисто экологическая система. Ее обычно удаляют, так как она беспокоит ошибками, вызванными утечками подаваемого воздуха или неисправностью самого насоса.
Выбрать и купить насос продувки (насос системы вторичного воздуха) для двигателя 1.8Т для автомобиля Фольксваген, Шкода, Ауди, Сеат вы можете в каталоге на нашем сайте.
Воздушный патрубок от расходомера к турбине
В первый за расходомером патрубок, известный в народе как «гусеница», подключены патрубки от системы вентиляции картерных газов, системы вентиляции топливного бака и от вакуумной системы. В местах соединения этих патрубков могут возникать подсосы воздуха.
Система вентиляции бака
В самый маленький сосок первого патрубка впускной системы подключается шланг системы вентиляции бака. Шланг тянется буквально от бака. Если в нем возникнет подсос или выйдет из строя расположенный на нем клапан N80, то мощность двигателя сильно упадет, а расход топлива вырастет в несколько раз.
Дроссельная заслонка
Дроссельная заслонка становится жертвой присутствия масла во впуске. Если ход заслонки нарушается, то обороты двигателя начинают плавать, появляются вибрации, увеличивается расход топлива. Заслонка нуждается в очистке и адаптации.
Выбрать и купить дроссельную заслонку для двигателя 1.8Т для автомобиля Фольксваген, Шкода, Ауди, Сеат вы можете в каталоге на нашем сайте.
Турбина и трубка подачи масла для смазки
В большинстве случаев на моторах 1.8T (150-180 л.с.) применяются турбины KKK K03. Трубка подачи масла оказалась не совсем удачной: она огибает весь мотор, проходит вблизи раскаленного выпускного коллектора, а потому нагревается сама и масло в ней. Масло коксуется, откладывается на стенках трубки. Уменьшается ее сечение, в результате смазка охлаждение маслом подшипников и вала турбины резко ухудшается. Турбина выходит из строя. Новую или б/у турбину на двигатель 1.8T следует ставить вместе с заменой трубки, подводящей масло, и трубки, по которой масло уходит из картриджа.
Выбрать и купить турбину для двигателя 1.8Т для автомобиля Фольксваген, Шкода, Ауди, Сеат вы можете в каталоге на нашем сайте.
Вентиляция картерных газов
Как и на любом турбированном двигателе, система вентиляции картерных газов весьма сложная. На двигателе 1.8T в ее конструкцию входит два клапана: простой односторонний «блидер» (клапан PCV) и редукционный клапан «грибок». «Блидер» должен перекрывать поток газов во впускной коллектор, а «грибок» регулирует их количество в зависимости от разряжения во впускном коллекторе. Вся эта система нужна для того, чтобы не было гипервентиляции картера. Если говорить простым языком, «чтобы турбокомпрессор не высосал все масло из картера».
При разрушении мембраны в грибке или затвердевании мембраны в блидере работа вентиляции нарушается.
В итоге турбина засасывает во впускной коллектор не только картерные газы, но и пары масла, которое загрязняет впуск и оседает на пленке расходомера. Помимо этого, коксом загрязняются многочисленные патрубки вентиляции картерных газов, что ухудшает работу вентиляции и приводит к повышению давления картерных газов. Их надо чистить, а лучше – менять на новые.
А еще от старости и пробега трубки рассыхаются, трескаются и тогда возникает подсос воздуха, приводящий в итоге к потери мощности двигателя.
Натяжитель цепи
Прокладка под натяжителем потеет маслом и является одним из источников подсоса воздуха. Для замены прокладки приходится приподнимать впускной распредвал.
Сам натяжитель цепи нередко выходит из строя и его рекомендуется менять каждые 250 000 км. Симптомы его старения – цокот или грохот цепи при холодном запуске двигателя. Впоследствии ослабление натяга цепи приводит к ее перескоку и встрече поршней и клапанов. Правда, натяжитель может не обеспечивать нормального натяжения цепи и при проблемах с давлением масла.
Жор масла
Двигатель 1.8T обычно не расходует масло: маслосъемные кольца работают хорошо в течение сотен тысяч километров. Если все-таки наблюдается расход масла на угар, а система вентиляции картерных газов и турбина в порядке, то, скорее всего нужно менять маслосъемные колпачки. Обычно они нуждаются в замене при пробеге 250 000 км.
Засорение маслоприемника
На двигателе 1.8T засоряется сетка маслоприемника. Причинами засорения являются некачественное масло, забитая система вентиляции картерных газов и некачественные масляные фильтры. При засорении маслоприемника снижается давление масла. Об этом может свидетельствовать стук гидрокомпенсаторов или загорание индикатора низкого давления масла.
Также нередко выходит из строя сам масляный насос – снижается его производительность.
Низкое давление масла чревато задирами на шейках распредвалов и его заклиниванием, обрывом шпонки и встрече клапанов и поршней.
Для очистки маслоприемника приходится снимать поддон, а перед этим, на многих моделях Audi, Volkswagen, Seat, Skoda нужно еще подвесить мотор и опустить подрамник.
Выбрать и купить двигатель 1.8Т для Фольксваген Пассат, Гольф, Бора, Шкода Октавия, Шкода Суперб, Ауди А3, Ауди А4, Ауди А6, Сеат вы можете у компании «АвтоСтронг-М» с гарантией и доставкой.
Противообледенительный клапан двигателя— это … Что такое антиобледенительный клапан двигателя?
Abkürzungen / Luftfahrt / S – Z — Dies ist der fünfte Teil der Liste Abkürzungen / Luftfahrt. Лист дер Abkürzungen Teil 1 A A Teil 2 B – D B; C; D Teil 3 E – K E; F; ГРАММ; ЧАС; Я; J; … Deutsch Wikipedia
Saspo — Dies ist der fünfte Teil der Liste Abkürzungen / Luftfahrt. Лист дер Abkürzungen Teil 1 A A Teil 2 B – D B; C; D Teil 3 E – K… Deutsch Wikipedia
Abkürzungen / Luftfahrt / L – R — Dies ist der vierte Teil der Liste Abkürzungen / Luftfahrt.Лист дер Abkürzungen Teil 1 A A Teil 2 B – D B; C; D Teil 3 E – K… Deutsch Wikipedia
Honda Accord — Infobox Название автомобиля = Honda Accord производитель = производство Honda = 1976 ndash; нынешний предшественник = Honda 1300 class = Compact (1976 ndash; 1993) Средний размер (1994 ndash; 2007) Полный размер (2008 ndash; настоящее время ) layout = FF layout Honda Accord — это серия…… Wikipedia
AFWA — Dies ist der erste Teil einer Liste der Abkürzungen und Akronyme, wie sie in der Luftfahrt und Militärluftfahrt verwendet werden.Viele Abkürzungen werden einfach durch Weglassen der Vokale gebildet. Liste der Abkürzungen Teil 1 A A (AA; AB; AC;…… Deutsch Wikipedia
Abkürzung Luftfahrt — Dies ist der erste Teil einer Liste der Abkürzungen und Akronyme, wie sie in der Luftfahrt und Militärluftfahrt verwendet werden. Viele Abkürzungen werden einfach durch Weglassen der Vokale gebildet. Liste der Abkürzungen Teil 1 A A (AA; AB; AC;…… Deutsch Wikipedia
Abkürzung aus der Luftfahrt — Dies ist der erste Teil einer Liste der Abkürzungen und Akronyme, wie sie in der Luftfahrt und Militärluftfahrt verwendet werden.Viele Abkürzungen werden einfach durch Weglassen der Vokale gebildet. Liste der Abkürzungen Teil 1 A A (AA; AB; AC;…… Deutsch Wikipedia
Abkürzungen / Luftfahrt — Dies ist der erste Teil einer Liste der Abkürzungen und Akronyme, находясь на территории Luftfahrt und Militärluftfahrt verwendet werden. Liste der Abkürzungen Teil 1 A A (AA; AB; AC; AD; AE; AF; AG; AH; AI; AK; AL; AM; AN; AO; AP; AQ; AR… Deutsch Wikipedia
Abkürzungen Luftfahrt — Dies ist der erste Teil einer Liste der Abkürzungen und Akronyme, wie sie in der Luftfahrt und Militärluftfahrt verwendet werden.Viele Abkürzungen werden einfach durch Weglassen der Vokale gebildet. Liste der Abkürzungen Teil 1 A A (AA; AB; AC;…… Deutsch Wikipedia
Luftfahrt Abkürzung — Dies ist der erste Teil einer Liste der Abkürzungen und Akronyme, находится в районе Luftfahrt und Militärluftfahrt verwendet werden. Viele Abkürzungen werden einfach durch Weglassen der Vokale gebildet. Liste der Abkürzungen Teil 1 A A (AA; AB; AC;…… Deutsch Wikipedia
Luftfahrtabkürzung — Dies ist der erste Teil einer Liste der Abkürzungen und Akronyme, wie sie in der Luftfahrt und Militärluftfahrt verwendet werden.Viele Abkürzungen werden einfach durch Weglassen der Vokale gebildet. Liste der Abkürzungen Teil 1 A A (AA; AB; AC;…… Deutsch Wikipedia
Название продукта | Детали для обработки пластика с ЧПУ |
Материалы | Медь, сталь, алюминий, латунь, нержавеющая сталь, Титан, пластмассы (ПЭЭК, АБС, тефлон, акрил, делрин, ПП, ПММА, ПК, ПОМ, полиэтилен, ПВХ, нейлон), органическое стекло, углеродное волокно, дерево и т. Д., Другие материалы по вашему запросу. |
Обработка Оборудование | CNC, EDM, ArgieCharmilles, фрезерный станок, 3D CMM, проектор, HG, Литьевая машина; |
Обработка поверхности | Полировка / Гладкость, Текстура / Матирование, Печать, Покраска, Покрытие ; |
Processing Craft | Фрезерование, шлифование, сверление, гравировка и т.д .; |
Материал пресс-формы | P20,718H, NAK80, h23,2738, S136, SKD61, и т. Д .; |
Срок службы пресс-формы | 100000-5000000 выстрелов; |
Приложение | Все виды пластиковых деталей для инъекций, используемых в различных областях, включая домашнее использование и промышленное использование; |
Основание пресс-формы | LKM, FUTA, HASCO, DME и т. Д. Или по требованию заказчика; |
Испытательная установка | Координатно-измерительная машина, проектор, тестер шероховатости, твердомер, измеритель концентричности, инструментальный микроскоп, цифровой микрометр, внутренний микрометр, циферблатный индикатор, манометрический датчик, шкала, электронная электроника, штангенциркуль с цифровым дисплеем, Автоматический высотомер, прецизионный детектор уровня 2, прецизионный блочный измеритель, 00 уровней мраморной платформы / кольцевого датчика и т. Д .; |
Допуск | 0.005 ~ 0,1 мм; |
Обеспечение качества | Сертификат ISO9001: 2008, Сертификат SGS; |
Цвет | Природа, белый, черный, красный, желтый, синий, зеленый, согласно вашему требованию; |
Формат чертежа | JPEG, PDF, DWG, DXF, IGS, STEP, CAD; |
Anti-Ice Valve — это … Что такое Anti-Ice Valve?
Антиблокировочная тормозная система — Антиблокировочная тормозная система (ABS, от немецкого: Antiblockiersystem) — это система безопасности, которая позволяет колесам транспортного средства продолжать тягово взаимодействовать с дорожным покрытием в соответствии с указаниями водителя, управляющими рулевым управлением, в то время как торможение,…… Википедия
Abkürzungen / Luftfahrt / S – Z — Dies ist der fünfte Teil der Liste Abkürzungen / Luftfahrt. Лист дер Abkürzungen Teil 1 A A Teil 2 B – D B; C; D Teil 3 E – K E; F; ГРАММ; ЧАС; Я; J; … Deutsch Wikipedia
Saspo — Dies ist der fünfte Teil der Liste Abkürzungen / Luftfahrt.Лист дер Abkürzungen Teil 1 A A Teil 2 B – D B; C; D Teil 3 E – K… Deutsch Wikipedia
Abkürzungen / Luftfahrt / L – R — Dies ist der vierte Teil der Liste Abkürzungen / Luftfahrt. Лист дер Abkürzungen Teil 1 A A Teil 2 B – D B; C; D Teil 3 E – K… Deutsch Wikipedia
AFWA — Dies ist der erste Teil einer Liste der Abkürzungen und Akronyme, wie sie in der Luftfahrt und Militärluftfahrt verwendet werden. Viele Abkürzungen werden einfach durch Weglassen der Vokale gebildet.Liste der Abkürzungen Teil 1 A A (AA; AB; AC;…… Deutsch Wikipedia
Abkürzung Luftfahrt — Dies ist der erste Teil einer Liste der Abkürzungen und Akronyme, wie sie in der Luftfahrt und Militärluftfahrt verwendet werden. Viele Abkürzungen werden einfach durch Weglassen der Vokale gebildet. Liste der Abkürzungen Teil 1 A A (AA; AB; AC;…… Deutsch Wikipedia
Abkürzung aus der Luftfahrt — Dies ist der erste Teil einer Liste der Abkürzungen und Akronyme, wie sie in der Luftfahrt und Militärluftfahrt verwendet werden.Viele Abkürzungen werden einfach durch Weglassen der Vokale gebildet. Liste der Abkürzungen Teil 1 A A (AA; AB; AC;…… Deutsch Wikipedia
Abkürzungen / Luftfahrt — Dies ist der erste Teil einer Liste der Abkürzungen und Akronyme, находясь на территории Luftfahrt und Militärluftfahrt verwendet werden. Liste der Abkürzungen Teil 1 A A (AA; AB; AC; AD; AE; AF; AG; AH; AI; AK; AL; AM; AN; AO; AP; AQ; AR… Deutsch Wikipedia
Abkürzungen Luftfahrt — Dies ist der erste Teil einer Liste der Abkürzungen und Akronyme, wie sie in der Luftfahrt und Militärluftfahrt verwendet werden.Viele Abkürzungen werden einfach durch Weglassen der Vokale gebildet. Liste der Abkürzungen Teil 1 A A (AA; AB; AC;…… Deutsch Wikipedia
Luftfahrt Abkürzung — Dies ist der erste Teil einer Liste der Abkürzungen und Akronyme, находится в районе Luftfahrt und Militärluftfahrt verwendet werden. Viele Abkürzungen werden einfach durch Weglassen der Vokale gebildet. Liste der Abkürzungen Teil 1 A A (AA; AB; AC;…… Deutsch Wikipedia
Luftfahrtabkürzung — Dies ist der erste Teil einer Liste der Abkürzungen und Akronyme, wie sie in der Luftfahrt und Militärluftfahrt verwendet werden.Viele Abkürzungen werden einfach durch Weglassen der Vokale gebildet. Liste der Abkürzungen Teil 1 A A (AA; AB; AC;…… Deutsch Wikipedia
Льдогенератор серии PRV регулятор давления конденсатора запорный клапан все медь | |
Запорный клапан клапана регулировки давления конденсатора льдогенератора все медь
Клапан регулирования давления конденсации серии PRV обычно устанавливается в охлаждающей воде конденсатора на дороге (обычно устанавливается на стороне воды конденсатора). Изменяется в зависимости от давления конденсации для регулирования потока охлаждающей воды.
Клапан регулятора давления конденсации PRV nethod: Поверните регулировку «регулировочным винтом» по часовой стрелке, управляющее давление улучшится, против часовой стрелки, управляющее давление уменьшится.
Параметры модели
Номер модели: PRV-010G
Диапазон давления: 6-30 кгс / см2
Максимальное давление: 45 кгс / см2
Диаметр медной трубы: 3/8 дюйма
Модель | Сторона конденсатора | Сторона жидкости | Установите давление открытия (МПа) | Значение Kv м³ / ч | ||||||
Хладагент | Диапазон регулировки (МПа) | Максимум.рабочее давление (МПа) | Максимальное испытательное давление (МПа) | СМИ | Максимальное рабочее давление (МПа | Самая высокая температура (℃) | ||||
Низкое давление | ПРВ-010Г | R134a R22 R407C R404A / 507 | 0.5-1,8 | 4.2 | 5.2 | Пресная вода | 1 | 60 | 0,75 | 0,8 |
ПРВ-015Г | 2.5 | |||||||||
ПРВ-020Г | 3.2 | |||||||||
ПРВ-025Г | 5.0 | |||||||||
ПРВ-032Г | 7.1 | |||||||||
ПРВ-040Г | 9 | |||||||||
ПРВ-050Г | 11.8 | |||||||||
ПРВ-065Г | 13,5 | |||||||||
….. | ||||||||||
Высокая предоплата | ПРВ-010Г | R410A | 0.7-2,5 1,5–2,9 | 4.8 | 6.0 | 2,4 | 0.8 | |||
ПРВ-015Г | 2,5 | |||||||||
ПРВ-020Г | 3.2 | |||||||||
ПРВ-025Г | 5.0 | |||||||||
ПРВ-032Г | 7.1 | |||||||||
ПРВ-040Г | 9 | |||||||||
ПРВ-050Г | 11,8 | |||||||||
ПРВ-065Г | 13,52 | |||||||||
….. |
Значение Kv — это расход воды в м³ / ч при перепаде давления на клапане 1 бар, p = 1000 кг / м³
Картина :
A Тип
B Тип
Упаковка
один клапан + коробка
Отгрузка
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
Оплата
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
1) Мы принимаем Alipay, West Union, T / T.Все основные кредитные карты принимаются через безопасную оплату
процессор ESCROW.
2) Оплата должна быть произведена в течение 3 дней с момента заказа.
3) Если вы не можете оформить заказ сразу после закрытия аукциона, подождите несколько минут и повторите попытку.
Платежи должны быть завершены в течение 3 дней.
4) Если платеж не прошел успешно или кредитная карта, пожалуйста, выйдите из новой платежной системы, платежной
перезагрузите компьютер или свяжитесь с нами по.
.