История создания двигателя внутреннего сгорания Википедия
Тепловые машины (в основном, паровые) с момента появления отличались большими габаритами и это обусловленно в значительной степени применением внешнего сгорания (требовались: котлы, конденсаторы, испарители, теплообменники, тендеры, насосы, водяные резервуары и др.). В то же время основная (функциональная) часть паровой машины (поршень и цилиндр) сравнительно невелика. Поэтому мысль изобретателей всё время возвращалась к возможности совмещения топлива с рабочим телом двигателя, позволившего затем значительно уменьшить габариты интенсифицировать процессы впуска и выпуска рабочего тела. Облегчение двигателей позволило устанавливать их на транспорте, в том числе даже на самолёт. Современные самолёты (кроме небольшого количества на электромоторах) комплектуются исключительно двигателями внутреннего сгорания — реактивными, турбореактивными, или поршневыми.
Прогресс в области ДВС тесно увязан с открытием и применением различных топлив, включая синтезированные. Поскольку состав рабочего тела (получающегося сгоранием топливо-воздушной смеси), теплотворная способность, скорость сгорания смеси, и параметры цикла (степень сжатия) зависит от применённого топлива, оно и определяет в значительной части массо-габаритные и мощностные показатели таких двигателей. Топливо ДВС определяет устройство последнего, и вообще возможность его создания. Первым таким топливом стал светильный газ.
Газовый двигатель Лебона[ | ]
В 1799 году французский инженер Филипп Лебон открыл светильный газ и получил патент на использование и способ получения светильного газа путём сухой перегонки древесины или угля. Это открытие имело огромное значение, прежде всего для развития техники освещения. Очень скоро во Франции, а потом и в других странах Европы газовые лампы стали успешно конкурировать с дорогостоящими свечами. Однако светильный газ годился не только для освещения. Изобретатели взялись за конструирование двигателей, способных заменить паровую машину, при этом топливо сгорало бы не в топке, а непосредственно в цилиндре двигателя.
В 1801 году Лебон взял патент на конструкцию газового двигателя. Принцип действия этой машины основывался на известном свойстве открытого им газа: его смесь с воздухом взрывалась при воспламенении с выделением большого количества теплоты. Продукты горения стремительно расширялись, оказывая сильное давление на окружающую среду. Создав соответствующие условия, можно использовать выделяющуюся энергию в интересах человека. В двигателе Лебона были предусмотрены два компрессора и камера смешивания. Один компрессор должен был накачивать в камеру сжатый воздух, а другой — сжатый светильный газ из газогенератора. Газовоздушная смесь поступала потом в рабочий цилиндр, где воспламенялась. Двигатель был двойного действия, то есть попеременно действовавшие рабочие камеры находились по обе стороны поршня. По существу, Лебон вынашивал мысль о двигателе внутреннего сгорания, однако в 1804 году он был убит, не успев воплотить в жизнь своё изобретение
Двигатель Ленуара[ | ]
Barsanti-Matteucci (1853)В последующие годы несколько изобретателей из разных стран пытались создать работоспособный двигатель на светильном газе. Однако все эти попытки не привели к появлению на рынке двигателей, которые могли бы ус
История двигателя внутреннего сгорания
Главное устройство любого транспортного средства, в том числе наземного, является силовая установка — двигатель, преобразующий различные разновидности энергии в механическую работу.
В ходе исторического развития транспортных двигателей механическая работа движения осуществлялась за счет применения:
1) мускульной силы человека и животных;
2) силы ветра и потоков воды;
3) тепловой энергии пара и различных видов газообразного, жидкого и твердого топлива;
4) электрической и химической энергии;
5) солнечной и ядерной энергии.
Записи о попытках построить самоходные средства передвижения были уже в XV — XVI вв. Правда, силовыми установками этих «средств передвижения» была мускульная сила человека. Одной из первых достаточно хорошо известной самоходной установкой с «мускульным двигателем» является коляска с ручным приводом безногого часовщика из Нюрнберга Стефана Фарфлера, которую он соорудил в 1655 г.
Наибольшую известность в России получила «самобеглая коляска», построенная в Петербурге крестьянином Л. Л. Шамшуренковым в 1752 г.
Эта коляска, вполне вместительная для перевозки нескольких человек, приводилась в движение мускульной силой двух человек. Первый педальный металлический велосипед, близкий по конструкции к современным, был изготовлен крепостным крестьянином Верхотрусского уезда Пермской губернии Артамоновым на рубеже XVIII и XIX вв.
Древнейшими силовыми установками, правда, не транспортными, являются гидравлические двигатели — водяные колеса, приводящиеся в движение потоком (весом) падающей воды, а также ветряные двигатели. Сила ветров с древних времен использовалась для движения парусных судов, а значительно позднее и роторных. Использование ветра в роторных судах осуществлялось с помощью вертикальных вращающихся колонн, заменивших паруса.
Появление в XVII в. водяных двигателей, а позднее и паровых сыграло важную роль в зарождении и развитии мануфактурного производства, а затем и промышленной революции. .Однако большие надежды изобретателей самоходных экипажей по применению первых паровых двигателей для транспортных средств не оправдались. Первый паровой самоход грузоподъемностью 2,5 т, построенный в 1769 г. французским инженером Жозефом Каньо, получился очень громоздким, тихоходным и требующим обязательных остановок через каждые 15 минут движения.
Только в конце XIX в. во Франции были созданы весьма удачные образцы самоходных экипажей с паровыми двигателями. Начиная с 1873 г. французский конструктор Адеме Боле построил несколько удачных паровых двигателей. В 1882 г. появились паровые автомобили Дион-Бутона,
а в 1887 — автомобили Леона Серполе, которого называли «апостолом пара». Созданный Серполе котел с плоскими трубками представлял весьма совершенный парогенератор с почти мгновенным испарением воды.
Паровые автомобили Серполе конкурировали с бензиновыми автомобилями на многих гонках и скоростных состязаниях вплоть до 1907 г. Вместе с тем совершенствование паровых двигателей в качестве транспортных двигателей продолжается и сегодня в направлении снижения их массогабаритных показателей и повышения коэффициента полезного действия.
Совершенствование паровых машин и развитие двигателей внутреннего сгорания во второй половине XIX в. сопровождалось попытками ряда изобретателей использовать электрическую энергию для транспортных двигателей. Накануне третьего тысячелетия Россия отметила столетие со дня использования городского наземного электрического транспорта — трамвая. Немногим более ста лет назад, в 80-е годы XIX в., появились и первые электрические автомобили. Их появление связано с созданием в 1860-е годы свинцовых аккумуляторов. Однако слишком большая удельная масса и недостаточная емкость не позволили электромобилям принять участие в конкуренции с паровыми машинами и газобензиновыми двигателями. Электромобили с более легкими и энергоемкими серебряно-цинковыми аккумуляторами также не нашли широкого применения. В России талантливый конструктор И. В. Романов создал в конце XIX в. несколько типов электромобилей с достаточно легкими аккумуляторами.
Электромобили имеют достаточно высокие преимущества. Прежде всего они экологически чистые, так как вообще не имеют выхлопных газов, обладают очень хорошей тяговой характеристикой и большими ускорениями за счет возрастающего крутящего момента при снижении числа оборотов; используют дешевую электроэнергию, просты в управлений, надежны в эксплуатации» и т. д. Сегодня электромобили и троллейбусы имеют серьезные перспективы их развития и применения на городском и пригородном транспорте в связи с необходимостью коренного решения проблем по снижению загрязнения окружающей среды.
Попытки создания поршневых двигателей внутреннего сгорания предпринимались еще в конце XVIII в. Так, в 1799 г. англичанин Д. Барбер предложил двигатель, работавший на смеси воздуха с газом, полученным путем перегонки древесины. Другой изобретатель газового двигателя Этьен Ленуар использовал в качестве топлива светильный газ.
Еще в 1801 г. француз Филипп де Бонне предложил проект газового двигателя, в котором воздух и газ сжимались самостоятельными насосами, подавались в смесительную камеру и оттуда в цилиндр двигателя, где смесь воспламенялась от электрической искры. Появление этого проекта считается датой рождения идеи электрического воспламенения топливовоз-душной смеси.
Первый стационарный двигатель нового типа, работающий по четырехтактному циклу с предварительным сжатием смеси, был спроектирован и построен в 1862 г. кельнским механиком Н. Отто.
Практически все современные бензиновые и газовые двигатели до настоящего времени работают по циклу Отто (цикл с подводом теплоты при постоянном объеме).
Практическое применение двигателей внутреннего сгорания для транспортных экипажей началось в 70 — 80 гг. XIX в. на основе использования в качестве топлива газовых и бензовоздушных смесей и предварительного сжатия в цилиндрах. Официально изобретателями транспортных двигателей, работающих на жидких фракциях перегонки нефти, признаны три немецких конструктора: Готлиб Даймлер, построивший по патенту от 29 августа 1885 г. мотоцикл с бензиновым двигателем;
Карл Бенц, построивший по патенту от 25 марта 1886 г. трехколесный экипаж с бензиновым двигателем;
Рудольф Дизель, получивший в 1892 г. патент на двигатель с самовоспламенением смеси воздуха с жидким топливом за счет теплоты, выделяющейся при сжатии.
Здесь следует отметить, что первые двигатели внутреннего сгорания, работающие на легких фракциях перегонки нефти, были созданы в России. Так, в 1879 г. русским моряком И. С. Костовичем был спроектирован ив 1885 г. успешно прошел испытания 8-цилиндровый бензиновый двигатель малой массы и большой мощности. Этот двигатель предназначался для воздухоплавательных аппаратов.
В 1899 г. в Петербурге создан первый в мире экономичный и работоспособный двигатель с воспламенением от сжатия. Протекание рабочего цикла в этом двигателе отличалось от двигателя, предложенного немецким инженером Р. Дизелем, который предполагал осуществить цикл Карно со сгоранием по изотерме. В России в течение короткого времени была усовершенствована конструкция нового двигателя — бескомпрессорного дизеля, и уже в 1901 г. в России были построены бескомпрессорные дизели конструкции Г. В. Тринклера, а конструкции Я. В. Мамина — в 1910 г.
Русский конструктор Е. А. Яковлев спроектировал и построил моторный экипаж с керосиновым двигателем.
Успешно работали над созданием экипажей и двигателей русские изобретатели и конструкторы: Ф. А. Блинов, Хайданов, Гурьев, Махчанский и многие Другие.
Основными критериями при конструировании и производстве двигателей вплоть до 70-х годов XX в. оставалось стремление к повышению литровой мощности, а следовательно, и к получению наиболее компактного двигателя. После нефтяного кризиса 70 — 80 гг. основным требованием стало получение максимальной экономичности. Последние 10 — 15 лет XX в. главными критериями для любого двигателя стали постоянно растущие требования и нормы по экологической чистоте двигателей и прежде всего по коренному снижению токсичности отработавших газов при обеспечении хорошей экономичности и высокой мощности.
Карбюраторные двигатели, долгие годы не имевшие конкурентов по компактности и литровой мощности, не отвечают сегодня экологическим требованиям. Даже карбюраторы с электронным управлением не могут обеспечить выполнение современных требований по токсичности отработавших газов на большинстве рабочих режимов двигателя. Эти требования и жесткие условия конкуренции на мировом рынке достаточно быстро изменили типаж силовых установок для транспортных средств и прежде всего для легкового транспорта. Сегодня различные системы впрыска топлива с различными системами управления, включая электронные, практически полностью вытеснили использование карбюраторов на двигателях легковых автомобилей.
Коренная перестройка двигателестроения крупнейшими автомобильными компаниями мира в последнее десятилетие XX в. совпала с третьим периодом торможения российского двигателестроения. Из-за кризисных явлений в экономике страны отечественная промышленность не смогла обеспечить своевременный перевод двигателестроения на выпуск новых типов двигателей. Вместе с тем Россия имеет хороший научно-исследовательский задел по созданию перспективных двигателей и квалифицированные кадры специалистов, способных достаточно быстро реализовать имеющийся научный и конструкторский задел в производстве. За последние 8 — 10 лет разработаны и изготовлены принципиально новые опытные образцы двигателей с регулируемым рабочим объемом, а также с регулируемой степенью сжатия. В 1995 г. разработана и внедрена на Заволжском моторном заводе и на Нижне-Новгородском автозаводе микропроцессорная система управлением топливоподачей и зажиганием, обеспечивающая выполнение экологических норм ЕВРО-1. Разработаны и изготовлены образцы двигателей с микропроцессорной системой управления топливоподачей и нейтрализаторами, удовлетворяющие экологические требования ЕВРО-2. В этот период учеными и специалистами НАМИ разработаны и созданы: перспективный турбокомпаундный дизель, серия дизельных и бензиновых экологически чистых двигателей традиционной компоновки, двигатели, работающие на водородном топливе, плавающие транспортные средства высокой проходимости с щадящим воздействием на грунт и т. п.
Современные наземные виды транспорта обязаны своим развитием главным образом применению в качестве силовых установок поршневых двигателей внутреннего сгорания. Именно поршневые ДВС до настоящего времени являются основным видом силовых установок, преимущественно используемых на автомобилях, тракторах, сельскохозяйственных, дорожно-транспортных и строительных машинах. Эта тенденция сохраняется сегодня и будет еще сохраняться в ближайшей перспективе. Основные конкуренты поршневых двигателей — газотурбинные и электрические, солнечные и реактивные силовые установки — пока еще не вышли из этапа создания экспериментальных образцов и небольших опытных партий, хотя работы по их доводке и совершенствованию в качестве автотракторных двигателей продолжаются во многих компаниях и фирмах всего мира.
Источник: Колчин А.И., Демидов В.П. — Конструкция и расчет автотракторных двигателей, 2008 г.
Двигатель: Исторический обзор | История
Исторически двигателестроение связывают в первую очередь с двумя фамилиями — Отто и Дизель, которые знают даже дилетанты. Важнейшие изобретения этих инженеров более 100 лет тому назад способствовали стремительному развитию конструкции двигателей внутреннего сгорания.
Многие изобретатели работали над этой проблемой, но все попытки создать рабочий образец были тщетными. Все так же для работы люди использовали паровые машины, но такое оборудование не подходило для ремесленников и мелкого производства. Для образования пара требовался котел, который должен был подогреваться, а кроме того, для использования таких механизмов в производстве требовалось разрешение полиции. Поэтому создание бельгийским механиком Ленуаром двигателя, работающего на светильном газе, стало значительным шагом вперед.
Жан Этьен Ленуар (Jean Etienne Lenoir, 1822-1900 гг.) в то время жил в Париже и зарабатывал на жизнь, работая официантом. В свободное время он занимался техническими вопросами. Первый свой двигатель он создал в 1860 году. На рисунке изображена схема данного двигателя.
Рис. Схема двигателя Ленуара
В основе самой конструкции во многом была надежная паровая машина того времени. В результате у Ленуара получился двойной двухтактный двигатель внутреннего сгорания. В паровой машине перегретый пар подается в цилиндры под давлением из парового котла, а в двигателе Ленуара рабочая смесь воздуха и светильного газа через впускной золотник поступала в один из цилиндров под воздействием разрежения, вызванного движением поршня в цилиндре. Затем рабочая смесь воспламенялась от простейших свечей зажигания. Продукты сгорания, расширяясь в объеме, сдвигали поршень до конца его рабочего хода. Обработавшие газы выбрасывались из цилиндра через выпускной золотник, в то время как в другом поршне данный цикл только начинался. Цилиндры двигателя Ленуара имели водяное охлаждение. Золотниковое управление впуском и выпуском рабочей смеси Ленуар позаимствовал из конструкции паровой машины. Оба золотника приводились в действие от эксцентриков на коленчатом валу двигателя. Свечи зажигания работали от электроиндуктора с прерывателем Вагнера.
Напряжение подавалось к свечам зажигания через контактные шины. Свечи поочередно работали в постоянном режиме, в результате чего расход электроэнергии был большим и контакты часто подгорали.
Двигатель Ленуара вырабатывал мощность почти в 3 л.с. и расходовал приблизительно 4 м^3/кВт*ч светильного газа. Шум при работе мотора был очень сильным. Тем не менее, такой двигатель был проще в установке и обслуживании, чем паровая машина, поэтому он быстро завоевал популярность. Вскоре о новом двигателе узнал торговец Николаус Август Отто (Nikolaus August Otto, 1832-1891 гг.). Будучи прирожденным механиком и изобретателем, он сам сконструировал свой первый газовый мотор.
Так же, как и Ленуар, Отто понимал, что паровая машина для мелкого производства слишком дорога и трудна в обслуживании. Как коммерсант, он осознавал, что двигатель внутреннего сгорания способен покрыть рыночный дефицит и будет пользоваться спросом. Отто решил усовершенствовать конструкцию Ленуара, отказавшись от использования светильного газа в пользу горючих жидких фракций переработки нефти, но в первом прошении о предоставлении патента Отто было отказано. После этого изобретатель прекратил думать о патенте и посвятил время совершенствованию двигателя Ленуара.
Отто ясно понимал, что двигатель Ленуара работает шумно и нестабильно, а сильная детонация при воспламенении смеси светильного газа с воздухом отрицательно влияет на детали конструкции. Эти недостатки конструктор решил устранить, используя новый состав рабочей смеси. При этом оказалось, что в конце рабочего хода в цилиндре образуется разрежение, когда поршень закачал новую порцию смеси лишь на четверти своего хода. Из-за этого разрежения поршни вновь «всасывались назад». Таким образом, к Отто пришла мысль о создании атмосферного газового двигателя.
Эта конструкция, еще работавшая на смеси светильного газа и воздуха, схематически представлена на рисунке.
Рис. Атмосферный газовый двигатель. Оба эксцентрика передавали один раз вращение шестерни посредством храпового механизма при каждом рабочем цикле. При этом один эксцентрик немного поднимал поршень (ход всасывания), а второй приводил в действие золотник. После этого эксцентрики не двигались до тех пор, пока не начнется новый рабочий цикл
Поршень засасывал на десятой части своего хода вверх смесь газа с воздухом, которая затем воспламенялась от газовой горелки. Продукты сгорания смеси, расширяясь, выталкивали поршень вверх, при этом срабатывал механизм свободного хода, разъединявший шатун и вал отбора мощности двигателя. В конце хода поршня в цилиндре образовывалось разрежение. Затем, двигаясь вниз, поршень вновь соединялся с валом отбора мощности, и вес опускающегося поршня, усиленный посредством силы давления, выполнял механическую работу.
Во время каждого рабочего цикла от шестерен через храповой механизм однократно приводились в действие два эксцентрика, один из которых немного поднимал поршень при ходе впуска, а второй приводил в действие управляющий золотник. После этого эксцентрики не двигались до начала следующего рабочего цикла.
Рис. Система факельного зажигания. Если золотник стоит в положении впуска, поршень втягивает в цилиндр образующуюся в перепускном канале рабочую смесь из газа и воздуха. В то же время в запальном канале образуется запальная смесь, которая поджигается от постоянно работающей запальной горелки и переносится двигающимся вверх золотником во впускной канал, где она и зажигает рабочую смесь в цилиндре
Для воспламенения рабочей смеси Отто не использовал свечу зажигания Ленуара, так как для ее постоянной работы требовалось слишком много электроэнергии. Вместо нее Отто применил разработанную им же систему факельного зажигания. Процессы выпуска и впуска газов, а также зажигание рабочей смеси управлялись с помощью золотника, который приводился в действие эксцентриком. Атмосферный газовый двигатель Отто работал достаточно громко, но сильная детонация при воспламенении смеси уже не возникала. К тому же расход светильного газа был намного меньше по сравнению с двигателем Ленуара, так как энергия газа использовалась гораздо эффективнее.
Если золотник стоит в положении впуска, поршень втягивает в цилиндр образующуюся в перепускном канале рабочую смесь из газа и воздуха. В то же время в запальном канале образуется запальная смесь, которая поджигается от постоянно работающей запальной горелки и переносится двигающимся вверх золотником во впускной канал, где она и зажигает рабочую смесь в цилиндре.
В разработке этого двигателя участвовал инженер Ойген Ланген (Eugen Langen, 1833-1895 гг.). Отто, который отошел от торговли и полностью посвятил себя своим изобретениям, предложил Лангену создать совместное производство двигателей. Так в 1864 г. образовалась фирма «Otto & Cie», позже преобразованная в фабрику «Gasmotorenfabrik Deutz» по производству газовых двигателей, на основе которой затем возник сегодняшний концерн «Klockner-Humboldt-Deutz AG». Отто и Ланген представили свой атмосферный газовый двигатель в 1867 г. на Парижской всемирной выставке. Низкий расход газа привлекал всеобщее внимание, и двигателю присудили Гран-при. Мощность первого газового двигателя составляла примерно 0,87 л.с. при габаритной высоте почти 2 м. На протяжении года конструкторы смогли поднять мощность до 2, 72 л.с., и это стало пределом. Двигатели еще большей мощности из-за своих габаритов не могли устанавливаться в цехах и, тем более, в небольших мастерских. К тому же шум при работе двигателя становился невыносимым.
Тем не менее, покупатели двигателей требовали модели большей мощности, поэтому пришлось разрабатывать новую конструкцию. Отто сделал эскиз нового двигателя с непосредственным соединением поршней и коленчатого вала и придумал способ снижения детонации при воспламенении рабочей смеси. Идея заключалась в том, что газ и воздух должны были располагаться слоями в цилиндре таким образом, чтобы в точке воспламенения в поршне смесь содержала как можно меньше светильного газа.
В то время Отто думал, что самым большим изобретением в его новом двигателе является послойный заряд рабочей смеси, который к тому же сжимался перед воспламенением. На самом же деле гениальной идеей являлось создание четырехтактного способа работы. Четырехтактный способ работы состоит из следующих частей (тактов):
- впуск рабочей смеси газа и воздуха;
- сжатие рабочей смеси;
- воспламенение рабочей смеси с последующим расширением газов, образуемых при горении;
- выпуск отработавших газов.
Первый четырехтактный двигатель Отто и Лангена, созданный в 1876 г., развивал мощность 2,72 л.с. при 180 об/мин. Он является прообразом всех современных четырехтактных двигателей.
Несколькими годами позже был изобретен новый тип силовой установки — дизельный двигатель. Его изобретатель Рудольф Дизель (Rudolf Diesel, 1858-1913 гг.) разрабатывал холодильные установки в компании «Fa. Lindes Eismaschinen». Тщательно изучая холодильное оборудование и теплотехнику, он разработал паровую машину, работавшую на аммиаке. Работы с перегретым паром навели Дизеля на идею создать двигатель, в котором сильно сжатый воздух будет работать при высокой температуре. Такой тепловой двигатель по экономичности должен был превзойти все остальные конструкции. Высоких температур Дизель хотел достичь при помощи сжатия воздуха до 250 бар. Для предотвращения преждевременного воспламенения топливо должно было впрыскиваться в воздух в цилиндре двигателя только в конце такта сжатия. При выборе рабочего цикла Дизель все же допустил ошибку, выбрав цикл Карно, который состоит из двух изоэнтропийных и двух изотермических изменений состояния газа и имеет наилучший термический коэффициент полезного действия из всех термодинамических циклов. Цикл Карно все же не подходит в качестве рабочего цикла для двигателя внутреннего сгорания, так как изотермическое горение в двигателе невозможно. К тому же получаемая полезная работа при цикле Карно настолько мала, что покрывает только потери на трение двигателя. Это происходит из-за небольшой площади цикла (замкнутого процесса), что видно на рисунке.
Рис. Цикл Карно
Вскоре Дизель обнаружил, что его двигатель может работать и без использования цикла Карно. Изобретатель запатентовал свой новый принцип работы мотора и начал искать предприятие, способное создать его конструкцию в металле. После длительных переговоров компания «MAN» в Аугсбурге согласилась построить двигатель по чертежам Дизеля. Первый опытный образец, созданный в 1893 г., был четырехтактным, не имел системы охлаждения и запускался с помощью внешнего механического привода. Первоначально предполагалось использовать в качестве топлива бензин, но эти попытки оказались неудачными. В то же время без системы охлаждения конструкция быстро перегревалась, а система непосредственного впрыска топлива просто не работала, поскольку производство того времени было неспособно создать топливный насос с требуемой точностью изготовления деталей.
Изобретатель изменил принцип подачи топлива, в качестве которого был выбран керосин. Теперь он впрыскивался в цилиндр в момент воспламенения с помощью сжатого воздуха. Для предотвращения перегрева двигателя была разработана система водяного охлаждения. Впервые видоизмененный двигатель Дизеля самостоятельно заработал в 1894 г. Потребовалось еще множество опытов и конструктивных изменений, прежде чем двигатель был готов к использованию. В 1897 г. Дизель продемонстрировал свой двигатель большому кругу заинтересованных лиц. На испытательном стенде силовой агрегат Дизеля развил мощность 17,7 л.с. при 154 об/мин, а расход топлива составил 324 грамма/кВт*час. С таким низким расходом топлива двигатель Дизеля превзошел все тепловые моторы, став фактически самым экономичным тепловым двигателем своего времени. Превосходство в расходе топлива дизельный двигатель сохраняет и в настоящее время.
Сегодня бензиновый двигатель с принудительным искровым зажиганием очень часто называют двигателем Отто, а двигатели с самовоспламенением смеси от сжатия — дизельным двигателем. Таким образом, сохранена славная память о двух великих моторостроителях — Николаусе Августе Отто и Рудольфе Дизеле.
История развития бензиновых двигателей внутреннего сгорания
Эволюция двигателей- как было тогда, и как есть сейчас
Несмотря на то, что первые двигатели внутреннего сгорания были сконструированы более 140 лет назад, у современных автомобильных моторов по-прежнему чрезвычайно много общего с теми первыми агрегатами, которые по своему принципу действия напоминают миниатюрные электростанции.
Как известно, топливом для первого двигателя был газ, воспламеняющийся в специальной камере внутреннего сгорания. Как и тогда, в сегодняшних моторах пары бензина, предварительно смешанные с воздухом, поджигаются в камере внутреннего сгорания при помощи искры. Таким образом очевидно, что основной принцип автомобильного двигателя остался неизменным. А вот что касается энергоэффективности и экологичности современных моторов, то они в значительной степени эволюционировали, став более дружелюбными и безопасными для окружающей среды при существенном росте эффективности.
Как владелец компании Хонда доказал General Motors, что его автомобили лучше
Карбюратор и инжектор
Одним из ключевых элементов в конструкции бензиновых моторов до последнего времени являлся карбюратор. Подобное техническое решение для автомобильных моторов можно встретить еще и сегодня, заглянув под капот некоторых отечественных машин, сконструированных в ХХ веке.
Как показали исследования, модернизация карбюратора, являющегося устройством, необходимым для качественного и правильного смешивания топлива и воздуха, зашла в тупик. Повышать эффективность карбюраторов больше уже было невозможно, ввиду чего инженеры в сфере автомобильной индустрии стали один за другим отказываться от применения карбюраторов на моторах своих автомобилей.
Кроме того, карбюраторные моторы являются весьма не экологичными, что в свете тезисов о защите окружающей среды стало дополнительным стимулом отказа от карбюраторов. Стоит отметить, что долгое время работа двигателя внутреннего сгорания предполагала смазку трущихся внутренних частей мотора посредством добавления моторного масла непосредственно в бензин. Здесь было чрезвычайно важно соблюсти оптимальные пропорции, позволяющие обеспечивать необходимый эффект смазки, вместе с тем допуская минимальное количество нагара, образующегося после выгорания топливной смеси, сдобренной моторным маслом. Нарушение технологии смешивания бензина и масла влекло за собой появление густого сизого дыма позади даже вполне исправной машины.
Смотрите также: 10 сумасшедших внедорожных транспортных средств
Первые моторы, оснащаемые системой топливного впрыска, увидели свет в конце ХIХ столетии. В то время, на заре прошлого века, когда подавляющее количество автомобилестроителей работали над усовершенствованием карбюратора, один из немецких инженеров впервые получил патент на систему впрыска топлива в камеру сгорания автомобильного цилиндра. Однако надежность и практическая безотказность карбюраторных моторов не дала возможности бурному развитию инжекторных моторов, ввиду чего говорить о первых серьезных попытках конструкторов двигателей запустить систему топливного впрыска в серийное производство стало возможным лишь применительно к периоду начала Первой мировой войны. Но именно немецкие военные самолеты стали первыми серийными аппаратами, на чьих моторах карбюраторы уступили место впрыску. А вот советская, английская и американская авиация получила на вооружение самолеты с инжекторными моторами лишь к концу войны. Правда, тогда это была система механического топливного впрыска, по своей эффективности мало чем напоминающая современные электронные системы.
В отличие от карбюраторных моторов, двигатели, оснащенные системой топливного впрыска, отличались большей мощностью и тягой благодаря тому, что для каждого цикла сгорания количество и состав смеси были точно отмерены.
Что касается автомобилестроения, то здесь, несмотря на меньшую эффективность карбюратора, карбюраторные моторы оставались практически безальтернативными еще очень долгое время.
Рециркуляция выхлопных газов
Может показаться, что усовершенствование автомобильных двигателей происходило недостаточно быстро, однако этот вывод преждевременен и не справедлив. Одной из первых деталей, играющих ключевую роль в работе мотора, стал клапан рециркуляции отработанных газов. Система рециркуляции выхлопа является неотъемлемой частью силовых агрегатов подавляющего числа современных автомобилей. Эта система позволяет максимально эффективно задействовать топливо, сжигая его в камерах цилиндров с наибольшим эффектом. Благодаря процессу рециркуляции продуктов сгорания топлива отработанные газы вновь поступают в двигатель, где опять участвуют в процессе воспламенения и сгорания топливной смеси. Таким образом достигается не только более полное сжигание бензина, но и уменьшается количество вредных выбросов, образующихся в результате работы двигателя внутреннего сгорания.
Стоит отметить, что в современных моторах клапан рециркуляции отработанных газов позволяет сэкономить до 25% топлива, не сгоревшего при первоначальном воспламенении рабочей смеси, которое в отсутствии системы рециркуляции попросту вылетело бы в атмосферу. Таким образом, появившись впервые в середине прошлого века, система рециркуляции выхлопных газов стала обязательной частью для выпускаемых ныне моторов.
Система электронного зажигания
Другим важным шагом в процессе эволюции автомобильных моторов можно назвать разработку и применение электроники в системе зажигания. Довольно продолжительное время система зажигания автомобильного двигателя имела контактную конструкцию. Однако при такой конструкции мотора от правильно выставленного опережения зажигания в полной мере зависела эффективность работы всего агрегата.
Как владелец компании Хонда доказал General Motors, что его автомобили лучше
Электроника, пришедшая на смену контактному зажиганию, позволила точно выверять момент воспламенения топливной смеси, исключив ее преждевременное возгорание относительно хода поршня. Впрочем, весьма продолжительное время электронное зажигание применялось только для некоторых карбюраторных моторов будучи своеобразной опцией для дорогих моделей машин, предназначенной для повышения отдачи двигателя. Но поскольку используемые устройства требовали сложных настроек и специального оборудования, электронные системы зажигания долгое время оставались редкостью, тогда как подавляющее число автомобилистов продолжали сжигать миллионы тонн топлива ввиду неэффективной работы карбюраторных моторов, оснащаемых морально-устаревшей системой зажигания контактного типа.
Применение обедненной топливной смеси
Вариантом повышения эффективности бензиновых двигателей стал переход некоторых разработчиков на использование обедненной топливной смеси. Инженерами было изменено привычное соотношение топливной смеси. По такой технологии во второй половине 70-х годов стали строить свои моторы инженеры Honda, Mitsubishi, Nissan, а также некоторых других производителей. Но поскольку моторы, разработанные под применение обедненной смеси, требовали установки сложнейших и дорогостоящих каталитических нейтрализаторов, подобные агрегаты не прижились и уже к началу 90-х годов практически полностью перестали производиться.
Электронный топливный впрыск
Пожалуй, наиболее серьезным шагом в процессе эволюции автомобильных моторов является разработка системы электронного топливного впрыска. По сравнению с механическими аналогами, электронные системы позволяли гораздо точнее контролировать количество смеси, подаваемой в камеру сгорания. Первоначальные технологии предусматривали одноточечную конструкцию электронного впрыска, на смену которой пришли системы многоточечного и даже многопортового впрыска. Впрочем, многопортовый впрыск сегодня практически не используется ввиду сложности и дороговизны конструкции.
Сегодня в конструкции инжекторных моторов повсеместно применяются датчики кислорода, именуемые лямбда-зондами. Такие датчики устанавливаются в системе выпуска отработанных газов, выполняя функцию контроля эффективности сгорания топлива в каждом цикле. Многие автомобили располагают двумя и более кислородными датчиками, устанавливаемыми до и после каталитического нейтрализатора. При всех плюсах, лямбда-зонды обладают существенным недостатком, особенно заметным в российских условиях эксплуатации автомобилей. Эти устройства чрезвычайно чувствительны к качеству топлива и при использовании некачественного бензина могут выйти из строя уже после нескольких тысяч пробега.
Помимо двигателей, работающих по принципу цикла Отто, в мире современного автомобилестроения находят применение и другие технологии. Так, в качестве альтернативы можно назвать моторы, работающие по принципу цикла Аткинсона. Правда, такие двигатели не столь распространены ввиду меньшей мощности при прочих равных характеристика. Как правило, бензиновые двигатели, работающие по циклу Аткинсона, используются в гибридных силовых установках.
Сегодня, как и сто лет назад, конструкторы продолжают трудиться над повышением эффективности автомобильных двигателей. Так, уже возможно совсем скоро в свечах зажигания будут использоваться лазерные технологии, а для изготовления дроссельной заслонки будут применяться альтернативные материалы.
История реактивных двигателей — это… Что такое История реактивных двигателей?
История реактивных двигателей неразрывно связана с историей авиации. Прогресс в авиации на всём протяжении её существования обеспечивался, главным образом, прогрессом авиационных двигателей, а всё возраставшие требования, предъявляемые авиацией к двигателям, являлись мощным стимулятором развития авиационного двигателестроения. Считающийся первым самолётом «Флайер-1» (конструкции братьев Райт, США, 1903 год), был оснащён поршневым двигателем внутреннего сгорания, и это техническое решение на протяжении сорока лет[источник не указан 396 дней] оставалось непременным в авиации. Другие имевшиеся в то время технические решения, например самолёт Можайского (Россия, 1885 год), который имел паровые двигатели, были менее удачными. Авиационные поршневые двигатели совершенствовались, возрастала их мощность и тяговооружённость самих самолётов.
Однако, к концу Второй мировой войны требование ещё бо́льшего повышения мощности поршневых двигателей внутреннего сгорания вошло в неразрешимое противоречие с другими требованиями, предъявляемыми к авиамоторам — компактностью и ограничением массы. Дальнейшее развитие авиации по пути совершенствования поршневых двигателей становилось невозможным, и почти одновременно со смертью младшего из братьев Райт — Орвилла (1948 г) закончилась и эпоха поршневой авиации.
В двигателестроении ожили идеи, предложенные намного раньше поршневого двигателя внутреннего сгорания, но не привлекавшие внимания авиаконструкторов, пока поршневой двигатель сохранял перспективу развития. Ещё в эскизах Леонардо да Винчи (XV век) было найдено изображение колеса с лопастями, приводимого в движение тягой каминной трубы (прообраз турбины)[уточнить][1], и вращавшего через зубчатую передачу шампур для жарки мяса.[источник не указан 396 дней] Первый патент на турбинный двигатель был выдан англичанину Джону Барберу в 1791 году.[источник не указан 396 дней] В 1913 году француз Рене Лорен получил патент на прямоточный воздушно-реактивный двигатель.[источник не указан 396 дней]
Следует отметить, что ряд инженеров и учёных разных стран ещё в 30-е, и даже в 20-е годы XX века предвидели надвигающийся кризис в авиационном двигателестроении, и искали пути выхода из него, в том числе и за счёт ВРД.[источник не указан 396 дней] К ним можно отнести Ф. Уиттла (Великобритания), фон Охайна (Германия), Рене Ледюка (René Leduc) (Франция).[источник не указан 396 дней] В СССР этой проблемой занимались Ф. А. Цандер, Б. С. Стечкин, Ю. А. Победоносцев, А. М. Люлька и другие.[источник не указан 396 дней]
Впервые в СССР проект реального истребителя с ВРД разработанным А. М. Люлькой, в марте 1943 года предложил начальник ОКБ-301 М. И. Гудков.[источник не указан 396 дней] Самолёт назывался Гу-ВРД. Проект был отвергнут экспертами, главным образом, в связи с неверием в актуальность и преимущества ВРД в сравнении с поршневыми авиадвигателями.
Первый турбореактивный самолёт Heinkel He 178. Двигатель Jumo-004 — первый в мире крупносерийный ТРДНемецкие конструкторы и учёные, работавшие в этой и смежных областях (ракетостроение), оказались в более выгодном положении. Третий рейх планировал войну и выиграть её рассчитывал за счёт технического превосходства в вооружениях. Поэтому в Германии новые разработки в области авиации и ракетной техники субсидировались более щедро, чем в других странах. Первым самолётом, поднявшимся в небо с турбореактивным двигателем (ТРД) HeS 3 конструкции фон Охайна, был He 178[источник не указан 396 дней] (фирма Хейнкель Германия), управляемый лётчиком-испытателем флюг-капитаном Эрихом Варзицем (27 августа 1939 года). Этот самолёт превосходил по скорости (700 км/ч) все поршневые истребители своего времени, максимальная скорость которых не превышала 650 км/ч,[источник не указан 396 дней] но при этом был менее экономичен, и вследствие этого имел меньший радиус действия. К тому же у него были бо́льшие скорости взлёта и посадки, чем у поршневых самолётов, из-за чего ему требовалась более длинная взлётно-посадочная полоса с качественным покрытием.
Работы по этой тематике неспешно продолжались почти до конца войны, когда Третий рейх, утратив своё былое преимущество в воздухе, предпринял безуспешную попытку восстановить его за счёт серийного выпуска с августа 1944 года реактивного истребителя-бомбардировщика Мессершмитт Me.262, оборудованного двумя турбореактивными двигателями Jumo-004 производства фирмы Юнкерс. Этот самолёт значительно превосходил всех своих «современников» по скорости и скороподъёмности. А с ноября 1944 года начал выпускаться ещё и первый реактивный бомбардировщик Arado Ar 234 Blitz с теми же двигателями, который из-за его скорости не могли перехватывать поршневые истребители того времени. Единственным реактивным самолётом союзников по антигитлеровской коалиции, формально принимавшим участие во Второй мировой войне, был «Глостер Метеор» (Великобритания) с ТРД Rolls-Royce Derwent 8 конструкции Ф. Уиттла (серийное производство которого началось даже раньше, чем немецких).[источник не указан 396 дней]
После войны во всех странах, имевших авиационную промышленность, начинаются интенсивные разработки в области воздушно-реактивных двигателей. Реактивное двигателестроение открыло новые возможности в авиации: полёты на скоростях, превышающих скорость звука, и создание самолётов с грузоподъёмностью, многократно превышающей грузоподъёмность поршневых самолётов, как следствие более высокой удельной мощности газотурбинных двигателей в сравнении с поршневыми.
Первым отечественным серийным реактивным самолётом был истребитель Як-15 (1946 г), разработанный в рекордные сроки на базе планера Як-3 и адаптации трофейного двигателя Jumo-004, выполненной в моторостроительном КБ В. Я. Климова под обозначением.[2]
А уже через год прошёл государственные испытания первый, полностью оригинальный, отечественный турбореактивный двигатель ТР-1,[3] разработанный в КБ А. М. Люльки (ныне НПО «Сатурн»). Такие быстрые темпы освоения совершенно новой сферы двигателестроения имеют объяснение: группа А. М. Люльки занималась этой проблематикой ещё с довоенных времён, но «зелёный свет» этим разработкам был дан, только когда руководство страны вдруг обнаружило отставание СССР в этой области.
Первым отечественным реактивным пассажирским авиалайнером был Ту-104 (1955 г), оборудованный двумя турбореактивными двигателями РД-3М-500 (АМ-3М-500), разработанными в КБ А. А. Микулина. К этому времени СССР был уже в числе мировых лидеров в области авиационного моторостроения.[источник не указан 396 дней]
Leduc 010 первый аппарат, летавший с ПВРД (Музей в Ле Бурже). Первый полёт — 19 ноября 1946Запатентованный ещё в 1913 г, прямоточный воздушно-реактивный двигатель (ПВРД) привлекал конструкторов простотой своего устройства, но главное — своей потенциальной способностью работать на сверхзвуковых скоростях и в самых высоких, наиболее разреженных слоях атмосферы, то есть в условиях, в которых ВРД других типов неработоспособны или малоэффективны. В 1930-е годы с этим типом двигателей проводились эксперименты в США (Уильям Эвери), в СССР (Ф. А. Цандер, Б. С. Стечкин, Ю. А. Победоносцев).
В 1937 году французский конструктор Рене Ледюк получил заказ от правительства Франции на разработку экспериментального самолёта с ПВРД. Эта работа была прервана войной и возобновилась после её окончания. 19 ноября 1946 года состоялся первый в истории полёт аппарата с маршевым ПВРД.[4] Далее в течение десяти лет было изготовлено и испытано ещё несколько экспериментальных аппаратов этой серии, в том числе, пилотируемые,[5][неавторитетный источник?] а в 1957 году правительство Франции отказалось от продолжения этих работ — бурно развивавшееся в то время направление ТРД представлялось более перспективным.
Обладая рядом недостатков для использования на пилотируемых самолётах (нулевая тяга на месте, низкая эффективность на малых скоростях полёта), ПВРД является предпочтительным типом ВРД для беспилотных одноразовых снарядов и крылатых ракет, благодаря своей простоте, а, следовательно, дешевизне и надёжности. Начиная с 50-х годов XX века в США было создан ряд экспериментальных самолётов и серийных крылатых ракет разного назначения с этим типом двигателя.
В СССР с 1954 по 1960 гг в ОКБ-301 под руководством С.А.Лавочкина,[источник не указан 396 дней] разрабатывалась крылатая ракета «Буря», предназначавшаяся для доставки ядерных зарядов[источник не указан 396 дней] на межконтинентальные расстояния, и использовавшая в качестве маршевого двигателя ПВРД, разработанный группой М. М. Бондарюка, и имевший уникальные для своего времени характеристики: эффективная работа на скорости свыше трех Махов, и на высоте 17 км.[источник не указан 396 дней] В 1957 году проект вступил в стадию лётных испытаний, в ходе которых выявился ряд проблем, в частности, с точностью наведения, которые предстояло разрешить, и на это требовалось время, которое трудно было определить. Между тем, в том же году на вооружение уже поступила МБР Р-7, имевшая то же назначение, разработанная под руководством С. П. Королёва. Это ставило под сомнение целесообразность дальнейшей разработки «Бури». Из числа более современных отечественных разработок можно упомянуть противокорабельные крылатые ракеты с маршевыми ПВРД: П-800 Оникс, П-270 Москит.
Пульсирующий воздушно-реактивный двигатель (ПуВРД) был изобретён в XIX веке шведским изобретателем Мартином Вибергом.[источник не указан 396 дней] Немецкие конструкторы, ещё накануне Второй мировой войны проводившие широкий поиск альтернатив поршневым авиационным двигателям, не обошли вниманием и это изобретение, долгое время остававшееся невостребованным. Наиболее известным летательным аппаратом (и единственным серийным) c ПуВРД Argus As-014 производства фирмы Argus-Werken, явился немецкий самолёт-снаряд Фау-1. Главный конструктор Фау-1 Роберт Люссер выбрал для него ПуВРД не ради эффективности (поршневые авиационные двигатели той эпохи обладали лучшими характеристиками), а, главным образом, из-за простоты конструкции и, как следствие, малых трудозатрат на изготовление, что было оправдано при массовом производстве одноразовых снарядов. После войны исследования в области пульсирующих воздушно-реактивных двигателей продолжились во Франции (компания SNECMA) и в США (Pratt & Whitney, General Electric), кроме того, благодаря простоте и дешевизне, маленькие двигатели этого типа стали очень популярны среди авиамоделистов, и в любительской авиации, и появились коммерческие фирмы, производящие на продажу для этих целей ПуВРД и клапаны к ним (быстроизнашивающаяся запчасть).[6]
См. также
Ссылки
Примечания
В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники. Эта отметка установлена 17 ноября 2011. |
КРАТКАЯ ИСТОРИЯ РАЗВИТИЯ ДВИГАТЕЛЕЙ
В качестве энергетических установок для транспорта наибольшее распространение получили поршневые двигатели внутреннегосгорания.
Особенностью тепловых двигателей этого типа является то, что процесс сгорания топливо-воздушной смеси и преобразование тепловой энергии в механическую происходят непосредственно вцилиндредвигателя.
Положительные свойства двигателей внутреннего сгорания: компактность, высокая экономичность и долговечность, а также возможность использования в них жидкого и газообразного топлива привели к тому, что после появления этих двигателей в начале второй половины XIXв. они вскоре заменили паровую машину.
Первыми двигателями внутреннего сгорания, работавшими на газовом топливе, были двухтактные двигатели Ленуара (1860 г., Франция), Н. Отто и Э. Лангена (1867 г., Германия) и четырехтактный двигатель с предварительным сжатием смеси Н. Отто (1876 г.).
Организация в конце XIXв. промышленной переработки нефти способствовала созданию, а затем и производству двигателей внутреннего сгорания, работающих на жидком топливе: карбюраторные двигатели с искровым зажиганием, калоризаторные двигателии двигателисвоспламенениемотсжатия — дизели.
В России первый двигатель с искровым зажиганием был построен в 1889 г. по проекту инженера И. С. Костовича. В 1899 г. на заводе Э. Нобеля в Петербурге (ныне завод «Русский дизель») был построен промышленный образец высокоэкономичного двигателя с воспламенением от сжатия. Этот двигатель в отличие от двигателя, построенного немецким инженером Р. Дизелем (1897 г.) и работавшего на керосине, мог работать на природной (сырой) нефти и ее погонах. В течение короткого времени конструкция этого двигателя, названного дизелем, была значительно усовершенствована ион сталширокоприменятьсявэнергетических стационарных установках, на судах и т. п. В настоящее время дизели применяются на тепловозах, тракторах, автомобилях средней и большой грузоподъемности и на других транспортных машинах.
На автомобильном транспорте широкое применение получили карбюраторные двигатели. Они устанавливаются на всех легковых автомобилях и на грузовых автомобилях малой и средней груз опо дъемности.
В нашей стране после Великой Октябрьской социалистической революции, особенно в период первых пятилеток, стало быстро развиваться производство двигателей внутреннего сгорания различного назначения, в том числе и автомобильных. Автомобильные карбюраторные двигатели и дизели непрерывно совершенствуются. Модернизируются старые конструкции двигателей и ставятся на производство новые, имеющие большую экономичность и надежность при меньшей массе, приходящейся на единицу мощности.
Успешное развитие двигателей внутреннего сгорания, создание опытных конструкций и промышленных образцов в значительной мере связаны с исследованиями и разработкой теории рабочих процессов. В 1906 г. профессор Московского высшего технического училища В. И. Гриневецкий впервые разработал метод теплового расчета двигателя. Этот метод в дальнейшем был развит и дополнен чл.-корр. АН СССР Н. Р. Брилингом, проф. Е. К. Мазингом, акад. Б. С. Стечкиным и др.
Анализ развития энергетических установок для автомобильного транспорта показывает, что в настоящее время двигатель внутреннего сгорания является основным силовым агрегатом и еще возможно его дальнейшее совершенствование.
История реактивных двигателей — это… Что такое История реактивных двигателей?
История реактивных двигателей неразрывно связана с историей авиации. Прогресс в авиации на всём протяжении её существования обеспечивался, главным образом, прогрессом авиационных двигателей, а всё возраставшие требования, предъявляемые авиацией к двигателям, являлись мощным стимулятором развития авиационного двигателестроения. Считающийся первым самолётом «Флайер-1» (конструкции братьев Райт, США, 1903 год), был оснащён поршневым двигателем внутреннего сгорания, и это техническое решение на протяжении сорока лет[источник не указан 396 дней] оставалось непременным в авиации. Другие имевшиеся в то время технические решения, например самолёт Можайского (Россия, 1885 год), который имел паровые двигатели, были менее удачными. Авиационные поршневые двигатели совершенствовались, возрастала их мощность и тяговооружённость самих самолётов.
Однако, к концу Второй мировой войны требование ещё бо́льшего повышения мощности поршневых двигателей внутреннего сгорания вошло в неразрешимое противоречие с другими требованиями, предъявляемыми к авиамоторам — компактностью и ограничением массы. Дальнейшее развитие авиации по пути совершенствования поршневых двигателей становилось невозможным, и почти одновременно со смертью младшего из братьев Райт — Орвилла (1948 г) закончилась и эпоха поршневой авиации.
В двигателестроении ожили идеи, предложенные намного раньше поршневого двигателя внутреннего сгорания, но не привлекавшие внимания авиаконструкторов, пока поршневой двигатель сохранял перспективу развития. Ещё в эскизах Леонардо да Винчи (XV век) было найдено изображение колеса с лопастями, приводимого в движение тягой каминной трубы (прообраз турбины)[уточнить][1], и вращавшего через зубчатую передачу шампур для жарки мяса.[источник не указан 396 дней] Первый патент на турбинный двигатель был выдан англичанину Джону Барберу в 1791 году.[источник не указан 396 дней] В 1913 году француз Рене Лорен получил патент на прямоточный воздушно-реактивный двигатель.[источник не указан 396 дней]
Следует отметить, что ряд инженеров и учёных разных стран ещё в 30-е, и даже в 20-е годы XX века предвидели надвигающийся кризис в авиационном двигателестроении, и искали пути выхода из него, в том числе и за счёт ВРД.[источник не указан 396 дней] К ним можно отнести Ф. Уиттла (Великобритания), фон Охайна (Германия), Рене Ледюка (René Leduc) (Франция).[источник не указан 396 дней] В СССР этой проблемой занимались Ф. А. Цандер, Б. С. Стечкин, Ю. А. Победоносцев, А. М. Люлька и другие.[источник не указан 396 дней]
Впервые в СССР проект реального истребителя с ВРД разработанным А. М. Люлькой, в марте 1943 года предложил начальник ОКБ-301 М. И. Гудков.[источник не указан 396 дней] Самолёт назывался Гу-ВРД. Проект был отвергнут экспертами, главным образом, в связи с неверием в актуальность и преимущества ВРД в сравнении с поршневыми авиадвигателями.
Первый турбореактивный самолёт Heinkel He 178. Двигатель Jumo-004 — первый в мире крупносерийный ТРДНемецкие конструкторы и учёные, работавшие в этой и смежных областях (ракетостроение), оказались в более выгодном положении. Третий рейх планировал войну и выиграть её рассчитывал за счёт технического превосходства в вооружениях. Поэтому в Германии новые разработки в области авиации и ракетной техники субсидировались более щедро, чем в других странах. Первым самолётом, поднявшимся в небо с турбореактивным двигателем (ТРД) HeS 3 конструкции фон Охайна, был He 178[источник не указан 396 дней] (фирма Хейнкель Германия), управляемый лётчиком-испытателем флюг-капитаном Эрихом Варзицем (27 августа 1939 года). Этот самолёт превосходил по скорости (700 км/ч) все поршневые истребители своего времени, максимальная скорость которых не превышала 650 км/ч,[источник не указан 396 дней] но при этом был менее экономичен, и вследствие этого имел меньший радиус действия. К тому же у него были бо́льшие скорости взлёта и посадки, чем у поршневых самолётов, из-за чего ему требовалась более длинная взлётно-посадочная полоса с качественным покрытием.
Работы по этой тематике неспешно продолжались почти до конца войны, когда Третий рейх, утратив своё былое преимущество в воздухе, предпринял безуспешную попытку восстановить его за счёт серийного выпуска с августа 1944 года реактивного истребителя-бомбардировщика Мессершмитт Me.262, оборудованного двумя турбореактивными двигателями Jumo-004 производства фирмы Юнкерс. Этот самолёт значительно превосходил всех своих «современников» по скорости и скороподъёмности. А с ноября 1944 года начал выпускаться ещё и первый реактивный бомбардировщик Arado Ar 234 Blitz с теми же двигателями, который из-за его скорости не могли перехватывать поршневые истребители того времени. Единственным реактивным самолётом союзников по антигитлеровской коалиции, формально принимавшим участие во Второй мировой войне, был «Глостер Метеор» (Великобритания) с ТРД Rolls-Royce Derwent 8 конструкции Ф. Уиттла (серийное производство которого началось даже раньше, чем немецких).[источник не указан 396 дней]
После войны во всех странах, имевших авиационную промышленность, начинаются интенсивные разработки в области воздушно-реактивных двигателей. Реактивное двигателестроение открыло новые возможности в авиации: полёты на скоростях, превышающих скорость звука, и создание самолётов с грузоподъёмностью, многократно превышающей грузоподъёмность поршневых самолётов, как следствие более высокой удельной мощности газотурбинных двигателей в сравнении с поршневыми.
Первым отечественным серийным реактивным самолётом был истребитель Як-15 (1946 г), разработанный в рекордные сроки на базе планера Як-3 и адаптации трофейного двигателя Jumo-004, выполненной в моторостроительном КБ В. Я. Климова под обозначением.[2]
А уже через год прошёл государственные испытания первый, полностью оригинальный, отечественный турбореактивный двигатель ТР-1,[3] разработанный в КБ А. М. Люльки (ныне НПО «Сатурн»). Такие быстрые темпы освоения совершенно новой сферы двигателестроения имеют объяснение: группа А. М. Люльки занималась этой проблематикой ещё с довоенных времён, но «зелёный свет» этим разработкам был дан, только когда руководство страны вдруг обнаружило отставание СССР в этой области.
Первым отечественным реактивным пассажирским авиалайнером был Ту-104 (1955 г), оборудованный двумя турбореактивными двигателями РД-3М-500 (АМ-3М-500), разработанными в КБ А. А. Микулина. К этому времени СССР был уже в числе мировых лидеров в области авиационного моторостроения.[источник не указан 396 дней]
Leduc 010 первый аппарат, летавший с ПВРД (Музей в Ле Бурже). Первый полёт — 19 ноября 1946Запатентованный ещё в 1913 г, прямоточный воздушно-реактивный двигатель (ПВРД) привлекал конструкторов простотой своего устройства, но главное — своей потенциальной способностью работать на сверхзвуковых скоростях и в самых высоких, наиболее разреженных слоях атмосферы, то есть в условиях, в которых ВРД других типов неработоспособны или малоэффективны. В 1930-е годы с этим типом двигателей проводились эксперименты в США (Уильям Эвери), в СССР (Ф. А. Цандер, Б. С. Стечкин, Ю. А. Победоносцев).
В 1937 году французский конструктор Рене Ледюк получил заказ от правительства Франции на разработку экспериментального самолёта с ПВРД. Эта работа была прервана войной и возобновилась после её окончания. 19 ноября 1946 года состоялся первый в истории полёт аппарата с маршевым ПВРД.[4] Далее в течение десяти лет было изготовлено и испытано ещё несколько экспериментальных аппаратов этой серии, в том числе, пилотируемые,[5][неавторитетный источник?] а в 1957 году правительство Франции отказалось от продолжения этих работ — бурно развивавшееся в то время направление ТРД представлялось более перспективным.
Обладая рядом недостатков для использования на пилотируемых самолётах (нулевая тяга на месте, низкая эффективность на малых скоростях полёта), ПВРД является предпочтительным типом ВРД для беспилотных одноразовых снарядов и крылатых ракет, благодаря своей простоте, а, следовательно, дешевизне и надёжности. Начиная с 50-х годов XX века в США было создан ряд экспериментальных самолётов и серийных крылатых ракет разного назначения с этим типом двигателя.
В СССР с 1954 по 1960 гг в ОКБ-301 под руководством С.А.Лавочкина,[источник не указан 396 дней] разрабатывалась крылатая ракета «Буря», предназначавшаяся для доставки ядерных зарядов[источник не указан 396 дней] на межконтинентальные расстояния, и использовавшая в качестве маршевого двигателя ПВРД, разработанный группой М. М. Бондарюка, и имевший уникальные для своего времени характеристики: эффективная работа на скорости свыше трех Махов, и на высоте 17 км.[источник не указан 396 дней] В 1957 году проект вступил в стадию лётных испытаний, в ходе которых выявился ряд проблем, в частности, с точностью наведения, которые предстояло разрешить, и на это требовалось время, которое трудно было определить. Между тем, в том же году на вооружение уже поступила МБР Р-7, имевшая то же назначение, разработанная под руководством С. П. Королёва. Это ставило под сомнение целесообразность дальнейшей разработки «Бури». Из числа более современных отечественных разработок можно упомянуть противокорабельные крылатые ракеты с маршевыми ПВРД: П-800 Оникс, П-270 Москит.
Пульсирующий воздушно-реактивный двигатель (ПуВРД) был изобретён в XIX веке шведским изобретателем Мартином Вибергом.[источник не указан 396 дней] Немецкие конструкторы, ещё накануне Второй мировой войны проводившие широкий поиск альтернатив поршневым авиационным двигателям, не обошли вниманием и это изобретение, долгое время остававшееся невостребованным. Наиболее известным летательным аппаратом (и единственным серийным) c ПуВРД Argus As-014 производства фирмы Argus-Werken, явился немецкий самолёт-снаряд Фау-1. Главный конструктор Фау-1 Роберт Люссер выбрал для него ПуВРД не ради эффективности (поршневые авиационные двигатели той эпохи обладали лучшими характеристиками), а, главным образом, из-за простоты конструкции и, как следствие, малых трудозатрат на изготовление, что было оправдано при массовом производстве одноразовых снарядов. После войны исследования в области пульсирующих воздушно-реактивных двигателей продолжились во Франции (компания SNECMA) и в США (Pratt & Whitney, General Electric), кроме того, благодаря простоте и дешевизне, маленькие двигатели этого типа стали очень популярны среди авиамоделистов, и в любительской авиации, и появились коммерческие фирмы, производящие на продажу для этих целей ПуВРД и клапаны к ним (быстроизнашивающаяся запчасть).[6]
См. также
Ссылки
Примечания
В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники. Эта отметка установлена 17 ноября 2011. |