Асинхронные реверсивные электродвигатели: Схема реверса асинхронного двигателя | Заметки электрика – Реверс асинхронного двигателя, способы его осуществления

Реверс асинхронного двигателя, способы его осуществления

При эксплуатации асинхронных двигателей, реверс двигателя является неотделимой составляющей, которая встречается в 80% от всех встречающихся схем.
Для того чтобы полностью понимать суть вопроса, необходимо уяснить, что же такое реверс, и как он связан с двигателем. По сути реверс — это какое-либо изменение некоторого процесса, действия на обратное — противоположное.

В случаи асинхронного двигателя, реверс — это изменение направления вращения ротора двигателя. Например, если вал двигателя вращался по часовой стрелке, то после реверса, он будит вращаться против часовой стрелки.

Для чего нужен реверс двигателя

В большинстве механических устройств, которые приводятся в движение благодаря асинхронным двигателям, возникает потребности в изменении направления движения или вращения в зависимости от самого устройства.
В некоторых случаях реверс является необходимой и обязательной для его работы, а в некоторых лишь как временная функция.
К первому типу устройств можно отнести все краны, лебедки, лифты и другие грузоподъемные механизмы, привода задвижек, запирающих устройств. А вот ко второму типов механизмов, используемых реверс только в редких случаях, относят конвейерные ленты, эскалаторы, насосы. В этих механизмах, реверс двигателя может применятся лишь в особых случаях, чаще всего аварийных. Так же реверс двигателя могут использовать в целях торможения, так при отключении двигателя от сети, ротор обладая инерцией продолжает свое вращение. При кратковременном включении реверса в этот момент вызовет затормаживание. Такой способ торможения реверсом называют противо включением.

Как производится реверс асинхронного двигателя

Для смены направления вращения ротора двигателя, необходимо поменять местами две из трех фаз статорной обмотки. После этого вращающееся магнитное поле статора изменит свое направление вращения, но ротор вращаясь в прежнем направлении и обладая инерцией под действием магнитного поля статора начнет затормаживаться до полной остановки, а затем начнет вращаться в новом направлении.

revers dvigatela

revers dvigatela

Схемы реверса двигателя выполняются и собираются в основном на магнитных пускателях, как в прямом пуске асинхронного двигателя, но при реверсе присутствует два магнитных пускателя или контактора, а еще две пусковые кнопки вместо одной.

Реверс электроходов, имеющих асинхронные и синхронные двигатели

Пуск и реверс синхронного двигателя осуществляется в асинхронном режиме, в виду чего работа синхронных и асинхронных гребных электродвигателей при пуске и реверсе аналогична. Основное различие заключается в том, что если данные процессы для асинхронного двигателя заканчиваются выведением его на естественную (асинхронную) характеристику, то синхронный двигатель их асинхронного режима еще должен перейти в синхронный, что производится при подаче возбуждения в обмотку ротора двигателя. Поэтому пуск и реверс рассмотрим для ГЭУ с синхронными гребными электродвигателями.

Пуск гребного электродвигателя. При пуске гребного электродвигателя, мощность которого примерно равна мощности питающих генераторов, напряжение главной цепи в результате реакции статора генераторов резко снижается. При этом асинхронный момент двигателя, пропорциональный квадрату напряжения. может настолько уменьшиться, что не окажется в состоянии преодолеть момент сопротивления винта и разогнать двигатель до асинхронной скорости. Для увеличения пускового и максимального моментов двигателя применяют перевозбуждение (форсировку возбуждения) генератора. В ГЭУ допускают увеличение тока возбуждения генераторов в 3—6 раз.
Пусковые характеристики синхронного двигателя без форсировки возбуждения генератора (кривая 1) и с форсировкой (кривая 2) приведены на рис. 1.
Двигатель под действием асинхронного момента разгоняется до подсинхронной скорости (0,95 nc), при которой включается возбуждение. и возникший при этом синхронизирующий момент втягивает двигатель в синхронизм. Асинхронный момент, развиваемый двигателем при подсинхронной скорости, называется входным, или подсинхронным. Для надежного вхождения двигателя в синхронизм необходимо, чтобы его подсинхронный момент на 25 % превышал момент сопротивления. Из рис. 1 видно, что это возможно лишь при форсировке возбуждения.

Рис. 1. Пусковые характеристики синхронного двигателя с форсировкой возбуждения и без нее.

Рис. 2. пуск гребного электродвигателя в ГЭУ переменного тока.

Чтобы уменьшить момент сопротивления винта, гребной электродвигатель пускают при пониженной частоте цепи главного тока fп, которая определяется наименьшей устойчивой скоростью первичных двигателей генераторов (рис. 2). Пуск гребного электродвигателя состоит из следующих операций:

а) гребной двигатель подключают к генератору или к сборным шинам группы синхронизированных генераторов, работающих при пониженной частоте fп;
б) производят форсировку возбуждения генераторов;
в) после того, как гребной электродвигатель достигнет подсинхронной скорости, включают его возбуждение, в результате чего двигатель втягивается в синхронизм;
г) уменьшают ток возбуждения генераторов до номинальной величины; при этом гребной электродвигатель вращается с синхронной скоростью nп, соответствующей частоте пуска fп (тока С).
Дальнейший разгон двигателя производится повышением частоты генераторов. В ДЭГУ при этом должно быть обеспечено равномерное распределение нагрузки между параллельно работающими генераторами.
Переход гребного электродвигателя из режима точки С в режим точки В происходит благодаря быстрому повышению скорости вращения первичных двигателей и увеличению частоты тока главной цепи от fп до fш, при которой гребной двигатель развивает скорость nш и номинальный момент на валу Мн. Затем, по мере постепенного разгона судна и соответствующего увеличения частоты генераторов, винт, работая, переходит со швартовной характеристики на промежуточные и, наконец, на основную характеристику в точку А, определяемую номинальными значениями скорости nн и момента Мн. При этом во избежание перегрузок гребного и первичных двигателей необходимо частоту увеличивать плавно, с тем чтобы винт разгонялся без резких колебаний момента нагрузки — по ломаной BDEHFKA.

Рис. 3. Реверсивные характеристики винта (1 и 2) и гребного электродвигателя (3 и 4).

Реверс гребного электродвигателя. При реверсе, как и при пуске, гребной электродвигатель работает в асинхронном режиме при пониженном напряжении, а следовательно, при резко уменьшенном моменте на валу (рис. 3). Чтобы снизить момент сопротивления винта Мв, при котором двигатель должен входить в синхронизм, а также чтобы преодолеть максимальный вращающий момент винта МВmax для его затормаживания, реверс производят при минимальной частоте fр, получаемой путем уменьшения скорости первичных двигателей до минимальной устойчивой. Однако этого часто бывает недостаточно (кривая 3). Поэтому, как и при пуске, прибегают к форсировке возбуждения главных генераторов (кривая 4). Так как продолжительность реверса гребного электродвигателя мала по сравнению с продолжительностью реверса судна, будем считать, что пока двигатель затормаживается и разгоняется в противоположную сторону, судно по инерции движется в прежнем направлении со скоростью, которая предшествовала реверсу.

Реверс гребных электродвигателей возможен двумя способами:
а) электродвигатель включают в обычный для асинхронных двигателей режим противовключения;
б) электродвигатель сначала включат в режим динамического торможения, затем останавливают механическим тормозом и, наконец, пускают в противоположном направлении.
Первый способ предпочтительнее, поскольку он проще и не требует сложного распределительного устройства системы электродвижения. Ниже приведена последовательность такого реверса для ДЭГУ.
1. Снимают возбуждение генераторов и электродвигателя и выключают реверсивный переключатель. Скорость первичных двигателей снижают до минимальной устойчивой. При этом винт затормаживается от nн до nБ (участок АБ).
2. Реверсивным переключателем включают гребной электродвигатель в положение «Ход назад» (режим противовключения). Винт, затормаживаясь от точки Б по реверсивной характеристике 1, увеличивает вращающий момент до МВmax (режим гидротурбины). если включенный гребной двигатель развивает момент в соответствии с механической характеристикой 3, то в точке В моменты уравновешивают друг друга и наступает установившийся режим работы ГЭУ. Он продолжается до тех пор, пока не уменьшается скорость движения судна и винт не переходит на реверсивную характеристику 2. Это недопустимо затягивает реверс и вызывает перегрев машин ГЭУ. Чтобы предотвратить такой режим, возбуждение генератора включают с необходимой форсировкой, в результате которой гребной двигатель, работая по характеристике 4, сначала затормаживается до полной остановки (участок ГД), а затем, изменив направление вращения, разгоняется до подсинхронной скорости (участок ДЕ).
3. При достижении электродвигателем подсинхронной скорости включается возбуждение (точка Е). Поскольку подсинхронный момент двигателя МЕ больше момента сопротивления винта МВ, двигатель входит в синхронизм (точка К).
4. После вхождения двигателя в синхронизм ток возбуждения генераторов снижается до номинальной величины.
5. Дальнейший разгон гребного двигателя, как и при пуске, осуществляется постепенным увеличением частоты тока главной цепи, т. е. увеличением скорости дизелей. При этом следует контролировать равномерность распределения нагрузки между параллельно с работающими генераторами и дизелями.
В ТЭГУ процесс реверса отличается от описанного тем, что отпадает надобность в синхронизации генераторов и в контроле за распределением нагрузки между ними.

Схема реверсивного управления асинхронного электродвигателя с короткозамкнутым ротором

revers asinkhronnogo elektrodvigatelya

Всем привет. Рад вас видеть у себя на сайте. Тема сегодняшней статьи: Реверсивное управление асинхронным электродвигателем с короткозамкнутым ротором.

В наше время асинхронные двигателя очень широко используются на производственных предприятиях. Их устанавливают практически на всём оборудование. А ещё бы и не ставить, ведь они самые простые в конструкции, имеют самую простую схему запуска и практически не требуют профилактических ремонтов.

Но мы сегодня не будем говорить о достоинствах и преимуществах этих двигателей, давайте лучше поговорим, о том, как же изменить направления движения этих электрических машин.

Но прежде чем рассматривать схему реверса, я советую вам почитать такие статьи:

Схема пуска асинхронного двигателя.

Расчёт тока электродвигателя.

Думаю, эти статьи будут вам очень полезны.

Теперь, переходим к практике. Специально для читателей своего сайта, я нарисовал схему реверса на листке бумаги, сфотографировал её, и делюсь с вами. Картинка получилась неплохо, и все основные элементы на ней видно. Но если вдруг вам что-то не понятно, то задавайте свои вопросы в комментариях. Я с радостью на них отвечу.

Схема запуска и реверсивного управления трёхфазного асинхронного электродвигателя с короткозамкнутым ротором.

Давайте для начала рассмотрим все элементы схемы.

QF – автоматический выключатель. Нужен для коммутации электрической схемы и для защиты от токов короткого замыкания.

KM1, KM2 – электромагнитные пускатели. Нужны для дистанционного запуска электродвигателя, и в данной схеме используются для реверса.

KK – тепловое реле. Используется для защиты электропривода от перегруза.

FU – предохранитель. Нужен для защиты цепей управления от токов короткого замыкания. И так же выступает в роли защиты от самопроизвольного включения привода в работу.

SB3 – кнопка стоп

SB1 – кнопка пуск «вперёд» или «вправо» и так далее.

SB2 – кнопка пуск «назад» или «влево» и так далее.

KM1, KM2 – блок-контакты электромагнитных пускателей. Нужны для подхвата.

KM1, KM2 – дополнительные блок-контакты пускателей. Выступают в роли блокировки от включения двух пускателей одновременно.

KM1, KM2 – катушки пускателей. Нужны для управления электромагнитными пускателями.

К – контакт теплового реле.

М – мотор

По элементам разобрались. Теперь давайте поговорим о том, как работает эта схема.

Skhema reversivnogo upravleniya asinkhronnym elektrodvigatelem s korotkozamknutym rotorom

Для того чтобы запустить в работу электродвигатель, мы должны подать на него напряжение. Для этого включаем автоматический выключатель QF. Напряжение подаётся на контакты пускателей, и на цепь управления.

Теперь, чтобы двигатель начал вращаться нажимаем кнопку SB1. Этим действием мы подаём напряжение на катушку пускателя КМ1, пускатель втягивается, замыкаются силовые контакты и так же замыкается блок-контакт КМ1, а блок-контакт КМ2 размыкается. Двигатель при этом начинает вращаться

Теперь, чтобы запустить двигатель в другую сторону, нам нужно его сначала остановить. Для этого нажимаем кнопку SB3. Этим движением мы прекращаем подачу напряжения на цепь управления, и двигатель в любом случае остановиться, независимо от того в какую сторону он вращался.

Теперь для запуска электродвигателя в противоположную сторону. Нажимаем кнопку SB2. Напряжение подаются на катушку второго пускателя, он втягивается, замыкаются силовые контакты, замыкаются блок-контакты для подхвата, и размыкаются дополнительные блок-контакты. Двигатель начинает вращаться.

По сути, если разобраться, то схема очень простая. Главное понять принцип действия, и тогда вы легко сможете эту схему, переделать под свой какой-то вариант.

На этом у меня всё. Если есть вопросы, то задавайте их в комментариях. Если статья была вам полезной, то поделитесь нею со своими друзьями в социальных сетях, вступайте в группу и подписывайтесь на обновления сайта. Пока.

С уважением Александр!

Читайте также статьи:

Реверс асинхронного двигателя — Меандр — занимательная электроника

Сегодня трех-фазные асинхронные двигатели являются наиболее распространенной электрической машиной. Они нашли широкое применение в большинстве станков, устройств, требующих приведения в движение их составных частей.

Такая популярность в использовании трех-фазных асинхронных двигателей обусловлена следующими трема факторами:

  • Относительная низкая стоимость;
  • Простота производства;
  • Простота в эксплуатации;

В зависимости от механизма, который приводится во вращение этим электродвигателем, может возникнуть необходимость в изменении направления вращения механизмов, а, следовательно, и вала двигателя, в нашем случаи трех-фазного асинхронного электродвигателя.

Рассмотрим общеизвестную схему:Теоретически, для изменения направления вращения вала (реверса) электродвигателя необходимо всего на всего поменять местами две фазы. Стоит отметить, что не имеет значения какие фазы мы будим менять, но на будущее принято менять две крайние фазы, то есть фазу «А» с фазой «В».

Для выполнения таких манипуляций с электродвигателем выше предоставленную схему необходимо видоизменить – переделать, доработать. Для этого понадобится еще один магнитный пускатель, или же контактор (зависит от мощности асинхронного двигателя), а также кнопочная станция, состоящая из трех кнопок, или же три кнопочных контакта два нормально разомкнутых (замыкающих), и один нормально разомкнутый.

В случае, если вам не нужно постоянно производить реверс, достаточно на самом электродвигателе поменять местами два провода, а затем вернуть все обратно. Но если необходимо постоянно выполнять реверс, то лучше всего переделать схему.

Эта схема будет выглядеть следующим образом.
Для наглядности каждая фаза выделена своим цветом: желтым фаза «А», зеленым фаза «В» и красным фаза «С», синим цветом выделена цепь управления. Так же линии, окрашенные в черный цвет, не находятся под напряжением.

Как вы уже заметили это схема реверса существенно не отличается от простой схемы пуска асинхронного двигателя. Все изменения сводятся к магнитному пускателю КМ2, нормально разомкнутому контакту кнопки SB2. Стоит отметить и наличие электрической блокировки, которая выражается блок контактами магнитных пускателей, включенных в цепь управления.

Как и элементарная схема пуска асинхронного электродвигателя, схема реверса этого же двигателя состоит из следующих элементов (устройств):

Вводной автомат АВ1 – через него подается трехфазное напряжение силовой цепи и цепи управления;

Два магнитных пускателя КМ1 и КМ2 через силовые контакты которых, подается питание на статор электродвигателя. Их блок контакты включены в цепь управления для выполнения подхвата и электрической блокировки. Катушки этих пускателей также включены в цепь управления. Нужно сказать, что каждый из магнитных пускателей отвечает за определенное вращение ротора электродвигателя. Например, питание подаётся через магнитный пускатель КМ1, то вал электродвигателя будит вращаться по часовой стрелке (вперед), если же питание подаётся через силовые контакты магнитного пускателя КМ2, то вал асинхронного двигателя будит вращаться против часовой стрелки (назад).

В данной схеме используются катушки магнитных пускателей, рассчитанные на линейное напряжение 380В. Если же катушки магнитных пускателей были рассчитаны на фазное напряжение сети 220В, то схема выглядела следующим образом:


Тепловое реле КК – биметаллические пластины, которого включены последовательно в цепь статора, а блок контакт вцепи управления. Служит для защиты электродвигателя от перегрузки.

Двухполюсный автомат АВ2 – подает питание в цепь управления. Также совместно с автоматом или без него может устанавливаться ключ бирка.

Нормально разомкнутые контакты SB1 и SB2 – это кнопки пуск, каждая из которых соответствует направлению вращения вала электродвигателя (вперед и назад).

Нормально замкнутый контакт SB3 – кнопка стоп.

Ну и сам трех фазный асинхронный электродвигатель Д;

Работа схемы

Для того, чтобы привести схему в готовность к пуску, необходимо включить вводной автомат АВ1 и автомат в цепи управления АВ2.
В таком состоянии схема реверса асинхронного двигателя готова к пуску. При этом напряжение в силовой цепи подается через вводный автоматический выключатель АВ1 на верхние губки магнитных пускателей КМ1 и КМ2, а в цепи управления, через автомат АВ2, через нормально замкнутый контакт кнопки SB3 подаётся напряжение на нормально разомкнутые контакты кнопок SB1 и SB2, а также на нормально разомкнутые блок контакты магнитных пускателей КМ1 и КМ2.
Для запуска электродвигателя необходимо нажать одну из кнопок пуск SB1 или SB2 (допустим была нажата кнопка SB1).

После замыкания контакта кнопки SB1, напряжение через замкнутый блок контакт блокировки магнитного пускателя КМ2, через катушку магнитного пускателя КМ1, через блок контакт КК, через автоматы АВ2 и АВ1 выйдет на фазу «С». Образуется замкнутая цепь, по которой начнет протекать переменный ток. Проходя через катушку магнитного пускателя КМ1, она образует магнитное поле, которое втянет якорь магнитного пускателя КМ1, при этом его силовые контакты замкнутся, вследствие чего асинхронный электродвигатель получит питание, по его обмоткам начнет протекать ток, и он запустится, ротор будит вращаться. При срабатывании магнитного пускателя, его разомкнутый контакт в цепи управления замкнется, он шунтирует кнопку SB1, то есть ток будит протекать параллельно пусковой кнопки, так что при отпускании пусковой кнопки электродвигатель не остановится. Так же в цепи пусковой кнопки SB2 разомкнется блок контакт магнитного пускателя КМ1, этим исключит возможность срабатывания второго магнитного пускателя КМ2, что вызовет межфазное короткое замыкание. Все перечисленное происходило при нажатии кнопки «Пуск», замыкания контакта SB1.

Чтобы остановить электродвигатель, необходимо нажать кнопку «Стоп», то есть разомкнуть контакт кнопки SB3.

Вследствие чего цепь, в которую включены катушки будит разомкнута, электрический ток не будит по ним протекать. Магнитный пускатель разомкнет свои силовые контакты, из-за чего электродвигатель потеряет питание и остановится. При этом нормально разомкнутый блок контакт КМ1 (подхват) разомкнется, это приведет к тому, что при возврате кнопки SB3 двигатель не запуститься снова. Так же нормально замкнутый блок контакт электрической блокировки КМ1 в цепи катушки магнитного пускателя КМ2 замкнется, обеспечивая возможность включения обратного хода. Схема вернется в состояние готовности очередному пуску двигателя.

Если же мы замкнем контакт SB2, произойдут те же действия что и при замыкании контакта SB1, но с другим магнитным пускателем КМ2, и направление вращения вала асинхронного двигателя будит обратным. Мы видим, что магнитный пускатель КМ2 включен в цепи так, что фазы «А» и «С» поменяны местами, это и гарантирует изменение направления вращения вала. Для остановки электродвигателя необходимо так же разомкнуть контакт кнопки SB3.

Данная схема выполнена с тремя видами защит:

  • От короткого замыкания;
  • От потери напряжения КМ1 и КМ2;
  • От перегрузки;

Эта схема сложнее схемы обычного пуска асинхронного двигателя, я посоветую для начала разобраться в более легкой, а затем приступать к этой.

Отправить ответ

avatar
  Подписаться  
Уведомление о