Червячные самоблокирующиеся дифференциалы
Червячный самоблокирующийся дифференциал
Червячный самоблокирующийся дифференциал обеспечивает автоматическую блокировку в зависимости от разности крутящих моментов на корпусе и полуоси (приводном вале). При проскальзывании колеса, сопровождаемом падением крутящего момента, червячный дифференциал блокируется и перераспределяет крутящий момент на свободное колесо. Блокировка при этом частичная, а ее степень зависит от величины падения крутящего момента.
Известными конструкциями червячных дифференциалов являются дифференциал Torsen (от сокращенного Torque Sensing — чувствительный к крутящему моменту) и дифференциал Quaife. Конструкции данных дифференциалов представляют собой планетарный редуктор, состоящий из червячных шестерен: ведомых (полуосевых) и ведущих (сателлитов). Сателлиты могут располагаться параллельно полуосям (Quaife, Torsen Т-2) или перпендикулярно полуосям (Torsen Т-1).
Схема дифференциала Torsen
Особенностью червячной шестерни является то, что она может приводить во вращение другие шестерни, а сама не может вращаться от других шестерен. При этом говорят, червячная шестерня расклинивается. Данное свойство используется для частичной блокировки червячного дифференциала.
Червячные самоблокирующиеся дифференциалы широко применяются как в качестве межколесных, так и межосевых дифференциалов.
Самоблокирующийся червячный дифференциал (самоблок) — устройство, которое позволяет частично компенсировать главный недостаток свободного дифференциала, а именно его полную беспомощность при наезде одного колеса на скользкое покрытие. По принципу работы, самоблокирующиеся дифференциалы можно разделить на два типа: speed sensitive, то есть срабатывающих от разницы в угловых скоростях вращения полуосей, и torque sensitive — срабатывающих от разницы передаваемого на полуоси крутящего момента. Для понимания работы самоблока сначала разберёмся с принципом работы обыкновенного дифференциала и его недостатками.
Самоблокирующийся червячный дифференциал типа «Квайф»
Автором этой конструкции является англичанин Rod Quaife. В данном случае, оси сателлитов параллельны полуосям. Сателлиты расположены в своеобразных карманах чашки дифференциала. При этом парные сателлиты имеют не прямозубое зацепление, а образуют между собой еще одну гипоидную пару, которая расклиниваясь, так же участвует в процессе блокировки.
На рисунке приведен эскиз самоблокирующегося дифференциала. Рассмотрим его элементы и принцип работы.
Когда одно из колес (например, правое) начинает отставать, связанная с ним полуосевая шестерня 4 вращается медленнее корпуса 1 и поворачивает входящий с ней в зацепление сателлит 5. Он передает движение связанному с ним сателлиту 5 из левого ряда, а тот, в свою очередь, на левую полуосевую шестерню 3. Так обеспечиваются разные угловые скорости колес в повороте. Благодаря разности крутящих моментов на колесах в винтовом зацеплении возникают осевые и радиальные силы, прижимающие полуосевые шестерни 3, 4 и сателлиты 5, 6 торцами к корпусу 1, 2. Сателлиты 5, 6 также прижимаются к поверхности отверстий 8, в которых они расположены. За счет этого и возникают силы осуществляющие частичную блокировку. Степень блокировки определяется соответствующим коэффициентом.
Плюсы:
+ блокировка колес вплоть до 70%
+ не ощущается на руле никаких рывков
+ не требуется заливать спец масло в КПП
+ практически не требует обслуживания
+ при установке не возникает никаких проблем
+ практически неограниченный срок службы
+ высокая проходимость
+ застрять довольно сложно
+ отличная управляемость
+ увеличение скорости прохождения поворотов
+ значительно легче вывести автомобиль из заноса
Минусы
— в ходе эксплуатации падает преднатяг
(чтобы восстановить преднатяг необходимо менять регулировочные шайбы)
— рекомендуется менять регулировочные шайбы в районе 20-40тыс.км в зависимости от манеры езды.
— в случае не соблюдения регламентных работ система будет работать, как обычный дифференциал.
«Самоблокируемый червячный дифференциал (самоблок, блокировка дифференциала повышенного трения) — устройство, которое позволяет частично компенсировать главный недостаток свободного дифференциала, а именно его полную беспомощность при наезде одного колеса на скользкое покрытие. Существует два типа самоблокирующихся дифференциалов (отличаются по принципу работы):
2. torque sensitive — самоблокирующийся дифференциал, срабатывающий от разницы передаваемого на полуоси крутящего момента Самоблокируемый червячный дифференциал (самоблок, блокировка) устанавливается вместо классического неблокирующегося дифференциала, имеющегося на всех колесных транспортных средствах.
Самоблокируемый червячный дифференциал (самоблок, блокировка) не содержит в своей конструкции электронных компонентов, датчиков, пневматики, гидравлики или дистанционной механики. Автоматическая работа самоблокирующегося дифференциала не возлагает на водителя дополнительных действий по управлению и обслуживанию транспортного средства.
Аналогичные дифференциалы повышенного трения производятся в России для отечественных автомобилей ВАЗ, НИВА, ШевиНИВА, УАЗ. Основные достоинства самоблокирующихся дифференциалов типа «Квайф» (Quaife).
Самоблокирующийся дифференциал повышает проходимость автомобиля и его управляемость при движении по дорогам с разным покрытием.
Самоблокирующийся дифференциал улучшает динамику разгона автомобиля на дорогах с любым покрытием.
Самоблокирующийся дифференциал не требует дополнительных усилий от водителя (включение самоблока происходит автоматически).
Самоблокирующийся дифференциал взаимозаменяем со стандартными дифференциалами.
Полной блокировки не наступает (нагрузки на полуоси (привода) не такие критичные, как у 100% блокировки, что исключает их поломку)
Присутствие блокировки позволяет проходить повороты на большой скорости. Когда вы входите в поворот на пределе возможностей резины, разгружается или даже вывешивается колесо, находящееся внутри поворота. В этой ситуации на обычной машине начинает работать дифференциал, и скорость резко падает, поскольку вывешенное колесо получает момент и крутится, а загруженное наружное колесо лишается крутящего момента. На автомобиле с блокировкой дифференциала, даже если полностью вывешено одно из колес, другое колесо не теряет крутящего момента. По мнению профессиональных спортсменов, наличие самоблокировки дифференциала позволяет лучше чувствовать автомобиль и дорогу на прямых участках.
Винтовая, или «червячная» блокировка мостов
В обычном режиме винты («червяки» — из-за формы винтов) свободно обкатываются вокруг центральной шестерни. В случае изменения момента винты проскальзывают в крайнее положение и фиксируются в эксцентричных пазах. Когда момент выравнивается, винты возращаются в исходное положение. Как и дисковые винтовые блокировки обладают возможностями преднатяга.
Винтовые блокировки наиболее пригодны для использования на обычном автомобиле. Из производящихся в России они наиболее долговечны и просты в эксплуатации. Все их элементы износоустойчивы (ресурс винтовой блокировки порой превышает ресурс коробки передач, не говоря уже о ресурсе редуктора моста).
Установка СБД отностится к сфере «глубокого» тюнинга. Так назыают мероприятия, проводимые в том случае, когда клиент хочет, чтобы машина не столько выглядела оригинально, сколько ехала лучше, чем ей подобные. Такие услуги оказывают исключительно в профессиональных тюнинговых центрах. Рядовому автолюбителю специалистя рекомендуют установить винтовую блокировку. Она надежна (сопоставима по ресурсу с коробкой передач), имеет наиболее сглаженные моменты включния-выключения и широкие возможности по блокировке.
Самоблокирующиеся дифференциалы «Квайф»
Сателлиты данного механизма расположены в два ряда параллельно оси вращения корпуса, причем крепятся не на осях, а находятся в закрытых с торцов отверстиях корпуса.
Правый ряд сателлитов входит в зацепление с правой полуосевой шестерней, левый — соответственно с левой.
Кроме того, сателлиты из раных рядов зацепляются между собой попарно.
Когда одно из колес начинает отставать, связанная с ним полуосевая шестерня вращается медленнее корпуса и поворачивается входящей с ней в зацепление сателлит.
Он передает движение связанному с ним сателлиту из другого ряда, а тот, в свою очередь, — на полуосевую шестерню.
Так обеспечиваются разные угловые скорости колес в повороте.
Благодаря разности крутящих моментов на колесах в винтовом зацеплении возникают осевые и радиальные силы, прижимающие полуосевые шестерни и сателлиты торцами к корпусу. Последние также прижимаются вершинами зубьев к поверхности отверстий, в которых они расположены. За счет этого и возникают силы, осуществляющие частичную блокировку. Величина коэффициента блокировки зависит от угла наклона зубьев сателлитов и шестерен. Устанавливая в корпус комплекты сателлитов и шестерен с различным углом наклона зубьев, можно изменять коэффициент блокировки
Самоблокирующиеся дифференциалы «Торсен»
Получили свое название от англ. torque- «крутящий момент» и sensing — «чувствительный». Под этой маркой выпускаются два типа конструкций.
В первом сателлиты расположены в корпусе перпендекулярно его оси и объединены между собой с помощью прямозубогозацепления, а с полуосевыми шестернями связаны червячным зацеплением. В повороте полуосевая шестерня, связанная с отстающим колесом, поворачивает входящий с ней в зацепление сателлит, а он, в свю очередь, вращает второй ателлит и полуосевую шестерню.
Эта «цепочка» позволяет колесам вращаться с разной скоростью.
Силы трения, возникающие в червячном зацеплении от разности моментов на колеса, и осуществляют частичную блокировку дифференциала.
Применение комплектов сателлитов и шестерен с различным профилем червячного зацепления дает возможность изменять коэффициент блокировки.
Второй тип «Торсена» отличается тем, что в нем сателлиты расположены параллельно оси корпуса дифференциала в отверстиях и соединены попарно между собой и полуосевыми шестернями винтовым зацеплением.
Работа механизма на поворотах и частичная блокировка осуществляется так же, как у «Квайфа». Этот вариант конструкции менее сложен, кроме того, позволяет уменьшить диаметр корпуса дифференциала.
Дифференциал с повышенным внутренним сопротивлением — Википедия
Дифференциал с повышенным внутренним сопротивлением (также: дифференциал ограниченного проскальзывания (LSD), дифференциал повышенного трения, самоблокирующийся дифференциал) — это дифференциал, механика работы которого за счёт конструктивно заложенного повышенного внутреннего сопротивления между некоторыми вращающимися деталями позволяет такому дифференциалу без каких-либо управляющих воздействий извне выравнивать самостоятельно угловые скорости ведущего и ведомых звеньев вплоть до полной их взаимной блокировки и превращения всего дифференциала в прямую передачу.
Следует иметь в виду, что в англоязычной литературе данные дифференциалы обозначаются как «LSD (Limited-Slip Differential)», т.е. дифференциал ограниченного проскальзывания, и данный термин не определяет физического принципа работы устройства, наличия управления им и т.д. Имеет значение лишь сама функция блокировки неконтролируемой разницы в угловых скоростях приводов («проскальзывания»). «Ограниченность проскальзывания» подразумевает некий заданный предел разницы угловых скоростей, при превышении которого начинает срабатывать блокировка.
Преимущества[править | править код]
Основное преимущество дифференциала с повышенным внутренним сопротивлением (далее — ДПВС) можно увидеть, рассмотрев случай с обычным (или «открытым») дифференциалом, у которого одно колесо вообще не имеет контакта с дорогой. В этом случае второе колесо, контактирующее с дорогой, будет оставаться неподвижным, и первое, не контактирующее с дорогой колесо, будет вращаться свободно — передаваемый крутящий момент будет равным на обоих колёсах, но не будет превышать порогового значения момента, необходимого для движения транспортного средства, и поэтому транспортное средство будет оставаться неподвижным. В обычных автомобилях, движущихся по асфальтовым дорогам, такая ситуация маловероятна, и поэтому для таких автомобилей обычный дифференциал вполне подойдёт. При вождении в более сложных условиях, например, при движении в грязи или по бездорожью, подобные ситуации случаются, и наличие дифференциала с повышенным внутренним сопротивлением позволяет не останавливать движение. За счёт ограничения разницы в угловых скоростях колёс полезный момент передаётся до тех пор, пока хотя бы одно из колёс имеет сцепление с дорогой.
Коэффициент блокировки[править | править код]
Коэффициент блокировки есть важнейшее оценочное свойство любого ДПВС. В информационных материалах о ДПВС этот коэффициент может выражаться двояко и несколько отличаться по смыслу толкования, хотя в обоих случаях подразумевать одно и то же, только с разных точек зрения.
В иностранной технической литературе КБ обычно выражается посредством процентного значения в десятках процентов в диапазоне от 20 % и выше. Цифра обозначает покрываемую конкретным ДПВС ширину диапазона относительного распределения крутящего момента между колёсами/осями от заложенного в дифференциала статического (с поправкой на его возможную несимметричность) до максимального уровня в 100/0, в пределах которого ДПВС может обеспечить взаимную блокировку. Данное определение подпадает под англоязычный термин Locking Effect («блокировочный эффект»). В русскоязычной технической литературе КБ выражается через число от 2 и выше (обычно, без десятичных дробей), обозначающее максимально возможную разницу в крутящих моментах (разницу в силе тяги) на колёсах/осях, в пределах которой данный ДПВС может обеспечить их взаимную блокировку. Данное определение КБ соответствует английскому термину Torque Bias («сдвиг момента»).
Показано соотношение между КБ в числовом и процентном значенияхХотя оба понятия КБ предполагают под собой разные формулы подсчёта, абсолютно любой ДПВС может быть корректно оценён любым из них. При этом, каждое из двух значений КБ можно соотнести с общим оценочным показателем, а между обеими значениями всегда имеется взаимооднозначное соответствие. Так, например, значение КБ=50 % и КБ=3 означает в обоих случаях одно и то же: что ДПВС с указанными КБ допускает перераспределение крутящего момента между колёсами/осями в соотношении не более чем 75/25, что с одной стороны даёт 50 % полного диапазона возможного перераспределения эффективно используемого крутящего момента (75-25=50), а с другой стороны даёт 3-х кратную разницы в возможной силе тяги (75/25=3). Числовое (не процентное) значение КБ, возможно, здесь более интуитивно понятно, тем более, что помимо своего основного смысла, оно предполагает аналогичную разницу в допустимой силе сцепления колёс/осей с поверхностью, что в том же случае КБ=3 означает, что максимально эффективное использование мощности двигателя на этом ДПВС возможно только если сила сцепления каждого колеса с поверхностью дороги будет отличаться не более чем в три раза.
Простой (свободный) дифференциал не позволяет получить какую-либо разницу в эффективно-используемых крутящих моментах на ведомых звеньях, здесь разница между силой тяги обоих колёс/осей практически нулевая на любых режимах, КБ такого дифференциала равен 0 % или 1. Прямая передача или заблокированный дифференциал позволяют весь эффективно используемый крутящий момент реализовать на любом ведомом звене, здесь любое колесо/ось могут обеспечить всю тягу при нулевой уровне тяге на другом колесе/оси, а КБ в данном случае равен 100 % или бесконечности.
ДПВС может иметь два верхних значения КБ — по одному для каждой ветви мощности. Такое возможно в случаях несимметричного дифференциала, когда КБ получает поправку на несимметричность — то есть, верхние значения КБ для каждой из сторон отличаются друг от друга на разницу в соотношении раскладываемых крутящих моментов (например, в несимметричном заднем кулачковом межколёсном ДПВС грузового автомобиля ГАЗ-66, раскладывающим крутящий момент по колёсам в соотношении ≈(60/40), значения КБ для правого и левого колёс равны, соответственно, 3.1 и 2.1). И такое возможно в симметричных дифференциалах, когда это конструктивно допустимо механикой работы блокировки (например, в симметричном червячном ДПВС Torsen Type-1 разные значения КБ можно реализовать через разные углы нарезки зубьев в каждой паре сателлит-шестерня).
Обычно под КБ конкретного ДПВС подразумевается его максимальный КБ. При этом у любого ДПВС существует значение так называемого начального КБ, которое обычно не декларируется.
Преднатяг[править | править код]
Под этим термином подразумевается создание в ДПВС внутреннего сопротивления взаимному вращению ведомых звеньев в статике, то есть, при отсутствии подачи на дифференциал какого-либо самого минимального крутящего момента. Величина уровня преднатяга определяется усилием, необходимым для сдвига (поворота) любой ведомого звена дифференциала при неподвижном ведущем звене. В свободном дифференциале уровень преднатяга близок к нулю. Преднатяг, если он есть, «работает» всегда, независимо от того, нагружен ДПВС тяговым или тормозным крутящим моментом или не нагружен. Наличие преднатяга не есть обязательное условие работы ДПВС.
Так называемая «муфта преднатяга» предполагает под собой некое устройство внутри ДПВС, выполняющее вышеупомянутые функции и затрудняющее взаимное вращение ведомых шестерён дифференциала. Конструкция этого устройства не имеет универсального вида и на разных ДПВС может быть любой. Обычно это есть распорные пружины разной формы, дополненные дистанционными кольцами.
В пассажирских автомобилях как правило используются два типа ДПВС:
Дифференциалы обоих типов допускают наличие некоторой конструктивно запрограммированной разницы между крутящими моментами (в первом случае) или угловыми скоростями (во втором случае), но налагают механическое ограничение на возникновение большой их диспропорции.
Винтовая блокировка[править | править код]
Конструктивно дифференциалы с винтовой блокировкой могут быть выполнены на основе любого плоского однорядного или двухрядного планетарного механизма схем или с параллельными осями сателлитов, которые, в свою очередь, могут быть как одиночными, так и парными взаимозацепленными. Общем для любого вида исполнения будут две особенности: использование цилиндрических косозубых шестерён во всех парах зацепления и отсутствие фактических осей сателлитов как деталей. Винтовая передача, как таковая, здесь не используется, и широко употребимый термин происходит исключительно от визуального сходства сателлитов дифференциала с винтом, особенно на контрасте с его основными шестернями. А шестерни-сателлиты здесь вращаются не на осях, а в цилиндрических карманах, отфрезерованных в корпусе/водиле дифференциала. Идея блокировки основана на том, что в косозубом зацеплении под нагрузкой возникают осевые силы, стремящиеся раздвинуть по своим осям обе зацепленные шестерни в противоположные от плоскости контакта стороны, и здесь это свойство в первую очередь использовано в парах взаимозацепленных сателлитов, которые для этого получают некоторую осевую подвижность. Под тягой, при повороте или пробуксовке колеса, вращающиеся сателлиты расклиниваются в своих карманах, упираются торцами в корпус дифференциала, за счёт чего происходит их торможение и самовыравнивание угловых скоростей ведомых шестерён. Расклинивание сателлитов тем сильнее, чем выше передаваемый ими крутящий момент, но сам коэффициент блокировки определяется углом наклона зубьев зацепления и фрикционными свойствами пар контакта сателлит/корпус. Для усиления эффекта самоторможения в данных дифференциалах обычно применяют более чем минимально необходимые для плоского планетарного механизма три пары сателлитов — а именно, от четырёх до семи пар. И для усиления фрикционного эффекта в точках контакта торцов сателлитов с корпусом дифференциала могут применяться диски-прокладки из материала, создающего повышенное сопротивление при трении. В случае одиночных сателлитов работа дифференциала в принципе аналогична, с тем лишь отличием, что здесь в самоторможение вовлечены не только сателлиты, но и центральные шестерни дифференциала.
Ввиду того, что шестерни с косозубым зацеплением могут быть использованы на плоских планетарных механизмах любой схемы и формы, дифференциалы на их основе можно выполнить с практически любыми заданными передаточными отношениями в каждой паре звеньев ведущее-ведомое. Соответственно, такие дифференциалы могут быть как симметричные, так и несимметричные, и применяться в трансмиссии и как межколёсные и как межосевые. На этих дифференциалах активно используется преднатяг, а блокирующий момент здесь создаётся в тяговом режиме даже при отсутствии разницы в угловых скоростях на выходе. Но исключительно на косозубом зацеплении высокие значения коэффициента блокировки не доступны (обычно < 3), и для усиления эффекта такие дифференциалы могут дополняться фрикционными пакетами по типу дифференциалов с дисковой блокировкой.
Дифференциалы с винтовой блокировкой очень широко распространены по сей день. Основная их область применения — спортивные и гоночные автомобили. Также они применяются как тюнинговые для незначительного улучшения проходимости в дорожных автомобилях. Однако на истинно внедорожной технике они обычно не используются. Наиболее известны образцы от британской компании Quaife Engineering и американской Torsen NA Inc.. В первом случае дифференциал так и называется — Quaife. Во втором случае — это так называемые Torsen Type-2 и Torsen Type-3.
Червячная блокировка[править | править код]
Конструктивно все дифференциалы с червячной блокировкой выполнены на основе простых пространственных планетарных механизмов схемы с сателлитами на . Визуально пары зацепления солнце-сателлит здесь выглядят как червячная передача, в которой оси червячного колеса и самого червяка также перпендикулярны друг-другу и не пересекаются. В роли червяка и в роли червячного колеса здесь могут выступать как сателлиты, так и ведомые шестерни, и имеются разработки червячной блокировки с обеими вариантами распределения ролей между шестернями. Идея блокировки основана на том, что червячной передаче свойственно самоторможение в случаях направления мощности от червячного колеса к червяку, которое тем сильнее, чем больше угол наклона нарезки зубьев червяка к его оси вращения.
Хотя дифференциал с червячной блокировкой наиболее известен в варианте, разработанном американской Torsen NA Inc., — так называемый Torsen Type-1 — сама компания-разработчик почему-то избегает термина «червячная передача» при описании своего дифференциала. Зубчатая передача здесь декларируется как косозубая на перекрещивающихся осях, но не просто косозубая, а с некоей специфической, разработанной самой Torsen и запатентованной ими же формой зубьев Invex™, фактически являющейся частным вариантом эвольвентного зацепления. В русскоязычной инженерно-технической литературе считается, что в Torsen Type-1 роль червяков выполняют ведомые шестерни, а роль червячных колёс — сателлиты. Объяснение этому проистекает из разного угла наклона косозубой нарезки на ведомых шестернях и сателлитах. Необычная трёхрядная форма сателлита с прямозубым зацеплением по краям и косозубым в центре объясняется исключительно тем, что ввиду компоновки с перекрещивающимися осями конструктивно невозможно организовать через одну и ту же зубчатую нарезку одновременный зацеп как сателлитов с ведомыми шестернями, так и сателлитов между собой, и к повышению внутреннего сопротивления дифференциала эта особенность не имеет отношения. Обе ведомые шестерни здесь имеют сонаправленную нарезку зубьев и некоторую минимальную осевую подвижность, которая, как и в случае дифференциалов с винтовой блокировкой, необходима для сдвига обеих шестерён вдоль оси под нагрузкой, только в данном случае не для контакта с корпусом, а для их взаимного самоторможения друг о друга, что вносит существенный вклад в общее повышение внутреннего сопротивления. Дифференциал момент-чувствительный. Коэффициент блокировки в разных вариантах — 3-6. Дифференциал визуально и кинематически симметричен, и в случае межосевого использовался на модификациях AWD машин, изначально переднеприводных. Вообще, Torsen Type-1 есть один из наиболее известных моделей ДПВС. Он широко использовался в гоночных автомобилях WRC и Формулы-1 разных лет и в качестве межколёсного и в качестве межосевого. А на дорожных легковых автомобилях он стал совершенно однозначной ассоциацией с системами полного привода от Audi — Quattro — хотя в последних разработках Audi применяла и иные варианты. Среди внедорожных машин известным носителем данного ДПВС является Hummer h2.
Настоящими дифференциалами с червячной блокировкой и высокими (порядка 10 и даже выше) коэффициентами блокировки были американские и немецкие разработки для грузовых автомобилей повышенной проходимости. В данном случае конструкция планетарного механизма ДПВС предполагала тройные взаимозацепленные сателлиты, из которых два сателлита были червяками, а один — червячным колесом. Также, червячными колёсами были ведомые шестерни, а всего в дифференциале было 8 червяков и 6 червячных колёс двух типоразмеров. Основные попытки относительно массового применения этих ДПВС пришлись на предвоенные годы. В СССР этот тип ДПВС испытывался после войны, как в виде трофеев от Rheinmetall-Borsig AG, так и в виде домашних разработок «улучшенной» конструкции на основе немецкой. Данные по конкретным американским и немецким носителям отсутствуют, хотя считается, что дифференциалы с червячной блокировкой были широко распространены на различных грузовиках и тягачах для бездорожья и карьерных разработок. В СССР единственный более-менее массовый носитель — Урал-375Д. Современное использование — вероятно, нулевое.
Дисковая блокировка[править | править код]
Разобранный дифференциал с дисковой блокировкойКонструктивно дифференциал с дисковой блокировкой всегда состоит из планетарного механизма схемы на конических шестернях, дополненного парой миниатюрных конических фрикционных муфт и парой многодисковых фрикционных пакетов, располагающихся по оси дифференциала с обеих его сторон между ведомыми шестернями и корпусом. Часть фрикционных дисков здесь зацеплена с корпусом дифференциала, а часть — с миниатюрным конусообразным сцеплением, которое сопрягается каждое со своей ведомой шестернёй (солнцем). Идея блокировки основана на том, что под нагрузкой в конических шестернях возникают осевые силы, стремящиеся раздвинуть зацепленные шестерни друг от друга, и в отличие от свободного дифференциала, где этот эффект стараются нивелировать, здесь именно за счёт него и происходит сжатие фрикционных пакетов между ведомыми шестернями и корпусом дифференицала, что в свою очередь приводит к выравниванию угловых скоростей. Помимо конических муфт и фрикционных пакетов для усиления эффекта здесь нередко используется распорная пружина, установленная между ведомыми шестернями. И для усиления эффекта эти дифференциалы обычно имеют не два, а четыре сателлита на крестообразном водиле.
Разработки подобных дифференциалов известны с довоенного периода — ими занимались американские фирмы LeTurno-Westinghouse и Borg Warner. Современный вид и дисковую блокировку дифференциалы приобрели в 60-х годах, когда появились относительно надёжные фрикционные материалы, что позволило делать всю систему компактной и пригодной для легковых автомобилей. Сегодня используются в качестве межколёсных в задних ведущих мостах как спортивных, так и внедорожных автомобилей. Надёжны, но могут требовать регулировки со временем.
Кулачковая блокировка[править | править код]
Кулачковый дифференциал Порше, применявшийся на KdF82Конструктивно здесь возможны два варианта исполнения. В одном случае кулачковая муфта, состоящая из двух кулачковых дисков и промежуточного сепаратора с сухарями располагается между обеими ведомыми шестернями свободного дифференциала. Во втором случае, планетарная передача дифференциала вообще не имеет зубчатых колёс: эрзац-водилом дифференциала служит сепараторное кольцо, сателлитами являются сухари, а роль ведомых шестерён выполняют два кулачковых диска или кольца с волнообразным профилем сопряжённой с сепаратором поверхности. В обоих случаях идея блокировки основана на том, что при определённой разнице в угловых скоростях ведомых звеньев сухари расклиниваются между кулачковыми дисками/кольцами и практически моментально блокируют дифференциал. Блокировка здесь срабатывает только от разницы в угловых скоростях. До некоторого значения этой разницы дифференциал работает как свободный, по достижению — сразу блокируется, причём не важно, нагружен он крутящим моментом или нет. Какой-либо переходной режим частичной блокировки между свободным и заблокированным состояниями отсутствует.
Первые известные разработки кулачковых дифференциалов вероятно принадлежат Фердинанду Порше. Именно его дифференциал пошёл в серию на машинах KdF-Kübelwagen. Сегодня кулачковые самоблокирующиеся дифференциалы в основном используются как межколёсные в автомобилях повышенной проходимости и в военной технике (бронетранспортёрах и пр.).
Шариковая блокировка[править | править код]
Конструктивно дифференциалы с шариковой блокировкой представляют собой некий эрзац планетарной передачи симметричной схемы . Формально они не имеют ни шестерён, ни сателлитов в своей конструкции, но фактически, функции составляющих их деталей и общий принцип их работы идентичен конструкции и принципу работы любого настоящего планетарного дифференциала, а механика блокировки определяется повышением внутренного сопротивления работе, как и в остальных типах самоблокирующихся дифференциалов. В роли сателлитов здесь используются шарики, которые плотно набиты в закольцованные канавки в корпусе (водиле) дифференциала, и которые, как и настоящие сателлиты, контактируют одновременно друг с другом и с парой ведомых эрзац-шестерён (двумя солнцами). При небольшой разнице в угловых скоростях шарики, толкая друг-друга, перемещаются в закольцованной канавке в ту или другую сторону, обеспечивая дифференциальное вращение всей конструкции. При достижении некоего уровня разницы в угловых скоростях (пробуксовке) ведомых шестерён шарики не могут её (разницу) поддерживать, за счёт трения самотормозятся в своих канавках и тем самым создают блокировочный эффект.
Эта конструкция малоизвестна в мировом автопроме и всё её распространение, вероятно, ограничивается Россией и Украиной. Наиболее известные дифференциалы с шариковой блокировкой — это Автоматический Дифференциал Красикова и Автоматический Дифференциал Нестерова.
Дифференциал с вискомуфтой[править | править код]
Вязкостная муфта с открытым корпусом.Конструктивно дифференциал состоит из простого планетарного механизма абсолютно любой схемы и вискомуфты, соединяющей два его любые звена (два любые вала подачи/снятия мощности). Вискомуфта может располагаться как внутри дифференциала и связывать два ведомых звена, так и снаружи и связывать ведущее и ведомое звено (на принципиальную работы всей системы расположение вискомуфты влияния не оказывает). Идея блокировки основана на свойствах вискомуфты выравнивать угловые скорости двух своих звеньев за счёт свойств дилатантной жидкости. Блокировка срабатывает только от разницы в угловых скоростях. Кратковременно допускается 100 % блокировка. Переходные режимы также активно используются.
Вязкостные ДПВС менее эффективны в сравнении с вышеупомянутыми механическими ДПВС, так как в них происходит рассеивание энергии. В частности, любая постоянная нагрузка, которая нагревает жидкость внутри муфты, приводит к неустранимым перманентным потерям «дифференциального эффекта».[1]
Данный ДПВС не стоит путать с использованием вискомуфты в системах так называемого полного привода по требованию.
Дифференциал с героторным насосом[править | править код]
В дифференциалах этого типа с одной стороны вращается корпус героторного насоса, а с противоположной стороны вращается вал, соединённый с зубчатым колесом, находящимся внутри насоса. Когда возникает разница в частотах вращения корпуса и зубчатого колеса, насос сжимает рабочую жидкость во внутренней полости насоса. Это обеспечивает передачу вращающего момента к колесу машины, имеющему более сильное сцепление. Системы, основанные на насосах, имеют верхнюю и нижнюю границы прикладываемого давления, и внутреннее демпфирование во избежание гистерезиса. Новейшие системы с героторными насосами имеют компьютерное регулирование выходной мощности, что обеспечивает более высокую подвижность и исключает колебания.
- ↑ Donnon, Martin et al. Zoom 67. — Express Motoring Publications, 2003. — P. 45–48. — «…the gel used can quite suddenly alter with massive temperature, and lose its ability to generate torque transfer.».
БЛОКИРОВКА ДИФФЕРЕНЦИАЛА: устройство, принцип работы, типы
Дифференциал, слово знакомое со школьной скамьи. Правда в устройстве автомобиля оно имеет иное определение. Дифференциал (разность, если покопаться в латинском словаре), является сложным механизмом, который распределяет или изменяет крутящий момент среди полуосей приводных колес, тем самым обеспечивая их работу с разной угловой скоростью. Но если к нему добавить устройство блокировки, то можно самому распределить крутящий момент, и скорректировать соотношение угловых скоростей, в зависимости от дорожных обстоятельствах.
Установка блокирующего механизма дает массу преимуществ, но необходимо разобраться, что он из себя представляет, и принцип его работы.
Назначение и устройство дифференциала
Ниже разберем назначение и устройство агрегата. При движении прямо, колеса движутся ровно, прилагая одинаковые усилия, и не отставая друг от друга. На деле это выглядит как колеса вращаются с одинаковыми угловыми скоростями.
Но, когда машина собирается повернуть, оказывается, что радиус пути внешнего колеса и внутреннего отличается значительно и внешнему колесу нужно пройти больше расстояние. А значит, крутящий момент должен распределяться не в одинаковых пропорциях на каждую ось колеса. Благодаря усилиям планетарного механизма — внутренняя шестерня одной полуоси замедляет ход, из-за чего сателлиты начинают прокручиваться вокруг себя, увеличивая тем самым скорость вращения шестерни другой полуоси. Т.е. автомобиль может спокойно и без усилий совершить маневр.
Дифференциал — это и есть элемент трансмиссии. Чтобы полностью понять, принцип его работы, разберемся, как он устроен. Изучают в учебниках, обычно, по схемам конического дифференциала. Хотя, есть более сложные разновидности, но примерный набор составляющих все же един.
Итак, основа — планетарный редуктор. Главные его рабочие элементы — центральные полуосевые шестерни (солнечные) и промежуточные, называемые сателлитами. Все это скрыто в чашке или корпусе агрегата.
От двигателя крутящий момент поступает через коробку передач и главную передачу на полуоси, а точнее на жестко зафиксированные на них солнечные шестерни, через промежуточные (сателлиты). Т.е. чтобы машина начала движение, шестерни полуосей должны довести крутящий момент до ведущих колес.
Видео-урок принципа работы дифференциала
Куда именно установить блокирующийся дифференциал, зависит от привода автомобиля:
• в раздатку, в передний и задний мост для полноприводных;
• в коробку переключения передач для переднеприводных;
• в задний мост для заднеприводных.
Принцип работы блокировки дифференциала
Автомобили, в большинстве своем, перемещаются по дороге прямолинейно либо поворачивает. Но бывает едет по бездорожью или попадает одним колесом в болото или лед, тогда дифференциал сыграет не в пользу автомобиля. Он попросту отправит весь крутящий момент на колесо с меньшим сопротивлением. И сила тяги будет стихать, приводя крутящий момент к абсолютному нулю.
Вот для чего придумали блокировку дифференциала, — ради абсолютного контроля над «ходовой», чтобы проехать там, куда обычный внедорожник даже не посмотрит. Установив блокировку, появиться возможность контролировать и распределять крутящий момент, передаваемый к полуосям и приводным колесам.
Как же возможно, все таки, блокировать дифференциал. Ну для начала, стоит предупредить, если у вас ручная блокировка, то задействовать такой механизм можно исключительно в состоянии покоя автомобиля. Иначе поломанная полуось и «сорванный» дифференциал обеспечены. Принцип сводится к тому, что блокируя дифференциал, мы распределяем крутящий момент поровну между колесами автомобиля — и тем колесом, что стоит хорошо на поверхности и тем, что попало, например, в болото, скользкий участок или висит в воздухе. И то колесо, которое не двигалось, начинает крутится, машина выезжает с проблемной зоны.
Виды блокировок дифференциала
Есть несколько видов блокировки:
- Полная. Напрямую подсоединить корпус к полуоси, которая получает основную нагрузку и жестко его закрепить. Т.е. передать крутящий момент, как он есть, на колеса.
- Частичная. Ограничить в планетарном механизме вращение сателлитов. При этом заблокировать дифференциал получиться частично, а значит и крутящий момент перераспределить также частично, но большую его часть перенаправить на колесо со сцеплением.
По способу включения бывают:
- ручной блокировки;
- автоматической (самоблокирующей).
Привод ручной блокировки может быть:
- механический;
- электрический;
- гидравлический;
- пневматический.
Как правило ручная блокировка происходит за счет кулачкового механизма. Он приводит в действие принудительную блокировку дифференциала, с помощью переключателя на приборной панели или рычажного механизма. Т.е. водитель вручную должен активировать блок. Никаких датчиков и напоминаний. Механизм универсален для применения. Водитель, включая специальную муфту, соединяет полуось с корпусом дифференциала, и момент передается на прямую без участия сателлитов.
Если Вы купили автомобиль со значком «полный привод», это еще вовсе не значит, что на нем установлена блокировка дифференциала. К сожалению, не все любители 4Х4 об этом знают. Поэтому внедорожник, повисший в диагональном вывешивание в колее грунтовой дороги, совсем не редкость. В этой ситуации колеса, находящие в воздухе, энергично крутятся, а те, что плотно прижаты к земле, стоят без участия. Почему же так происходит?
Для городских автомобилей, вполне достаточно штатного дифференциала. Если на заснеженной трассе встретился участок со льдом, они передадут большую часть крутящего момента колесу, оставшемуся на твердой поверхности. Но для поездок по сложному бездорожью, или размытой грунтовке, этого мало.
Поэтому изобрели механизмы, которые по ситуации, или по желанию водителя, могут осуществить блокировку, у полноприводных монстров даже на выбор, заднего или переднего дифференциала и блокировку межосевого дифференциала.
Самоблокирующийся дифференциал
Как понятно из названия, решает когда «прийти на помощь», сам. Он имеет разновидности конструкции, разберем его отдельно.
Дифференциал повышенного трения или еще можно услышать — LSD, но все это названия одного механизма. В зависимости от ситуации и необходимости, может работать, как обычный дифференциал, а может жестко себя блокировать, если появиться разность в:
- угловых скоростей;
- разность в крутящем моменте.
Вот по этому принципу и различают особенности его конструкции.
1. Дисковый механизм
Разновидностей имеет массу, но принцип работы один — обеспечить блокировку во время плохого сцепления, на льду или яме, одного из колес, по средствам фрикционных дисков. Таких дисков целый пакет, одни крепятся к полуоси, а другие к корпусу дифференциала. Во время обычной поездки диски разжаты и на движение колес не влияют.
1 — корпус; 2,4 — шестерни полуосей; 3,5 — наборы фрикционных дисков; 6 — ось блока сателлитов; 7 — раздвижные полукольца.
При потере сцепления — фрикционные диски полуосей, и дифференциала сжимаются и крутящий момент передается от дифференциала на полуось напрямую, без участия сателлитов. Т.е. крутящий момент в основном перейдет на ту полуось, которая вращается медленнее. А все, благодаря силе трения, происходящей между фрикционными дисками.
Если в машине предусмотрен гидравлический привод, то степень сжатия будет переменной, а если установлен пружинный механизм — регулярная. Применяется как в качестве межколесного дифференциала, в основном в спортивных авто, либо между осями у полноприводных внедорожников.
Видео-урок по принципу работы блокировки дифференциала
2. Вязкостная муфта (вискомуфта)
Используется крайне редко, из-за своих ощутимых недостатков:
- несовместимость с некоторыми ABS;
- частые случаи перегрева.
Т.к. вискомуфта имеет внушительные размеры, то и применяется лишь между осями. Правда, случаются прецеденты, установки ее место дифференциала при полном автоматическом приводе. Название она свое получила из-за особенности работы.
Набор перфорированных дисков, помещен в супер вязкую жидкость (силикон), и запечатан в герметичный контейнер. Так же как и в случае с дисковым дифференциалом, пакет дисков поделен на две части, одни на ведущем вале, другие на ведомом. Если ведущий вал набирает обороты, прикрепленные к нему диски, также ускоряются. При этом они взбивают силикон, который затвердевает и блокируется с дисками ведомого, происходит блокировка дифференциал. Когда скорость вращения стабилизируется — жидкость вернется к исходному состоянию.
3. Червячный (винтовой) механизм
Имеет свойство частично блокировать дифференциал в зависимости от величины крутящего момента. Внутри механизма, вместо привычных сателлитов, располагается червячная передача, замысловатой конструкции. Придумали её еще в 1958 году, а актуальна она и по сей день. Самые популярные Torsen T-1, Torsen T-2 и Quaife.
Особенность данного типа блокировки в том, что процесс переноса крутящего момента возможен лишь от ведущей шестерни (самого червяка) к ведомой (полуосевой), из-за больших сил трения. Как это работает? В разных конструкциях T-1 или T-2, особенности построения червячного механизма, отличаются только расположением сателлитов. В Т-1 поперечно корпусу, а в Т-2 — продольно. Конструкция Torsen обоих поколений настолько чувствительна, что колесо, попавшее на лёд, не успевает физически пробуксовать. Широкое применение они нашли как в межосевых так и в межколесных дифференциалах.
4. Электронная блокировка
По сути, данный вид не является дополнительным конструктивным элементом дифференциала и не блокирует его. Всю работу на себя берет тормозная система, под управлением антипробуксовочной системы и запускается по средствам датчика. Реагирует электронная блокировка на изменение в угловой скорости ведущей оси.
Принцип действия основывается на управлении дифференциалом по средствам программного обеспечения. Если колесо теряет сцепление, возникает в тормозной системе давление, и оно замедляется, увеличивая тем самым тяговую мощность. Крутящий момент, в этом случае, перераспределяется на другое колесо.
Плюсы и минусы самоблокирующегося дифференциала
Как и, любое устройство, самоблок имеет свои преимущества и недостатки.
Плюсы:
- повышение проходимость и управляемости автомобиля;
- автоматизация всего процесса;
- улучшение динамики при разгоне;
- устранение, хоть и частичное, пробуксовки одного из колес.
Минусы:
- главный недостаток в том, что часто механизм включает блокировку тогда когда это не нужно, что может ухудшить управляемость авто.
Подводя итог, нужно подчеркнуть важность блокировки дифференциала. В сложных дорожных ситуациях она просто необходима для обеспечения высокого уровня безопасности и управляемости. И жизненно важна, для прохождения сложных трасс, горных местностей, размытого бездорожья. А способность самоблокирующегося дифференциала к полной автоматизации всех процессов еще и поднимает уровень комфорта автовладельца.
как работает, видео, устройство, виды
По своей сути дифференциал представляет собой элемент перераспределения крутящего момента, поступающего от одного источника (двигателя) к двум независимым друг от друга потребителям (ведущим колесам), с возможностью задания им разных угловых скоростей вращения. Это требуется для того, чтобы не возникало проблем с управлением машиной при совершении маневров (поворотов, перестроений). Но зачем нужна блокировка дифференциала, если он выполняет такую важную функцию?Дело в том, что дифференциал просто необходим для городского режима, но стоит автомобилю попасть в условия бездорожья – ситуация меняется. Его принцип работы приносит больше вреда, чем пользы.
Дифференциал на сложных участках дороги становится серьезной проблемой для водителя, так как он вкладывает все усилие двигателя именно в то колесо, которое имеет меньшее сопротивление при движении. Поэтому, если какое-то из ведущих колес начинает пробуксовывать, то дифференциал вместо того чтобы передать крутящий момент на шину, которая находится на твердом покрытии, вкладывает всю его величину в буксующее колесо. В результате чего автомобиль вовсе оказывается обездвиженным. Поэтому, чтобы заставить дифференциал не мешать движению машины по неровностям дороги, были разработаны различные виды его блокировки. Рассмотрим принцип их работы.
Полная блокировка
Во время полной блокировки дифференциала он прекращает работать, преобразуясь в обычную муфту, которая соединяет между собой полуоси или оси заднего и переднего мостов (зависит от того, где муфта установлена). Следовательно, крутящий момент на обеих полуосях или мостах будет иметь одинаковую величину, а соответственно и скорость вращения колес тоже будет одинаковой при любой дорожной ситуации.
Для блокировки дифференциала классического типа можно жестко соединить одну из полуосей с его корпусом (чашкой) либо не давать вращаться независимым шестерням (сателлитам), через которые чашка дифа передает на полуоси вращательные усилия. Реализуется такая блокировка при помощи привода, который может быть: электрическим, гидравлическим, пневматическим или ручным.
При полной блокировке на ее механизм действует прямое усилие от двигателя, которое при значительном крутящем моменте способно вывести из строя не только сам механизм блокирования, но и сломать в автомобиле полуось. Поэтому пользоваться такого вида блокировкой нужно очень аккуратно: включать только после остановки машины, двигаться на малой скорости и выключать после того, как проблемный участок дороги будет преодолен.
Как правило, полная блокировка межосевого дифференциала применяется в рамных внедорожниках, которые предназначены для особо трудных по проходимости участков местности. Также такие внедорожники оборудуются блокировкой межколесных дифференциалов переднего и заднего мостов.
Наряду с полной блокировкой, в автомобиле широко применяется и частичная (автоматическая). В свою очередь, дифференциалы с автоматической блокировкой делятся на следующие типы:
- жидкостные;
- дисковые;
- червячные;
- электронные.
Автоматическая блокировка с применением вязкостной муфты (жидкостная муфта)
Вязкостная муфта (вискомуфта) – это механическое устройство, обеспечивающее передачу крутящего момента посредством использования вязкостных свойств специальной жидкости. Конструкция устройства представляет собой несколько пластин, насаженных на ведущий и ведомый валы, которые вращаются в корпусе, заполненном жидкостью. Жидкость имеет способность при определенных условиях менять свои вязкостные свойства. До тех пор пока пластины обладают одинаковой скоростью вращения, это вещество имеет жидкую консистенцию. Как только в значениях скоростей вращения валов появляется разница, жидкость быстро густеет, передавая крутящий момент с ведущего на ведомый вал. Благодаря таким свойствам, вискомуфта часто используется как самоблокирующийся межосевой дифференциал в автомобиле, оборудованном полным приводом. Иными словами, при обычном режиме работает один привод, но как только его колеса начинают проскальзывать, вискомуфта подключает второй привод.
Недостатком такой блокировки является то, что на изменение свойств жидкости требуется время, которого при преодолении серьезных препятствий просто нет. Поэтому такой вид самоблока преимущественно устанавливают на автомобилях, не покидающих городские дороги.
Дисковый фрикционный самоблок
Работа самоблокирующегося дифференциала этого типа основана на использовании сил трения. Своим устройством дисковый дифференциал практически не отличается от классических механизмов. Разница состоит в том, что в его устройство добавлены два пакета с фрикционными дисками и распорной пружиной, обеспечивающей необходимую величину сжатия. Часть дисков из пакета жестко фиксируются на полуось, другая на чашку дифференциала. При синхронном вращении ведущих полуосей все диски вращаются вместе, составляя одно целое. При появлении даже незначительной разницы в скоростях, соотношение вращения дисков тоже меняется. Вызванным между ними трение, фрикционы притормаживаются, разница выравнивается, происходит частичная блокировка дифференциала. Основной недостаток самоблока с фрикционными дисками заключается в их сравнительно быстром износе.
Героторный самоблок
По своей сути это разновидность дисковых самоблокирующихся дифференциалов. В конструкцию дифференциала установлен героторный масляный насос и поршень. Роль ротора насоса выполняет одна из полуосей, корпус – другая полуось. Величина нагнетаемого давления масла зависит от разности скоростей вращения колес. Если таковая появилась, то давление масла начинает возрастать, толкая поршень. Под действием давления он сжимает диски, установленные во фрикционную муфту. Сила трения между дисками возрастает, в результате чего происходит блокировка дифференциала.
Червячный дифференциал
Как уже становится понятным из названия, основу такого дифференциала составляет принцип работы червячной передачи. Торсен и Квайф, пожалуй, являются самыми распространенными представителями данного вида механизмов.
В основе червячной передачи лежат два элемента: червяк и червячное колесо. В дифференциале червяк (он же сателлит) представляет собой ведущий элемент. Колесо, оно же шестерня полуоси, соответственно – ведомое. Червячная передача устроена так, что червяк может легко вращать червячное колесо, а вот при обратном действии происходит блокирование, то есть колесо не может провернуть червяка.
Таким образом, величина усилия блокировки дифференциала Торсен устанавливается подбором величин углов наклона витков сателита. Чем меньше величина, тем выше будет скорость вращения. Кроме того, степень блокирования такого устройства зависит и от изменения величины крутящего момента.
Дифференциалы Торсен делятся на три вида: Тип1, Тип2 и Тип3. Тип1 и Тип2 отличаются друг от друга формой червяков. Их используют в качестве межколесных устройств. Тип3 предназначен для автомобилей оборудованных полным приводом, устанавливается между мостами.
Конструкция дифференциала Квайф довольно оригинальна. В ней сателлиты не имеют осей вращения, а просто свободно располагаются в специальных ложах корпуса. При возникновении разницы в скоростях вращения полуосей, сателлиты блокируются и сдвигаются в сторону корпуса, прижимаясь к нему. Величина силы трения, которая при этом возникает, имеет значение пропорциональное разнице между скоростями вращения колес. Степень блокирования в Квайф, также как и в Торсен, подбирается установкой сателлитов с разным углом наклона их витков.
Дифференциал, имеющий электронное управление
Данный вид представляет собой классическую модель дифференциала, дополненную двумя передачами. Управление ими осуществляется при помощи двух приводов – гидравлического и электрического. Приводы включает и отключает бортовой компьютер, установленный в автомобиле. Конечно, такой механизм считается самым практичным, но он же является и самым дорогим.
И в заключение хотелось бы упомянуть о системе, которая не блокирует дифференциал, а лишь имитирует блокировку. Принцип работы такой системы прост и очень практичен, поэтому хорошо подходит для городских автомобилей. Заключается он в том, что при появлении пробуксовки на каком-то из ведущих колес, штатная тормозная система начинает его подтормаживать. Соответственно, дифференциал увеличивает величину крутящего момента на колесе, имеющем меньшее сопротивление. Создается эффект блокировки. Все просто до гениальности.
Блокировки червячные
Самоблокирующийся червячный дифференциал (самоблок) — устройство, которое позволяет частично компенсировать главный недостаток свободного дифференциала, а именно его полную беспомощность при наезде одного колеса на скользкое покрытие. По принципу работы, самоблокирующиеся дифференциалы можно разделить на два типа: speed sensitive, то есть срабатывающих от разницы в угловых скоростях вращения полуосей, и torque sensitive — срабатывающих от разницы передаваемого на полуоси крутящего момента. Для понимания работы самоблока сначала разберёмся с принципом работы обыкновенного дифференциала и его недостатками.Дифференциал — это механическое устройство, которое передает крутящий момент с одного источника на два независимых потребителя таким образом, что угловые скорости вращения источника и обоих потребителей могут быть разными относительно друг друга. Такая передача момента возможна благодаря применению так называемого планетарного механизма. В автомобилестроении, дифференциал является одной из ключевых деталей трансмиссии. В первую очередь он служит для передачи момента от коробки передач к колёсам ведущего моста.
Принцип работы обыкновенного дифференциала
Почему для этого нужен дифференциал? В любом повороте, путь колеса оси, двигающегося по короткому (внутреннему) радиусу, меньше, чем путь другого колеса той же оси, которое проходит по длинному (внешнему) радиусу. В результате этого, угловая скорость вращения внутреннего колёса должна быть меньше угловой скорости вращения внешнего колеса. В случае с не ведущим мостом, выполнить это условие достаточно просто, так как оба колеса могут не быть связанными друг с другом и вращаться независимо. Но если мост ведущий, то необходимо передавать крутящий момент одновременно на оба колеса (если передавать момент только на одно колесо, то возможность управления автомобилем по современным понятиям будет очень плохой).
При жесткой же связи колёс ведущего моста и передачи момента на единую ось обоих колёс, автомобиль не мог бы нормально поворачивать, так как колеса, имея равную угловую скорость, стремились бы пройти один и тот же путь в повороте. Дифференциал позволяет решить эту проблему: он передаёт крутящий момент на раздельные оси обоих колёс (полуоси) через свой планетарный механизм с любым соотношением угловых скоростей вращения полуосей. В результате этого, автомобиль может нормально двигаться и управляться как на прямом пути, так и в повороте.
Однако, ввиду физики устройства, у планетарного механизма есть очень нехорошее свойство: он стремится передать полученный крутящий момент туда, куда легче. Например, если оба колеса моста имеют одинаковое сцепление с дорогой и усилие, необходимое для раскручивания каждого из колёс одинаковое, дифференциал будет распределять крутящий момент равномерно между колёсами. Но стоит только появится ощутимой разнице в сцеплении колёс с дорогой (например, одно колесо попало на лёд, а другое осталось на асфальте), как дифференциал тут же начнёт перераспределять момент на то колесо, усилие для раскрутки которого наименьшее (то есть на то, которое находится на льду). В результате, колесо, находящееся на асфальте перестанет получать крутящий момент и остановится, а колесо, находящееся на льду примет на себя весь момент и будет вращаться с увеличенной угловой скоростью, причем планетарный механизм будет играть роль редуктора, повышающего скорость вращения этого колеса. Естественно, это явление сильно ухудшает проходимость и управляемость автомобиля. Ведь по логике вещей, в рассмотренной ситуации момент желательно передавать на колесо, расположенное на асфальте, чтобы автомобиль мог продолжить движение.
В полноприводных автомобилях дифференциалом обычно оборудованы два моста, а зачастую дифференциал можно обнаружить еще и между мостами (межосевой дифференциал). Таким образом, мы получаем схему трансмиссии, в которой присутствуют целых три дифференциала: два мостовых и один межосевой. Последний необходим для постоянного движения с полным приводом и передачей момента на все четыре колеса. Ведь в повороте колёса рулевого моста (обычно переднего) имеют совсем другие угловые скорости, нежели чем колёса заднего моста. Межосевой дифференциал призван передавать крутящий момент от коробки передач к обоим ведущим мостам с разным соотношением угловых скоростей. Такая схема с тремя дифференциалами является одной из самых распространённых схем для постоянного полного привода (Full time 4WD).
Возвращаясь к вышеописанному проблемному свойству планетарного механизма, интересно рассмотреть ситуацию, когда полноприводный автомобиль с межосевым дифференциалом одним из четырёх колёс попал на тот же лёд (или в скользкую яму). Что тогда произойдёт ? Дифференциал моста, колесо которого находится на льду, отдаст весь полученный крутящий момент на это колесо. Межосевой дифференциал, в свою очередь, тоже стремится передать крутящий момент туда, куда легче. Естественно, межосевому дифференциалу легче отдать момент на мост с прокручивающимся на льду колесом, нежели чем на мост, колёса которого имеют хорошее сцепление с дорогой и могут двигать автомобиль. В результате, весь крутящий момент от двигателя и коробки передач пойдёт на раскручивание единственного колеса, находящегося на льду. Остальные три колеса остановятся и не будут получать никакого крутящего момента от дифференциалов. Итог: из четырёх ведущих колёс осталось только одно, которое проскальзывает на льду — полноприводный автомобиль «застрял». Как же заставить дифференциалы передавать крутящий момент на колёса с более хорошим дорожным сцеплением? Для этого были разработаны различные способы частичной и полной, ручной и автоматической блокировки дифференциалов, которые будут рассмотрены ниже.
Основной целью блокировки дифференциала является передача необходимого крутящего момента обоим его потребителям (полуосям или карданам). Существуют принципиально разные методы решения данной задачи. В данном разделе мы рассмотрим способ частичной блокировки с помощью самоблокирующегося дифференциала. Другие способы частичной блокировки дифференциала можно посмотреть здесь, а с метод полной блокировки дифференциала можно ознакомится в разделе «Что такое принудительная блокировка?»
Самоблокирующийся червячный дифференциал типа «Квайф»
Обзор блокировок дифференциала
- Категория: Статьи об оборудовании
- Просмотров: 16464
При преодолении бездорожья крайне важно, чтобы крутящий момент от двигателя передавался на все колеса. Но этому может препятствовать дифференциал, который есть в каждой машине. Что бы такого не происходило, заводами — производителями или автосервисами устанавливается так называемые блокировка(и) дифференциала.
Больше половины владельцев 4х4 уверены, что при включенном полном приводе на скользкой поверхности у них работают и тащат автомобиль все четыре колеса. Спешим их «обрадовать», ничего подобного. Если на машине не установлены блокировки дифференциала или антипробуксовочные системы, то полный привод у них до тех пор, пока все покрышки уверенно сцеплены с грунтом. Как только забуксует переднее левое, сразу перестанет тащить переднее правое. Хорошо если заблокирован межосевой дифференциал, тогда будут толкать задние колеса. А если нет? Тогда проблема — одно буксующее колесо заберет на себя всю энергию, остановив три остальных. Но одна межосевая блокировка не спасает. Машины без межколесных блоков частенько попадают в ситуацию диагонального вывешивания, когда два колеса на противоположных углах автомобиля висят в воздухе и бешено вращаются, а крепко стоящие на земле… стоят без движения. Почему? Потому, что так функционируют штатные дифференциалы без блокировок.
Как это работает, вернее не работает
На полноприводных автомобилях устанавливают межосевые и осевые дифференциалы. Первые распределяют вращательную энергию от двигателя между передней и задней осью. Вторые между колесами на одной оси. Распределяет неравномерно и несправедливо. Те колеса, которые вращать легче, например, буксующие, получает больше энергии и крутятся быстрее. А те, которые цепляются за землю и нагружены получают меньше вращения. Сделано это для того, чтобы в поворотах колеса, едущие по разным траекториям крутились с разной угловой скоростью и машина сохраняла управляемость. Но на бездорожье возможна ситуация, когда одно колесо повиснет в воздухе и вся энергия уйдет на него. Чтобы этого не происходило устанавливают межколесные и межосевые блокировки. На многие автомобили производители уже на заводах ставят различные антипробуксовочные системы, которые притормаживают проскальзывающее колесо, заставляя работать противоположное. И как правило, для езды по лужам и снегу этого достаточно. Но если вам этого мало, а для преодоления бездорожье таких систем мало, то можно самостоятельно дооборудовать свой внедорожник блокировками дифференциала. Дифференциалы с блокировками по форме и размеру соответствуют штатным дифференциалам автомобиля и устанавливаются вместо них. Один агрегат меняется на другой и машина приобретает новые возможности.
От простого к сложному
Если быть точным, то термином «Блокировка дифференциала» надо бы обозначать только те устройства, которые жестко блокируют полуоси друг с другом. Сцепляют их намертво, превращая в одну ось. Такие блокировки дифференциала называют «полными». Но так исторически сложилось, что дифференциалы повышенного трения, они же дифференциалы ограниченного проскальзывания, они же «частичные» блокировки в России тоже называют блокировками и самоблокировками (самоблоками). А раз так, то с них и начнем.
Самоблоки
Все дифференциалы повышенного трения работают автоматически, обеспечивая перераспределение крутящего момента от буксующего колеса к рабочему без участия человека. Поскольку срабатывают они сами, то и называются самоблокирующимися дифференциалами или коротко “самоблоками”, что не очень правильно, но так повелось. Как показал опрос джиперов, самоблок -самый популярный способ повысить проходимость своего автомобиля. Видимо, потому, что частичные блокировки – это золотая середина между штатным дифференциалом и полными блокировками. Да, с одной стороны, они не перераспределяют все 100% вращения с буксующего колеса. Но с другой стороны, нагрузки и вероятность сломать полуось меньше, чем у «полных». Да и стоят «частичные» заметно скромнее. Инженерных решений, позволяющих убрать ненужную энергию с буксующего колеса и отдать его крепко стоящему на земле много: gov-lock, вискомуфта, дисковая и героторно-дисковые блокировки, червячный, косозубый, винтовой самоблок. Но назначение одно – выравнивать скорость вращения полуосей одно оси. Отличаются только скоростью и жесткостью срабатывания, а также величиной перераспределяемого усилия от 30 до 80 процентов. Обратите внимание — выравнивание скорости вращения колес происходит автоматически, а значит, может случиться на ходу, например, при попадании одного из колес на лед в повороте — неприятная ситуация, чреватая ухудшением управляемости автомобиля. Ничего страшного, но надо научиться чувствовать работу таких дифференциалов и наработать навыки управления машиной, с установленными самоблоками.
Полные блокировки дифференциала
Более эффективный на бездорожье способ улучшить проходимость автомобиля – установить «полную» блокировку. Такие механизмы обеспечивают жесткое соединение полуосей и вращение обоих колес в любой ситуации, что бы ни случилось. При блокировках на обоих мостах и межосевом дифференциале гарантирован реальный привод 4х4. Но есть обратная сторона медали. Перераспределение энергии двигателя ведет к перераспределению нагрузок и их увеличению в 2, а то и в 4 раза, что ведет в поломке как минимум полуосей. Поэтому многие производители поставляют не только сами устройства, но и усиленные элементы трансмиссии. Различают более простые в установке, но менее предсказуемые на дороге автоматические блокировки и более сложные ручные блокировки, управляемые водителем из кабины.
Автоматические полные блокировки дифференциала
Принцип действия, заложенный в полные автоблокировки типа Lockright, Lokka, Spartan Locker, Aussie Locker, Yukon Grizzly Locker, Detroit Locker, Powertrax No-Slip, Kaiser Locker, ДАК (Дифференциал Автоматический Красикова), называют «тракторным». Его суть в том, что полуоси постоянно находятся в соединенном состоянии (заблокированы) и разъединяются только в поворотах, когда одно колесо начинает “обгонять” другое. Устройства надежные, неприхотливые, выдерживающие большие нагрузки, но требующие навыка управления автомобилем. Дело в том, что, если в повороте, когда оси расцеплены и колеса едут по разным траекториям с разной скоростью, газануть, то дифференциал мгновенно сцепится, колеса попытаются поехать синхронно. А в дуге такая синхронность невозможна и машина потеряет управление. При срабатывании в скользкой дуге машину однозначно понесет на внешний радиус поворота. И хорошо если на обочину, а не в другую сторону
Фото сайта dak4x4.com
Ручные (принудительные) блокировки дифференциала
Как понятно из названия этого класса блокировок, жесткое сцепление полуосей друг с другом выполняет водитель. Все просто, предсказуемо и управляемо. Только надо не забывать включать блокировку на бездорожье и выключать ее при выезде на хорошую дорогу. Иначе как минимум повышенный износ покрышек и деталей, как максимум сюрпризы и проблемы в поворотах.
По способу включения выделяют четыре вида: пневматические, электрические, механические и гидравлические. Задача и принцип действия у всех схожий – дистанционно привести в действие кулачковую муфту, которая либо, жестко сцепит корпус дифференциала с одной из полуосей, либо заблокирует вращение сателлитов. Получится одна сплошная ось, что и требуется. Отличаются типы ручных блокировок только способом управления муфтой и ее устройством.
Механическая блокировка управляется тросиком, прикрепленным к рычагу. Похоже на управление ручным тормозом. Потянул – полуоси заблокировались, отпустил – разблокировались.
Пневматическая блокировка дифференциала включается электрической кнопкой (клавишей, тумблером). Сигнал поступает на пневматический клапан, который открывает доступ сжатого воздуха из баллона по специальной трубке в пневмоцилидр, установленный внутри блокировки. Он и производит сцепку корпуса дифференциала с одной из полуосей. Пневмоблокировки самые распространенные и самые бюджетные варианты, но для их работы требуется компрессор и ресивер, который приобретаются и устанавливаются отдельно.
Гидравлическая блокировка работает так же как и пневматическая, только давление создается не сжатым воздухом, а тормозной жидкостью. Гидросистема, состоящая из двух цилиндров (главного и рабочего), трубок и рычага, устанавливаемого в салоне получается довольно громоздкой. Из-за этого гидравлические блокировки у джиперов непопулярны и встречаются на внедорожниках редко.
В электрических блокировках дифференциала сцепление полуосей производится электромагнитом. Ток потребления 3 Ампера. Система, появившаяся в России совсем недавно, но уже набравшая немало сторонников. И все из-за простоты. Для работы нужна только собственно блокировка, провод и кнопка. Устанавливать просто, все необходимое уже в комплекте, поставить неправильно сложно.
К недостаткам ручных блокировок относят то, что включать их можно только на стоящем автомобиле, действовать они начинают не сразу (надо несколько метров проехать) и необходимо помимо собственно блокировки устанавливать механизм управления. Неудобства небольшие и с лихвой компенсирующиеся безопасностью и удобством использования.
Подытожим
Ставить или нет блокировки дело очень индивидуальное и в этом вопросе много от сиюминутной моды и желания казаться крутым. Если в машине производителем штатно блокировка дифференциала не предусмотрена, то может и устанавливать ее не надо. Известно большое количество примеров, когда машины без блокировок выигрывают соревнования у таких же, но с заблокированными мостами. Все зависит от умения водителя и штурмана. А с другой стороны, автопроизводители делают машины для массового потребителя, многие из которых никогда на бездорожье не поедут. Так, что теперь и джиперам с асфальта не съезжать? Конечно, съезжать. Только включив голову и дооборудовав свой автомобиль.
Текст: Алексей Игнаткович
Иллюстрации А.Игнатковича и с сайтов производителей
Самоблокирующийся дифференциал Википедия
Дифференциал с повышенным внутренним сопротивлением (также: дифференциал ограниченного проскальзывания (LSD), дифференциал повышенного трения, самоблокирующийся дифференциал) — это дифференциал, механика работы которого за счёт конструктивно заложенного повышенного внутреннего сопротивления между некоторыми вращающимися деталями позволяет такому дифференциалу без каких-либо управляющих воздействий извне выравнивать самостоятельно угловые скорости ведущего и ведомых звеньев вплоть до полной их взаимной блокировки и превращения всего дифференциала в прямую передачу.
Следует иметь в виду, что в англоязычной литературе данные дифференциалы обозначаются как «LSD (Limited-Slip Differential)», т.е. дифференциал ограниченного проскальзывания, и данный термин не определяет физического принципа работы устройства, наличия управления им и т.д. Имеет значение лишь сама функция блокировки неконтролируемой разницы в угловых скоростях приводов («проскальзывания»). «Ограниченность проскальзывания» подразумевает некий заданный предел разницы угловых скоростей, при превышении которого начинает срабатывать блокировка.
Преимущества
Основное преимущество дифференциала с повышенным внутренним сопротивлением (далее — ДПВС) можно увидеть, рассмотрев случай с обычным (или «открытым») дифференциалом, у которого одно колесо вообще не имеет контакта с дорогой. В этом случае второе колесо, контактирующее с дорогой, будет оставаться неподвижным, и первое, не контактирующее с дорогой колесо, будет вращаться свободно — передаваемый крутящий момент будет равным на обоих колёсах, но не будет превышать порогового значения момента, необходимого для движения транспортного средства, и поэтому транспортное средство будет оставаться неподвижным. В обычных автомобилях, движущихся по асфальтовым дорогам, такая ситуация маловероятна, и поэтому для таких автомобилей обычный дифференциал вполне подойдёт. При вождении в более сложных условиях, например, при движении в грязи или по бездорожью, подобные ситуации случаются, и наличие дифференциала с повышенным внутренним сопротивлением позволяет не останавливать движение. За счёт ограничения разницы в угловых скоростях колёс полезный момент передаётся до тех пор, пока хотя бы одно из колёс имеет сцепление с дорогой.
Коэффициент блокировки
Коэффициент блокировки есть важнейшее оценочное свойство любого ДПВС. В информационных материалах о ДПВС этот коэффициент может выражаться двояко и несколько отличаться по смыслу толкования, хотя в обоих случаях подразумевать одно и то же, только с разных точек зрения.
В иностранной технической литературе КБ обычно выражается посредством процентного значения в десятках процентов в диапазоне от 20 % и выше. Цифра обозначает покрываемую конкретным ДПВС ширину диапазона относительного распределения крутящего момента между колёсами/осями от заложенного в дифференциала статического (с поправкой на его возможную несимметричность) до максимального уровня в 100/0, в пределах которого ДПВС может обеспечить взаимную блокировку. Данное определение подпадает под англоязычный термин Locking Effect («блокировочный эффект»). В русскоязычной технической литературе КБ выражается через число от 2 и выше (обычно, без десятичных дробей), обозначающее максимально возможную разницу в крутящих моментах (разницу в силе тяги) на колёсах/осях, в пределах которой данный ДПВС может обеспечить их взаимную блокировку. Данное определение КБ соответствует английскому термину Torque Bias («сдвиг момента»).
Показано соотношение между КБ в числовом и процентном значенияхХотя оба понятия КБ предполагают под собой разные формулы подсчёта, абсолютно любой ДПВС может быть корректно оценён любым из них. При этом, каждое из двух значений КБ можно соотнести с общим оценочным показателем, а между обеими значениями всегда имеется взаимооднозначное соответствие. Так, например, значение КБ=50 % и КБ=3 означает в обоих случаях одно и то же: что ДПВС с указанными КБ допускает перераспределение крутящего момента между колёсами/осями в соотношении не более чем 75/25, что с одной стороны даёт 50 % полного диапазона возможного перераспределения эффективно используемого крутящего момента (75-25=50), а с другой стороны даёт 3-х кратную разницы в возможной силе тяги (75/25=3). Числовое (не процентное) значение КБ, возможно, здесь более интуитивно понятно, тем более, что помимо своего основного смысла, оно предполагает аналогичную разницу в допустимой силе сцепления колёс/осей с поверхностью, что в том же случае КБ=3 означает, что максимально эффективное использование мощности двигателя на этом ДПВС возможно только если сила сцепления каждого колеса с поверхностью дороги будет отличаться не более чем в три раза.
Простой (свободный) дифференциал не позволяет получить какую-либо разницу в эффективно-используемых крутящих моментах на ведомых звеньях, здесь разница между силой тяги обоих колёс/осей практически нулевая на любых режимах, КБ такого дифференциала равен 0 % или 1. Прямая передача или заблокированный дифференциал позволяют весь эффективно используемый крутящий момент реализовать на любом ведомом звене, здесь любое колесо/ось могут обеспечить всю тягу при нулевой уровне тяге на другом колесе/оси, а КБ в данном случае равен 100 % или бесконечности.
ДПВС может иметь два верхних значения КБ — по одному для каждой ветви мощности. Такое возможно в случаях несимметричного дифференциала, когда КБ получает поправку на несимметричность — то есть, верхние значения КБ для каждой из сторон отличаются друг от друга на разницу в соотношении раскладываемых крутящих моментов (например, в несимметричном заднем кулачковом межколёсном ДПВС грузового автомобиля ГАЗ-66, раскладывающим крутящий момент по колёсам в соотношении ≈(60/40), значения КБ для правого и левого колёс равны, соответственно, 3.1 и 2.1). И такое возможно в симметричных дифференциалах, когда это конструктивно допустимо механикой работы блокировки (например, в симметричном червячном ДПВС Torsen Type-1 разные значения КБ можно реализовать через разные углы нарезки зубьев в каждой паре сателлит-шестерня).
Обычно под КБ конкретного ДПВС подразумевается его максимальный КБ. При этом у любого ДПВС существует значение так называемого начального КБ, которое обычно не декларируется.
Преднатяг
Под этим термином подразумевается создание в ДПВС внутреннего сопротивления взаимному вращению ведомых звеньев в статике, то есть, при отсутствии подачи на дифференциал какого-либо самого минимального крутящего момента. Величина уровня преднатяга определяется усилием, необходимым для сдвига (поворота) любой ведомого звена дифференциала при неподвижном ведущем звене. В свободном дифференциале уровень преднатяга близок к нулю. Преднатяг, если он есть, «работает» всегда, независимо от того, нагружен ДПВС тяговым или тормозным крутящим моментом или не нагружен. Наличие преднатяга не есть обязательное условие работы ДПВС.
Так называемая «муфта преднатяга» предполагает под собой некое устройство внутри ДПВС, выполняющее вышеупомянутые функции и затрудняющее взаимное вращение ведомых шестерён дифференциала. Конструкция этого устройства не имеет универсального вида и на разных ДПВС может быть любой. Обычно это есть распорные пружины разной формы, дополненные дистанционными кольцами.
Типы ДПВС и конкретные конструкции
В пассажирских автомобилях как правило используются два типа ДПВС:
Дифференциалы обоих типов допускают наличие некоторой конструктивно запрограммированной разницы между крутящими моментами (в первом случае) или угловыми скоростями (во втором случае), но налагают механическое ограничение на возникновение большой их диспропорции.
Винтовая блокировка
Конструктивно дифференциалы с винтовой блокировкой могут быть выполнены на основе любого плоского однорядного или двухрядного планетарного механизма схем или с параллельными осями сателлитов, которые, в свою очередь, могут быть как одиночными, так и парными взаимозацепленными. Общем для любого вида исполнения будут две особенности: использование цилиндрических косозубых шестерён во всех парах зацепления и отсутствие фактических осей сателлитов как деталей. Винтовая передача, как таковая, здесь не используется, и широко употребимый термин происходит исключительно от визуального сходства сателлитов дифференциала с винтом, особенно на контрасте с его основными шестернями. А шестерни-сателлиты здесь вращаются не на осях, а в цилиндрических карманах, отфрезерованных в корпусе/водиле дифференциала. Идея блокировки основана на том, что в косозубом зацеплении под нагрузкой возникают осевые силы, стремящиеся раздвинуть по своим осям обе зацепленные шестерни в противоположные от плоскости контакта стороны, и здесь это свойство в первую очередь использовано в парах взаимозацепленных сателлитов, которые для этого получают некоторую осевую подвижность. Под тягой, при повороте или пробуксовке колеса, вращающиеся сателлиты расклиниваются в своих карманах, упираются торцами в корпус дифференциала, за счёт чего происходит их торможение и самовыравнивание угловых скоростей ведомых шестерён. Расклинивание сателлитов тем сильнее, чем выше передаваемый ими крутящий момент, но сам коэффициент блокировки определяется углом наклона зубьев зацепления и фрикционными свойствами пар контакта сателлит/корпус. Для усиления эффекта самоторможения в данных дифференциалах обычно применяют более чем минимально необходимые для плоского планетарного механизма три пары сателлитов — а именно, от четырёх до семи пар. И для усиления фрикционного эффекта в точках контакта торцов сателлитов с корпусом дифференциала могут применяться диски-прокладки из материала, создающего повышенное сопротивление при трении. В случае одиночных сателлитов работа дифференциала в принципе аналогична, с тем лишь отличием, что здесь в самоторможение вовлечены не только сателлиты, но и центральные шестерни дифференциала.
Ввиду того, что шестерни с косозубым зацеплением могут быть использованы на плоских планетарных механизмах любой схемы и формы, дифференциалы на их основе можно выполнить с практически любыми заданными передаточными отношениями в каждой паре звеньев ведущее-ведомое. Соответственно, такие дифференциалы могут быть как симметричные, так и несимметричные, и применяться в трансмиссии и как межколёсные и как межосевые. На этих дифференциалах активно используется преднатяг, а блокирующий момент здесь создаётся в тяговом режиме даже при отсутствии разницы в угловых скоростях на выходе. Но исключительно на косозубом зацеплении высокие значения коэффициента блокировки не доступны (обычно < 3), и для усиления эффекта такие дифференциалы могут дополняться фрикционными пакетами по типу дифференциалов с дисковой блокировкой.
Дифференциалы с винтовой блокировкой очень широко распространены по сей день. Основная их область применения — спортивные и гоночные автомобили. Также они применяются как тюнинговые для незначительного улучшения проходимости в дорожных автомобилях. Однако на истинно внедорожной технике они обычно не используются. Наиболее известны образцы от британской компании Quaife Engineering и американской Torsen NA Inc.. В первом случае дифференциал так и называется — Quaife. Во втором случае — это так называемые Torsen Type-2 и Torsen Type-3.
Червячная блокировка
Конструктивно все дифференциалы с червячной блокировкой выполнены на основе простых пространственных планетарных механизмов схемы с сателлитами на . Визуально пары зацепления солнце-сателлит здесь выглядят как червячная передача, в которой оси червячного колеса и самого червяка также перпендикулярны друг-другу и не пересекаются. В роли червяка и в роли червячного колеса здесь могут выступать как сателлиты, так и ведомые шестерни, и имеются разработки червячной блокировки с обеими вариантами распределения ролей между шестернями. Идея блокировки основана на том, что червячной передаче свойственно самоторможение в случаях направления мощности от червячного колеса к червяку, которое тем сильнее, чем больше угол наклона нарезки зубьев червяка к его оси вращения.
Хотя дифференциал с червячной блокировкой наиболее известен в варианте, разработанном американской Torsen NA Inc., — так называемый Torsen Type-1 — сама компания-разработчик почему-то избегает термина «червячная передача» при описании своего дифференциала. Зубчатая передача здесь декларируется как косозубая на перекрещивающихся осях, но не просто косозубая, а с некоей специфической, разработанной самой Torsen и запатентованной ими же формой зубьев Invex™, фактически являющейся частным вариантом эвольвентного зацепления. В русскоязычной инженерно-технической литературе считается, что в Torsen Type-1 роль червяков выполняют ведомые шестерни, а роль червячных колёс — сателлиты. Объяснение этому проистекает из разного угла наклона косозубой нарезки на ведомых шестернях и сателлитах. Необычная трёхрядная форма сателлита с прямозубым зацеплением по краям и косозубым в центре объясняется исключительно тем, что ввиду компоновки с перекрещивающимися осями конструктивно невозможно организовать через одну и ту же зубчатую нарезку одновременный зацеп как сателлитов с ведомыми шестернями, так и сателлитов между собой, и к повышению внутреннего сопротивления дифференциала эта особенность не имеет отношения. Обе ведомые шестерни здесь имеют сонаправленную нарезку зубьев и некоторую минимальную осевую подвижность, которая, как и в случае дифференциалов с винтовой блокировкой, необходима для сдвига обеих шестерён вдоль оси под нагрузкой, только в данном случае не для контакта с корпусом, а для их взаимного самоторможения друг о друга, что вносит существенный вклад в общее повышение внутреннего сопротивления. Дифференциал момент-чувствительный. Коэффициент блокировки в разных вариантах — 3-6. Дифференциал визуально и кинематически симметричен, и в случае межосевого использовался на модификациях AWD машин, изначально переднеприводных. Вообще, Torsen Type-1 есть один из наиболее известных моделей ДПВС. Он широко использовался в гоночных автомобилях WRC и Формулы-1 разных лет и в качестве межколёсного и в качестве межосевого. А на дорожных легковых автомобилях он стал совершенно однозначной ассоциацией с системами полного привода от Audi — Quattro — хотя в последних разработках Audi применяла и иные варианты. Среди внедорожных машин известным носителем данного ДПВС является Hummer h2.
Настоящими дифференциалами с червячной блокировкой и высокими (порядка 10 и даже выше) коэффициентами блокировки были американские и немецкие разработки для грузовых автомобилей повышенной проходимости. В данном случае конструкция планетарного механизма ДПВС предполагала тройные взаимозацепленные сателлиты, из которых два сателлита были червяками, а один — червячным колесом. Также, червячными колёсами были ведомые шестерни, а всего в дифференциале было 8 червяков и 6 червячных колёс двух типоразмеров. Основные попытки относительно массового применения этих ДПВС пришлись на предвоенные годы. В СССР этот тип ДПВС испытывался после войны, как в виде трофеев от Rheinmetall-Borsig AG, так и в виде домашних разработок «улучшенной» конструкции на основе немецкой. Данные по конкретным американским и немецким носителям отсутствуют, хотя считается, что дифференциалы с червячной блокировкой были широко распространены на различных грузовиках и тягачах для бездорожья и карьерных разработок. В СССР единственный более-менее массовый носитель — Урал-375Д. Современное использование — вероятно, нулевое.
Дисковая блокировка
Разобранный дифференциал с дисковой блокировкойКонструктивно дифференциал с дисковой блокировкой всегда состоит из планетарного механизма схемы на конических шестернях, дополненного парой миниатюрных конических фрикционных муфт и парой многодисковых фрикционных пакетов, располагающихся по оси дифференциала с обеих его сторон между ведомыми шестернями и корпусом. Часть фрикционных дисков здесь зацеплена с корпусом дифференциала, а часть — с миниатюрным конусообразным сцеплением, которое сопрягается каждое со своей ведомой шестернёй (солнцем). Идея блокировки основана на том, что под нагрузкой в конических шестернях возникают осевые силы, стремящиеся раздвинуть зацепленные шестерни друг от друга, и в отличие от свободного дифференциала, где этот эффект стараются нивелировать, здесь именно за счёт него и происходит сжатие фрикционных пакетов между ведомыми шестернями и корпусом дифференицала, что в свою очередь приводит к выравниванию угловых скоростей. Помимо конических муфт и фрикционных пакетов для усиления эффекта здесь нередко используется распорная пружина, установленная между ведомыми шестернями. И для усиления эффекта эти дифференциалы обычно имеют не два, а четыре сателлита на крестообразном водиле.
Разработки подобных дифференциалов известны с довоенного периода — ими занимались американские фирмы LeTurno-Westinghouse и Borg Warner. Современный вид и дисковую блокировку дифференциалы приобрели в 60-х годах, когда появились относительно надёжные фрикционные материалы, что позволило делать всю систему компактной и пригодной для легковых автомобилей. Сегодня используются в качестве межколёсных в задних ведущих мостах как спортивных, так и внедорожных автомобилей. Надёжны, но могут требовать регулировки со временем.
Кулачковая блокировка
Кулачковый дифференциал Порше, применявшийся на KdF82Конструктивно здесь возможны два варианта исполнения. В одном случае кулачковая муфта, состоящая из двух кулачковых дисков и промежуточного сепаратора с сухарями располагается между обеими ведомыми шестернями свободного дифференциала. Во втором случае, планетарная передача дифференциала вообще не имеет зубчатых колёс: эрзац-водилом дифференциала служит сепараторное кольцо, сателлитами являются сухари, а роль ведомых шестерён выполняют два кулачковых диска или кольца с волнообразным профилем сопряжённой с сепаратором поверхности. В обоих случаях идея блокировки основана на том, что при определённой разнице в угловых скоростях ведомых звеньев сухари расклиниваются между кулачковыми дисками/кольцами и практически моментально блокируют дифференциал. Блокировка здесь срабатывает только от разницы в угловых скоростях. До некоторого значения этой разницы дифференциал работает как свободный, по достижению — сразу блокируется, причём не важно, нагружен он крутящим моментом или нет. Какой-либо переходной режим частичной блокировки между свободным и заблокированным состояниями отсутствует.
Первые известные разработки кулачковых дифференциалов вероятно принадлежат Фердинанду Порше. Именно его дифференциал пошёл в серию на машинах KdF-Kübelwagen. Сегодня кулачковые самоблокирующиеся дифференциалы в основном используются как межколёсные в автомобилях повышенной проходимости и в военной технике (бронетранспортёрах и пр.).
Шариковая блокировка
Конструктивно дифференциалы с шариковой блокировкой представляют собой некий эрзац планетарной передачи симметричной схемы . Формально они не имеют ни шестерён, ни сателлитов в своей конструкции, но фактически, функции составляющих их деталей и общий принцип их работы идентичен конструкции и принципу работы любого настоящего планетарного дифференциала, а механика блокировки определяется повышением внутренного сопротивления работе, как и в остальных типах самоблокирующихся дифференциалов. В роли сателлитов здесь используются шарики, которые плотно набиты в закольцованные канавки в корпусе (водиле) дифференциала, и которые, как и настоящие сателлиты, контактируют одновременно друг с другом и с парой ведомых эрзац-шестерён (двумя солнцами). При небольшой разнице в угловых скоростях шарики, толкая друг-друга, перемещаются в закольцованной канавке в ту или другую сторону, обеспечивая дифференциальное вращение всей конструкции. При достижении некоего уровня разницы в угловых скоростях (пробуксовке) ведомых шестерён шарики не могут её (разницу) поддерживать, за счёт трения самотормозятся в своих канавках и тем самым создают блокировочный эффект.
Эта конструкция малоизвестна в мировом автопроме и всё её распространение, вероятно, ограничивается Россией и Украиной. Наиболее известные дифференциалы с шариковой блокировкой — это Автоматический Дифференциал Красикова и Автоматический Дифференциал Нестерова.
Дифференциал с вискомуфтой
Вязкостная муфта с открытым корпусом.Конструктивно дифференциал состоит из простого планетарного механизма абсолютно любой схемы и вискомуфты, соединяющей два его любые звена (два любые вала подачи/снятия мощности). Вискомуфта может располагаться как внутри дифференциала и связывать два ведомых звена, так и снаружи и связывать ведущее и ведомое звено (на принципиальную работы всей системы расположение вискомуфты влияния не оказывает). Идея блокировки основана на свойствах вискомуфты выравнивать угловые скорости двух своих звеньев за счёт свойств дилатантной жидкости. Блокировка срабатывает только от разницы в угловых скоростях. Кратковременно допускается 100 % блокировка. Переходные режимы также активно используются.
Вязкостные ДПВС менее эффективны в сравнении с вышеупомянутыми механическими ДПВС, так как в них происходит рассеивание энергии. В частности, любая постоянная нагрузка, которая нагревает жидкость внутри муфты, приводит к неустранимым перманентным потерям «дифференциального эффекта».[1]
Данный ДПВС не стоит путать с использованием вискомуфты в системах так называемого полного привода по требованию.
Дифференциал с героторным насосом
В дифференциалах этого типа с одной стороны вращается корпус героторного насоса, а с противоположной стороны вращается вал, соединённый с зубчатым колесом, находящимся внутри насоса. Когда возникает разница в частотах вращения корпуса и зубчатого колеса, насос сжимает рабочую жидкость во внутренней полости насоса. Это обеспечивает передачу вращающего момента к колесу машины, имеющему более сильное сцепление. Системы, основанные на насосах, имеют верхнюю и нижнюю границы прикладываемого давления, и внутреннее демпфирование во избежание гистерезиса. Новейшие системы с героторными насосами имеют компьютерное регулирование выходной мощности, что обеспечивает более высокую подвижность и исключает колебания.
Примечания
- ↑ Donnon, Martin et al. Zoom 67. — Express Motoring Publications, 2003. — P. 45–48. — «…the gel used can quite suddenly alter with massive temperature, and lose its ability to generate torque transfer.».