Что такое турбонаддув – Турбонаддув: что это такое, зачем нужен, как устроен и как работает турбонагнетатель

Содержание

Турбонаддув: что это такое, зачем нужен, как устроен и как работает турбонагнетатель

Турбонаддув представляет собой разновидность наддува, позволяющий подавать воздух в цилиндры ДВС под высоким давлением, которое обеспечивается высвобождаемой от сгорания топлива энергией выхлопных газов.

За счет турбонаддува повышается рабочая мощность двигателя, при этом не увеличивается внутренние объемы цилиндров двигателя и количество оборотов, совершаемых коленвалом. Кроме всего прочего турбонаддув позволяет снизить прожорливость двигателя, а также уменьшить токсичность газов благодаря более эффективному сгоранию топливовоздушной смеси.

Турбонаддув довольно широко используется на ДВС, работающих как на бензине так и на дизтопливе. При этом использование системы турбонаддува на дизелях считается более выгодным благодаря высокому показателю сжатия ДВС и малой частоте оборотов коленвала.

В бензиновых двигателях высока вероятность возникновения детонирующего эффекта вследствие значительного увеличения количества оборотов двигателя и высокого температурного режима газов при сгорании топлива (до 1000 °C, у дизеля лишь 600 °C).

Устройство системы турбонаддува

Система турбонаддува состоит из следующих элементов:

  • воздушный заборник и фильтр;
  • дроссельная заслонка;
  • турбинный компрессор;
  • интеркулер;
  • коллектор впускной;
  • соединительные патрубки;
  • напорные шланги

Турбинный компрессор (нагнетатель)

Основной элемент устройства турбонаддува, который предназначен для увеличения рабочего давления воздушной массы в системе впуска. Турбокомпрессор состоит из турбинного и компрессорного колес, которые установлены на роторном валу. Все элементы турбокомпрессора находятся в специальных защитных корпусах.

Турбинное колесо используется для переработки энергии, выделяемой отработанными газами. Колесо и его корпус изготавливаются из высокопрочных и жароустойчивых материалов – стальных и керамических сплавов.

Компрессорное кольцо применяется для всасывания воздушной массы, с дальнейшим ее сжатием и нагнетанием в цилиндры ДВС.

Кольца турбокомпрессора установлены на роторном валу, который совершает вращательные движения в плавающих подшипниках. Для более эффективной работы подшипники постоянно смазываются маслом, которое поступает по канальцам, расположенным в подшипниковом корпусе.

Интеркулер

Интеркулер – воздушный или жидкостной радиатор, который применяется для своевременного охлаждения предварительно сжатого воздуха, вследствие чего происходит увеличивается давление и плотность воздушного потока.

Регулятор давления наддува

Ключевым элементом управления турбонаддувом является регулятор давления наддува, который по сути своей является перепускным клапаном. Основным назначением клапана является сдерживание и перенаправление части вырабатываемых газов в обход турбинного колеса для снижения давления наддува. 

Перепускной клапан может быть оснащен приводом электрического или пневматического типа. Активация клапана происходит вследствие приема сигналов от датчика давления.

Предохранительный клапан

Клапан предохранительный используется для предотвращения скачков давления воздушной массы, которое часто возникает при быстром закрытии дроссельной заслонки. Избыточное давление либо стравливается в атмосферу, либо переподается на вход компрессора.

Принцип действия турбонаддува

Система турбонаддува использует энергию газов, которые образуются при сгорании топлива. Газы обеспечивают вращательные движения колеса турбинного типа, которое в свою очередь запускает компрессорное колесо, отвечающее за сжатие и нагнетание воздушной массы в систему. Далее происходит охлаждение воздуха при помощи интеркулера и подача его в цилиндры.

Очевидно, что хотя турбонаддув механически никак не связан с коленвалом двигателя, однако его работа и ее эффективность находится в прямой зависимости от скорости вращения коленчатого вала. Чем выше обороты двигателя, тем эффективнее работает турбонаддув.

Несмотря на свою практичность и эффективность, система турбонаддува имеет некоторые недостатки. Ключевым из них является появление турбоям – задержка в увеличении мощности ДВС.

Подобное явление проявляется вследствие инерционности системы – задержки в увеличении давления наддува при достаточно резком нажатии на газ, что может привести к разрыву между требуемой мощностью двигателя и производительностью турбины.

Для устранения эффекта турбоямы используются три основных метода:

  • Использование системы с двумя (и более) турбокомпрессорами. Турбины могут устанавливаться параллельно – это допускается на двигателях V-образного типа. При этом каждая турбина устанавливается на свой ряд цилиндров. Идея данного метода в том, что две турбины меньшего размера обладают более низкой инерционностью, чем одна большая турбина. Турбины так же могут устанавливаться и последовательно, причем их может быть от двух до четырех (Bugatti). Увеличение производительности и максимальная эффективность турбонаддува в этом случае достигаются за счет того, что при разных оборотах двигателя используется свой турбокомпрессор.
  • Использование турбины с изменяемой геометрией. Подобный метод обеспечивает более рациональное использование энергии отработанных газов за счет изменения площади сечения входного канала турбины. Данный метод весьма часто используется на дизельных двигателях, например всем известная система TDI от Volkswagen.
  • Использование комбинированного типа турбонаддува
    . Данный метод позволяет применять симбиоз двух систем – механического и турбинного наддува. Механический наддув эффективен на малых оборотах коленвала, при которых сжатие воздуха обеспечивается нагнетателем механического типа. Турбонаддув применяется при высоких оборотах коленвала, где функцию нагнетания воздуха берет на себя турбинный компрессор. Наиболее распространенной системой комбинированного наддува является наддув двигателя TSI от Volkswagen.

Турбонаддув — Энциклопедия журнала «За рулем»

В турбокомпрессоре используются центробежные насосы. Под действием центробежных сил, вызванных вращением колеса с лопатками, воздух отбрасывается к периферии колеса, а в его центре создается разрежение, что обеспечивает всасывание воздуха. Для эффективной работы турбокомпрессора частота вращения колеса компрессора должна быть очень высокой не менее 50–100 тыс. мин–1.
При работе ДВС из выпускного трубопровода под давлением выбрасываются продукты сгорания, которые имеют высокую температуру. Поток газов приводит во вращение колесо турбины, которое передается закрепленному на общем вале колесу компрессора.

Для достижения фазы наддува, т. е. момента, когда давление воздуха на впуске превысит атмосферное, необходимо, чтобы была достигнута определенная частота вращения турбины (не менее 60 000 мин–1). При малых оборотах двигателя турбокомпрессор работает в дежурном режиме (частота 5 000–10 000 мин–1). Необходимо учитывать, что наличие турбины в выпускном тракте создает сопротивление выходу отработавших газов.

Очень важный вопрос — выбор правильного размера турбины для конкретного двигателя. В первых двигателях с турбонаддувом для легковых автомобилей 1970-х гг. использовались готовые конструкции, разработанные, как правило, для дизелей больших грузовых автомобилей. Такие устройства давали хороший результат для увеличения максимальной мощности, но были неэффективными для получения большого крутящего момента в среднем диапазоне частот вращения двигателя, т. е. для получения достаточной приемистости автомобиля. Большие турбины требовали некоторого времени на «раскрутку», когда при небольших нагрузках открывалась дроссельная заслонка, что приводило к задержке нарастания давления наддува. Этот эффект получил название

турбоямы.


Схема работы турбокомпрессора с изменяемой геометрией

Большинство современных турбокомпрессоров легковых автомобилей имеют небольшие размеры и высокую частоту вращения. Для того чтобы увеличить диапазон частот вращения двигателя, при которых турбонаддув обеспечивает повышение давления, применяются по два турбокомпрессора на одном двигателе. Один турбокомпрессор работает при низких оборотах, а второй при высоких. В последних поколениях наддувных двигателей стали применяться

турбокомпрессоры с переменной геометрией, которые сохраняют высокую скорость газов при малых нагрузках, так что турбина всегда вращается с нужной скоростью. В таких турбокомпрессорах поток направляемых на турбину газов управляется с помощью специальных поворачивающихся заслонок. Одновременный поворот заслонок производится с помощью штока вакуумной камеры. Разрежение в камере регулируется электромагнитным клапаном по сигналу компьютера.

При работе системы турбонаддува происходит сильный нагрев турбины, а компрессор остается сравнительно холодным. Очень важным узлом, определяющим долговечность турбокомпрессора, является узел подшипников вала. Обычно масло для смазки подшипников подается под давлением из системы смазки двигателя. Иногда для повышения работоспособности наддува применяют охлаждение корпуса турбины жидкостью из системы охлаждения двигателя. После продолжительного движения на высокой скорости автомобиля с турбонаддувом турбина может раскрутиться до высоких скоростей (сотни тысяч оборотов в минуту). После остановки двигателя турбокомпрессор останавливается не сразу, а масло уже не поступает к подшипникам. Чтобы не произошло повреждения подшипников, рекомендуется перед выключением двигателя дать ему возможность некоторое время поработать на холостом ходу.


Дизельный двигатель с турбонаддувом

Очень хорошо система турбонаддува работает в дизелях. Отработавшие газы в дизеле холоднее, чем в бензиновых двигателях, что облегчает работу турбокомпрессора, и, кроме того, в дизеле не существует опасности возникновения детонации. Поэтому неслучайно, что турбонаддув устанавливается почти на всех современных дизельных двигателях легковых автомобилей.

В многоцилиндровых двигателях с большим рабочим объемом некоторых грузовых автомобилей отработавшие газы продолжают обладать большой энергией, даже после прохождения турбокомпрессора. Эту энергию можно использовать для дальнейшего повышения мощностных характеристик двигателя, создавая так называемые

турбокомпаундные двигатели. В таком двигателе часть энергии отработавших газов используется для раскручивания дополнительной турбины, которая через гидравлическую муфту связана с коленчатым валом. Такая конструкция дает возможность, увеличить крутящий момент на вале двигателя.
Подробнее о турбонаддуве — в главе Турбокомпрессор

что это такое в автомобиле, принцип работы, плюсы и минусы

В массовом сознании слова «турбо», «турбонаддув», «турбированный двигатель» прочно ассоциируются со спортивными машинами и мощными двигателями. При этом, немногие представляют себе устройство и принцип работы турбонаддува. Хотя ничего особенного сложного в нём нет.

Что такое турбонаддув в автомобиле

турбина в автомобилеТурбонаддув это специальная система, которая закачивает (наддувает) дополнительный воздух в цилиндры двигателя. Такая система используется не только в автомобильных двигателях, но и в авиационных, тепловозных, корабельных, и многих других. Широкое распространение турбонаддува вызвано тем, что это очень простой и дешёвый способ повышения мощности двигателя. Турбировать можно почти любой автомобильный двигатель, даже если это изначально не предусмотрено конструкцией.

Устройство турбонаддува относительно простое:

  • турбокомпрессор;
  • охладитель воздуха;
  • набор патрубков;
  • выпускной коллектор;
  • ряд датчиков и клапанов.

Полный комплект не занимает много места, его установка не требует серьезной переработки силового агрегата. Поэтому поставить турбонаддув на свою машину может любой желающий. Цены на турбосистемы сильно разнятся, в зависимости от мощности, эффективности, фирмы-производителя.

Принцип работы турбонаддува

Принцип работы турбонаддува достаточно прост. Выхлопные газы, которые выбрасывает двигатель, попадают на турбину и придают ей вращение. Турбина, в свою очередь, передаёт крутящий момент компрессору, он засасывает воздух и сжимает его. После этого сжатый воздух направляется в цилиндры двигателя. Опционально в эту схему вносится промежуточный охладитель воздуха — интеркулер. Он снижает температуру сжатого компрессором воздуха, соответственно уменьшая его объём. Это избавляет от неприятных эффектов вроде детонации, и повышает общую эффективность системы.

пПринцип работы турбонаддува

Смысл закачивания дополнительного воздуха становится ясен, если вспомнить принцип работы двигателя внутреннего сгорания. В его цилиндрах сгорает топливо-воздушная смесь, этот процесс толкает поршень, который проворачивает коленвал. Но, для эффективного сгорания смеси важно соблюдать правильное соотношение топлива и воздуха, поэтому нельзя повысить мощность просто добавив в смесь больше топлива. Вместе с увеличением количества топлива нужно увеличивать и количество воздуха.

Это можно сделать увеличив объём цилиндра, чтобы в него помещалось побольше воздуха. Но можно пойти другим путём — повысить плотность воздуха, загоняемого в цилиндры. Тогда с той же единицы рабочего объёма двигателя можно снимать ощутимо большую мощность. Хороший пример — спорткары, где каждый литр объёма может выдавать более 150 л.с. Конечно, помимо турбонаддува там используют ещё массу ухищрений. Но вполне реально получить 105-115 л.с. на литр с помощью одного только турбирования. 

Что такое турбояма или турболаг

Принцип работы турбонаддува заключается в том, что двигатель «разгоняет» себя за счёт своей же работы. Эта особенность вызывает появление такой проблемы как турбояма или турболаг. Она проявляется в виде провала мощности, который появляется после резкого нажатия на педаль газа.

На заре турбированных моторов доходило до смешного — слишком резко и сильно нажав на педаль «газа», можно было полностью заглушить его. Сейчас сложная механическая и электронная начинка не даст этому произойти, но эффект турбоямы с неприятным провалом мощности всё равно остаётся. Особенно этим страдают дешевыё турбо-системы или неправильно установленные и настроенные.

Чтобы сгладить турболаг, используют хитрые электронные системы упреждающего наращивания оборотов. Они регистрируют резкие нажатия на педаль акселератора и раскручивают компрессор электроприводами, не дожидаясь, когда «проснётся» турбина. Цена таких решений, как правило, немаленькая, поэтому они встречаются в осномном только на спортивных авто. 

Плюсы и минусы турбонаддува

Использовать турбонаддув имеет смысл только в том случае, если крайне необходимо придать автомобилю более динамичный, спортивный характер. Это действительно отличный способ минимальными затратами повысить мощность двигателя. Турбирование увеличивает максимальную скорость машины и улучшает ее динамику.

При этом турбонаддув позволяет обходиться меньшим объемом топлива по сравнению с двигателем такой же мощности и большего объёма. На эту деталь нужно обратить самое пристальное внимание, так как сам по себе турбонаддув не уменьшает, а увеличивает расход топлива. Потому что при росте количества воздуха в цилиндрах нужно соответствующе нарастить подачу топлива.

Помимо увеличенного расхода горючего, турбонаддув имеет следующие недостатки:

  • турбокомпрессор вращается на огромных оборотах и сильно нагревается, что отрицательно сказывается на его долговечности;
  • непредусмотренное изначально увеличение мощности усиливает износ всех частей двигателя;
  • турбонаддув предъявляет повышенные требования к качеству топлива и моторных масел;
  • турбирование включает в себя изменения настроек работы двигателя, фаз газораспределения;

Похожие статьи

Что такое турбонаддув

Что такое турбонаддув?
Несомненно, каждый из нас хоть раз в жизни замечал на обычном с виду автомобиле шильдик «turbo». Производители, как нарочно, делают эти шильдики небольшого размера и размещают в неприметных местах так, что непосвящённый прохожий не заметит и пройдёт мимо. А понимающий человек непременно остановится и заинтересуется автомобилем. Ниже приводится рассказ о причинах такого поведения.
Автомобильные конструкторы (с момента появления на свете этой профессии) постоянно озабочены проблемой повышения мощности моторов. Законы физики гласят, что мощность двигателя напрямую зависит от количества сжигаемого топлива за один рабочий цикл. Чем больше топлива мы сжигаем, тем больше мощность. И, скажем, захотелось нам увеличить «поголовье лошадей» под капотом — как это сделать? Тут-то нас и поджидают проблемы.
Дело в том, что для горения топлива необходим кислород. Так что в цилиндрах сгорает не топливо, а топливно-воздушная смесь. Мешать топливо с воздухом нужно не на глазок, а в определённом соотношении. К примеру, для бензиновых двигателей на одну часть топлива полагается 14–15 частей воздуха — в зависимости от режима работы, состава горючего и прочих факторов.
Как мы видим, воздуха требуется весьма много. Если мы увеличим подачу топлива (это не проблема), нам также придётся значительно увеличить и подачу воздуха. Обычные двигатели засасывают его самостоятельно из-за разницы давлений в цилиндре и в атмосфере. Зависимость получается прямая — чем больше объём цилиндра, тем больше кислорода в него попадёт на каждом цикле. Так и поступали американцы, выпуская огромные двигатели с умопомрачительным расходом горючего. А есть ли способ загнать в тот же объём больше воздуха?
Есть, и впервые придумал его господин Готтлиб Вильгельм Даймлер (Gottlieb Wilhelm Daimler). Знакомая фамилия? Ещё бы, именно она используется в названии DaimlerChrysler. Так вот, этот немец весьма неплохо соображал в моторах и ещё в 1885 году придумал, как загнать в них больше воздуха. Он догадался закачивать воздух в цилиндры с помощью нагнетателя, представлявшего собой вентилятор (компрессор), который получал вращение непосредственно от вала двигателя и загонял в цилиндры сжатый воздух.
Швейцарский инженер-изобретатель Альфред Бюхи (Alfred J. Büchi) пошёл ещё дальше. Он заведовал разработкой дизельных двигателей в компании Sulzer Brothers, и ему категорически не нравилось, что моторы были большими и тяжёлыми, а мощности развивали мало. Отнимать энергию у «движка», чтобы вращать приводной компрессор, ему также не хотелось. Поэтому в 1905 году господин Бюхи запатентовал первое в мире устройство нагнетания, которое использовало в качестве движителя энергию выхлопных газов. Проще говоря, он придумал турбонаддув.
Идея умного швейцарца проста, как всё гениальное. Как ветра вращают крылья мельницы, также и отработавшие газы крутят колесо с лопатками. Разница только в том, что колесо это очень маленькое, а лопаток очень много. Колесо с лопатками называется ротором турбины и посажено на один вал с колесом компрессора. Так что условно турбонагнетатель можно разделить на две части — ротор и компрессор. Ротор получает вращение от выхлопных газов, а соединённый с ним компрессор, работая в качестве «вентилятора», нагнетает дополнительный воздух в цилиндры. Вся эта мудрёная конструкция и называется турбокомпрессор (от латинских слов turbo — вихрь и compressio — сжатие) или турбонагнетатель.

В турбомоторе воздух, который попадает в цилиндры, часто приходится дополнительно охлаждать — тогда его давление можно будет сделать выше, загнав в цилиндр больше кислорода. Ведь сжать холодный воздух (уже в цилиндре ДВС) легче, чем горячий.
Воздух, проходящий через турбину, нагревается от сжатия, а также от деталей турбонаддува, разогретого выхлопными газами. Подаваемый в двигатель воздух охлаждают при помощи так называемого интеркулера (промежуточный охладитель). Это радиатор, установленный на пути воздуха от компрессора к цилиндрам мотора. Проходя через него, он отдаёт своё тепло атмосфере. А холодный воздух более плотный — значит, его можно загнать в цилиндр ещё больше.
Чем больше выхлопных газов попадает в турбину, тем быстрее она вращается и тем больше дополнительного воздуха поступает в цилиндры, тем выше мощность. Эффективность этого решения по сравнению, например, с приводным нагнетателем в том, что на «самообслуживание» наддува тратится совсем немного энергии двигателя — всего 1,5%. Дело в том, что ротор турбины получает энергию от выхлопных газов не за счёт их замедления, а за счёт их охлаждения — после турбины выхлопные газы идут по-прежнему быстро, но более холодные. Кроме того, затрачиваемая на сжатие воздуха даровая энергия повышает КПД двигателя. Да и возможность снять с меньшего рабочего объёма большую мощность означает меньшие потери на трение, меньший вес двигателя (и машины в целом). Всё это делает автомобили с турбонаддувом более экономичными в сравнении с их атмосферными собратьями равной мощности. Казалось бы, вот оно, счастье. Ан нет, не всё так просто. Проблемы только начались.
Во-первых, скорость вращения турбины может достигать 200 тысяч оборотов в минуту,во-вторых, температура раскалённых газов достигает, только попробуйте представить, 1000°C! Что всё это означает? То, что сделать турбонаддув, который сможет выдержать такие неслабые нагрузки длительное время, весьма дорого и непросто.
По этим причинам турбонаддув получил широкое распространение только во время Второй мировой войны, да и то только в авиации. В 50-х годах американская компания Caterpillar сумела приспособить его к своим тракторам, а умельцы из Cummins сконструировали первые турбодизели для своих грузовиков. На серийных легковых машинах турбомоторы появились и того позже. Случилось это в 1962 году, когда почти одновременно увидели свет Oldsmobile Jetfire и Chevrolet Corvair Monza.
Но сложность и дороговизна конструкции — не единственные недостатки. Дело в том, что эффективность работы турбины сильно зависит от оборотов двигателя. На малых оборотах выхлопных газов немного, ротор раскрутился слабо, и компрессор почти не задувает в цилиндры дополнительный воздух. Поэтому бывает, что до трёх тысяч оборотов в минуту мотор совсем не тянет, и только потом, тысяч после четырёх-пяти, «выстреливает». Эта ложка дёгтя называется турбоямой. Причём чем больше турбина, тем она дольше будет раскручиваться. Поэтому моторы с очень высокой удельной мощностью и турбинами высокого давления, как правило, страдают турбоямой в первую очередь. А вот у турбин, создающих низкое давление, никаких провалов тяги почти нет, но и мощность они поднимают не очень сильно.
Почти избавиться от турбоямы помогает схема с последовательным наддувом, когда на малых оборотах двигателя работает небольшой малоинерционный турбокомпрессор, увеличивая тягу на «низах», а второй, побольше, включается на высоких оборотах с ростом давления на выпуске. В прошлом веке последовательный наддув использовался на суперкаре Porsche 959, а сегодня по такой схеме устроены, например, турбодизели фирм BMW и Land Rover. В бензиновых двигателях Volkswagen роль маленького «заводилы» играет приводной нагнетатель.
На рядных двигателях зачастую используется одиночный турбокомпрессор twin-scroll (пара «улиток») с двойным рабочим аппаратом. Каждая из «улиток» наполняется выхлопными газами от разных групп цилиндров. Но при этом обе подают газы на одну турбину, эффективно раскручивая её и на малых, и на больших оборотах
Но чаще по-прежнему встречается пара одинаковых турбокомпрессоров, параллельно обслуживающих отдельные группы цилиндров. Типичная схема для V-образных турбомоторов, где у каждого блока свой нагнетатель. Хотя двигатель V8 фирмы M GmbH, дебютировавший на автомобилях BMW X5 M и X6 M, оснащён перекрёстным выпускным коллектором, который позволяет компрессору twin-scroll получать выхлопные газы из цилиндров разных блоков, работающих в противофазе.

Турбина twin-scroll имеет двойную «улитку» турбины — одна эффективно работает на высоких оборотах двигателя, вторая — на низких
Заставить турбокомпрессор работать эффективнее во всём диапазоне оборотов, можно ещё изменяя геометрию рабочей части. В зависимости от оборотов внутри «улитки» поворачиваются специальные лопатки и варьируется форма сопла. В результате получается «супертурбина», хорошо работающая во всём диапазоне оборотов. Идеи эти витали в воздухе не один десяток лет, но реализовать их удалось относительно недавно. Причём сначала турбины с изменяемой геометрией появились на дизельных двигателях, благо, температура газов там значительно меньше. А из бензиновых автомобилей первый примерил такую турбину Porsche 911 Turbo.

Турбина с изменяемой геометрией.
Конструкцию турбомоторов довели до ума уже давно, а в последнее время их популярность резко возросла. Причём турбокомпрессоры оказалось перспективным не только в смысле форсирования моторов, но и с точки зрения повышения экономичности и чистоты выхлопа. Особенно актуально это для дизельных двигателей. Редкий дизель сегодня не несёт приставки «турбо». Ну а установка турбины на бензиновые моторы позволяет превратить обычный с виду автомобиль в настоящую «зажигалку». Ту самую, с маленьким, едва заметным шильдиком «turbo»

Что такое турбонаддув Турбокомпрессор состоит из двух «улиток» — через одну проходят отработавшие газы, а вторая «качает» воздух в цилиндры. Что такое турбонаддув Выхлопные газы из двигателя вращают ротор турбины, тот, в свою очередь, приводит в движение компрессор, который нагнетает сжатый воздух в цилиндры. Перед тем как это произойдёт, воздух проходит через интеркулер и охлаждается — так можно повысить его плотность. Что такое турбонаддув Что такое турбонаддув Аналог турбонаддува — приводной нагнетатель — жёстко связан с двигателем и тратит на свою работу часть его мощности. Что такое турбонаддув А вот так выглядит интеркулер. Что такое турбонаддув У Mitsubishi Lancer Evolution интеркулер располагается в переднем бампере перед радиатором. А у Subaru Impreza WRX STI — над двигателем. Что такое турбонаддув ыхлопные газы разогревают и выпускную систему, и турбонаддув до очень высоких температур. Что такое турбонаддув Турбина twin-scroll имеет двойную «улитку» турбины — одна эффективно работает на высоких оборотах двигателя, вторая — на низких Что такое турбонаддув Турбина с изменяемой геометрией.

Турбонаддув: что это такое, зачем нужен, как устроен и как работает турбонагнетатель

Теоретические аспекты

С самого своего появления, автомобили, стараниями своих создателей, претерпевают модернизации и более всего в вопросах мощности двигателей. Так как этот параметр напрямую связан с рабочим объемом мотора а также с качеством подаваемой воздушно-топливной смеси, для увеличения мощности есть два пути — либо увеличить объем агрегата (в современном массовом автомобилестроении этот способ не очень популярен), либо каким-то образом нагнетать в цилиндры больше воздуха.

Первый способ не популярен по понятным причинам — вместе с увеличением объема цилиндров возрастет и расход горючего, кроме того, сам агрегат существенно прибавит в размерах и массе, что тоже не всегда приемлемо. Поэтому автомобильными инженерами был найден способ увеличить подачу воздуха в цилиндры.

Конструкция «турбины»

В первую очередь мы хотим отметить, что больших различий в конструкции турбонаддувов для разных моделей машин нет. Есть лишь вариации в размерах и дизайне некоторых узлов. По словам инструкторов по вождению, большинство автомобилистов используют термин «турбина», хотя это не совсем верно.

Турбиной называют одну из составляющих турбонаддува, состоящую из корпуса, системы уплотнений, вала с крыльчатками, двух улиток (в них вращаются крыльчатки), одного упорного и двух опорных подшипников скольжения. Сюда же крепится пневмопривод, который приводит в работу перепускной клапан.

Когда на выходе давление воздуха превышает оптимальное, то пневмопривод, который открывает клапан, срабатывает, таким образом, какая-то небольшая часть выхлопных газов выходит напрямую в выхлопную систему, и из-за этого обороты турбины становятся меньше.

Турбина — это крыльчатка на валу, приводящая во вращение компрессор. Турбина изготавливается из жаростойкого сплава, вал — из среднелегированной стали, а компрессор — из алюминия. Напомним, что данные детали не ремонтируются, а просто заменяются. Исключением является вал, который иногда получается перешлифовать и сделать под него новые подшипники.

Какие бывают виды турбонаддува

Есть несколько способов нагнетания большего количество воздуха в двигатель:

  • резонансный наддув — реализуется без нагнетателя за счет кинетической энергии воздуха во впускных коллекторах;
  • механический наддув — подача воздуха увеличивается благодаря применению механического компрессора, который, в свою очередь, приводится в движение двигателем автомобиля;
  • газотурбинный наддув — турбину приводит в движение поток отработавших газов.

В первом случае наддув происходит лишь за счет особенной формы и размера впускных коллекторов без применения каких-либо нагнетателей. Поэтому мы не будем описывать его в этом материале, а остановимся подробнее на двух других вариантах, которые, на наш взгляд, заслуживают особого внимания.

Какие бывают виды турбонаддува

На практике турбонаддув применяется как на моторах, использующих дизельное топливо, так и на бензиновых. Однако наиболее часто эта система встречается именно на дизельном двигателе, поскольку для них характерна высокая степень сжатия, меньшая температура выхлопа и низкие обороты коленчатого вала. Более высокая степень сжатия обеспечивает повышение мощности турбированного двигателя и увеличивает его КПД.

В бензиновых моторах температура отработавших газов выше, что может спровоцировать эффект детонации, приводящий к быстрому износу поршневой группы. Для предотвращения этого явления необходимо использовать бензин с более высоким октановым числом, что не всегда является экономически выгодным.

Система турбонаддува состоит из следующих элементов:

  • Воздухозаборник
  • Воздушный фильтр
  • Перепускной клапан — регулирует подачу отработавших газов
  • Дроссельная заслонка — регулирует подачу воздуха на впуске
  • Турбокомпрессор — повышает давление воздуха во впускной системе. Состоит из турбинного и компрессорного колес  
  • Интеркулер — охлаждает воздух, способствуя лучшему наполнению цилиндров и снижению вероятности детонации
  • Датчики давления — фиксирует давление наддува в системе
  • Впускной коллектор — распределяет воздух по цилиндрам
  • Соединительные патрубки — необходимы для крепления элементов системы между собой

Принцип работы системы турбонаддува заключается в следующем:

  • Отработавшие газы двигателя, проходя через турбокомпрессор, раскручивают турбинное колесо
  • Вращение турбинного колеса передается компрессорному, поскольку они закреплены на одном валу
  • Компрессор сжимает воздух, поступающий  из воздухозаборника, и направляет его в интеркулер
  • В интеркулере воздух охлаждается и поступает на впуск в цилиндры двигателя

В турбокомпрессоре предусматривается возможность регулировки давления выхлопных газов на лопасти турбины с целью не допустить превышение давления наддува в системе. Это осуществляется с помощью перепускного клапана, который приводится в движение пневмо- или электроприводом.

Подводя итоги, можно выделить плюсы и минусы использования на моторе турбонаддува. В числе достоинств:

  • увеличение мощности двигателя
  • повышение КПД двигателя
  • снижение расхода топлива

К минусам можно отнести:

  • Низкий крутящий момент на малых оборотах двигателя
  • Более высокая стоимость
  • Более сложное обслуживание и эксплуатация

Система турбонаддува состоит из следующих элементов:

  • воздушный заборник и фильтр;
  • дроссельная заслонка;
  • турбинный компрессор;
  • интеркулер;
  • коллектор впускной;
  • соединительные патрубки;
  • напорные шланги

Турбинный компрессор (нагнетатель)

Основной элемент устройства турбонаддува, который предназначен для увеличения рабочего давления воздушной массы в системе впуска. Турбокомпрессор состоит из турбинного и компрессорного колес, которые установлены на роторном валу. Все элементы турбокомпрессора находятся в специальных защитных корпусах.

Турбинное колесо используется для переработки энергии, выделяемой отработанными газами. Колесо и его корпус изготавливаются из высокопрочных и жароустойчивых материалов – стальных и керамических сплавов.

Компрессорное кольцо применяется для всасывания воздушной массы, с дальнейшим ее сжатием и нагнетанием в цилиндры ДВС.

Кольца турбокомпрессора установлены на роторном валу, который совершает вращательные движения в плавающих подшипниках. Для более эффективной работы подшипники постоянно смазываются маслом, которое поступает по канальцам, расположенным в подшипниковом корпусе.

Интеркулер

Интеркулер – воздушный или жидкостной радиатор, который применяется для своевременного охлаждения предварительно сжатого воздуха, вследствие чего происходит увеличивается давление и плотность воздушного потока.

Регулятор давления наддува

Ключевым элементом управления турбонаддувом является регулятор давления наддува, который по сути своей является перепускным клапаном. Основным назначением клапана является сдерживание и перенаправление части вырабатываемых газов в обход турбинного колеса для снижения давления наддува.

Перепускной клапан может быть оснащен приводом электрического или пневматического типа. Активация клапана происходит вследствие приема сигналов от датчика давления.

Предохранительный клапан

Клапан предохранительный используется для предотвращения скачков давления воздушной массы, которое часто возникает при быстром закрытии дроссельной заслонки. Избыточное давление либо стравливается в атмосферу, либо переподается на вход компрессора.

Система турбонаддува использует энергию газов, которые образуются при сгорании топлива. Газы обеспечивают вращательные движения колеса турбинного типа, которое в свою очередь запускает компрессорное колесо, отвечающее за сжатие и нагнетание воздушной массы в систему. Далее происходит охлаждение воздуха при помощи интеркулера и подача его в цилиндры.

Очевидно, что хотя турбонаддув механически никак не связан с коленвалом двигателя, однако его работа и ее эффективность находится в прямой зависимости от скорости вращения коленчатого вала. Чем выше обороты двигателя, тем эффективнее работает турбонаддув.

Несмотря на свою практичность и эффективность, система турбонаддува имеет некоторые недостатки. Ключевым из них является появление турбоям – задержка в увеличении мощности ДВС.

Подобное явление проявляется вследствие инерционности системы – задержки в увеличении давления наддува при достаточно резком нажатии на газ, что может привести к разрыву между требуемой мощностью двигателя и производительностью турбины.

Интеркулер

Принципиальная разница заключается лишь в конструкции турбокомпрессора. Для дополнительного нагнетания воздуха могут использоваться:

  • турбина, которая приводится в действие энергией выхлопных газов. Конструктивно турбину можно представить как два вентилятора, которые расположены на одной оси. Один из вентиляторов сочленен с выхлопной системой автомобиля, второй располагается во впускном тракте. Выходящие на такте выпуска из цилиндра газы приводят в движении турбинное колесо. Поскольку оба «вентилятора» закреплены на одной оси, то колесо компрессора во впускном тракте также начинает вращаться, ускоряя тем самым прохождение воздуха. Чем выше обороты двигателя, тем большее давление выхлопных газов во впускном тракте, а чем большее давление на выпуске, тем быстрее будет вращаться турбинное колесо во впускном тракте. Соответственно, в цилиндры можно затолкнуть больше воздуха, подать больше топлива, сгенерировав больше выхлопных газов на выпуске. Подробно принцип работы рассмотрен в статье «Устройство турбины на пальцах«;Турбонаддув: что это такое, зачем нужен, как устроен и как работает турбонагнетатель
  • механический нагнетатель, известный еще как Supercharger или Kompressor. Нагнетатель раскручивается приводным ремнем от шкива коленчатого вала, поэтому выхлопные газы в работе компрессора никак не используются.Турбонаддув: что это такое, зачем нужен, как устроен и как работает турбонагнетатель

Турбина

Очевидно, что для понимания устройства достаточно взглянуть на фото. Принцип работы турбонаддува также достаточно ясно продемонстрирован на видео. Более подробно остановимся на перепускном клапане и предназначении интеркуллера, который обязателен для эффективной работы авто с турбонаддувом.

В момент резкого закрытия дроссельной заслонки на больших оборотах двигателя во впускном тракте создается сильный помпаж. Колесо компрессора «холодной» части (впускной) турбины продолжает по инерции вращаться, создавая в перекрытом заслонкой канале избыток давления.

двигатель с турбонаддувом

Происходит резкое замедление компрессорного колеса, что автоматически ведет к замедлению турбинного колеса в выпускном тракте и созданию сильного противодействия выхлопным газам. Для предотвращения такого эффекта предназначен перепускной клапан, который либо сбрасывает избыток давления в атмосферу (Blow-off), либо перенаправляет поток опять на вход по направлению вращения турбинного колеса (Bypass).

Для контроля воздушного потока, а также сбрасывания избытка давления в горячей части используется wastegate. Избыточная скорость выхлопных газов приводит к тому, что воздушный поток срывается с лопастей колеса, снижая тем самым на ноль эффективность турбинного колеса.

Также увеличение сечения выпускной системы, за которое и отвечает клапан вестгейта, уменьшает подпор выхлопных газов на высоких оборотах. Для повышения эффективности, уменьшение турбоямы и большей эластичности на авто устанавливаются турбины с изменяемой геометрией.

Интеркулер в системе турбонаддува предназначен для охлаждения воздушного потока. При повышении температуры плотность воздуха уменьшается, что ведет к уменьшению массы на единицу объема.

Механический наддув — способ увеличения подачи воздуха в двигатель посредством использования компрессора. Принцип работы компрессора выглядит следующим образом: когда двигатель начинает работать, его коленвал приводит в действие весь механизм. То есть механический наддув работает с первых моментов запуска мотора автомобиля.

Несомненным плюсом такой системы можно назвать, то что воздух принудительно нагнетается в цилиндры на любых оборотах двигателя (даже самых низких) и давление, соответственно возрастает с увеличением оборотов коленчатого вала. Поэтому автомобилям с механическими компрессорами не знакомо такое понятие, как «турбояма».

Но такое устройство имеет и свои отрицательные стороны. Дело в том, что на приведение в движения компрессора мотор автомобиля расходует некоторую часть своей мощности, что снижает в итоге его КПД. Кроме того, для установки механического наддува нужно больше места в подкапотном пространстве. Также такое устройство создает повышенный уровень шума.

Турбонаддув: что это такое, зачем нужен, как устроен и как работает турбонагнетатель

Нагнетание воздуха в мотор при помощи компрессора стало использоваться в автомобилестроении гораздо раньше, нежели применение газотурбинного механизма. Тем не менее, несмотря на некоторую устарелость, подобные устройства все еще можно встретить на современных автомобилях (ярким примером выступает компания Mercedes-Benz, на свежевыпущенных машинах которой до сих пор красуются шильдики «Kompressor»).

Плюсы и минусы турбонаддува

Что касается экологичности турбомоторов: хотя среди отечественных автолюбителей еще не так развита «экологическая сознательность», не следует забывать и о том, что турбированные моторы наносят меньше вреда окружающей среде. Все потому что в камере сгорания турбированного двигателя температура несколько меньше, поэтому снижается образование оксида азота, к тому же топливо сжигается более полно.

Впрочем, не обошлось и без недостатков. Первое о чем следует знать — турбина требует к себе бережного отношения. Пока мотор заведен на подшипники масло подается под давлением. Как только мотор заглушен масло к подшипникам поступать прекращает. Если мотор эксплуатировался под большими нагрузками, система наддува может перегреться и выйти из строя.

Дабы не допустить перегрева, прежде чем глушить турбированный двигатель, ему следует дать поработать несколько минут на холостых оборотах. Многие современные автомобили оснащаются с завода специально предназначенными для этого устройствами — турботаймерами.

Есть еще один немаловажный момент — на малых оборотах мотора эффективность турбины очень мала. Также следует упомянуть об эффекте турбоямы — турбина откликается на нажатие педали акселератора с некоторой задержкой. Турбонаддув может эффективно работать только в узком диапазоне оборотов мотора, кроме того, большое значение имеет размер самой турбины.

Для увеличения продуктивности этой системы многие автопроизводители устанавливают на свои автомобили две турбины разного размера или пару одинаковых турбин. Турбины разного размера позволяют существенно расширить диапазон эффективной работы турбонаддува — после того как первая турбина начинает терять продуктивность в работу вступает вторая.

Две одинаковые турбины позволяют увеличить производительность, улучшить разгонную динамику и уменьшить эффект турбоямы. Для снижения этого эффекта автопроизводители прибегают к таким ухищрениям, как снижение массы движущихся частей турбины. Благодаря этому турбине нужно меньше времени чтобы раскрутиться.

Турбонаддув — это… Что такое Турбонаддув?

Турбонаддув — один из методов агрегатного наддува, основанный на утилизации энергии отработавших газов. Основной элемент системы — турбокомпрессор, иногда — турбонагнетатель с механическим приводом.

История изобретения

Принцип турбонаддува был запатентован Альфредом Бюхи в 1911 году в патентном ведомстве США. Номер патента (1006907 October 1911 Buchi).

История развития турбокомпрессоров началась примерно в то же время, что и постройка первых образцов двигателей внутреннего сгорания. В 1885—1896 г. Готлиб Даймлер и Рудольф Дизель проводили исследования в области повышения вырабатываемой мощности и снижения потребления топлива путем сжатия воздуха, нагнетаемого в камеру сгорания. В 1905 г. швейцарский инженер Альфред Бюхи впервые успешно осуществил нагнетание при помощи выхлопных газов, получив при этом увеличение мощности на 120 %. Это событие положило начало постепенному развитию и внедрению в жизнь турботехнологий.

Сфера использования первых турбокомпрессоров ограничивалась чрезвычайно крупными двигателями, в частности, корабельными. В авиации с некоторым успехом турбокомпрессоры использовались на истребителях с двигателями Рено ещё во время Первой Мировой войны. Ко второй половине 1930-х развитие технологий позволило создавать действительно удачные авиационные турбонагнетатели, которые у значительно форсированных двигателей использовались в основном для повышения высотности. Наибольших успехов в этом достигли американцы, установив турбонагнетатели на истребители P-38 и бомбардировщики B-17 в 1938 году. В 1941 году США был создан истребитель P-47 с турбонагнетателем, обеспечившим ему выдающиеся летные характеристики на больших высотах.

В автомобильной сфере первыми начали использовать турбокомпрессоры производители грузовых машин. В 1938 г.на заводе «Swiss Machine Works Sauer» был построен первый турбодвигатель для грузового автомобиля. Первыми легковыми автомобилями, оснащенными турбинами были Chevrolet Corvair Monza и Oldsmobile Jetfire, вышедшие на американский рынок в 1962—1963 г. Несмотря на очевидные технические преимущества, низкий уровень надежности привел к быстрому исчезновению этих моделей.

Начало использования турбодвигателей на спортивных автомобилях, в частности на Formula 1, в 70-х годах привело к значительному увеличению популярности турбокомпрессоров. Приставка «турбо» стала входить в моду. В то время, почти все производители автомобилей предлагали как минимум одну модель с бензиновым турбодвигателем. Однако, по прошествии нескольких лет, мода на турбодвигатели начала проходить, так как выяснилось, что турбокомпрессор, хотя и позволяет увеличить мощность бензинового двигателя, сильно увеличивает расход топлива. На первых порах задержка в реакции турбокомпрессора была достаточно большой, что также являлось серьёзным аргументом против установки турбины на бензиновый двигатель.

Коренной перелом в развитии турбокомпрессоров произошёл с установкой в 1977 г. турбокомпрессора на серийный автомобиль Saab 99 Turbo и затем, в 1978 г. выпуском Mercedes-Benz 300 SD, первого легкового автомобиля, оснащенного дизельным турбодвигателем. В 1981 г. за Mercedes-Benz 300 SD последовал VW Turbodiesel. При помощи турбокомпрессора производителям удалось увеличить эффективность работы дизельного двигателя до уровня бензинового, сохранив при этом значительно более низкий уровень выброса в атмосферу выхлопных газов. Вообще, дизельные двигатели имеют повышенную степень сжатия и, вследствие адиабатного расширения на рабочем ходе, их выхлопные газы имеют более низкую температуру. Это снижает требования к жаропрочности турбины, и позволяет делать более дешёвые или более изощрённые конструкции. Именно поэтому турбины на дизельных двигателях встречаются гораздо чаще, чем на бензиновых, а большая часть новинок (например, турбины с изменяемой геометрией) сначала появляется именно на дизельных двигателях.

Принцип работы

Принцип работы основан на использовании энергии отработавших газов. Поток выхлопных газов попадает на крыльчатку турбины (закреплённой на валу), тем самым раскручивая её и находящиеся на одном валу с нею лопасти компрессора, нагнетающего воздух в цилиндры двигателя. Так как при использовании наддува воздух в цилиндры подаётся принудительно (под давлением), а не только за счёт разрежения, создаваемого поршнем (это разрежение способно взять только определённое количество смеси воздуха с топливом), то в двигатель попадает большая смесь воздуха с топливом. Как следствие, при сгорании увеличивается объём сгораемого топлива с воздухом, образовавшийся газ занимает больший объём и соответственно возникает большая сила, давящая на поршень.

Как правило, у турбодвигателей меньше удельный эффективный расход топлива (грамм на киловатт-час, г/(кВт·ч)), и выше литровая мощность (мощность, снимаемая с единицы объёма двигателя — кВт/л), что даёт возможность увеличить мощность небольшого мотора без увеличения оборотов двигателя.

Вследствие увеличения массы воздуха, сжимаемой в цилиндрах, температура в конце такта сжатия заметно увеличивается и возникает вероятность детонации. Поэтому, конструкцией турбодвигателей предусмотрена пониженная степень сжатия, применяются высокооктановые марки топлива, а также в системе предусмотрен промежуточный охладитель наддувочного воздуха (интеркулер), представляющий собой радиатор для охлаждения воздуха. Уменьшение температуры воздуха требуется также и для того, чтобы плотность его не снижалась вследствие нагрева от сжатия после турбины, иначе эффективность всей системы значительно упадёт. Особенно эффективен турбонаддув у дизельных двигателей тяжёлых грузовиков. Он повышает мощность и крутящий момент при незначительном увеличении расхода топлива. Находит применение турбонаддув с изменяемой геометрией лопаток турбины, в зависимости от режима работы двигателя.

Наиболее мощные (по отношению к мощности двигателя) турбокомпрессоры применяются на тепловозных двигателях. Например на дизеле Д49 мощностью 4000 л.с. установлен турбокомпрессор мощностью 1100 л.с.

Наибольшей (по абсолютной величине) мощностью обладают турбокомпрессоры судовых двигателей, которая достигает нескольких десятков тысяч киловатт (двигатели MAN B&W).

Состав системы

Кроме турбокомпрессора и интеркулера в систему входят: регулировочный клапан (wastegate) (для поддержания заданного давления в системе и сброса давления в приёмную трубу), перепускной клапан (bypass valve — для отвода наддувочного воздуха обратно во впускные патрубки до турбины в случае закрытия дроссельной заслонки) и/или «стравливающий» клапан (blow-off valve — для сброса наддувочного воздуха в атмосферу с характерным звуком, в случае закрытия дроссельной заслонки, при условии отсутствия датчика массового расхода воздуха), выпускной коллектор, совместимый с турбокомпрессором, а также герметичные патрубки: воздушные для подачи воздуха во впуск, масляные для охлаждения и смазки турбокомпрессора.

См. также

Ссылки

Турбонаддув — это… Что такое Турбонаддув?

Турбонаддув — один из методов агрегатного наддува, основанный на утилизации энергии отработавших газов. Основной элемент системы — турбокомпрессор, иногда — турбонагнетатель с механическим приводом.

История изобретения

Принцип турбонаддува был запатентован Альфредом Бюхи в 1911 году в патентном ведомстве США. Номер патента (1006907 October 1911 Buchi).

История развития турбокомпрессоров началась примерно в то же время, что и постройка первых образцов двигателей внутреннего сгорания. В 1885—1896 г. Готлиб Даймлер и Рудольф Дизель проводили исследования в области повышения вырабатываемой мощности и снижения потребления топлива путем сжатия воздуха, нагнетаемого в камеру сгорания. В 1905 г. швейцарский инженер Альфред Бюхи впервые успешно осуществил нагнетание при помощи выхлопных газов, получив при этом увеличение мощности на 120 %. Это событие положило начало постепенному развитию и внедрению в жизнь турботехнологий.

Сфера использования первых турбокомпрессоров ограничивалась чрезвычайно крупными двигателями, в частности, корабельными. В авиации с некоторым успехом турбокомпрессоры использовались на истребителях с двигателями Рено ещё во время Первой Мировой войны. Ко второй половине 1930-х развитие технологий позволило создавать действительно удачные авиационные турбонагнетатели, которые у значительно форсированных двигателей использовались в основном для повышения высотности. Наибольших успехов в этом достигли американцы, установив турбонагнетатели на истребители P-38 и бомбардировщики B-17 в 1938 году. В 1941 году США был создан истребитель P-47 с турбонагнетателем, обеспечившим ему выдающиеся летные характеристики на больших высотах.

В автомобильной сфере первыми начали использовать турбокомпрессоры производители грузовых машин. В 1938 г.на заводе «Swiss Machine Works Sauer» был построен первый турбодвигатель для грузового автомобиля. Первыми легковыми автомобилями, оснащенными турбинами были Chevrolet Corvair Monza и Oldsmobile Jetfire, вышедшие на американский рынок в 1962—1963 г. Несмотря на очевидные технические преимущества, низкий уровень надежности привел к быстрому исчезновению этих моделей.

Начало использования турбодвигателей на спортивных автомобилях, в частности на Formula 1, в 70-х годах привело к значительному увеличению популярности турбокомпрессоров. Приставка «турбо» стала входить в моду. В то время, почти все производители автомобилей предлагали как минимум одну модель с бензиновым турбодвигателем. Однако, по прошествии нескольких лет, мода на турбодвигатели начала проходить, так как выяснилось, что турбокомпрессор, хотя и позволяет увеличить мощность бензинового двигателя, сильно увеличивает расход топлива. На первых порах задержка в реакции турбокомпрессора была достаточно большой, что также являлось серьёзным аргументом против установки турбины на бензиновый двигатель.

Коренной перелом в развитии турбокомпрессоров произошёл с установкой в 1977 г. турбокомпрессора на серийный автомобиль Saab 99 Turbo и затем, в 1978 г. выпуском Mercedes-Benz 300 SD, первого легкового автомобиля, оснащенного дизельным турбодвигателем. В 1981 г. за Mercedes-Benz 300 SD последовал VW Turbodiesel. При помощи турбокомпрессора производителям удалось увеличить эффективность работы дизельного двигателя до уровня бензинового, сохранив при этом значительно более низкий уровень выброса в атмосферу выхлопных газов. Вообще, дизельные двигатели имеют повышенную степень сжатия и, вследствие адиабатного расширения на рабочем ходе, их выхлопные газы имеют более низкую температуру. Это снижает требования к жаропрочности турбины, и позволяет делать более дешёвые или более изощрённые конструкции. Именно поэтому турбины на дизельных двигателях встречаются гораздо чаще, чем на бензиновых, а большая часть новинок (например, турбины с изменяемой геометрией) сначала появляется именно на дизельных двигателях.

Принцип работы

Принцип работы основан на использовании энергии отработавших газов. Поток выхлопных газов попадает на крыльчатку турбины (закреплённой на валу), тем самым раскручивая её и находящиеся на одном валу с нею лопасти компрессора, нагнетающего воздух в цилиндры двигателя. Так как при использовании наддува воздух в цилиндры подаётся принудительно (под давлением), а не только за счёт разрежения, создаваемого поршнем (это разрежение способно взять только определённое количество смеси воздуха с топливом), то в двигатель попадает большая смесь воздуха с топливом. Как следствие, при сгорании увеличивается объём сгораемого топлива с воздухом, образовавшийся газ занимает больший объём и соответственно возникает большая сила, давящая на поршень.

Как правило, у турбодвигателей меньше удельный эффективный расход топлива (грамм на киловатт-час, г/(кВт·ч)), и выше литровая мощность (мощность, снимаемая с единицы объёма двигателя — кВт/л), что даёт возможность увеличить мощность небольшого мотора без увеличения оборотов двигателя.

Вследствие увеличения массы воздуха, сжимаемой в цилиндрах, температура в конце такта сжатия заметно увеличивается и возникает вероятность детонации. Поэтому, конструкцией турбодвигателей предусмотрена пониженная степень сжатия, применяются высокооктановые марки топлива, а также в системе предусмотрен промежуточный охладитель наддувочного воздуха (интеркулер), представляющий собой радиатор для охлаждения воздуха. Уменьшение температуры воздуха требуется также и для того, чтобы плотность его не снижалась вследствие нагрева от сжатия после турбины, иначе эффективность всей системы значительно упадёт. Особенно эффективен турбонаддув у дизельных двигателей тяжёлых грузовиков. Он повышает мощность и крутящий момент при незначительном увеличении расхода топлива. Находит применение турбонаддув с изменяемой геометрией лопаток турбины, в зависимости от режима работы двигателя.

Наиболее мощные (по отношению к мощности двигателя) турбокомпрессоры применяются на тепловозных двигателях. Например на дизеле Д49 мощностью 4000 л.с. установлен турбокомпрессор мощностью 1100 л.с.

Наибольшей (по абсолютной величине) мощностью обладают турбокомпрессоры судовых двигателей, которая достигает нескольких десятков тысяч киловатт (двигатели MAN B&W).

Состав системы

Кроме турбокомпрессора и интеркулера в систему входят: регулировочный клапан (wastegate) (для поддержания заданного давления в системе и сброса давления в приёмную трубу), перепускной клапан (bypass valve — для отвода наддувочного воздуха обратно во впускные патрубки до турбины в случае закрытия дроссельной заслонки) и/или «стравливающий» клапан (blow-off valve — для сброса наддувочного воздуха в атмосферу с характерным звуком, в случае закрытия дроссельной заслонки, при условии отсутствия датчика массового расхода воздуха), выпускной коллектор, совместимый с турбокомпрессором, а также герметичные патрубки: воздушные для подачи воздуха во впуск, масляные для охлаждения и смазки турбокомпрессора.

См. также

Ссылки

Отправить ответ

avatar
  Подписаться  
Уведомление о