Дизельная аппаратура – Дизельная аппаратура в Казахстане. Сравнить цены, купить потребительские товары на маркетплейсе Satu.kz

Содержание

Топливная аппаратура — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 20 августа 2014; проверки требуют 6 правок. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 20 августа 2014; проверки требуют 6 правок.

Эта статья о топливной аппаратуре поршневых двигателей внутреннего сгорания.

Топливная аппаратура это общее название систем, снабжающих двигатель топливом. Топливная аппаратура является неотъемлемой частью автомобиля, как с бензиновым так и с дизельным двигателем. Часть механизмов топливной аппаратуры крепится непосредственно к двигателю.

Карбюратор[править | править код]

основная статья: Карбюратор

В настоящее время встречается только на старых машинах. В России устанавливались на легковые машины до 2005 года, а двигатели мотоциклов, бензопил, мобильных электрогенераторов оснащаются карбюраторами и в настоящее время.

Инжектор[править | править код]

основная статья: Инжекторная система подачи топлива

Инжекторная система подачи топлива начала широко внедряться в автомобилестроение с середины 80-х годов, первые же образцы относятся ещё к концу 1950-х (разработки в то время велись в СССР, США, ФРГ). В настоящее время наиболее распространенная топливная аппаратура бензиновых моторов. Достоинства: высокий кпд, надёжность, но довольно низкая ремонтопригодность в домашних условиях.

ТНВД[править | править код]

основная статья: Топливный насос высокого давления

Топливные насосы высокого давления предназначены для подачи в цилиндры дизеля под определенным давлением и в определенный момент точно отмеренных порций топлива. Располагаются обычно в развале блока (для V-образных дизелей) или на боковой поверхности блока (рядные дизели). К ТНВД топливо из бака подаётся обычно дополнительным топливным насосом низкого давления (помпочка). Давление впрыска топлива создаваемое ТНВД составляет обычно 150—220 бар, в современных двигателях до 1600 бар и выше.

Насос-форсунка[править | править код]

основная статья: Насос-форсунка

Устанавливались на некоторые дизели до 70-х годов (в США и позже). В настоящее время в развитии дизелей наблюдается тенденция к возвращению установки индивидуальных насосов топлива на каждый цилиндр.

Common Rail[править | править код]

основная статья: Common Rail

В системе Common Rail насос нагнетает топливо под высоким давлением (до 2000 бар, в зависимости от режима работы двигателя) в общую топливную магистраль, из которой топливо впрыскивается в цилиндры с помощью раздельно управляемых форсунок. Наиболее современная топливная аппаратура для дизеля. Её недостаток придирчивость к качеству топлива. Достоинство — высокий КПД.

Газобаллонное оборудование становится с каждым годом все более популярным во всех носителях от «Жигулей» до «Кайенна», но наиболее популярно среди таких носителей бензиновых моторов как например «ГАЗель» и «ПАЗ».Однако среди носителей дизельных двигателей не особо популярно изза сложности и высокой себестоимостью эксплуатации.

Система питания топливом дизельного двигателя

Система питания топливом дизельного двигателя предназначена для размещения, очистки и своевременной подачи топлива в цилиндры двигателя в нужном количестве и под достаточным давлением на всех режимах его работы при любой температуре окружающего воздуха.

Дизельное топливо

Дизельное топливо является одним из продуктов переработки нефти. В нем содержатся различные углеводороды (парафины, нафтены, ароматические и др.). Число атомов углерода, входящих в молекулы дизельного топлива, достигает тридцати. Основное качество дизельного топлива — легкость воспламенения при соприкосновении с горячим воздухом. Воспламеняемость топлива характеризуется цетановым числом. Чем выше это число, тем менее стойки к окислению молекулы топлива и легче оно воспламеняется. У дизельного топлива цетановое число составляет 40 — 50 (чаще всего 45).

Важной характеристикой топлива также является его вязкость при различных температурах. Для обеспечения нормальной работы двигателя топливо не должно застывать при низкой температуре (до -60 °С). Кроме того, необходимо, чтобы топливо не было токсичным, обладало антикоррозионными и смазывающими свойствами, а также не создавало паровые пробки в топливопроводах при температурах до 50 °С.

Для автотракторных дизелей используется топливо марок А (арктическое), 3 (зимнее) и Л (летнее). Наиболее широко распространено топливо марок З (при отрицательной температуре воздуха) и Л (при температурах выше 0 °С).

Требования к агрегатам и узлам системы питания

Ко всем агрегатам и узлам системы питания предъявляются следующие основные требования:

  • герметичность
  • малые масса и габариты
  • надежность
  • коррозионная стойкость
  • малые гидравлические сопротивления
  • простота
  • низкая стоимость обслуживания

Топливопроводы и агрегаты системы питания топливом должны быть расположены в моторном отделении ТС таким образом, чтобы при их неисправности капающее топливо не попадало на детали, имеющие температуру, способную вызвать его воспламенение.

Общее устройство системы питания

Схема системы питания топливом мощного дизеля приведена на рисунке. В общем случае в систему питания топливом входят узлы, размещенные вне двигателя (на раме или в корпусе машины), и на двигателе. К первым относятся топливные баки бачок 7 для сбора топлива, предпусковой топливоподкачивающий насос 10, топливораспределительный кран 77, топливопроводы низкого давления и некоторые другие узлы. Ко вторым в первую очередь относятся основной топливоподкачивающий насос 8, топливный насос высокого давления (ТНВД) 5, форсунки 4 и топливопроводы высокого давления.

При работе двигателя топливо из топливных баков забирается основным топливоподкачивающим насосом и под давлением 0,05…0,1 МПа подается к ТНВД. По пути из баков к насосу топливо проходит через топливораспределительный кран, предпусковой топливоподкачивающий насос и фильтр 9 грубой очистки. Если на ТС установлен только один топливный бак или несколько баков, сообщающихся друг с другом, то топливораспределительный кран отсутствует. Перед поступлением в ТНВД из насоса топливо очищается от мельчайших примесей в фильтре 3 тонкой очистки. Нагнетательные секции ТНВД, приводимого в действие от коленчатого вала двигателя, в определенные моменты согласно рабочему циклу и порядку работы двигателя подают топливо под высоким давлением (до 50 МПа и более) в необходимом количестве к форсункам. Через форсунки, ввернутые в головку блока цилиндров, топливо впрыскивается в камеры сгорания в те моменты, когда в цилиндрах завершается такт сжатия.

Схема системы питания топливом мощного дизеля

Рис. Схема системы питания топливом мощного дизеля:
1 — топливные баки; 2 — кран для выпуска воздуха; 3 — фильтр тонкой очистки; 4 — форсунки; 5 ТНВД; 6 — двигатель; 7 — бачок для сбора топлива; 8 — основной топливоподкачивающий насос; 9 — фильтр грубой очистки; 10 — предпусковой топливоподкачивающий насос; 11 — топливораспределительный кран; топливные трубопроводы обозначены сплошной линией; трубопроводы для удаления воздуха из системы обозначены пунктиром

Перед пуском двигателя заполнение системы топливом и подача его к ТНВД осуществляются с помощью предпускового топливоподкачивающего насоса. После пуска этот насос не функционирует.

Если в ТНВД и трубопроводы высокого давления, соединяющие его с форсунками, попадает воздух, то подача топлива в цилиндры нарушается. Следовательно, нарушается и нормальный режим работы двигателя. С целью предотвращения попадания воздуха в ТНВД на пути топлива к нему помещают воздухоотстойник, расположенный в самой высокой точке системы. Обычно воздухоотстойник размещают в крышке фильтра тонкой очистки. Перед пуском двигателя в случае необходимости скопившийся в воздухоотстойнике воздух отводят в воздушные полости топливных баков 1 через кран (клапан) 2 для выпуска воздуха. Для этого при неработающем двигателе открывают кран (клапан) и с помощью предпускового насоса прокачивают систему. В этом случае топливо вытесняет воздух из воздухоотстойника в воздушную полость топливного бака через топливораспределительный кран (как показано на рисунке) или напрямую.

Топливный бак

Топливо, просочившееся в форсунках между иглой и распылителем, отводится по сливным трубопроводам в специальный бачок 7 или в какой-либо основной топливный бак.

Топливные баки служат для хранения топлива. Они могут иметь различную конфигурацию и вместимость в зависимости от конструкции конкретного ТС. Общая вместимость топливных баков определяется запасом хода машины (обычно не менее 500 км). Чаще всего баки изготавливает из листовой стали или высокопрочного пластика, стойкого к воздействию химически активного топлива. Для предотвращения коррозии внутренние поверхности стальных баков покрывают бакелитовым лаком, оцинковывают или лудят. С целью увеличения жесткости баков на их стенках иногда выштамповывают желоба, а внутри устанавливают несплошные перегородки, которые к тому же уменьшают площадь свободной поверхности топлива и ослабляют его колебанияbqвремя движения ТС.

Наливные горловины топливных баков обычно снабжают сетчатыми фильтрами. В нижней части баков размещают отстойники. Если бак имеет значительную вместимость, то слив топлива осуществляется через отверстие с пробкой и шариковым клапаном, расположенное выше отстойника. В этом случае используется специальный ключ-трубка со шлангом. Воздушное пространство баков соединяется с атмосферой через дренажные трубки или другие специальные устройства, которые должны исключать возможность попадания огня во внутреннюю полость бака и вытекания топлива при резких толчках ТС, а также (по возможности) обеспечивать очистку воздуха, поступающего в баки. Для замера количества топлива в баках раньше применялись измерительные стержни. В настоящее время для этой цели чаще всего используются электрические датчики поплавкового типа, посылающие электрический сигнал, пропорциональный уровню топлива, к соответствующему указателю на приборной панели ТС.

Топливоподкачивающий насос

Основной топливоподкачавающий насос обеспечивает бесперебойную подачу топлива из баков к ТНВД при работающем двигателе. Он обычно приводится в действие от коленчатого или распределительного вала двигателя. Может применяться и автономный электродвигатель, питаемый от генератора ТС. Использование электропривода обеспечивает равномерную подачу топлива независимо от частоты вращения коленчатого вала и возможность аварийного отключения всей системы. Существуют различные конструкции топливоподкачивающих насосов. Они могут быть:

  • шестеренными
  • плунжерными (поршневыми)
  • коловратными (пластинчатого типа)

Как правило, применяются плунжерные и коловратное насосы.

Плунжерный топливоподкачивающий насос

Плунжерный топливоподкачивающий насос состоит из корпуса 5, плунжера 7 с пружиной 6, толкателя 10 с роликом 77, пружиной 9 и штоком 8, а также клапанов — впускного 4 и нагнетательного 1 с пружинами. Толкатель с плунжером могут перемещаться вверх-вниз. Перемещение вверх происходит при повороте эксцентрика 72, изготовленного как одно целое с кулачковым валом ТНВД; перемещение вниз обеспечивают пружины 6 и 9.

При сбегании выступа эксцентрика с ролика толкателя плунжер под действием пружины б перемещается вниз, вытесняя топливо, находящееся под ним, в нагнетательную магистраль насоса. В это время нагнетательный клапан закрыт, а впускной под действием разрежения над плунжером открыт, и топливо поступает из впускной магистрали в надплунжерную полость. При движении толкателя и плунжера вверх впускной клапан закрывается под действием давления топлива, а нагнетательный, наоборот, открывается, и топливо из надплунжерной полости поступает в нижнюю камеру под плунжером. Таким образом, нагнетание топлива происходит только при движении плунжера вниз.

Если подачу топлива в цилиндры двигателя уменьшают, в выпускном трубопроводе насоса, а значит, и в полости под плунжером давление возрастает. В этом случае плунжер не может опуститься вниз даже под действием пружины 6, и толкатель со штоком перемещается вхолостую. По мере расходования топлива давление в нагнетательной полости понижается, и плунжер под действием пружины 6 опять начинает перемещаться вниз, обеспечивая подачу топлива.

Схема плунжерного топливоподкачиваюгцего насоса

Рис. Схема плунжерного топливоподкачиваюгцего насоса:
1 — нагнетательный клапан; 2 — корпус насоса ручной подкачки топлива; 3 — поршень насоса ручной подкачки топлива; 4 — впускной клапан; 5 — корпус топливоподкачивающего насоса; 6, 9 — пружины; 7 — плунжер; 8 — шток; 10 — толкатель; 11 — ролик; 12 — эксцентрик кулачкового вала

Схема коловратного топливоподкачивающего насоса

Рис. Схема коловратного топливоподкачивающего насоса:
1 — пружина редукционного клапана; 2 — редукционный клапан; 3 — перепускной клапан; 4 — пружина перепускного клапана; 5 — плавающий палец; 6 — пластина; 7 — ротор; 8 — направляющий стакан; А—В — камеры насоса

Плунжерный топливоподкачивающий насос обычно совмещен с насосом 2 ручной подкачки топлива. Данный насос устанавливается на входе в основной топливоподкачивающий насос и приводится в действие вручную за счет перемещения поршня 3 со штоком. При движении поршня вверх под ним образуется разрежение, открывается впускной клапан, и топливо заполняет подплунжерное пространство. При перемещении поршня вниз впускной клапан закрывается, а нагнетательный открывается, позволяя топливу пройти далее по топливной магистрали.

Коловратный топливоподкачивающий насос

В мощных быстроходных дизелях применяются в основном коловратные топливоподкачивающие насосы. Ротор 7 насоса приводится во вращение от коленчатого вала двигателя. В роторе имеются прорези, в которые вставлены пластины 6. Одним (наружным) концом пластины скользят по внутренней поверхности направляющего стакана 8, а другим (внутренним) — по окружности плавающего пальца 5, расположенного эксцентрически относительно оси ротора. При этом они то выдвигаются из ротора, то вдвигаются в него. Ротор и пластины делят внутреннюю полость направляющего стакана на камеры А, Б и В, объемы которых при вращении ротора непрерывно меняются. Объем камеры А увеличивается, поэтому в ней создается разрежение, под действием которого топливо засасывается из впускной магистрали. Объем камеры В уменьшается, давление в ней повышается, и топливо вытесняется в нагнетательную полость насоса. Топливо, находящееся в камере Б, переходит от входного отверстия стакана к выходному. При повышении давления в нагнетательной полости до определенного уровня открывается редукционный клапан 2, преодолевая усилие пружины 7, и излишек топлива перепускается обратно во впускную полость насоса. Поэтому в нагнетательной полости и выпускном трубопроводе поддерживается постоянное давление. Перед пуском, когда двигатель и, следовательно, основной топливоподкачивающий насос не работают, топливо через него может прокачиваться предпусковым топливоподкачивающим насосом. В этом случае открывается перепускной клапан 3, преодолевая усилие пружины 4. В закрытом положении тарелка этого клапана перекрывает отверстия в тарелке редукционного клапана.

Предпусковой топливоподкачивающий насос

Перед пуском двигателя заполнение системы топливом и подача его к ТНВД осуществляются с помощью предпускового топливоподкачивающего насоса 70. Ранее были широко распространены насосы плунжерного и диафрагменного (мембранного) типов с ручным приводом. Однако в настоящее время все чаще применяются центробежные крыльчатые насосы с приводом от электродвигателя, питаемого электрической энергией аккумуляторной батареи. Они обеспечивают более быструю прокачку топлива, не требуют затрат мускульной энергии механика-водителя и могут использоваться в качестве аварийных при отказе основного топливоподкачивающего насоса.

Фильтры грубой и тонкой очистки топлива

Очистка топлива от механических примесей и воды происходит в фильтрах грубой 9 и тонкой 3 очистки. Фильтр грубой очистки, устанавливаемый перед основным топливоподкачивающим насосом 8, задерживает частицы размерами 20… 50 мкм, на долю которых приходится 80…90 % массы всех примесей. Фильтр тонкой очистки, помещаемый между основным топливоподкачивающим насосом и ТНВД, задерживает примеси размерами 2…20 мкм.

В настоящее время в силовых установках с дизелями применяют следующие типы фильтров грубой очистки:

  • сетчатые
  • ленточно-щелевые
  • пластинчато-щелевые

У сетчатых фильтров фильтрующим элементом является металлическая сетка. Из нее можно образовывать концентрические цилиндры, через стенки которых продавливается топливо, или дискообразные секции, нанизанные на центральную трубу с отверстиями в стенке, соединенную с выходным трубопроводом.

В ленточно-щелевом фильтре фильтрующим элементом служит гофрированный стакан с намотанной на него профильной лентой. Через щели между витками ленты, образованными за счет ее выступов, топливо из пространства, окружающего фильтрующий элемент, попадает во впадины между гофрированным стаканом и лентой, а затем — в полость между дном и крышкой стакана, откуда удаляется через выпускной трубопровод.

Фильтрующий элемент пластинчато-щелевого фильтра представляет собой полый цилиндр, составленный из одинаковых тонких кольцевых дисков с отгибными выступами. За счет этих выступов между дисками образуются зазоры. Топливо поступает к наружным и внутренним поверхностям цилиндра и, проходя через щели между дисками, очищается. Очищенное топливо через торцевые отверстия в дисках направляется в верхнюю часть фильтра к выходному отверстию.

Очень часто фильтр грубой очистки совмещают с отстойником для воды, находящейся в дизельном топливе. В этом случае необходимо периодически отворачивать пробку отстойника для удаления из него скопившейся воды.

В фильтрах тонкой очистки в качестве фильтрующих элементов обычно используют картонные элементы типа «многолучевая звезда» или пакеты из картонных и фетровых дисков. Реже применяют каркасы с адсорбирующей механические примеси набивкой (например, минеральной ватой), каркасы с тканевой или нитчатой обмоткой и др.

В процессе эксплуатации ТС топливные фильтры загрязняются, что приводит к увеличению их сопротивления. Чтобы подача топлива к ТНВД не прекратилась, необходимо фильтр грубой очистки периодически промывать, а фильтрующий элемент фильтра тонкой очистки заменять новым.

ТНВД. Устройство и принцип работы

Топливный насос высокого давления 5 предназначен для точного дозирования топлива и его подачи в форсунки 4 под необходимым давлением и в определенный момент. В рядных двигателях такой насос помещают сбоку от двигателя, на верхней половине его картера. У V-образных двигателей его устанавливают в развале цилиндров. Существует множество типов ТНВД. В частности, на дизели сравнительно небольшой мощности, предназначенные для легковых автомобилей, как правило, устанавливают ТНВД распределительного типа с одним нагнетающим плунжером-распределителем. Однако мощные многоцилиндровые дизели чаще всего оборудованы многоплунжерными насосами. Пример такого ТНВД для шестицилиндрового V-образного дизеля представлен на рисунке.

Насос состоит из корпуса 5 с крышками, шести насосных секций, механизма привода насосных секций и механизма поворота плунжеров. Каждая насосная секция включает в себя плунжер 8, возвратную пружину 11 с опорными шайбами, нагнетательный клапан 3 с седлом, пружиной и упором, а также штуцер 2 и другие вспомогательные направляющие и крепежные детали. Механизм привода насосных секций состоит из кулачкового вала 7 и роликовых толкателей 6 с регулировочными болтами. В механизм поворота плунжеров входят поворотные втулки 10 с зубчатыми венцами и зубчатая рейка 9 с втулками и ограничительным винтом. Вдоль секций в корпусе насоса высверлены два продольных канала 1 и 4, соединенных друг с другом поперечными каналами. Каждый плунжер очень точно подогнан к своей гильзе, что обеспечивает достижение высокого давления с наименьшей утечкой топлива через зазоры.

Топливный насос высокого давления

Рис. Топливный насос высокого давления:
1, 4 — продольные каналы; 2 — штуцер; 3 — нагнетательный клапан; 5 — корпус насоса; 6 — роликовый толкатель; 7 — кулачковый вал; 8 — плунжер; 9 — зубчатая рейка; 10 — поворотная втулка; 11 — возвратная пружина

Насос работает следующим образом. Кулачковый вал приводится во вращение от коленчатого вала двигателя с помощью зубчатой передачи (угловая скорость кулачкового вала в 2 раза меньше скорости коленчатого). Вращаясь, кулачковый вал перемещает своими кулачками роликовые толкатели 6, которые поднимают плунжеры вверх.

Обратный ход толкателей и плунжеров обеспечивается возвратными пружинами. К каналу 4 подводится топливо от топливоподкачивающего насоса, предварительно очищенное в фильтре тонкой очистки.

Когда плунжер находится в нижнем положении, топливо из канала 4 попадает в образовавшуюся надплунжерную полость. При движении плунжера вверх входное отверстие закрывается, и топливо под большим давлением проходит через нагнетательный клапан, штуцер и топливопровод высокого давления к форсунке.

Нагнетание топлива происходит до тех пор, пока надплунжерная полость не соединится со сливным каналом 1 с помощью осевых, радиальных и винтовых проточек в плунжере. При постоянном ходе плунжера, определяемом высотой выступа кулачка, количество подаваемого к форсунке топлива регулируется поворотом плунжера с помощью зубчатой рейки и поворотной втулки с зубчатым венцом. Винтовая проточка в плунжере выполнена так, что по мере его поворота изменяется расстояние от края перепускного отверстия, связанного с каналом 7, до края отсечной кромки винтовой проточки. При этом длина рабочего хода плунжера, во время которого происходит нагнетание топлива, также изменяется.

Для того чтобы топливо, подаваемое в цилиндры, успевало своевременно сгорать, и двигатель развивал наибольшую мощность, необходимо при росте частоты вращения коленчатого вала несколько увеличивать угол опережения впрыскивания топлива.

Регулирование этого угла у насосов с механическим управлением обеспечивается специальной центробежной муфтой, которая устанавливается в корпусе ТНВД и пропорционально частоте вращения коленчатого вала смещает на некоторый угол кулачковый вал насоса в направлении его вращения.

Механизм всережимного регулятора

С ТНВД соединен механизм всережимного регулятора. Он автоматически поддерживает заданную водителем частоту вращения коленчатого вала, устанавливает минимальную частоту на холостом ходу, а также ограничивает максимальную частоту. Механизм регулятора представляет собой систему тяг, пружин и упоров, связанных с зубчатой рейкой ТНВД, перемещение которых зависит от частоты вращения кулачкового вала.

Форсунка

Форсунка служит для подачи топлива в цилиндр двигателя под высоким давлением в мелкораспыленном виде.

Типичная форсунка включает в себя корпус 5 с распылителем 3, направляющим штифтом 4 и накидной гайкой 2, иглу 1 распылителя со штоком б, пружину 7 с опорной шайбой, регулировочным винтом 9 и втулкой 8, колпачковую гайку 10 и топливоприемный штуцер 12 с сетчатым фильтром 11. Распылитель и игла должны быть очень точно подогнаны друг к другу. В верхней части распылителя имеются один кольцевой и несколько (чаще всего три) вертикальных топливных канала, а в нижней части — центральные входной и выходной каналы с распыляющими отверстиями. Диаметр этих отверстий составляет 0,2…0,4 мм. Игла своим нижним конусным концом закрывает выходной канал. Распылитель плотно прикрепляется к корпусу-форсунки с помощью накидной гайки. Топливный канал корпуса соединяется с кольцевым каналом распылителя через его вертикальные каналы. Правильное положение распылителя относительно корпуса обеспечивает направляющий штифт.

Форсунка

Рис. Форсунка:
1 — игла распылителя; 2 — накидная гайка; 3 — распылитель; 4 — направляющий штифт; 5 — корпус форсунки; 6 — шток; 7 — пружина; 8 — втулка; 9 — регулировочный винт; 10 — колпачковая гайка; 11 — сетчатый фильтр; 12 — топливоприемный штуцер

Топливо, подаваемое к форсунке по топливоприемному штуцеру, проходит через сетчатый фильтр и по топливным каналам корпуса  в верхней части распылителя поступает в его кольцевую полость. По достижении необходимого давления в этой полости, действующего кроме прочего на конический поясок иглы, она поднимается вверх, преодолевая сопротивление пружины. В это время открывается выходной канал, и топливо через него и распыливающие отверстия поступает в камеру сгорания цилиндра двигателя.

После прекращения подачи топлива насосной секцией ТНВД и падения давления игла снова садится в свое седло, прекращая впрыскивание топлива. Просочившееся через неплотности топливо поступает в верхнюю часть форсунки и через отверстия в винте 9 и гайке 10 по специальному трубопроводу сливается в бачок 7 для сбора топлива.

Аккумуляторная система питания топливом

Современные жесткие требования к уровню выбросов вредных веществ двигателями внутреннего сгорания вынудили конструкторов дизелей искать новые решения в области топливной аппаратуры для них. Дело в том, что даже самые совершенные ТНВД не могут обеспечить такого давления топлива, при котором оно распылялось бы настолько мелко, что могло бы полностью сгореть в камере сгорания.

Неполное сгорание приводит к большему расходу топлива, а самое главное — к повышению в отработавших газах концентрации вредных веществ, в частности сажи. В связи с этим в настоящее время для дизелей с непосредственным впрыском все чаще применяется так называемая аккумуляторная система питания топливом.

Основное отличие такой системы от «классической» заключается в наличии общей топливной рампы (аккумулятора давления), в которой во время работы двигателя создается очень высокое давление.

Топливная рампа соединена трубопроводами высокого давления с электронно-управляемыми топливными форсунками, иглы которых перемещаются с помощью электромагнитов по сигналам от компьютера (электронного блока) управления двигателем. Такая система питания топливом позволяет оптимизировать работу двигателя практически по всем параметрам.

Видео: Система питания дизеля

Какие существуют системы подачи топлива в дизельном ДВС

Категория: Полезная информация.

Как мы знаем, в дизельном ДВС топливо воспламеняется не от внешнего источника (искра зажигания в бензиновом моторе), а в результате сильного сжатия и нагрева. При этом топливно-воздушная смесь подается и распыляется в цилиндрах под высоким давлением. С этой целью в дизелях используются разные типы систем подачи топлива.

common rail5

Топливная система дизельных ДВС: основные принципы

Сначала воздух подается в цилиндр, затем сжимается, нагреваясь в процессе до экстремальных температур, и лишь к концу такта сжатия в цилиндр подается дизельное топливо. Подается таким образом: впрыскивается в камеру сгонария под высоким давлением (от 100 до 2000 атмосфер) и распыляется. Поэтому, вне зависимости от типа топливной системы дизеля, в ней всегда есть два компонента:

  • тот, что создает высокое давление – топливный насос высокого давления (ТНВД)
  • и тот, что впрыскивает и разбрызгивает горючее по камере – форсунка.

В зависимости от типа топливной системы дизельного ДВС, отличается конструкция ТНВД и устройство форсунок. Также отличаются схемы управления этими элементами и место их расположения.

Основные типы топливных систем дизеля

Наибольшее распространение получили 4 типа топливных систем дизельных моторов:

  • рядный ТНВД
  • ТНВД распределительного типа
  • насос-форсунки
  • система Common Rail

Рядный ТНВД – проверенное десятилетиями решение, которое активно применяется на грузовой и специальной технике с дизельными моторами. В основе этой системы подачи топлива находится работа плунжерной пары. Цилиндр движется в гильзе, создавая давление и сжимая топливо до необходимых показателей. Как только они достигнуты, открывается специальный клапан, подающий топливо на форсунку, которая впрыскивает его в цилиндр. Плунжер в это время движется вниз, открывает канал для впуска горючего в пространство гильзы с помощью топливоподкачивающего насоса, и цикл повторяется.

ryadnii tnvd

Работа самого плунжера становится возможна благодаря кулачковому валу, который приводится от мотора. Кулачки «толкают» клапана, а мкфта опережения впрыска, соединяющая ТНВД и двигатель, корректирует работу топливной системы.

Неоспоримые достоинства системы подачи топлива с рядными ТНВД – их ремонтопригодность и доступность обслуживания.

ТНВД распределительного типа конструктивно напоминает рядный топливный насос. Отличие заключается в количестве плунжерных пар. Если в рядном ТНВД одна пара идет на один цилиндр, то в распределительном работы одной плунжерной пары достаточно, чтобы обслуживать два, три, и даже шесть цилиндров. Это достигается через опцию вращения плунжера вокруг оси. Вращаясь, плунжер поочередно открывает выпускные клапана, подавая горючее на форсунки нескольких цилиндров.

raspred tnvd009

Эволюция распределительных ТНВД привела к тому, что появились уже роторные топливные насосы: в них плунжеры помещаются в ротор и в процессе работы движутся навстречу двуг другу, пока ротор вращает их, распределяя тем самым топливо по камере сгорания.

Преимущество системы подачи топлива с распределительным ТНВД – компактность самого устройства. Недостатки – сложность настройки, применение схем электронного управления и корректировки работы.

Система подачи топлива в цилиндр с помощью насос-форсунок вообще исключает необходимость ТНВД как отдельного элемента. В этом случае, форсунка и насосная секция – это один узел в общем корпусе.

maxresdefault

 

В результате достигается легкость регулировки подачи топлива в конкретный цилиндр, а при выходе из строя одной насос-форсунки, остальные продолжают работать, что облегчает ремонт. Конструктивно, насос-форсунки приводят в действие плунжеры распредвал ГРМ в головке блока цилиндров.

Система подачи топлива насос-форсунками распространена не только на грузовых, но и на легковых автомобилях. К недостаткам ее можно отнести высокую стоимость запчастей, а также крайнюю чувствительность к качеству дизельного топлива. Мельчайшие примеси в горючем могут легко вывести из строя насос-форсунку, что отражается на стоимости эксплуатации такого решения в личном автомобиле.

Система Common Rail стала своего рода прорывом в части решения механизма подачи топлива в дизельных ДВС. Эта система позволяет экономить топливо при высоком КПД дизеля, что и сделало ее такой популярной. Common Rail придумали инженеры Bosch еще в 90-х годах. Сегодня большинство дизельного транспорта оснащается именно Коммон Реил.

Stiri Noutati Bosch 10 milioane de sisteme common rail pentru autovehiculele comerciale 125 large

Главное отличие этой системы – наличие аккумулятора высокого давления в общей магистрали. Туда топливо нагнетается отдельным ТНВД, чтобы затем под постоянным давлением подаваться на форсунки. Именно постоянство давления дает возможность быстро и эффективно впрыскивать горючее в цилиндр. Как результат – производительная, мягкая и комфортная работа дизельного двигателя. Бонусом – упрощение конструкции самого ТНВД в системе Common Rail.

Common Rail 95

 

Управляется работа системы отдельным ЭБУ: группа датчиков сообщает контроллеру, сколько и как скоро нужно подать дизельное топливо в цилиндры. С другой стороны, сложность и недостаток Коммон Реил обусловлена как раз умной электроникой и принципом работы системы. Поэтому владельцам таких решений стоит выбирать качественное топливо и своевременно менять топливные фильтры.

О том, как еще продлить жизнь вашего дизельного двигателя, мы писали здесь.

Если вы в поиске качественных запчастей для своего дизельного двигателя, проверьте наш каталог

ПЕРЕЙТИ В КАТАЛОГ

Дизельная топливная аппаратура | Дизельная топливная аппаратура

К системе питания дизелей относятся топливо- и воздухоподводящая аппаратура, выпускной газопровод и глушитель шума отработавших газов. В четырехтактных дизелях широкое распространение получила топливоподводящая аппаратура разделенного типа, у которой топливный насос высокого давления и форсунки конструктивно выполнены отдельно и соединены топливопроводами. Топливоподача осуществляется по двум основным магистралям: низкого и высокого давления. Назначение механизмов и узлов магистрали низкого давления состоит в хранении топлива, его фильтрации и подачи под малым давлением к насосу высокого давления. Механизмы и узлы магистрали высокого давления обеспечивают подачу и впрыскивание необходимого количества топлива в цилиндры двигателя.

В настоящее время для питания дизельных двигателей легковых автомобилей применяются следующие топливные системы:

  • системы питания с топливными насосами высокого давления, имеющими рядное расположение плунжерных пар без электронного управления
  • системы питания с топливными насосами высокого давления, имеющими рядное расположение плунжерных пар с электронным управлением
  • системы питания с одноплунжерными распределительными топливными насосами высокого давления без электронного управления фирм
  • системы питания с одноплунжерными распределительными топливными насосами высокого давления с электронным управлением
  • аккумуляторные топливные системы с электронным управлением «коммон рейл»
  • топливные системы с насос-форсунками
  • топливные системы насос-форсунка-трубопровод
  • газодизельные топливные системы

Развитие систем питания дизельных двигателей с электронным управлением связано главным образом с экологическими нормами, принятыми в большинстве развитых стран мира. По европейским стандартам выбросы токсичных веществ и твердых частиц дизельными двигателями имеют тенденцию к резкому их снижению, что видно из таблице.

Таблица. Нормы выбросов токсичных веществ по Евростандартам.

Год

Нормы

Выбросы, г/км, автотранспортными средствами, работающими на дизельном топливе

суммар-

ный уг-

леводо-

родов и оксидов азота

оксидов

углерода

оксидов азота

твёрдых

частиц

2000

2005

«Евро-3»

«Евро-4»

0,56

0,30

0,64

0,50

0,50

0,26

0,05

0,025

В борьбе за снижение токсичности отработавших газов конструкторы столкнулись с серьезной проблемой: большинство изменений рабочего процесса дизеля снижает выбросы лишь одного из вышеназванных двух ком­понентов, и экологические нормы не могут быть выполнены регулировками или изменением параметров дизеля. Например, увеличение опережения угла впрыска  уменьшает эмиссию твердых частиц, но увеличивает выбросы окислов азота. Разрешить эту проблему позволили высокое давление впрыска и электронное управление системой подачи топлива. Благодаря повышению давления впрыска улучшается распыление топлива, что способствует более быстрому и полному сгоранию. Это поясняет  почему почти 60 лет (с 1927 по 1985) максимальное давление впрыска составляло 200…500 кгс/см2, а в последние 15 лет превысило 2000 кгс/см2.

Топливные системы с механически­ми регуляторами постепенно снимают с производства. Переход на новый уровень давления и электронное упра­вление потребовал пересмотра тради­ционных конструкций. В ряду распределительных насосов высокого давления самая популярная в мире модель «Бош-VE», ведущая ис­торию с 1976 года, вытесняется более современными электроуправляемыми ТНВД фирм «Бош», «Лукас», «Зексель», «Станадайн».

Уже сейчас ведущие производители заменили механические регуляторы Уатта электронными. Их характеризу­ет гибкость управления, самодиагно­стика, использование резервных программ. Появились и собственные опции  питание каждого цилиндра в соответствии с его техническим состоянием и особенностями изготовления, отключение цилиндров, управление параметрами впрыска и др. Фирма «Бош» уже к 2006 году сократила долю распределительных насосов до 15%; ранее не выпускавшиеся электроуправляемые насос-форсунки и индивиду­альные ТНВД имеют 19% всего объема  а 62% объема выпуска приходится на системы постоянного давления «коммон-рейл». Электронное управление позволяет на всех режимах работы дизеля гибко изменять характеристику, величину по­дачи, давление и опережение впрыска. В итоге снижаются вредные выбросы, шумность, расход топлива, улучшается пуск дизеля. Автомобиль становится бо­лее скоростным и динамичным.

В настоящее время критериями совершенства топливоподачи являются показатели экономичности, мощности и шумности работы, динамичности транспортного средства, надежности пуска, выбросов токсичных веществ, коэффициент приспособляемости, соблюдение ограничений по давлению в цилиндре, жесткости сгорания, тепловым нагрузкам, температуре газов перед турбиной и прочее.

Для обеспечения заданных показателей к системам питания предъявляется комплекс требований:

  • обеспечение гибкого регулирования цикловой подачи в соответствии с заданным скоростным режимом двигателя; обеспечение необходимой внешней скоростной характеристики (не обязательно жестко заданной)
  • обеспечение минимальной неравномерности подачи по цилиндрам или, напротив, оптимальная неравномерность подачи и угла опережения впрыска для каждого цилиндра в соответствии с его особенностями конструкции, изготовления и текущего технического состояния
  • оптимальное регулирование угла опережения впрыска в соответствии с режимом работы
  • автоматизация пуска, необходимое обогащение при пуске, выключение подачи на принудительном холостом ходу, регулирование на переходных режимах
  • отключение цилиндров и циклов на частичных режимах
  • диагностирование датчиков и исполнительных устройств и компенсация выбывших из строя с помощью резервных программ

Эти условия вызвали самое широкое применение достижений микроэлектроники и вычислительной техники для управления ДВС, что в ряде случаев позволило осуществить управление на программно-адаптивном уровне, т.е. реализовать регулирование с обратной связью. В качестве примера можно привести способность некоторых блоков управления поддерживать стабильными выходные параметры при изменении свойств системы в процессе эксплуатации.

Дальнейшее развитие автомобильной техники неизбежно движется по пути развития комплексных систем управления, причем не только различными системами автомобиля (например, антиблокировочная система тормозов, круизконтроль, управление двигателем и трансмиссией), но также их совокупностью, а в перспективе и автомобилем как единой системой.

Системы питания дизельных двигателей производства АЗПИ

Топливная система, собранная из качественных комплектующих, гарантирует безотказную, стабильную и экономичную работу дизельного двигателя на протяжении длительного периода времени. Однако из-за применения топлива несоответствующего качества, пренебрежения сроками выполнения регламентного технического обслуживания и использования, в первую очередь, топливных фильтров низкого качества, прецизионные изделия нередко выходят из строя раньше расчетного срока эксплуатации. В итоге перевозчики и эксплуатирующие организации вынуждены заниматься ремонтом узлов и агрегатов системы питания, решать вопрос выбора запасных частей. От их качества будет зависеть ресурс отремонтированных узлов и агрегатов, а также надежность системы питания в целом. Чтобы сделать грамотный выбор компонентов, важно не только хорошо ориентироваться в многообразии игроков рынка запасных частей, но и владеть информацией о качестве предлагаемой ими продукции. А это непросто. Ведь помимо производителей рынок насыщен фирмами-упаковщиками. Какого качества товар они предлагают – ​сказать сложно. Именно по этой причине выбор стоит делать в пользу тех, кто производит компоненты систем питания. Одним из таких игроков российского рынка запасных частей в сегменте топливных систем является Алтайский завод прецизионных изделий (АЗПИ). Крупнейшие мировые производители автокомпонентов размещают свои заказы на производственных площадках АЗПИ, а его продукция поставляется на сборочные конвейеры российских производителей дизельных двигателей.
Расположенный в городе Барнаул завод производит широкий спектр компонентов топливных систем: электрогидроуправляемые инжекторы, механические форсунки, распылители, управляющие клапаны, иные детали, из которых формируются ремкомплекты. Особое место в продуктовой линейке предприятия занимают различные модели электронноуправляемой системы питания Common Rail, которая предназначена для установки на современные двигатели российского производства. В частности, предприятие выпускает полнокомплектные системы для автомобилей КАМАЗ 6520. Эти «V» образные восьмицилиндровые силовые агрегаты монтируются на широкий спектр выпускаемой автозаводом техники. Отметим, что на данный момент полнокомплектные системы Altay Common Rail экологического класса Евро‑4 и Евро-5 поставляются исключительно на сборочный конвейер «КАМАЗ». Параллельно с началом конвейерных поставок положено начало по обеспечению сети авторизованных сервисных центров необходимыми запасными частями, оснасткой и методикой обслуживания.
На АЗПИ понимают, что для развития предприятия нужно делать ставку на современные системы питания, которые получили наибольшее распространение у ведущих авто и двигателестроителей. Помимо выпуска Common Rail для отечественных моторных заводов предприятие участвует в разработке и готовится к производству отдельных компонентов (насос, аккумулятор-рампа, форсунки, распылители) систем питания импортных силовых агрегатов, которые собираются на совместных предприятиях в РФ.

Выход на зарубежные рынки

Оснащенное современным технологическим и производственным оборудованием предприятие объединило под своим крылом опытных специалистов, обеспечило высокое качество выпускаемой продукции и вышло на мировые рынки. Причем речь идет не о продаже запасных частей в страны, где уже многие годы продаются и эксплуатируются российские грузовики, а о поставках деталей топливных систем для ведущих западных производителей дизельной топливной аппаратуры и торговых компаний, которые успешно работают на рынке запасных частей.
Показательно сотрудничество Алтайского завода с американской компанией Ambac Int, которая практически четверть века приобретает у АЗПИ широкий спектр продукции, в частности, форсунки и распылители для топливной аппаратуры дизельных двигателей. На сегодняшний день номенклатура отгружаемых заокеанскому партнеру деталей превышает 50 наименований.
Существенно большие объемы продукции уходят в Германию по линии совместной работы с фирмой Bosch, которая размещает свои заказы на АЗПИ. Готовая продукция с фирменной маркировкой и в брендовой упаковке с обозначением «Made in Russia» отправляется на центральный склад в г. Карлсруэ, а далее распространяется через дилерскую сеть по всему миру. Сотрудничество со всемирно признанным производителем систем питания для дизельных двигателей различной мощности и назначения открывает для российского предприятия далеко идущие перспективы в развитии. В 2016 году компания R. Bosch GmbH присвоила статус привилегированного поставщика в группе «Подразделение автомобильных запчастей. Дизельные запчасти»
Отметим, что отечественный завод производит большую часть технологического оборудования и оснастки своими силами. Для этого на предприятии есть отдельный конструкторский отдел и достаточная производственная мощность. Инженерные кадры для решения данных задач также имеются. В Барнауле, где расположен завод, работают учебные заведения, которые готовят инженеров и средний технический персонал. Выпускники вузов проходят дополнительное обучение на предприятии. Опыт и знания передаются от опытных наставников к ученикам.

Курсом на импортозамещение

Одним из самых интересных и, пожалуй, перспективных направлений развития предприятия является программа импортозамещение, которая на предприятии стартовала задолго до реализации на гос. уровне. В условиях высокой стоимости валюты и цен на зарубежные автокомпоненты производить запасные части к импортной технике в рублевой зоне стало делом выгодным. На сегодняшний день завод освоил более двухсот позиций по компонентам топливной аппаратуры, применяемой на различных моделях импортных дизельных двигателей дорожных машин и специальной техники. Так, благодаря этому владельцы популярных в России европейских грузовиков и автобусов имеют возможность практически на треть снизить затраты на приобретение деталей топливной системы. Отрадно, что останавливаться на достигнутом заводчане не намерены. Уже утверждены планы по расширению номенклатуры производимых компонентов по линии импортозамещения. В частности, речь идет о выпуске управляющих клапанов для определенных моделей форсунок и распылителей к ним.

Топливная аппаратура — это… Что такое Топливная аппаратура?

Эта статья о топливной аппаратуре поршневых двигателей внутреннего сгорания.


Топливная аппаратура это общее название систем, снабжающих двигатель топливом. Топливная аппаратура является неотъемлемой частью автомобиля, как с бензиновым так и с дизельным двигателем. Часть механизмов топливной аппаратуры крепится непосредственно к двигателю.

Карбюратор

основная статья: Карбюратор

В настоящее время встречается только на старых машинах. В России устанавливались на легковые машины до 2005 года, а двигатели мотоциклов, бензопил, мобильных электрогенераторов оснащаются карбюраторами и в настоящее время.

Инжектор

основная статья: Инжекторная система подачи топлива

Инжекторная система подачи топлива начала широко внедряться в автомобилестроение с середины 80-х годов, первые же образцы относятся ещё к концу 1950-х (разработки в то время велись в СССР, США, ФРГ). В настоящее время наиболее распространенная топливная аппаратура бензиновых моторов. Достоинства: высокий кпд, надёжность, но довольно низкая ремонтопригодность в домашних условиях.

ТНВД

основная статья: Топливный насос высокого давления

Топливные насосы высокого давления предназначены для подачи в цилиндры дизеля под определенным давлением и в определенный момент точно отмеренных порций топлива. Располагаются обычно в развале блока (для V-образных дизелей) или на боковой поверхности блока (рядные дизели). К ТНВД топливо из бака подаётся обычно дополнительным топливным насосом низкого давления (помпочка). Давление впрыска топлива создаваемое ТНВД составляет обычно 150-220 бар, в современных двигателях до 300 бар и выше.

Насос-форсунка

основная статья: Насос-форсунка

Устанавливались на некоторые дизели до 70-х годов (в США и позже). В настоящее время в развитии дизелей наблюдается тенденция к возвращению установки индивидуальных насосов топлива на каждый цилиндр.

Common Rail

основная статья: Common Rail

В системе Common Rail насос нагнетает топливо под высоким давлением (до 2000 бар, в зависимости от режима работы двигателя) в общую топливную магистраль, из которой топливо впрыскивается в цилиндры с помощью раздельно управляемых форсунок. Наиболее современная топливная аппаратура для дизеля. Её недостаток придирчивость к качеству топлива. Достоинство — высокий КПД.

Поступление топлива под низким давлением в дизельном двигателе

Система низкого давления

Система низкого давления в системе впрыска топлива с распределительным насосом включает в себя топливный бак, топливопроводы, топливный фильтр, топливоподающий лопастной насос, клапан управления давлением (2) и ограничитель перетока топлива (7).

1

Рис. 1. Приводной вал; 3. Эксцентрическое кольцо; 4. Упорное кольцо; 5. Привод регулятора; 6. Подводки (выступы) приводного вала; 8. Корпус насоса.

Топливоподающий лопастной насос втягивает топливо из топливного бака. Он подает приблизительно постоянный поток топлива за один оборот во внутреннюю часть ТНВД. Клапан управления давлением устанавливается для обеспечения того, чтобы определенное давление внутри ТНВД поддерживалось в зависимости от оборотов топливоподаюшего насоса. Пользуясь этим клапаном, возможно установить определенное давление для данного числа оборотов. Внутреннее давление насоса затем увеличивается пропорционально оборотам (другими словами, чем выше обороты насоса, тем выше внутреннее давление в насосе). Некоторое количество топлива протекает через клапан регулировки давления и возвращается к подающей стороне. Некоторое количество топлива также протекает через ограничитель перетока и обратно в топливный бак, чтобы обеспечить охлаждение и самовентиляцию ТНВД. Клапан перетока может быть установлен вместо ограничителя перетока.

Конфигурация топливопровода

Для эффективной работы ТНВД необходимо, чтобы его система высокого давления постоянно обеспечивалась топливом под давлением и без пузырьков воздуха Обычно в случае легковых автомобилей и легких грузовиков разница по высоте между топливным баком и деталями системы впрыска незначительна. Более того, топливопроводы не слишком длинные и имеют соответствующие внутренние диаметры. В результате этого топливоподающий насос в ТНВД достаточен для вытягивания топлива из топливного бака и для создания нужного давления внутри ТНВД.

В таких случаях когда разница по высоте между топ-ливным баком и ТНВД велика, а ТНВД велик и (или) топливо-провод между баком и насоссм слишком длинный, необходимо установить дополнительный насос Это помогает преодолеть сопротивления в топливопроводе и в топливном фильтре. В стационарных двигателях в основном используется подача топлива самотеком.

Топливный бак

Топливный бак должен быть из коррозионостойкого материала и не иметь утечек при двойном рабочем давлении и. в некоторых случаях, при 0,3 бар. Должно быть обеспечено своевременное открывание или предохранительные клапаны или принять побочные меры для обеспечение стравливания избыточного давления. Топливо не должно вытекать через крышку бака или через устройства компенсации давления. Это справедливо, когда автомобиль подвергается небольшим механическим воздействиям, например, при поворотах или при остановке или движение по пересеченной местности. Топливный бак и двигатель должны быть отделены друг от друга настолько, чтобы в случае аварии не было опасности возгорания. Более того, для автомобилей с открытым кузовом, тракторов и автобусов нужно учитывать специальные правила, касающиеся высоты топливного бака и его защиты.

Топливопроводы

Как альтернатива стальным трубкам, для топливопроводов низкого давления могут быть использованы огнеустойчивые армированные сталью гибкие трубки. Они должны проходить так, чтобы обеспечить невозможность их механического повреждения, а топливо, которое сконденсировалось или испарилось не должно иметь возможности скопления или воспламенения.

Топливный фильтр

Система (контур) высокого давления ТНВД и форсунки изготавливаются с точностью в несколько тысячных долей миллиметра. Это означает, что загрязнения в топливе могут привести к поломкам. Неэффективная фильтрация может стать причиной повреждения деталей ТНВД, нагнетательных клапанов и форсунок. Это значит, что топливный фильтр, специально отвечающий требованиям системы впрыска, чрезвычайно важен для надежной и длительной работы системы впрыска топлива. Топливо может содержать воду в связанной форме (эмульсия) или в свободном виде (конденсация из-за изменения температуры). Если вода попадет в ТНВД, то могут образоваться коррозионные повреждения. В связи с этим распределительные насосы должны быть оснащены топливным фильтром с водосборником, из которого вода должна регулярно сливаться. Возрастающая популярность дизельных двигателей в легковых автомобилях привела к необходимости создания автоматических устройств контроля наличия воды и индикаций с помощью контрольной лампы необходимости слива воды.

Топливоподающий лопастной насос

Топливоподающий лопастной насос

Рис. Топливоподающий лопастной насос: 1 — вход; 2 — выход

Лопастной насос расположен вокруг приводного вала ТНВД. Его рабочий диск концентричен с валом и соединен с ним шпонкой и вращается внутри эксцентричного кольца, укрепленного в корпусе насоса.

Когда приводной вал вращается, центробежная сила прижимает четыре лопасти диска наружу к внутренней части эксцентричного кольца. Топливо между внутренними сторонами лопастей и диском служит для опоры наружного перемещения лопастей. Топливо проходит через канал поступления и выемку в форме почки в корпусе насоса и заполняет пространство, образуемое рабочим диском, лопастью и внутренней стороной эксцентричного кольца. Вращательное движение приводит к тому, что топливо между соседними лопастями нагнетается в верхнюю (выходную) выемку в форме почки и через канал во внутреннюю часть ТНВД. В то же самое время некоторое количество топлива протекает через второй канал к клапану управления давлением.

Клапан управления давлением

Клапан управления давлением

Рис. Клапан управления давлением

Клапан управления давлением соединяется через канал с верхней (выходной) выемкой почки и крепится в промежуточной области топливоподающего насоса. Это подпружиненный цилиндрический клапан, с помощью которого внутреннее давление в ТНВД может изменяться в зависимости от количества подаваемого топлива. Если давление топлива возрастет выше заданного значения, то сердечник клапана открывает возвратный канал так, что топливо может протекать обратно к впускной стороне топливоподающего насоса. Если давление топлива слишком низкое, то возвратный канал закрывается пружиной. Начальное усилие пружины может быть отрегулировано для установки давления открывания клапана.

Ограничитель перетока

Ограничитель перетока

Рис. Ограничитель перетока

Ограничитель перетока вкручен в крышку регулятора ТНВД и соединяется с внутренней частью ТНВД. Он позволяет изменяемому количеству топлива возвращаться в топливный бак через узкий канал. Для этого топлива ограничитель соответствует сопротивлению потока, которое помогает в поддержании давления внутри ТНВД. Так как точно определенное давление внутри ТНВД необходимо в зависимости от оборотов насоса, то ограничитель перетока и клапан управления потоком точно подбираются друг к другу.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *