Двигатель 4 а fe: Двигатель 4A-FE (4A-GE) | Характеристики, проблемы, тюнинг

Содержание

Двигатель 4A-FE (4A-GE) | Характеристики, проблемы, тюнинг


Характеристики двигателя Тойота 4A

Производство Kamigo Plant
Shimoyama Plant
Deeside Engine Plant
North Plant
Tianjin FAW Toyota Engine’s Plant No. 1
Марка двигателя Toyota 4A
Годы выпуска 1982-2002
Материал блока цилиндров чугун
Система питания карбюратор/инжектор
Тип рядный
Количество цилиндров 4
Клапанов на цилиндр 4/2/5
Ход поршня, мм 77
Диаметр цилиндра, мм 81
Степень сжатия 8
8.9
9
9.3
9.4
9.5
10.3
10.5
11
(см. описание)
Объем двигателя, куб.см 1587
Мощность двигателя, л.с./об.мин 78/5600
84/5600
90/4800
95/6000
100/5600
105/6000
110/6000
112/6600
115/5800
125/7200
128/7200
145/6400
160/7400
165/7600
170/6400
(см.
описание)
Крутящий момент, Нм/об.мин 117/2800
130/3600
130/3600
135/3600
136/3600
142/3200
142/4800
131/4800
145/4800
149/4800
149/4800
190/4400
162/5200
162/5600
206/4400
(см. описание)
Топливо 92-95
Экологические нормы
Вес двигателя, кг 154
Расход  топлива, л/100 км (для Celica GT)
— город
— трасса
— смешан.

10.5
7.9
9.0
Расход масла, гр./1000 км  до 1000
Масло в двигатель 5W-30
10W-30
15W-40
20W-50
Сколько масла в двигателе 3.0 — 4A-FE
3.0 — 4A-GE (Corolla, Corolla Sprinter, Marin0, Ceres, Trueno, Levin)
3.2 — 4A-L/LC/F
3.3 — 4A-FE (Carina до 1994, Carina E)
3.7 — 4A-GE/GEL
Замена масла проводится, км  10000
(лучше 5000)
Рабочая температура двигателя, град.
Ресурс двигателя, тыс. км
— по данным завода
 — на практике

300
300+
Тюнинг
— потенциал
— без потери ресурса

300+
н.д.
Двигатель устанавливался Toyota Corolla
Toyota Corona
Toyota Carina
Toyota Carina E
Toyota Celica
Toyota Avensis
Toyota Caldina
Toyota AE86
Toyota MR2
Toyota Corolla Ceres
Toyota Corolla Levin
Toyota Corolla Spacio
Toyota Sprinter
Toyota Sprinter Carib
Toyota Sprinter Marino
Toyota Sprinter Trueno
Elfin Type 3 Clubman
Chevrolet Nova
Geo Prizm

Неисправности и ремонт двигателя 4A-FE (4A-GE, 4A-GZE)

Параллельно со всем известными и популярными двигателями серии S, выпускалась малообъемная серия A и одним из самых ярких и популярных моторов серии стал двигатель 4A в различных вариациях. Изначально, это был одновальный карбюраторный маломощный движок, ничего особого из себя не представлявший.
По мере совершенствования, 4A получил сперва 16 клапанную головку, а позже и 20 клапанную, на злых распредвалах, впрыск, измененную систему впуска, другую поршневую, некоторые версии комплектовались механическим нагнетателем. Рассмотрим весь путь непрерывных доработок 4A.

Модификации двигателя Toyota 4A

1. 4A-C — первая карбюраторная версия мотора, 8 клапанная, мощностью 90 л.с. Предназначалась для Северной Америки. Выпускалась с 1983 по 1986 год.

2. 4A-L — аналог для европейского авторынка, степень сжатия 9.3, мощность 84 л.с.
3. 4A-LC — аналог для австралийского рынка, мощность 78 л.с. В производстве находился с 1987 по 1988 год.
4. 4A-E — инжекторная версия, степень сжатия 9, мощность 78 л.с. Годы производства: 1981-1988.
5. 4A-ELU — аналог 4A-E с катализатором, степень сжатия 9.3, мощность 100 л.с. Производился с 1983 по 1988 год.
6. 4A-F — карбюраторная версия с 16 клапанной головкой, степень сжатия 9.5, мощность 95 л.с. Производилась аналогичная версия с уменьшенным рабочим объемом до 1. 5 л — 5А. Годы производства: 1987 — 1990.
7. 4A-FE — аналог 4A-F, вместо карбюратора используется ижекторная система подачи топлива, существует несколько генераций данного двигателя:
7.1 4A-FE Gen 1 — первый вариант с электронным впрыском топлива, мощность 100-102 л.с. Выпускался с 1987 по 1993 год.
7.2 4A-FE Gen 2 — второй вариант, изменены распредвалы, система впрыска, клапанная крышка получила оребрение, другая ШПГ, другой впуск. Мощность 100-110 л.с. Выпускался мотор с 93-го по 98-й год.
7.3. 4A-FE Gen 3 — последнее поколение 4A-FE, аналог Gen2 с небольшими коррективами на впуске и во впускном коллекторе. Мощность повышена до 115 л.с. Выпускалась для японского рынка с 1997 по 2001 год, а с 2000-го года на смену 4A-FE пришел новый 3ZZ-FE.
8. 4A-FHE — усовершенствованная версия 4A-FE, с другими распределительными валами, другим впуском и впрыском и прочим. Степень сжатия 9.5, мощность двигателя 110 л.с. Производился с 1990 по 1995 год и ставился на Toyota Carina  и Toyota Sprinter Carib.

9. 4A-GE — традиционная тойотовская версия повышенной мощности, разработана при участии компании Yamaha и оснащены уже распределенным впрыском топлива MPFI. Серия GE, как и FE, пережила несколько рестайлингов:
9.1 4A-GE Gen 1 «Big Port» — первая версия, выпускалась с 1983 по 1987 г. Имеют доработанную ГБЦ на более верховых валах, впускной коллектор T-VIS с регулируемой геометрией. Степень сжатия 9.4, мощность 124 л.с., для стран с жесткими экологическими требованиями, мощность составляет 112 л.с.
9.2 4A-GE Gen 2 — вторая версия, степень сжатия повысилась до 10, мощность возросла до 125 л.с. Выпуск начался с 87-м, закончился в 1989 году.
9.3 4A-GE Gen 3 «Red Top»/»Small port» — очередная модификация, впускные каналы уменьшены (отсюда и название), заменена шатунно-поршневая группа, степень сжатия возросла до 10.3 , мощность составила 128 л.с. Годы производства: 1989-1992.
9.4 4A-GE Gen 4 20V «Silver Top» — четвертая генерация, главное новшество здесь, это переход на 20-ти клапанную ГБЦ (3 на впуск, 2 на выпуск) с верховыми валами, 4-х дроссельный впуск, появилась система изменения фаз газораспределения на впуске VVTi, изменен впускной коллектор, повышена степень сжатия до 10. 5, мощность 160 л.с. при 7400 об/мин. Производился двигатель с 1991 по 1995 год.
9.5. 4A-GE Gen 5 20V «Black Top» — последняя версия злого атмосферника, увеличены заслонки дросселей, облегчены поршни, маховик, доработаны впускные и выпускные каналы, установлены еще более верховые валы, степень сжатия достигла 11, мощность поднялась до 165 л.с. при 7800 об/мин. Производился мотор с 1995 до 1998 года, преимущественно, для японского рынка.
10. 4A-GZE — аналог 4A-GE 16V с компрессором, ниже все генерации данного движка:
10.1 4A-GZE Gen 1 — компрессорный 4A-GE с давлением 0.6 бар, нагнетатель SC12. Использовались кованые поршни со степенью сжатия 8, впускной коллектор с изменяемой геометрией. Мощность на выходе 140 л.с., производился с 86-го по 90-й год.
10.2 4A-GZE Gen 2 — изменен впуск, повышена степень сжатия до 8.9, увеличено давление, теперь оно составляет 0.7 бар, мощность поднялась до 170 л.с. Производились движки с 1990 по 1995 год.

Неисправности и их причины

1. Большой расход топлива, в большинстве случаев, виновник лямбда зонд и проблема решается его заменой. При появлении сажи на свечах, черного дыма из выхлопной трубы, вибраций на холостом ходу, проверьте датчик абсолютного давления.
2. Вибрации и высокий расход топлива, скорей всего вам пора помыть форсунки.

3. Проблемы с оборотами, зависание, повышенные обороты. Проверяйте клапан холостого хода и чистите дроссельную заслонку, смотрите датчик положения дроссельной заслонки и все прийдет в норму.
4. Двигатель 4A не заводится, плавают обороты, здесь причина в датчике температуры двигателя, проверяйте.
5. Плавают обороты. Чистим блок дроссельной заслонки, КХХ, проверяем свечи, форсунки, клапан вентиляции картерных газов.
6. Глохнет мотор, смотрите топливный фильтр, бензонасос, трамблер.
7. Высокий расход масла. В принципе, заводом допускается серьезный расход (до 1 л на 1000 км), но если ситуация напрягает, тогда вас спасет замена колец и маслосьемных колпачков.
8. Стук двигателя. Обычно, стучат поршневые пальцы, если пробег большой, а клапана не регулировались, тогда отрегулируйте зазоры клапанов, данная процедура проводится раз в 100.000 км.

Кроме того, текут сальники коленвала, нередки проблемы с зажиганием и т.д. Все перечисленное встречается не столько из-за конструктивных просчетов, а сколько из-за огромного пробега и общей старости двигателя 4A, чтоб избежать всех этих проблем, нужно изначально, при покупке, искать максимально живой мотор. Ресурс хорошего 4A составляет не меньше 300.000 км.
Не рекомендуется покупать версии Lean Burn, работающие на обедненной смеси, имеющие более низкую мощность, некоторую капризность и повышенную стоимость расходников.
Стоит заметить, все вышеперечисленное характерно и для моторов созданных на базе 4А — 5А и 7А.

Тюнинг двигателя Toyota 4A-GE (4A-FE, 4A-GZE)

Чип-тюнинг. Атмо

Двигатели серии 4A рождены для тюнинга, именно на базе 4A-GE был создан всем известный 4A-GE TRD, в атмосферном варианте выдающий 240 л.

с. и выкручивающийся до 12000 об/мин! Но для успешного тюнинга надо брать 4A-GE за основу, а не FE версию. Тюнинг 4A-FE идея мертвая изначально и заменой ГБЦ на 4A-GE здесь не помочь. Если чешутся руки доработать именно 4A-FE, тогда ваш выбор наддув, покупаете турбо кит, ставите на стандартную поршневую, дуете до 0.5 бар, получаете свои ~140 л.с. и ездите пока на развалится. Чтобы ездило долго и счастливо, нужно менять коленвал, всю ШПГ под низкую степень, доводить головку блока цилиндров, ставить большие клапана, форсунки, насос, проще говоря родной останется только блок цилиндров. И только потом ставить турбину и все сопутствующее, рационально?
Именно поэтому за основу всегда берется хороший 4AGE, здесь все проще: для GE первых поколений, берутся хорошие валы с фазой 264, толкатели стандартные, ставится прямоточный выхлоп и получаем в районе 150 л.с. Мало?
Убираем впускной коллектор T-VIS, берем валы с фазой 280+, с тюнинговыми пружинками и толкателями, отдаем ГБЦ на доработку, для Big Port доработка включает в себя шлифовку каналов, доводку камер сгорания, для Small Port еще и предварительную расточку впускных и выпускных каналов с установкой увеличенных клапанов, паук 4-2-1, настраиваем на Абит или Январь 7. 2, это даст до 170 л.с.
Дальше, кованая поршневая под степень сжатия 11, валы фаза 304, 4-х дроссельный впуск,  равнодлинный паук 4-2-1 и прямоточный выхлоп на трубе 63мм, мощность поднимется до 210 л.с.
Ставим сухой картер, меняем маслонасос на другой от 1G, валы максимальные — фаза 320, мощность дойдет до 240 л.с. и крутиться будет за 10000 об/мин.
Как будем дорабатывать компрессорный 4A-GZE… Проведем работы с ГБЦ (шлифовка каналов и камер сгорания), валы 264 фаза, выхлоп 63мм, настройка и около 20 лошадей запишем себе в плюс. Довести мощность до 200 сил позволит компрессор SC14 либо более производительный.   

Турбина на 4A-GE/GZE

При турбировании 4AGE сразу же нужно понизить степень сжатия, путем установки поршней от 4AGZE, берем распредвалы с фазой 264, турбокит на ваш вкус и на 1 баре давление получим до 300 л.с. Для получение еще более высокой мощности, как и на злом атмо, нужно доводить ГБЦ, ставить кованый коленвал и поршневую под степень ~7.5, более производительный кит и дуть 1. 5+ бар, получая свои 400+ л.с.

РЕЙТИНГ ДВИГАТЕЛЯ: 4

<<НАЗАД

лучшее масло, какой ресурс, количество клапанов, мощность, объем, вес

Впервые Toyota 4A увидел свет в 1982 г. и не сходил с конвейера до 2002 года. Первые два символа в его названии говорят о том, что это четвертая модификация в серии «А» выпускаемых фирмой двигателей. Начало серии было положено десятью годами ранее, когда инженеры компании задались целью создать новый движок на Toyota Tercel, который бы обеспечивал более экономный расход топлива и лучшие технические показатели.

Технические характеристики

Производство Kamigo Plant
Shimoyama Plant
Deeside Engine Plant
North Plant
Tianjin FAW Toyota Engine’s Plant No. 1
Марка двигателя Toyota 4A
Годы выпуска 1982-2002
Материал блока цилиндров чугун
Система питания карбюратор/инжектор
Тип рядный
Количество цилиндров 4
Клапанов на цилиндр 4/2/5
Ход поршня, мм 77
Диаметр цилиндра, мм 81
Степень сжатия 8
8. 9
9
9.3
9.4
9.5
10.3
10.5
11
Объем двигателя, куб.см 1587
Мощность двигателя, л.с./об.мин 78/5600
84/5600
90/4800
95/6000
100/5600
105/6000
110/6000
112/6600
115/5800
125/7200
128/7200
145/6400
160/7400
165/7600
170/6400
Крутящий момент, Нм/об.мин 117/2800
130/3600
130/3600
135/3600
136/3600
142/3200
142/4800
131/4800
145/4800
149/4800
149/4800
190/4400
162/5200
162/5600
206/4400
Топливо 92-95
Экологические нормы
Вес двигателя, кг 154
Расход топлива, л/100 км (для Celica GT)
— город
— трасса
— смешан.
10.5
7.9
9.0
Расход масла, гр./1000 км до 1000
Масло в двигатель 5W-30 / 10W-30 / 15W-40 / 20W-50
Сколько масла в двигателе 3. 9
Замена масла проводится, км 10000
(лучше 5000)
Рабочая температура двигателя, град.
Ресурс двигателя, тыс. км
— по данным завода
— на практике
300
300+

Распространенные неисправности и эксплуатация

  1. Перерасход горючего. Причина – лямбда-зонд. Требуется замена. Также необходимо продиагностировать сенсор абсолютного давления, если появились вибрации в холостую, темный дым и налет на свечах.
  2. Пережог топлива плюс вибрации – нужно почистить форсунки.
  3. Перебои в оборотах или зависание. Неисправен клапан холостого хода. Также нужно чистить дроссель-заслонку и регулировать датчик ее положения.
  4. Отсутствие старта мотора и плавающие обороты. Вышел из строя термодатчик.
  5. Перебои оборотов. Нужно почистить заслонку дросселя, КХХ, форсунки, картерный клапан и свечи.
  6. Часто тухнет двигатель. Причина – бензонасос, трамблер или фильтр горючего.
  7. Пережог масла. Заменить кольца и маслосъемные колпачки.
  8. Постукивание в моторе. Его обычно издают поршневые пальцы. При большом пробеге нужно отрегулировать зазоры клапанов.

В среднем агрегат 4A (а также 5А и 7А на его базе) рассчитан минимум на 300 тыс. км пути. Версии Lean Burn не рекомендуются к покупке, так как не отличаются хорошими эксплуатационными показателями.

Видео по двигателю 4A


Двигатель 4A-FE: характеристики, ресурс, масло, проблемы

Автор Petr На чтение 7 мин Опубликовано Обновлено

Моторы Toyota 4A-FE на протяжении многих лет использовались на различных моделях японских автомобилей. Они отличались довольно высоким уровнем надежности и простотой в эксплуатации. Большинство возникающих проблем, возможно устранить собственными силами. Далее детально рассмотрим двигатель 4A-FE и его технические характеристики.

Характеристики

Силовые агрегаты Toyota 4A 1.6 (точный объем 1587 куб. см.) выпускались с 1982 по 2002 год. На них использовался чугунный блок цилиндров. Показатели мощности у разных модификаций двигателей серии 4A варьируется в пределах от 78 до 170 лошадиных сил, при значении крутящего момента от 117 до 206 Н*м. Степень сжатия, в зависимости от модификации силового агрегата, составляет от 8 до 11. Система впрыска, также зависит от варианта двигателя, используется карбюратор или инжектор.

Для моторов 4A-FE допускалось использовать следующие марки бензина: АИ 92 и АИ 95. Объем заливаемого масла в двигателе составляет от 3 до 3.7 литров. Какое масло лить в мотор, решается в зависимости от климатических условий. Можно применять следующие марки: 5W-30, 10W-30, 15W-40, 20W-50. Характеристики двигателя марки 4A-FE допускают максимальное потребление масла до одного литра на тысячу километров.

Моторы 4A-FE с указанными заводскими техническими характеристиками обладают ресурсом в 300000 км.

Расход

Показатель расхода топлива зависит от машины, на которую устанавливался мотор 4A-FE. Ниже приведены данные по расходу бензина для конкретных моделей автомобилей:

  1. Toyota Avensis в кузове T220 с пяти ступенчатой механической коробкой передач: в городском режиме 10,6 л/100 км, в загородном – 6,1 л/100 км;
  2. Toyota Corolla с четырех ступенчатой АКПП: при езде в населенных пунктах 10,3 л/100 км, на трассе – 6,4 л/100 км.

Модификации

Выбор версий двигателя серии 4А достаточно широк. Первым в 1983 году был разработан карбюраторный силовой агрегат марки 4А-C с восьмью клапанами и мощностью в девяносто лошадиных сил. Также были разработаны аналоговые версии для европейского и австралийского рынка. Они маркировались: 4A-L, -LC, -E, -ELU, -F. Их мощность находилась в диапазоне от 78 до 100 лошадиных сил. С течением времени мотор претерпел достаточно серьезные изменения. Были разработаны следующие вариации двигателей серии 4А:

  1. Инжекторный вариант 4A-FE, который имел несколько генераций. Среди них:
Блок 4A-FE
  • 4A-FE Gen 1 был впервые оснащен инжекторной системой в 1987 году. Модель силового агрегата мощностью 100-102 л.с. выпускалась до 1993 года;
  • в модернизированной 4A-FE Gen 2 использовалась новая шатунно-поршневая группа, изменена конструкция распределительного вала, системы подачи топлива, а также увеличена максимальная мощность до 110 л.с.;
  • крайней версией мотора стала 4A-FE Gen 3. Он незначительно отличался от двигателя второй генерации. Мощность увеличилась до 115 лошадиных сил.
  1. В дальнейшем выпускалась модель ДВС 4A-FHE (110 л.с.). Она предусматривала усовершенствование конструкции мотора 4A-FE;
  2. После этого компания Тойота и Ямаха совместными усилиями разработали версию мотора 4A-GE. За время своего существования он претерпел пять генераций. Марки двигателей отличались повышенной мощностью, которая составляла:
  • 124 л.с. – 4A-GE Gen 1;
  • 125 л.с. – 4A-GE Gen 2;
  • 128 л.с. – 4A-GE Gen 3;
  • 160 л.с. – 4A-GE Gen 4;
  • 165 л.с. – 4A-GE Gen 5.
Карина Е

На какие модели устанавливался

Двигатель модификации 4A-FE использовался для следующих моделей автомобилей:

  • Avensis Т220 с 1997 по 2000 г;
  • Carina AT171/175 с 1988 по 1992 г и AT190 с 1984 по 1996 г;
  • Carina II AT171 с 1987 по 1992 г;
  • Carina E AT190 с 1992 по 1997 г;
  • Geo Prizm на базе Toyota AE92 с 1989 по 1997 г;
  • Corolla/Conquest AE92/AE111 с 1993 по 2002 г;
  • Celica AT180 с 1989 по 1993 г;
Toyota Celica Т200
  • Corolla AE92/95 с 1988 по 1997 г, AE101/104/109 с 1991 по 2002 г, AE111/114 с 1995 по 2002 г;
  • Corolla Ceres AE101 с 1992 по 1998 г;
  • Corolla Spacio AE111 с 1997 по 2001 г;
  • Sprinter AE95 с 1989 по 1991 г, AE101/104/109 с 1992 по 2002 г, AE111/114 с 1995 по 1998 г;
  • Corona AT175 с 1988 по 1992 г, AT190 с 1992 по 1996 г, AT210 с 1996 по 2001 г;
  • Sprinter Carib AE95 с 1988 по 1990 г, AE111/114 с 1996 по 2001 г.

Техническое устройство

Силовой шестнадцати клапанный агрегат Тойота 4A-FE имеет рядное исполнение с четырьмя цилиндрами. Они располагаются в литом чугунном блоке. Конструкцией не предусмотрена установка гильз.



Головка блоков цилиндра изготовлена из алюминия. Процесс газораспределения осуществляется посредством двух верхних распределительных валов (система DOHC). Механизм приводится в движение ремнем между распределительными валами через зубчатый вал. В случае обрыва ремня ГРМ, клапана не гнутся. Для распределения зажигания используется трамблер с одной катушкой. В более поздних модификациях моторов 4A-FE применялись трамблеры с двумя катушками, по одной на каждую пару цилиндров.

Интервал обслуживания

Мотор Toyota 4A-FE требует соблюдения следующих интервалов при осуществлении технического обслуживания:

  • замена масла и масляного фильтра через каждые 10 тыс. км пробега;
  • после 40 тыс. км пробега, следует поменять топливный фильтр;
  • с периодичностью в 20 тыс. км пробега меняется воздушный фильтр;
  • на каждые 30 тыс. км пройденного расстояния приходится замена свечей зажигания и регулировка зазоров клапанов с проверкой работоспособности вентиляции картера;
  • постоянный контроль герметичности системы охлаждения, с заменой антифриза через каждые 50 тыс. км;
  • на ста тысячах километров пробега требуется проверить состояние выпускного коллектора.



Проблемы и недостатки

Двигатель Toyota модификации 4A-FE отмечается следующими недостатками и проблемами:

  • Повышенный расход топлива, как правило, наблюдается при выходе из строя датчика лямбда зонд. Еще одной причиной ухудшения указанного показателя может стать неисправность датчика абсолютного давления. При этом образуется нагар на свечах, появляется вибрация при работе мотора на холостом ходу, из выхлопной трубы выходит черный дым. При одновременном проявлении вибрации и повышенного потребления топливной смеси двигателем, следует промыть форсунки;
  • Плавающие обороты сопровождаются засорением дроссельной заслонки, свечей зажигания, форсунок, повреждением клапана холостого хода, вентиляции картерных газов или датчика положения дроссельной заслонки;
  • Мотор не запускается. В большинстве случаев, из-за поломки датчика температуры силового агрегата;
  • Двигатель глохнет после запуска. В этом случае потребуется проверить состояние топливного фильтра, бензонасоса и трамблера;
  • Образование повышенного расхода масла. Согласно заводским параметрам, допустимым считается потребление до одного литра на тысячу километров. Для устранения проблемы понадобится заменить кольца и маслосъемные колпачки;
  • Посторонний стук в двигателе, как правило, исходит от поршневых пальцев. Это свидетельствует о необходимости регулировки зазоров клапанов.

Тюнинг

Осуществить тюнинг ДВС марки 4A-FE достаточно проблематично и является не рациональным решением. Но при желании его можно сделать. При этом потребуется заменить практически все, кроме блока цилиндров. Замене подлежат: коленчатый вал, клапана, форсунки, головка блока цилиндров и шатунно-поршневая группа. На силовой агрегат устанавливается турбо кит, что сопровождается увеличением мощности мотора до 140 лошадиных сил.

Гораздо лучше тюнингу поддается марка двигателя 4A-GE.

Заключение

Двигатель Тойота марки 4A-FE имеет приличный ресурс, который составляет не менее трехсот тысяч километров, согласно заводским параметрам. На практике, ресурс составляет более 300000 км. По достижению указанного пробега, начинают проявляться проблемы, которые обусловлены не просчетами в конструкции, а постепенным износом механизмов.

Видео

Что надо знать про двигатель 4А при покупке Тойоты|Слабый мотор

Двигатели для Тойоты выпускаемые в серии А наиболее распространённые и являются достаточно надежными и популярными. В этой серии двигателей достойное место занимает мотор во всех своих модификациях. В самом начале двигатель имел малую мощность. Изготавливался с карбюратором и одним распределительным валом, головка двигателя имела восемь клапанов.

В процессе модернизации изготавливался сначала с 16 ти клапанной головкой, затем и с 20 ти клапанной и двумя распределительными валами и с электронным впрыском топлива. Кроме того двигатель заимел другую поршневую. Некоторые модификации собирались с механическим нагнетателем. Рассмотрим подробнее мотор 4А с его модификациями, выявим его слабые места и недостатки.
Модификации двигателя 4 А:

 

  • С;
  • L;
  • LC;
  • E;
  • ELU;
  • F;
  • FE;
  • FE Gen 1 ;
  • FE Gen 2;
  • FE Gen 3;
  • FHE;
  • GE;
  • GE Gen 1 «Big Port»;
  • GE Gen 2;
  • GE Gen 3 «Red Top»/Small port»;
  • GE Gen 4 20V «Silver Top»;
  • GE Gen 5 20V «Black Top»;
  • GZE;
  • GZE Gen 1;
  • GZE Gen 2.

С двигателем 4А и его модификациями производились автомобили Тойоты:

  • Королла;
  • Коронна;
  • Карина;
  • Карина Е;
  • Селика;
  • Авенсис;
  • Калдина;
  • АЕ86;
  • МР2;
  • Церес;
  • Левин;
  • Спасио;
  • Спринтер;
  • Спринтер Кариб;
  • Спринтер Марино;
  • Спринтер Труэно;

Кроме Тойоты двигатели устанавливали на автомобили:

 

  • Шевроле Нова;
  • Гео Призм.

Слабые места двигателя 4A

  • Лямбда зонд;
  • Датчик абсолютного давления;
  • Датчик температуры двигателя;
  • Сальники коленвала.

Слабые места более двигателя подробно…

Лямбда зонд

Выход из строя лямда зонда или по-другому — кислородного датчика происходит не часто, но в практике такое встречается. В идеале для нового двигателя ресурс кислородного датчика небольшой 40 — 80 тыс. км, если у движка проблема с поршневой и с расходом топлива и масла, тогда ресурс значительно уменьшается.

Датчик абсолютного давления

Как правило подводит датчик из-за плохого соединения входного штуцера с впускным коллектором.

Датчик температуры двигателя

Отказывает не часто, как говорится редко но метко.

Сальники коленвала

Проблема с сальниками коленвала связана с прошедшим ресурсом двигателя и пройденного времени от момента изготовления. Проявляется просто — течью или выдавливанием масла. Даже если автомобиль имеет малый пробег, то резина из которой сделаны сальники после 10 лет теряет свои физические качества.

Недостатки двигателя 4A

  • Увеличенный расход топлива;
  • Плавают обороты холостого хода двигателя или повышенные.
  • Двигатель не заводится, глохнет с плаванием оборотов;
  • Глохнет мотор;
  • Увеличенный расход масла;
  • Стучит двигатель.

Недостатки мотора 4A подробно…

Увеличенный расход топлива

Причиной увеличенного расхода топлива может быть:

  1. неисправность лямбда зонда. Недостаток устраняют его заменой. Кроме того, если на свечах сажа, а из выхлопухи черный дым и двигатель вибрирует на холостом ходу — проверяйте датчик абсолютного давления.
  2. Грязные форсунки, если так, то их надо промывать и продувать.

Плавают обороты холостого хода двигателя или повышенные

Причиной может явиться неисправность клапана холостого хода и нагар на дроссельной заслонке, или сбой настройки датчика положения дроссельной заслонки. На всякий случай почистите дроссельную заслонку, промойте клапан холостого хода, проверьте свечи — наличие нагара тоже способствует проблеме с оборотами работы двигателя на холостом ходу. Не будет лишним проверить форсунки, и работу клапана вентиляции картерных газов.

Двигатель не заводится, глохнет с плаванием оборотов

Данная проблема говорит о неисправности температурного датчика двигателя.

Глохнет мотор

В данном случае это может происходить из-за забитого топливного фильтра. В дополнение поиска причины неисправности проверьте работу бензонасоса и состояние трамблера.

Увеличенный расход масла

Завод изготовитель допускает нормальным расход масла до 1 литра на 1000 км, если он больше — значит проблема с поршневой. Как вариант может помочь замена поршневых колец и маслосъёмных колпачков.

Стучит двигатель

Стук двигателя, это сигнал износа поршневых пальцев и нарушения зазора клапанов газораспределения в головке двигателя. В соответствии с руководством по эксплуатации клапана регулируют через 100000 км.

Как правило все недостатки и слабые места не являются производственным или конструктивным браком, а являются следствием несоблюдения правильной эксплуатации. Ведь если не обслуживать своевременно технику она в конце концов попросит это сделать. Вы должны понимать, что в основном все поломки и проблемы начинаются после выработки определенного ресурса (300000 км), это является первой причиной всех неисправностей и недостатков в работе мотора 4А.

Очень дорого будут обходиться авто с двигателями версии Lean Burn, они работают на обедненной смеси и от чего их мощность значительно ниже, они более капризны, а расходники дорогие.

Все описанные слабые места и недостатки также актуальны для двигателей 5А и 7А.

P.S. Уважаемые владельцы Тойот с двигателем 4А и его модификациями! Вы можете дополнить своими комментариями настоящую статью, за что я буду вам благодарен.

Похожие записи:

Японские двигатели Toyota серии 4, 5, 7 A — FE

Самым распространённым и на сегодняшний день самым широко ремонтируемым из японских двигателей является двигатель Тойота серии 4, 5, 7 A — FE. Даже начинающий механик, диагност знают о возможных проблемах двигателей этой серии.

Я постараюсь осветить (собрать в единое целое) проблемы данных двигателей. Их немного, но они доставляют немало хлопот своим владельцам. 



Дата со сканера:


На сканере можно увидеть короткую, но ёмкую дату, состоящую из 16 параметров, по которым можно реально оценить работу основных датчиков двигателя.
Датчики:

Датчик кислорода — Лямбда зонд


Многие владельцы обращаются на диагностику по причине повышенного расхода топлива. Одной из причин является банальный обрыв подогревателя в датчике кислорода. Ошибка фиксируется блоком управления кодом номер 21.

Проверку подогревателя можно осуществить обычным тестером на контактах датчика(R- 14 Ом) 


Расход топлива увеличивается за счет отсутствия коррекции при прогреве. Восстановить подогреватель вам не удастся – поможет только замена. Стоимость нового датчика велика, а б\у устанавливать не имеет смысла (велик ресурс их наработки, поэтому это лотерея). В такой ситуации как альтернативу можно устанавливать менее надежные универсальные датчики NTK .

Срок их работы невелик, а качество оставляет желать лучшего, поэтому такая замена временная мера, и производить её следует с осторожностью.

При уменьшении чувствительности датчика происходит увеличение расхода топлива (на 1-3л). Работоспособность датчика проверяется осциллографом на колодке диагностического разъёма, либо непосредственно на фишке датчика (число переключений). 


Датчик температуры

При неправильной работе датчика владельца ждет масса проблем. При обрыве измерительного элемента датчика блок управления подменяет показания датчика и фиксирует его значение 80ю градусами и фиксирует ошибку 22. Двигатель, при такой неисправности, будет работать в обычном режиме, но только пока двигатель нагрет. Как только двигатель остынет, запустить его будет проблематично без допинга, из-за малого времени открытия инжекторов.

Нередки случаи, когда сопротивление датчика хаотично изменяется при работе двигателя на Х.Х. – обороты при этом будут плавать. 

Этот дефект легко фиксировать на сканере, наблюдая за показанием температуры. На прогретом двигателе оно должно быть стабильным и не менять хаотично значения от 20 до100 градусов. 



При таком дефекте датчика возможен «черный выхлоп», нестабильная работа на Х.Х. и, как следствие, повышенный расход, а также невозможность запуска «на горячую». Только после 10 минутного отстоя. Если нет полной уверенности в правильной работе датчика, его показания можно подменить, включив в его цепь переменный резистор 1ком, либо постоянный 300ом, для дальнейшей проверки. Изменяя показания датчика, легко контролируется изменение оборотов при различной температуре.

Датчик положения дроссельной заслонки 


Немало автомобилей проходит процедуру сборки разборки. Это так называемые «конструкторы». При снятии двигателя в полевых условиях и последующей сборке страдают датчики, на которые часто прислоняют двигателя. При разломе датчика TPS двигатель перестаёт нормально дросселировать. Двигатель при наборе оборотов захлебывается. Автомат переключается неправильно. Блоком управления фиксируется ошибка 41. При замене новый датчик необходимо настроить, чтобы блок управления правильно видел признак Х.Х., при полностью отпущенной педали газа (закрытой дроссельной заслонке). При отсутствии признака холостого хода не будет осуществляться адекватного регулирования Х.Х. и будет отсутствовать режим принудительного холостого хода при торможении двигателем, что опять же повлечет за собой повышенный расход топлива. На двигателях 4А,7А датчик не требует регулировки, он установлен без возможности вращения.
THROTTLE POSITION……0%
IDLE SIGNAL……………….ON

Датчик абсолютного давления MAP


Этот датчик является самым надежным, из всех устанавливаемых на японские автомобили. Безотказность его просто поражает. Но и на его долю приходится немало проблем, в основном по причине неправильной сборки.

Ему либо ломают приемный «сосок», а затем герметизируют клеем любое прохождение воздуха, либо нарушают герметичность подводящей трубки. 


При таком разрыве увеличивается расход топлива, резко возрастает уровень СО в выхлопе до3%.Очень легко наблюдать работу датчика по сканеру. Строчка INTAKE MANIFOLD показывает разряжение во впускном коллекторе, которое измеряется датчиком МАР. При обрыве проводки ЭБУ регистрирует ошибку 31. При этом резко увеличивается время открытия инжекторов до 3,5-5мс.При перегазовках появляется черный выхлоп, свечи засаживаются, появляется тряска на Х.Х. и остановка двигателя.

Датчик детонации


Датчик установлен для регистрации детонационных стуков (взрывов) и косвенно служит «корректором» угла опережения зажигания. Регистрирующим элементом датчика является пъезопластина. При неисправности датчика, или обрыве проводки, на перегазовках свыше 3,5-4 т. Оборотов ЭБУ фиксирует ошибку 52.Наблюдается вялость при разгоне.

Проверить работоспособность можно осциллографом, или, замерив, сопротивление между выводом датчика и корпусом (при наличии сопротивления датчик требует замены).


Датчик коленвала
 
На двигателях серии 7А установлен датчик коленвала. Обычный индуктивный датчик, аналогичен датчику АВС, и практически безотказен в работе. Но случаются и конфузы. При межвитковом замыкании внутри обмотки происходит срыв генерации импульсов на определенных оборотах. Это проявляется как ограничение оборотов двигателя в диапазоне 3,5-4 т. оборотов. Своеобразная отсечка, только на низких оборотах. Обнаружить межвитковое замыкание довольно сложно. Осциллограф не показывает уменьшение амплитуды импульсов или изменение частоты (при акселерации), а тестером заметить изменения долей Ома довольно сложно. При возникновении симптомов ограничения оборотов на 3-4 тысячах, просто замените датчик на заведомо исправный. Кроме того, немало неприятностей доставляет повреждения задающего венца, который повреждают нерадивые механики, производя работы по замене переднего сальника коленвала или ремня ГРМ. Сломав зубья венца, и восстановив их сваркой, добиваются только видимого отсутствия повреждений.

Датчик положения коленвала при этом перестает адекватно считывать информацию, угол опережения зажигания начинает хаотично изменяться, что приводит к потере мощности, нестабильной работе двигателя и увеличению расхода топлива

Инжекторы (форсунки)
 


При многолетней эксплуатации сопла и иглы инжекторов покрываются смолами и бензиновой пылью. Все это естественно нарушает правильный распыл и уменьшает производительность форсунки. При сильном загрязнении наблюдается ощутимая тряска двигателя, увеличивается расход топлива. Определить забитость реально, проведя газоанализ, по показаниям кислорода в выхлопе можно судить о правильности налива. Показание свыше одного процента укажут на необходимость промывки инжекторов (при правильной установке ГРМ и нормального давления топлива).

Либо установив инжекторы на стенд, и проверив производительность в тестах. Форсунки легко моются Лавром, Винсом, как на установках для безразборной промывки, так и в ультразвуке.
 

Клапан холостого хода, IACV


Клапан отвечает за обороты двигателя на всех режимах (прогрев, холостой ход, нагрузка). Во время эксплуатации лепесток клапана загрязняется и происходит подклинивание штока. Обороты зависают на прогреве либо на Х.Х.(из-за клина). Тестов на изменение оборотов в сканерах при диагностике по данному мотору не предусмотрено. Оценить работоспособность клапана можно, изменив показания датчика температуры. Ввести двигатель в «холодный» режим. Или, сняв обмотку с клапана, руками покрутить за магнит клапана. Заедание и клин будут ощутимы сразу. При невозможности легко демонтировать обмотку клапана (например, на серии GE)проверить его работоспособность можно подключившись к одному из управляющих выводов и измерив скважность импульсов одновременно контролируя обороты Х. Х. и изменяя нагрузку на двигатель. На полностью прогретом двигателе скважность равна приблизительно 40%,меняя нагрузку (включая электрические потребители) можно оценить адекватное увеличение оборотов в ответ на изменение скважности. При механическом заклинивании клапана, происходит плавное увеличение скважности, не влекущее за собой изменение оборотов Х.Х.

Восстановить работу можно очистив нагар и грязь очистителем карбюратора при снятой обмотке. 
 


Дальнейшая настройка клапана заключается в установке оборотов Х.Х. На полностью прогретом двигателе , вращением обмотки на болтах крепления, добиваются табличных оборотов для данного типа автомобиля (по бирке на капоте). Предварительно установив перемычку E1-TE1 в диагностическую колодку. На более «молодых» моторах 4А,7А клапан был изменён. Вместо привычных двух обмоток в тело обмотки клапана установили микросхему. Изменили питание клапана и цвет пластика обмотки (черный). На нем уже бессмысленно измерять сопротивление обмоток на выводах.

К клапану подводится питание и управляющий сигнал прямоугольной формы переменной скважности. 
 

 


Для невозможности снятия обмотки установили нестандартный крепёж. Но проблема клина осталась. Теперь если чистить обычным очистителем — вымывается смазка из подшипников (дальнейший результат предсказуем, такой же клин, но уже из-за подшипника). Следует полностью демонтировать клапан с блока дроссельной заслонки и после аккуратно промывать шток с лепестком.

Система зажигания. Свечи.


Очень большой процент автомобилей приходит в сервис с проблемами в системе зажигания. При эксплуатации на некачественном бензине в первую очередь страдают свечи зажигания. Они покрываются красным налетом (ферроз). Качественного искрообразования с такими свечами уже не будет. Двигатель будет работать с перебоями, с пропусками, увеличивается расход топлива, поднимается уровень СО в выхлопе. Пескоструй не в силах очистить такие свечи. Поможет только химия (силит на пару часов) или замена. Другая проблема увеличение зазора (простой износ).

Высыхание резиновых наконечников высоковольтных проводов, вода, попавшая при мойке мотора, которые все это провоцируют образование токопроводящей дорожки на резиновых наконечниках. 
 

          

 

 

 

Из-за них искрообразование будет не внутри цилиндра, а вне его. 
При плавном дросселировании двигатель работает стабильно, а при резком – «дробит».


При таком положении необходима замена одновременно и свечей и проводов. Но иногда (в полевых условиях) при невозможности замены можно решить проблему обычным ножом и куском наждачного камня (мелкой фракции). Ножом срезаем токопроводящую дорожку в проводе, а камнем снимаем полоску с керамики свечи.

Следует отметить, что снимать резинку с провода нельзя, это приведет к полной неработоспособности цилиндра.
 


Еще одна проблема связана с неправильной процедурой замены свечей. Провода с силой выдергивают из колодцев, отрывая металлический наконечник повода.
 


С таким проводом наблюдаются пропуски зажигания и плавающие обороты. При диагностировании системы зажигания следует всегда проверять на производительность катушку зажигания на высоковольтном разряднике. Самая простая проверка – на работающем двигателе просмотреть искру на разряднике.


Если искра пропадает или становится нитевидной — это указывает на межвитковое замыкание в катушке или на проблему в высоковольтных проводах. Обрыв проводов проверяют тестером по сопротивлению. Малый провод 2-3ком,дальше на увеличение длинный 10-12ком.

 



Сопротивление замкнутой катушки также можно проверить тестером. Сопротивление вторичной обмотки битой катушки будет меньше 12ком.
Катушки следующего поколения такими недугами не страдают(4А.7А), их отказ минимален. Правильное охлаждение и толщина провода исключили эту проблему. 
Еще одна проблема текущий сальник в распределителе. Масло, попадая на датчики, разъедает изоляцию. А при воздействии высокого напряжения окисляется бегунок (покрывается зеленым налетом). Уголек закисает. Все этот приводит к срыву искрообразования.

В движении наблюдаются хаотичные прострелы (во впускной коллектор, в глушитель) и дробление.
 


«Тонкие» неисправностидвигателя Тойота

На современных двигателях Toyota 4А, 7А японцы изменили прошивку блока управления (видимо для более быстрого прогрева двигателя). Изменение заключается в том, что двигатель достигает оборотов Х.Х.только при температуре 85 градусов. Также была изменена конструкция системы охлаждения двигателя. Теперь малый круг охлаждения интенсивно проходит через головку блока (не через патрубок за двигателем, как было раньше). Конечно, охлаждение головки стало эффективней, эффективней стал охлаждаться и двигатель в целом. Но зимой при таком охлаждении при движении температура двигателя достигает температуры 75-80 градусов. И как результат постоянные прогревные обороты(1100-1300),повышенный расход топлива и нервоз владельцев. Бороться с этой проблемой можно, либо сильнее утеплив двигатель, либо изменив сопротивление датчика температуры (обманув ЭБУ).

Масло

Владельцы наливают в двигатель масло без особого разбора, не задумываясь о последствиях. Мало кто понимает, что различные типы масел не совместимы и при смешивании образуют нерастворимую кашу (кокс), который приводит к полному разрушению двигателя.


Весь этот пластилин невозможно смыть химией, он вычищается только механическим способом. Следует понимать, если неизвестно какого типа старое масло, то следует воспользоваться промывкой перед сменой. И еще совет владельцам. Обратите внимание на цвет ручки масляного щупа. Он желтого цвета. Если цвет масла в вашем двигателе темнее цвета ручки – пора делать замену, а не ждать виртуального пробега, рекомендованного изготовителем моторного масла.


Воздушный фильтр

Самый недорогой и легкодоступный элемент — воздушный фильтр. Владельцы очень часто забывают про его замену, не задумываясь о вероятном увеличении расхода топлива. Нередко из-за забитого фильтра камера сгорания очень сильно загрязняется масляными сгоревшими отложениями, сильно загрязняются клапана, свечи.

При диагностике можно ошибочно предположить, что всему виной износ маслосъёмных колпачков, но первопричина – забитый воздушный фильтр, увеличивающий при загрязнении разряжение во впускном коллекторе. Конечно же, в таком случае колпачки тоже придется сменить.


Некоторые владельцы даже не замечают о проживании в корпусе воздушного фильтра гаражных грызунов. Что говорит об их полнейшем наплевательстве к автомобилю. 

 


Топливный фильтр также заслуживает внимания. Если его вовремя не заменить(15-20 тысяч пробега) насос начинает работать с перегрузкой, давление падает, и как следствие возникает необходимость замены насоса.

Пластиковые детали насоса крыльчатка и обратный клапан преждевременно изнашиваются.
 

Падает давление

Следует отметить, что работа мотора возможна на давлении до 1,5 кг (при стандартном 2,4-2,7кг). При пониженном давлении наблюдаются постоянные прострелы во впускной коллектор запуск проблемный (вдогонку). Заметно снижается тяга.Проверку давления правильно производить манометром. (доступ к фильтру не затруднён). В полевых условиях можно воспользоваться «тестом налива из обратки». Если при работе двигателя за 30 секунд из шланга обратки бензина вытекает меньше одного литра, можно судить о пониженном давлении. Можно для косвенного определения работоспособности насоса воспользоваться амперметром. Если ток, потребляемый насосом меньше 4ампер — то давление просажено.

Измерить ток можно на диагностической колодке.
 

При использовании современного инструмента процесс замены фильтра занимает не более получаса. Ранее на это уходило очень много времени . Механики всегда надеялись на случай ,что им повезет и нижний штуцер не приржавел . Но зачастую так и происходило.

Приходилось подолгу ломать голову каким газовым ключом зацепить закатанную гайку нижнего штуцера. А иногда процесс замены фильтра превращался в «киносеанс» со снятием подводящей к фильтру трубки.
 


Сегодня эту замену никто не боится делать.


Блок Управления

До 1998 года выпуска, блоки управления не имели достаточно серьезных проблем при эксплуатации. 
 


Ремонтировать блоки приходилось лишь по причине «жесткой переполюсовки». Важно отметить, что все выводы блока управления подписаны. Легко отыскать на плате необходимый вывод датчика для проверки, либо прозвонки провода. Детали надежны и стабильны в работе при низких температурах.
В заключении хотелось бы немного остановиться на газораспределении. Многие владельцы «с руками» процедуру замены ремня выполняют самостоятельно ( хотя это и не правильно, они не могут правильно затянуть шкив коленвала). Механики производят качественную замену в течение двух часов(максимум) При обрыве ремня клапаны не встречаются с поршнем и фатального разрушения двигателя не происходит. Все рассчитано до мелочей. 

Мы постарались рассказать о наиболее часто возникающих проблемах на двигателях Тойота серии А. Двигатель очень прост и надежен и при условии очень жесткой эксплуатации на «водных -железных бензинах» и пыльных дорогах нашей великой и могучей Родины и «авосьным» менталитетом владельцев. Перенеся все издевательства, он по сей день продолжает радовать своей надежной и стабильной работой, завоевав статус самого лучшего японского двигателя.


Всем скорейшего выявления проблем и лёгкого ремонта двигателя Toyota 4, 5, 7 А — FE!


Владимир Бекренёв, г. Хабаровск
Андрей Федоров, г. Новосибирск

© Легион-Автодата

СОЮЗ АВТОМОБИЛЬНЫХ ДИАГНОСТОВ


Качественное и эффективное toyota двигатель 4а fe для автомобилей

Получите доступ к качественному, мощному и надежному сервису. toyota двигатель 4а fe на Alibaba.com за повышение производительности двигателей и значительное увеличение срока их службы. Эти емкостные и прочные. toyota двигатель 4а fe подходят не только для транспортных средств, но и идеально подходят для всех типов тяжелой техники. Качество этих. toyota двигатель 4а fe абсолютно превосходны, и они созданы с использованием новейших технологий для лучшей поддержки двигателей и их бесперебойной работы.

Замечательное и выдающееся. toyota двигатель 4а fe, представленные на сайте, предлагаются некоторыми из ведущих поставщиков и оптовых торговцев, которые на протяжении долгого времени преуспели в поставке запчастей высокого качества для машин. Эти крепкие. toyota двигатель 4а fe антифрикционные, стабильно работающие и экологически чистые — самые большие преимущества этих продуктов. Вы можете выбрать из множества вариантов бензиновых и дизельных двигателей. toyota двигатель 4а fe совместим со всеми видами моделей.

При покупке они эффективны и безупречны. toyota двигатель 4а fe на Alibaba.com вы можете выбирать между различными вариантами продуктов в зависимости от их размеров, мощности, крутящего момента, разновидностей радиаторов и моделей в соответствии с вашими конкретными требованиями. Файл. toyota двигатель 4а fe доступны здесь, а именно коромысла, толкатель распределительного вала, подшипник штока, радиатор и многое другое, что позволяет получить доступ ко всем типам деталей. Файл. toyota двигатель 4а fe все сертифицированы ISO, SGS, CE, IAF для обеспечения оптимального качества.

Изучите различные. toyota двигатель 4а fe представлен на Alibaba. com и экономит деньги при покупке продуктов. Все эти продукты доступны как OEM-заказы при оптовых закупках вместе с вариантами индивидуальной настройки упаковки и продуктов. Вас ждут большие скидки на эти товары.

Обзор двигателей Toyota серии А 4A-FE 5A-FE 7A-FE

«A» (R4, ремень)
Двигатели серии A по распространенности и надежности делят, пожалуй, первенство с серией S. Что касается механической части, то вообще трудно найти более грамотно сконструированные моторы. При этом они имеют хорошую ремонтопригодность и не создают проблем с запасными частями.
Устанавливались на автомобили классов «C» и «D» (семейства Corolla/Sprinter, Corona/Carina/Caldina).

4A-FE— самый распространенный двигатель серии, без существенных изменений
выпускался с 1988 года, не имеет выраженных конструктивных дефектов
5A-FE — вариант с уменьшенным рабочим объемом, который до сих пор производится на китайских заводах Toyota для внутренних нужд
7A-FE — более свежая модификация с увеличенным объемом

В оптимальном серийном варианте 4A-FE и 7A-FE шли на семейство Corolla. Однако, будучи установлены на автомобили линейки Corona/Carina/Caldina, они со временем получили систему питания типа LeanBurn, предназначенную для сгорания обедненных смесей и помогающую экономить японское топливо при спокойной езде и в пробках (подробнее про конструктивные особенности — см. в этом материале, на какие именно модели устанавливался LB — здесь).Необходимо отметить, что тут японцы изрядно «подгадили» нашему рядовому потребителю — многие обладатели этих движков сталкиваются с
так называемой «проблемой LB», проявляющейся в виде характерных провалов на средних оборотах, причину которой толком установить и излечить не удается — то ли виновато низкое качество местного бензина, то ли проблемы в системах питания и зажигания (к состоянию свечей и высоковольтных проводов эти движки особенно чувствительны), то ли все вместе — но иногда обедненная смесь просто не поджигается.

Небольшие дополнительные минусы — склонность к повышенному износу постелей распредвалов и формальные сложности с регулировкой зазоров во впускных клапанах, хотя в целом работать с этими двигателями удобно.

«Двигатель 7A-FE LeanBurn низкооборотный, и он даже тяговитее 3S-FE за счет максимума момента при 2800 оборотах»

Выдающаяся тяговитость на низких оборотах мотора 7A-FE именно в версии LeanBurn — одно из распространенных заблуждений. У всех гражданских движков серии A «двугорбая» кривая крутящего момента — с первым пиком на2500-3000 и вторым на 4500-4800 об/мин. Высота этих пиков почти одинакова (разница укладывается едва ли не в 5 Нм), но у STD двигателей получается чуть выше второй пик, а у LB — первый. Причем абсолютный максимум момента у STD все равно оказывается больше (157 против 155). Теперь сравним с 3S-FE. Максимальные моменты 7A-FE LB и 3S-FE тип’96 составляют 155/2800 и 186/4400 Нм соответственно. Но если взять характеристику в целом, то 3S-FE при тех самых 2800 выходит на момент 168-170 Нм, а 155 Нм — выдает уже в районе 1700-1900 оборотов.

4A-GE 20V— форсированный монстр для малых GT заменил в 1991 году предыдущий базовый двигатель всей серии A (4A-GE 16V). Чтобы обеспечить мощность в 160 л.с., японцы использовали головку блока с 5-ю клапанами на цилиндр, систему VVT (впервые применив изменяемые фазы газораспределения на тойотах), редлайн тахометра на 8 тысячах. Минус — такой двигатель будет неизбежно сильнее «ушатан» по сравнению со среднимсерийным 4A-FE того же года, поскольку и в Японии изначально покупался не для экономичной и щадящей езды. Более серьезны требования к бензину (высокая степень сжатия) и к маслам (привод VVT), так что предназначен он в первую очередь тому, кто знает и понимает его особенности.

За исключением 4A-GE, двигатели успешно питаются бензином с октановым числом 92 (в том числе и LB, для которого требования по ОЧ даже мягче). Система зажигания — с распределителем («трамблерная») у серийных вариантов и DIS-2 у поздних LB (Direct Ignition System, по одной катушке зажигания для каждой пары цилиндров).

Двигатель5A-FE4A-FE4A-FE LB7A-FE7A-FE LB4A-GE 20V
V (см3)149815871587176217621587
N (л.с. / при об/мин)102/5600110/6000105/5600118/5400110/5800165/7800
M (Нм / при об/мин)143/4400145/4800139/4400157/4400150/2800162/5600
Степень сжатия9,89,59,59,59,511,0
Бензин (рекоменд.)929292929295
Система зажиганиятрамбл.трамбл.DIS-2трамбл.DIS-2трамбл.
Гнут клапананетнетнетнетнетда**


*Здесь и далее приведены ТТХ поздних модификаций двигателей (для серии A — 1998-99 г.в.).
**На 4A-GE 16V (1984-91) в благоприятных условиях клапана не гнутся.

Обзор и технические характеристики

, сервисные данные

Toyota 4E-FE — это четырехтактный четырехтактный рядный четырехтактный бензиновый двигатель Toyota E-семейства объемом 1,3 л (1331 куб. См, 81,22 куб. Дюймов). Двигатель Toyota 4E-FE производился с 1989 года и был снят с производства после 1999 года.

Двигатель 4E-FE имеет чугунный блок и алюминиевую головку блока цилиндров с двумя верхними распредвалами (DOHC) и четырьмя клапанами на цилиндр (всего 16 ). Степень сжатия 9,6: 1. Он имеет диаметр цилиндра 74,0 мм (2,91 дюйма) и диаметр 77.Ход поршня 4 мм (3,05 дюйма). Двигатель Toyota 4E-FE имеет электронную систему впрыска топлива и систему зажигания с распределителем.

Двигатель производился от 75 л.с. (55 кВт; 74 л.с.) при 5400 об / мин до 100 л.с. (74 кВт; 99 л.с.) при 6600 об / мин максимальной мощности и от 110 Н · м (11,2 кг · м, 81,1 фунт-сила-футов). ) при 3600 об / мин до 117 Н · м (11,9 кг · м, 86,2 фут-фунт) при 4000 об / мин максимального крутящего момента.

В процессе производства было доступно три поколения двигателей 4E-FE. Двигатели отличались в основном доработанными впускным и выпускным коллекторами и ЭБУ, как следствие, отличались выходной мощностью и крутящим моментом.

Код двигателя выглядит следующим образом:

  • 4 — Двигатель 4 поколения
  • E — Семейство двигателей
  • F — Экономичный узкоугольный DOHC
  • E — Многофункциональный Точечный впрыск топлива

Общая информация

Технические характеристики двигателя
Код двигателя 4E-FE
Компоновка Четырехтактный, рядный-4 (прямой-4)
Топливо тип Бензин (бензин)
Производство 1989-1999 гг.
Рабочий объем 1.3 л, 1331 см 3 (81,22 куб.дюйма)
Топливная система Электронный впрыск топлива (EFI)
Сумматор мощности Нет
Выходная мощность От 75 л.с. (55 кВт; 74 л.с.) при 5400 об / мин
до 100 л.с. (74 кВт; 99 л.с.) при 6600 об / мин
Выходной крутящий момент От 110 Н · м (11,2 кг · м, 81,1 фунт-футов) при 3600 об / мин
до 117 Н · м (11,9 кг · м, 86,2 фунт-фут) при 4000 об / мин
Порядок стрельбы 1-3 -4-2
Размеры (Д x Ш x В):
Вес

Блок цилиндров

Toyota 4E-FE имеет чугунный блок цилиндров с пятью система поддержки подшипников.Он имеет диаметр цилиндра 74,0 мм (2,91 дюйма) и ход поршня 77,4 мм (3,05 дюйма). Степень сжатия 9,6: 1. Двигатель имеет коленчатый вал с восемью противовесами.

Двигатель укомплектован стальными шатунами, поршневыми пальцами поплавкового типа, поршнями из алюминиевого сплава с двумя компрессионными и одним маслосъемным кольцом. Верхнее компрессионное кольцо изготовлено из нержавеющей стали, второе кольцо — из чугуна.

Блок цилиндров
Сплав блока цилиндров Чугун
Степень сжатия: 9.6: 1
Диаметр цилиндра: 74,0 мм (2,91 дюйма)
Ход поршня: 77,4 мм (3,05 дюйма)
Количество поршневых колец (компрессионных / масляных): 2 / 1
Количество коренных подшипников: 5
Внутренний диаметр цилиндра (стандартный): 74,000-74,010 мм (2,9134-2,9138 дюйма)
Диаметр юбки поршня (стандартный): 73.900-73.910 мм (2,9094-2,9098 дюйма)
Внешний диаметр поршневого пальца:
Боковой зазор поршневого кольца: Верхний 0,040-0,080 мм (0,0016-0,0031 дюйма)
Второй 0,030-0,070 мм (0,0012-0,0028 дюйма)
Торцевой зазор поршневого кольца: Верхний 0,260-0,360 мм (0,0102-0,0142 дюйма)
Второй 0,150-0,300 мм (0,0059-0,0118 дюйм)
Масло 0.130-0,538 мм (0,0051-0,0212 дюйма)
Диаметр шейки коленчатого вала: 46,985-47,000 мм (1,8498-1,8504 дюйма)
Диаметр шатуна: 39,985-40,000 мм (1,5742-1,5748 дюйма)

Порядок затяжки и момент затяжки болтов крышки коренного подшипника:

  • 57 Нм, 5,8 кг · м; 42 фут-фунт)

После затяжки болтов крышки подшипника убедитесь, что коленчатый вал вращается плавно вручную.

Болты шатуна

  • 39 Нм, 4.0 кг · м; 29 фунт-фут)

Головка блока цилиндров

Головка блока цилиндров изготовлена ​​из алюминиевого сплава, что обеспечивает хорошую эффективность охлаждения. Двигатель имеет два верхних распределительных вала, которые приводятся в движение ремнем газораспределительного механизма и четырьмя клапанами на цилиндр (всего 16 клапанов). В двигателе 4E-FE для регулировки зазора клапана использовались специальные прокладки клапанов.

Головка блока цилиндров
Расположение клапанов: DOHC, ременной привод
Клапаны: 16 (4 клапана на цилиндр)
Диаметр головки клапана: ВПУСКНОЙ
ВЫПУСКНОЙ
Длина клапана: ВПУСКНОЙ 93.45 мм (3,6791 дюйма)
ВЫХЛОПНАЯ 93,89 мм (3,6964 дюйма)
Диаметр штока клапана: ВПУСКНОЙ 5,970-5,985 мм (0,235-0,2356 дюйма)
ВЫПУСКНОЙ 5,965-5,980 мм (0,2348-0,2354 дюйма)
Свободная длина пружины клапана: 39,8 мм (1,5669 дюйма)
Высота распредвала: ВПУСКНОЙ 41,510-41,610 мм (1,6342- 1,6382 дюйма)
ВЫХЛОПНАЯ 41.310-41,410 мм (1,6264-1,6303 дюйма)
Наружный диаметр шейки распределительного вала: №1 24,949-24,965 мм (0,9822-0,9829 дюйма)
Диаметр других шеек 22,949-22,965 мм (0,9035–0,9041 дюйма)

Процедура затяжки головки и характеристики крутящего момента:

  • Шаг 1: 44 Нм, 4,5 кг · м; 32,5 фунт-фут
  • Шаг 2: Поверните все болты на 90 °

Болты крышки подшипников распределительного вала

  • 13 Нм (1.33 кг · м; 9,6 фунт-фут)

Технические данные

Клапанный зазор
Впускной клапан 0,15-0,25 мм (0,006-0,010 дюйма)
Выпускной клапан 0,31-0,41 мм ( 0,012-0,016 дюйма)
Давление сжатия
Стандартное 13,0 кг / м 2 /200 об / мин
Минимальное 10,0 кг / м 2 /200 об / мин
Предел перепада сжатия между цилиндрами 1.0 кг / м 2 /200 об / мин
Масляная система
Расход масла, л / 1000 км (кварт на милю) до 0,5 (1 кварт на 1200 миль)
Рекомендуемое моторное масло 5W-20, 5W-30, 10W-30
Тип масла API SG или SF
Объем моторного масла (заправляемая емкость) С заменой фильтра 3,2 л
Без замены фильтра 2,9 л
Интервал замены масла, км (миль) 5,000-10,000 (3,000-6,000)
Система зажигания
Свеча зажигания DENSO: K16R-U, NGK: BPR5EYA
Зазор свечи зажигания 0.8 мм (0,0315 дюйма)

Данные регулировки зазора клапана

Рассчитайте толщину нового толкателя регулирующего клапана, чтобы зазор клапана находился в пределах указанных значений.

R = Толщина снятого толкателя клапана
N = Толщина нового толкателя клапана
M = Измеренный зазор клапана

Впуск:
N = R + [M — 0,20 мм (0,008 дюйма)]
Выпускной:
N = R + [M — 0,36 мм (0,014 дюйма)]

Подъемники клапана доступны в 17 размерах в диапазоне от 2.От 50 мм (0,098 дюйма) до 3,30 мм (0,130 дюйма) с шагом 0,05 мм (0,0020 дюйма).

Пример (впускной клапан):
R = 2,60 мм
M = 0,55 мм
N = 2,60 + (0,55 — 0,20) = 2,95 мм.

Применение в автомобилях

Модель Год выпуска
Toyota Starlet
Toyota Tercel
Toyota Corolla
Toyota Paseo
Toyota Cynos
Toyota Corolla II
Toyota Sprinter
Toyota Corsa
ВНИМАНИЕ! Уважаемые посетители, этот сайт не является торговой площадкой, официальным дилером или поставщиком запчастей, поэтому у нас нет прайс-листов или каталогов запчастей.Мы информационный портал и предоставляем технические характеристики бензиновых и дизельных двигателей.

Мы стараемся использовать проверенные источники и официальную документацию, однако могут возникнуть расхождения между источниками или ошибки при вводе информации. Мы не консультируем по техническим вопросам, связанным с эксплуатацией или ремонтом двигателей. Мы не рекомендуем использовать предоставленную информацию для ремонта двигателей или заказа запчастей, используйте только официальные сервис-мануалы и каталоги запчастей.

Двигатель

Прекрасный 7A-FE

Во-первых, позвольте мне дать вам некоторую справочную информацию о 7A-FE, если вы еще не знаете.7A-FE — последний в великой линейке Toyota двигателей серии А. Это рядный четырехцилиндровый двигатель объемом 1762 куб. См и 16 В на базе MAP. В Другой (очень) популярный двигатель A-серии — 4A-GE, доступный в таких красотах, как Corolla GTS, MR2 и Levin, с 16 или 20 клапанами, без наддува или с наддувом! 4A-GE также используется на всех гоночных автомобилях KOOL / Toyota Atlantic. Championship, первая в Северной Америке серия разработок с открытым колесом. 7A-FE имеет в основном тот же блок, что и 4A-GE, но с большим объемом на 200 куб. см (~ 1800 куб. против.~ 1600cc), разница в ходу. Нижняя часть 7A-FE не совсем такой же сильный, как у 4A-GE. Шатун 7A-FE длиннее и тоньше, и кривошип не кованый. Еще одно важное различие между 7A-FE и 4A-GE — ГБЦ. Toyota обозначает букву F как «экономичность». голова », а буква« G »означает« производительность ». ( Следующая информация получена от Гэри М. из Toyota Список рассылки модов) В головке G используются два широко расставленных кулачка, непосредственно толкающих клапаны и приводятся в движение собственными звездочками.Это позволяет использовать очень высокие скорости клапана и отличное управление клапанами для лучшей производительности. Больший угол между клапанами также делает камеру с большей площадью поверхности, а с куполообразным поршнем — с еще большей поверхностью область. Это обеспечивает большее сжатие при лучшем рассеивании тепла, поэтому не взорвется так легко. Кроме того, порты могут быть более прямыми, чтобы они текли. лучше на высоких скоростях, что обеспечивает большую максимальную мощность. Почему Toyota делает букву F глава? Головка F имеет близкорасположенные кулачки только с одной ведущей звездочкой и парой шестерни для привода другого кулачка.Узкий угол между клапанами делает более компактная камера, которая удерживает тепло и ускоряет горение, а порт формы улучшают низкую скорость вращения. Все это делает двигатель более эффективным с больший крутящий момент на низкой скорости и более чистые выбросы при сжигании меньшего количества топливо. По сути, это причина двух дизайнов. Новейший 7A-FE фактически развивает такую ​​же мощность, как MK1 4A-GE, и больший крутящий момент на более низких оборотах, но это все из-за большего объема двигателя 200cc.Лучшая голова G определенно сделает даже больше, но потреблял бы больше топлива и, возможно, потерял бы некоторый крутящий момент на низких оборотах. Наконец, буква «E» означает «электронный впрыск топлива». 7A-FE — это Доступен в AE102, а также в версии ST последней модели (AT200) Celicas. Моторный отсек этих Celicas выглядит почти идентично AE102. Щелкните здесь, чтобы увидеть 7A-FE в модели Celica. Из-за этого «совместное использование» двигателя, почти все, что здесь упоминается, будет применимо к Celica 7A-FE (как и любой другой 7A-FE).

Значит, вам нужно больше мощности от AE102? Рассмотреть возможность преобразование стандартного двигателя 4 / 7A-FE в кастомный 7A-G (Z, T) E! Этот сингл, пока чрезвычайно важен, мод даст вам больше выгоды, чем почти любые другие моды, которые вы могли бы кидайтесь деньгами, так что если вы серьезно, вы знаете, что вам нужно делать. В преобразование влечет за собой замену головки блока цилиндров G от двигателя 4A-G (Z) E вместе с нагнетатель (опционально, обозначается буквой «Z»). Турбонаддув — опция также.Использование блока 7A дает вам преимущество в 200 куб. См. Если у тебя есть двигатель 4A-FE (также 1600 куб.см), наиболее целесообразным вариантом было бы вытащить его и поменять местами в 4A-GE (20 клапанов!), 4A-GZE или 7A-G (Z, T) E. (3S-GTE может соответствовать большому достаточно рожка для обуви, но я даже не буду вдаваться в подробности.) Причина, по которой я рекомендую полный замена потому, что это было бы дешевле и привело бы к лучшему двигателю, чем замена головок на 4A-FE. Извините, но 4A-FE не имеет существенного преимущества.Поговорим о поливе вниз. Кроме того, блок 4A-FE на не идентичен , хотя и очень похож, к блоку 4A-GE. Зачем вам делать двигатель, который уже построен Тойотой лучше?

Я собираюсь переоборудовать свой двигатель на 7A-GZE. Когда это будет сделано, я надеюсь задокументировать свой опыт для всех, кто хочет то же самое, или просто для информации. Вот отличная идея! Строкер 4А комплект, увеличенные цилиндры с нестандартными поршнями, головка 20 клапанов, комплект Twincharger…проклятие!!! Сколько трансов может взорвать эта штука!

Нажмите здесь, чтобы перейти на 7A-G (Z, T) E Страница информации о преобразовании. Здесь я буду документировать моя конверсия, а также другие (и вся соответствующая информация).

Другие двигатели серии A:

Посмотрите на этот красивый 20-вольтный 4A-GE!

20v 4A-GT все готово!
(из HyperRev 18)

Приятный ацц Джоджи HKS 5A-GTE! Это очень чистая установка…

1998 240 л.с. TRD Formula Atlantic 4A-GE

Это фото из Каталог нарядов Corolla (стр. 117). Итак, это 3S-FE … в Corolla.


Системы зажигания

Электронная система зажигания в AE102 отлично способный к воспламенению топливных смесей.Это действительно так почти для всех современных двигатели. По этой причине не рекомендуется тратить деньги на послепродажная система зажигания, если вы не планируете запускать форсирование или увеличение сжатие каким-то образом, потому что это будет один из наименее затратных модов. Однако, если у вас есть лишние деньги, высокопроизводительное зажигание поможет только вам. хорошо. В настоящее время у меня есть установка Jacobs Electronics Pro Street Ultra Team, и мой Динамометрический стенд «сиденье в штанах» говорит мне, что это дает мне немного больше мощности…не много, но я могу почувствуйте это. Конечно, мне нужно сделать несколько прогонов, чтобы подтвердить это. Более объективно установка дает мне приблизительно 15 миль больше за заправку. Щелкните здесь, чтобы увидеть последнюю информацию о команде Ultra от Джейкобса (в формате PDF, 723кБ). До этого у меня была команда Мастера Ультра Пробег, но он поджарился (например, искры, дым, жар) через год по причине, которую я не могу понять вне. Другие производители — MSD, Crane и т. Д. Я слышал «тосты» рассказы о блоках кранов, но на самом деле ничего не знаю о блоках MSD.Люди запустить их, значит, они чего-то стоят. Если все, что вам нужно, это свеча зажигания проводов используйте Jacobs Electronics или Magnecor (8,5 мм). Я не думаю, что TRD делает провода для AE102. Что касается технологии емкостного разряда Nology, некоторым она нравится, в то время как другие нет (я не знаю). Свечи зажигания? Да ладно, это не мод … это настройка часть. Приобретайте обычные котлы. Вы не ошибетесь с NGK или NipponDenso. Я сделал доступными оба информационные таблицы производителей свечей зажигания в Технических Информационный раздел, а также техническая статья о свечах зажигания.Не забудьте использовать правильный температурный диапазон для вашего применения. В большинстве случаев заводские спецификации в порядке (например, NGK BKR5EYA — стандартный штекер для 4 / 7A-FE).

Всасывание

Сменный воздушный фильтр K&N исправен в большинстве случаев достаточно. Стандартная воздушная камера должна пропускать достаточно воздуха как есть, даже если впускной довольно мелковат. Если вы выберете установку с открытым конусом, вы рискуете потерять мощность всасывая горячий воздух под капотом.Приточный «тепловой экран» есть доступны для решения этой проблемы, или вы можете создать свою собственную. Если вы хотите изменить настройку впуска, Я рекомендую направить воздухозаборник к источнику холодного воздуха (или, по крайней мере, не более горячего воздуха). чем сток). Не обращайте внимания на запасные части здесь; это потребует установки специальной сантехники, но работа должна быть довольно простой. Предлагаю снять впускной резонатор у колодца крыла и отвести от него. корпус дроссельной заслонки к крылу или воздушной дамбе. Переставив аккумулятор в багажник (очень хорошая идея) освободит для этого больше места под капотом, а также улучшит распределение веса.Вы можете убедиться, что новая настройка лучше, измерение всасываемого воздуха температура и давление во время пробных запусков.

Два шланга PCV выходят из крышки клапана позволять выхлопным газам картера и картерным газам загрязнять всасываемый воздух. К держите впускной воздух чистым, закройте эти два отверстия на впускной стороне и проложите шланги PCV к уловителю с сапуном. Просто не забудьте очистить ловушка по мере необходимости. Выходной конец клапана PCV составляет 3/8 дюйма, и выход без клапана — 1/4 дюйма.

Следующие рисунки иллюстрируют несколько примеров.

Рекомендуемые масла

Просто используйте полностью синтетический материал, и все будет в порядке. Используйте обычное масло только во время обкатки. Я рекомендую масла Red Line, Mobil 1, Motul и Amsoil. Красная линия — это здорово, но слишком дорого оправдать для регулярного использования. Amsoil и Motul тоже хороши, но не всегда имеется в наличии.Поэтому просто используйте Mobil 1. Вы можете найти его практически в любом магазин автозапчастей.

Декоративный

Добавьте немного // элегантности TRD в свой моторный отсек:


Крышка радиатора

Крышка маслозаливной горловины:
Японский стиль
(00602-12108-002)

Крышка маслозаливной горловины:
Стиль кандзи
(00602-12108-001)

4-цилиндровый дрейфовый двигатель Papadakis Racing мощностью 1000 л.с.

Стефан Пападакис выиграл много гонок, и он сделал это, связав одну руку за спиной.Конечно, не буквально — дрифтинг — это жестокая форма автоспорта, в которой обе руки заняты полностью, — но в двигателях, которые приводили его в движение. В отличие от гонок Formula DRIFT, когда у него были большие 8-цилиндровые силовые установки, Пападакис последовательно и успешно добивался большой мощности с помощью агрегатов с малым рабочим объемом.

Последняя машина для дрифта его команды, хэтчбек Toyota Corolla 2018 года, управляемый Фредриком Аасбо, разрывается на трассе Формулы D и, несмотря на то, что является одним из самых маленьких двигателей в этой области, безупречно надежен.Corolla приводится в движение модифицированным двигателем Toyota 2AR-FE, который развивает впечатляющую мощность в 1000 лошадиных сил за счет комбинации закиси азота и 30 фунтов на квадратный дюйм наддува.

Мы следим за тем, как Пападакис разбирает двигатель после четырех гонок, чтобы изучить генетический состав этого высоконагруженного 4-цилиндрового двигателя. Познакомьтесь с инженерным опытом Papadakis Racing, узнайте о некоторых секретах скорости и о том, на что обращать внимание при разборке высокопроизводительного двигателя.

Фото 2/25 | Двигатель Papadakis Racing Drift 2AR FE

Двигатель 2AR-FE вытесняет 2.7 литров, с помощью более длинноходного коленчатого вала, и питает хэтчбек Toyota Corolla 2018 года Фредрика Аасбо из серии Formula Drift.

Фото 3/25 | Двигатель Papadakis Racing Drift 2AR FE

В то время как обычно привод на передние колеса, Papadakis Racing повернул двигатель 2AR-FE на 90 градусов в продольное положение для дрифта.

Фото 4/25 | Двигатель Papadakis Racing Drift 2AR FE

При снятом двигателе автомобиля для освежения все передние аксессуары, такие как водяной насос, генератор и т. Д.удалены. Далее двигатель будет разбираться, по крупицам и проверяться.

Фото 5/25 | Топливная форсунка для двигателя Papadakis Racing Drift

Пападакис снимает огромные топливные форсунки объемом 2 000 куб. См с впускных отверстий, стараясь не поцарапать их отверстия, поскольку это может привести к тому, что они не закроются.

Фото 6/25 | Снятие крышки клапана двигателя Papadakis Racing Drift

Далее снимается клапанная крышка.Это стандартная деталь, содержащая масляные распылители для смазки и охлаждения клапанного механизма.

Фото 25.07 | Клапанный механизм двигателя Papadakis Racing Drift

Под клапанной крышкой находится пара отшлифованных заводских распредвалов, кастомные коромысла, клапаны Supertech с увеличенными штоками и клапанные пружины PSI; все это необходимо для производства колоссальных 250 л.с. на цилиндр при более чем 9000 об / мин.

Фото 8/25 | Снятие передней крышки двигателя Papadakis Racing Drift

Пападакис с помощью монтировки снимает переднюю крышку двигателя, стараясь не погнуть ее.Под ним находятся цепь привода ГРМ, натяжитель и звездочки кулачка.

Фото 9/25 | Цепь привода распредвала двигателя Papadakis Racing Drift

Цепь газораспределительного механизма является заводской, как и регулируемая звездочка впускного распредвала, но звездочка выпускного распредвала представляет собой нестандартную фиксированную деталь. Из-за проблемных гармоник было определено, что блокировка выпускного кулачка лучше для долговечности клапанного механизма, несмотря на небольшую потерю мощности.

Фото 10/25 | Кастомный фиксатор двигателя Papadakis Racing Drift

После снятия цепи привода ГРМ следом идут клапанный механизм и головка блока цилиндров.Здесь вы можете увидеть нестандартные коромысла, которые передают подъемную силу от кулачка к штоку клапана. Ретейнеры изготовлены на заказ на собственном производстве Papadakis Racing.

Фото 11/25 | Ремень кулачка двигателя Papadakis Racing Drift Engine Фото 12/25 | Коромысла двигателя Papadakis Racing Drift

Кулачки и пояс кулачка снимаются, обнажая коромысла, пружины клапана и регуляторы зазора (подъемники).Пападакис говорит, что заводской клапанный механизм — это немного слабое место, но добавленные особые штрихи позволяют ему работать очень хорошо даже при 9000 об / мин.

Фото 13/25 | Кастомный двигатель Papadakis Racing Drift против штатного рокера

Слева направо показаны нестандартное коромысло, заводское коромысло и индивидуальный цельный подъемник. Заводские коромысла, как известно, соскальзывают со штока клапана, если происходит смещение клапана, поэтому Пападакис специально разработал коромысло из заготовки, которое имеет более глубокую канавку, чтобы удерживать его на штоке клапана.Подъемники представляют собой нестандартные цельные детали (заводские агрегаты — гидравлические), которые регулируются с помощью небольших дисковых прокладок.

Фото 14/25 | Снятие головки блока цилиндров двигателя Papadakis Racing Drift

Пападакис снимает головку блока цилиндров после ослабления штатных шпилек головки ARP 625, которые затянуты с усилием 150 фут-фунт. Повышение герметичности — постоянная проблема с давлением в цилиндре, которое испытывает этот двигатель, поэтому качественные крепежи имеют первостепенное значение.

Фото 15/25 | Поршни двигателя Papadakis Racing Drift

При снятой головке видны нестандартные поршни JE.У этого двигателя четыре трудных уик-энда с высокими оборотами, сильным наддувом и дрифтом. Каждый цилиндр двигателя выдает невероятные 250 л.с. с наддувом и закись азота, что усложняет работу поршня.

Фото 16/25 | Головка блока цилиндров двигателя Papadakis Racing Drift

Головка блока цилиндров, также глубиной в четыре обода, тоже хорошо держится. Вы можете увидеть контур прокладки головки MLS, из которой не протекала охлаждающая жидкость, хотя это обычная проблема для этой архитектуры из-за безумного наддува и давления в цилиндре, необходимого для получения четырехзначной мощности.

Фото 17/25 | Ремень блока цилиндров двигателя Papadakis Racing Drift

Пападакис снимает поддон масляного поддона и нижний пояс блока, обнажая коленчатый вал.

Фото 18/25 | Вращающийся узел двигателя Papadakis Racing Drift

Нижняя часть 2AR-FE чрезвычайно толстая — так и должно быть — с заводским коленчатым валом из кованой стали, полученным от двигателя 1AR-FE объемом 2,7 л, шатунами с двутавровой балкой и сверхпрочными, изготовленными по индивидуальному заказу, кованными Поршни JE.

Фото 19/25 | Papadakis Racing Drift Engine Шпильки с головкой ARP

При перевернутом двигателе Пападакис вынимает поршни JE из их отверстий. Обратите внимание на большие шпильки головки ARP 625.

Фото 20/25 | Подшипник стержня двигателя Papadakis Racing Drift

Проверены стержни и подшипники. Шатунный подшипник рассказывает важную информацию о рабочем состоянии двигателя и является незаменимым помощником при проблемах с смазкой.На этом наборе виден некоторый износ, который, возможно, связан с масляным голоданием во время прохождения поворотов с высоким ускорением.

Фото 21/25 | Юбка поршня двигателя Papadakis Racing Drift Фото 22/25 | Papadakis Racing Drift Engine JE Поршень

Пападакис использует JE Pistons в своем дрейфовом двигателе с середины 2000-х годов. Комплект в этом двигателе изготовлен в соответствии с его спецификациями из кованого алюминия марки 2618 и имеет круглую юбку для максимальной прочности.Толстые кольцевые пазы, коронки и стенки штифтов гарантируют, что двигатель сможет выдерживать более 1000 лошадиных сил.

Фото 23/25 | Снятие шатуна двигателя Papadakis Racing Drift

Пападакис снимает кривошип, который, что удивительно, представляет собой модифицированную деталь OEM, полученную от серийного 1AR-FE, двигателя, аналогичного 2AR, но с более длинным ходом. Пальцы шатуна кривошипа были обработаны шире, чтобы в них можно было разместить мелкоблочный подшипник Chevy, что позволяет выбирать шатуны более индивидуально, а также увеличивает несущую способность подшипника.Calico Bearings производит специальные подшипники для двигателя.

Фото 24/25 | Шатуны двигателя Papadakis Racing Drift

Вот еще один снимок модифицированного коленвала. Коренные шейки остались прежними, а для подшипников Chevy изменены только шейки шатунов.

Фото 25/25 | Блок двигателя Papadakis Racing Drift

Смотреть фото галерею (25) Фото

Пустой блок 2AR-FE будет загружен в горячую цистерну, проверен на предмет критических измерений и повторно собран для дальнейшего дрейфового режима в гоночной машине Аасбо.

Toyota 7A-FE Engine Проблемы и технические характеристики

Раскрытие информации: мы можем зарабатывать деньги или продукты от компаний, упомянутых в этом сообщении, через партнерские ссылки на продукты. Это не требует дополнительных затрат.

Двигатели серии A, выпускаемые Toyota Motor Corporation, представляют собой четырехрядные двигатели внутреннего сгорания объемом от 1,3 л до 1,8 л. Эти двигатели имеют блоки цилиндров из чугуна и головки цилиндров из алюминия.

Toyota начала производство двигателей серии A в конце 1970-х годов, пытаясь найти замену двигателям серии K для своей новой модели Tercel. Компания стремилась создать двигатель с современным дизайном и одновременно с высокой топливной экономичностью, высокими характеристиками и минимальными выбросами. Серия A состоит из двигателей DOHC (один из первых серийных двигателей японских производителей), двигателей с 4 клапанами на цилиндр, двигателей 4A-GE, а также первых модификаций двигателей с 5 клапанами на цилиндр. .

Toyota выпустила единственную модификацию двигателя 7A-FE мощностью от 105 до 120 л.с. Однако наименее мощный двигатель 7A-FE Lean Burn оказался проблематичным, а его обслуживание — довольно дорогостоящим. Так что это не лучший выбор.

Порядок включения двигателя 7A-FE — 1-3-4-2.

Одновременно с двигателями 7A марка выпускала и более новые варианты двигателей 4A и 5A.

Модель 7A-FE оснащена зубчатым ремнем привода ГРМ, который необходимо менять после того, как автомобиль пробегет 60 000 миль / 100 000 км.

В 1998 году Toyota начала производить двигатель 1ZZ вместо двигателя 7A-FE.

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ 7AFE

Производитель Завод Камиго
Завод Симояма
Завод двигателей Deeside
Северный завод
Завод двигателей FAW в Тяньцзине № 1
Также называется Тойота 7А
Производство 1990-2002
Блок цилиндров из сплава Чугун
Конфигурация Прямой-4
Клапанный DOHC
4 клапана на цилиндр
Ход поршня, мм (дюйм) 85.5 (3,37)
Диаметр цилиндра, мм (дюйм) 81 (3,19)
Степень сжатия 9,5
Рабочий объем 1762 куб. См (107,5 куб. Дюймов)
Выходная мощность 78 кВт (105 л.с.) при 5200 об / мин
82 кВт (110 л.с.) при 5600 об / мин
86 кВт (115 л.с.) при 5600 об / мин
89 кВт (120 л.с.) при 6000 об / мин
Выходной крутящий момент 159 Нм (117 фунт · фут) при 2800 об / мин
156 Нм (115 фунт · фут) при 2800 об / мин
149 Нм (110 фунт · фут) при 2800 об / мин
157 Нм (116 фунт · фут) при 4400 об / мин
Красная линия
л.с. на литр 59.6
62,4
65,3
68,1
Вид топлива Бензин
7A-FE Масса, кг
Расход топлива, л / 100 км (миль на галлон)
-City
-Highway
-Combined
для Corona T210
7,2 (32)
4,2 (56)
5,3 (44)
Турбокомпрессор Безнаддувный
7A-FE Расход масла, л / 1000 км
(кв. На мили)
до 1.0
(1 кварта на 750 миль)
Рекомендуемое моторное масло 5W-30
10W-30
15W-40
20W-50
Объем моторного масла, л (кварты) 4,7 (5,0)
Интервал замены масла, км (миль) 5 000–10 000
(3 000–6 000)
Нормальная рабочая температура двигателя, ° С (F)
Срок службы двигателя, км (миль)
-Официальная информация
-Реальная

300 000+ (185 000+)

Приложения двигателя 7AFE

  • AT211 Avensis 1997–2000 (только Европа)
  • AT191 Caldina 1996–1997 (только Япония)
  • AT211 Caldina 1997–2001 (только Япония)
  • AT191 Carina 1994–1996 (только Япония)
  • AT211 Carina 1996–2001 (только Япония)
  • AT191 Carina E 1994–1997 (только Европа)
  • AT200 Celica 1993–1999 (кроме Японии)
  • AE92 Corolla / Conquest сентябрь 1993 — около 1998 (Южная Африка)
  • AE93 Corolla 1990–1992 (только Австралия)
  • AE102 / 103 Corolla 1992–1998 (без Японии)
  • AE102 Corolla / Prizm 1993–1997 (Северная Америка)
  • AE111 Corolla ± 1997– ± 2000 (ЮАР)
  • AE112 / 115 Corolla 1997–2002 (кроме Японии)
  • AE115 Corolla Spacio 1997–2001 (только Япония)
  • AT191 Corona 1994–1997 (кроме Японии)
  • AT211 Corona 1996–2001 (только Япония)
  • AE115 Sprinter Carib 1995–2001 (только Япония)

ПРОБЛЕМЫ ДВИГАТЕЛЯ 7A-FE

  1. Большой расход топлива.В большинстве случаев проблема связана с датчиком кислорода, который мы рекомендуем заменить. Если вы заметили нагар на свечах зажигания, черный дым из выхлопной трубы или сильную вибрацию на холостом ходу, необходимо проверить КАРТУ.
  2. Большой расход топлива, сопровождающийся вибрациями. Это означает, что форсунки необходимо прочистить.
  3. Проблемы с оборотами, зависанием и быстрым вращением можно решить после осмотра клапана регулировки холостого хода, датчика положения дроссельной заслонки и очистки корпуса дроссельной заслонки.
  4. Если двигатель не запускается, проблема может быть в температуре охлаждающей жидкости двигателя. Значит, вам нужно это проверить.
  5. В случае резкого холостого хода необходимо убедиться в чистоте корпуса дроссельной заслонки и клапана управления воздухом холостого хода. Также рекомендуется проверить свечи зажигания и форсунки с клапаном PCV.
  6. Если двигатель внезапно останавливается, необходимо осмотреть топливный фильтр, а также топливный насос и распределитель зажигания.
  7. Если вы видите, что двигатель начинает расходовать масло, значит, двигатель требует серьезного ремонта из-за старения.Вам необходимо приобрести уплотнения штока клапана, а также скребковые кольца.
  8. Если двигатель стучит, нужно отрегулировать клапана. Также это может быть удар булавкой в ​​запястье.

Toyota Corolla 7afe 4afe Ремонт двигателя Установить поршни, ГБЦ, установить синхронизацию двигателя

https://www.youtube.com/watch?v=RlCwddXGm3o

Распределительный вал заменяет двигатели Toyota 4AFE и 7AFE

1996 7afe 4afe Toyota Corolla Ремонт двигателя 2015 Завершено!

Последнее обновление 2021.06.14 / Партнерские ссылки / Изображения из Amazon Product Advertising API

1ZZ-FE 1.8L Engine Best Review Технические характеристики Проблемы и надежность

Двигатель 1ZZ-FE представляет собой четырехцилиндровый двигатель объемом 1,8 л. Он был разработан в Западной Вирджинии и изготовлен в Онтарио, который расположен в центральной Канаде. Годы производства с 1998 по 2007 год. Эта серия стала заменой двигателей Toyota серии A.

Все силовые агрегаты семейства ZZ объединяет 4-х цилиндровый блок, 16-ти клапанная ГБЦ. Блок двигателя выполнен из алюминия, с тонкостенной чугунной гильзой.Еще одна особенность блока двигателя 1ZZ-FE — открытый кожух системы охлаждения, благодаря чему цилиндр лучше охлаждается, сам блок дешевле в изготовлении, но жесткость конструкции относительно невысока.

1ZZ-FE 1.8L Двигатель Технические характеристики

Двигатель Toyota 1ZZ-FE имеет следующие характеристики:

  • Его точный объем 1794 кубических сантиметра
  • Мощность — 140 лошадиных сил
  • Максимальный крутящий момент — 171 Нм при 4200 об / мин
  • Количество цилиндров — 4
  • Клапанов на цилиндр — 4
  • Степень сжатия — 10

Двигатель этой серии, в отличие от предыдущей серии 7A, представляет собой легкий алюминиевый блок цилиндров, в котором используется технология литья под давлением.Кроме того, головной блок сделан из алюминия, и это второй опыт Toyota по изготовлению силового агрегата из легкого сплава, не выдерживающего избыточного нагрева. Вот почему инженеры использовали лазерную технику для распыления на седло клапана.

Это, а также открывающаяся сверху рубашка охлаждения, которая равномерно распределяет тепловыделение, позволяет поддерживать рабочую температуру на нормальном уровне, который для этого двигателя составляет 95 градусов Цельсия. Даже однократное повышение температуры в течение длительного периода времени может вызвать преждевременный отказ агрегата.

Использование временной цепи вместо обычного ремня требует соответствующей смазки двигателя. Поэтому ему важно не допустить, чтобы масло упало ниже соответствующей отметки на мерной линейке, которая соответствует 3,7 литрам. Кстати, производитель допускает расход масла в количестве 1 литр на 1000 км, что, конечно, уже является признаком неисправности, но для производителя «перестрахование» не является гарантийным случаем.

Расход топлива

Производителю двигателей 1ZZ-FE удалось добиться высокой мощности при низком расходе топлива.Это стало возможным благодаря использованию многоточечной системы впрыска. Расход топлива зависит от массы автомобиля, коробки передач, кузова и аэродинамики привода. Например, для сравнения расхода мы использовали минивэн Corolla Verso с пятиступенчатой ​​«мешалкой», представитель Avensis класса D с четырехступенчатым автоматом и компактный кроссовер RAV4 с механикой и передним приводом.

  • Corolla Verso R10: городской режим — 9,9 л, дорожный — 6,5 л, смешанный цикл — 7,7 л.
  • Avensis T250: город — 10.3 литра, трасса — 6,3 литра, смесь 7,7 литра.
  • RAV4 XA20: 9,4 литра в городе, 6,2 литра на улице и 7,4 литра в смешанном режиме.

У всех этих машин средний расход примерно на одном уровне — около 7,5 литров в режиме трасса-город, что более чем жизнеспособный показатель. Но даже в этом случае самый высокий расход среди вышеперечисленных автомобилей, оснащенных двигателем 1ZZ-FE, у седана среднего класса Avensis. Причина кроется в коробке. Как известно, автомобили с автоматической коробкой передач имеют относительно более высокий расход, чем автомобили с механической установкой.

Также у Avenis нет пятой передачи. Версия семейства Corolla проигрывает RAV4 из-за слишком больших и тяжелых габаритов. Что касается RAV4, то с экономической точки зрения он имеет небольшой вес и высокую удельную мощность. Также не забывайте, что RAV4 с двигателем 1ZZ-FE не представлен в полноприводной версии.

1ZZ-FE 1.8L Обзоры двигателя

Семейство безнаддувных бензиновых двигателей Toyota ZZ включает несколько силовых агрегатов. Прежде всего, это 1.8-литровые двигатели двух поколений (1ZZ-FE и 2ZZ-FE), а также двигатели объемом 1,6 литра (3ZZ-FE) и 1,4 литра (4ZZ-FE).

Блок цилиндров

При проектировании станка применено несколько новаторских решений. В частности, тонкостенная гильза из чугуна интегрирована в алюминиевый блок цилиндров, что снижает вес двигателя 1ZZ-FE, имеющего особенно неровную внешнюю поверхность, что обеспечивает прочное соединение и лучшую теплопередачу.

Открытая рубашка охлаждения также имеет ряд преимуществ: помимо лучшего отвода тепла, такая конструкция позволяет производителю изготавливать блок цилиндров в форме, тем самым снижая производственные затраты.Отрицательный момент в этом — пониженная жесткость блоков.

Еще одна особенность Toyota 1ZZ-FE — увеличенный картер, в котором совмещены подшипники коленчатого вала. Блок цилиндров и картер разделены точно по средней линии коленчатого вала. Жесткость двигателя повышается за счет того, что стальная крышка вкладыша коренного подшипника отлита в цельный картер из легкого сплава.

Газораспределительный механизм

Двигатель 1ZZ относится к типу с двумя распредвалами и имеет шестнадцать клапанов.Инженеры Toyota смогли уменьшить вес клапана, чтобы уменьшить усилие пружины, и уменьшить ширину кулачка, чтобы уменьшить трение. Идея использования чашек клапана (они же подруливающие устройства) для регулирования зазора клапана не может считаться наиболее правдоподобной. Отказ от обычной прокладки значительно усложнил процедуру регулировки, которой часто пренебрегают водители.

Еще одним важным нововведением является использование однорядной роликовой цепи с небольшой отметкой в ​​приводе ГРМ. Натяжитель крепится храповым механизмом.Теоретически это должно прибавить надежности, но на практике только усложняет конструкцию, сокращает ресурсы. Длинная цепь 1ZZ-FE растягивается до 150 000 пробега. При этом двигатель работает тяжелее, а система может указывать на неисправность фаз газораспределения. Важно отметить, что в этом случае необходимо заменить все элементы привода, в том числе звездочку и натяжитель.

Сервис

Не всегда с двигателем Toyota 1ZZ-FE продается инструкция на английском языке, в которой описаны необходимые работы по техническому обслуживанию, основные из которых перечислены ниже.

В двигателе Toyota 1ZZ-FE, помимо цепи ГРМ, которую необходимо заменять на дистанции 90 тысяч километров, также необходимо обратить внимание на крепление ремня, которое меняется каждые 50 000 км. Кулер меняется каждые 30 тыс. Км. Также не стоит забывать и о системе вентиляции картерных газов — ее нужно выдыхать каждые 25 тысяч.

Объем масла и тип

Ресурс масла в двигателях внутреннего сгорания невелик — всего 7 500 км. Какое масло лучше заливать в Тойоту с 1ZZ-FE, водителю придется выбирать для себя, ведь производитель указывает два типа вязкости 5W-30 или 10W-30, объем которых в двигателе равен 3.7 литров.

Установлено

Двигатель 1ZZ-FE широко используется компанией Toyota. С конвейера сошли автомобили другого класса и кузова. Для европейского рынка минивэны японского производства Toyota Opa (XT10) и Toyota Wish (AE10). Кроме того, специально для японского рынка с двигателем 1ZZ-FE был выпущен альтернативный седан Camry Toyota Allion (T240). Пятиместный хэтчбек Toyota Matrix (E130) хоть и выглядит как минивэн, но не такой. Этот автомобиль был специально разработан для рынка Северной Америки, где и производился.

1ZZ-FE под капотом можно найти на Toyota Celica седьмого поколения, где этот двигатель был выбран для серии GT, как бюджетная альтернатива GT-S с 2ZZ-GE от Yamaha-Toyot.

В массовых автомобилях Toyota двигатель 1ZZ-FE встречается на RAV4 в кузове XA20, два поколения Avensis (с 1998 по 2009 год). Но популярная Corolla сменила три поколения, прежде чем конструкторы смогли найти жизнеспособную альтернативу этому двигателю — со 110-го по 150-е поколение поклонники марки могут выбрать этот двигатель в Corolla.

Помимо японского автогиганта, машину использовали американские производители — Pontiac, Chevrolet. Британский лотос прикончил им своего спидстера Элизу. Даже сейчас, лицензированный и переименованный по-своему, ДВС 1ZZ-FE активно устанавливается на китайские автомобили, в частности, что вызывает озабоченность у Geely.

Модификация

Двигатель 1ZZ-FE является частью небольшого семейства 1ZZ ICE. Кроме него, в линейку входят:

  • 1ZZ-FED производится только в Японии и является точной копией FE, за исключением облегченного шатуна.
  • 1ZZ-FBE был разработан для Бразилии и адаптирован для использования биотоплива.

1ZZ-FE 1.8L Проблемы и надежность

  • Основная проблема владельцев 1ZZ-FE — повышенный расход масла. Это относилось к двигателям, произведенным до 2002 года. Проблема была решена заменой маслосъемного кольца на кольцо, произведенное после 2005 года, когда была решена проблема расхода масла в этом двигателе.
  • Шум двигателя устраняется заменой цепи или натяжителя.Также в этом случае можно обратить внимание на клапан, но врезка клапана является в некотором роде исключением.
  • Вибрация двигателя и плавающие обороты холостого хода устраняются заменой задней подушки двигателя и промывкой корпуса дроссельной заслонки с клапаном ХХ.
  • Как уже было сказано, двигатель не переносит лишнего тепла. в этом случае страдает геометрия головки блока и требуется замена блока цилиндров, который не подлежит ремонту, хотя известен случай гильзы 1ZZ-FE.Считается, что машины, выпущенные после 2005 года, имеют больший срок службы, чем предыдущие версии.

1ZZ-FE 1.8L тюнинг

Увеличить мощность двигателя 1ZZ-FE можно двумя способами — установкой нагнетателя или небольшими доработками. В первом случае используется либо компрессор Toyota SC14, либо турбина Garett GT28. Нагнетатель оснащен форсункой объемом 440 куб. См и топливным насосом Walbro 255. Без вмешательства поршневой системы его мощность можно увеличить до 200 л.с.Заменив шатун и поршень на кованые, снизив степень сжатия до 8,5, установив инжектор объемом 630 см3 и установив прямоточный выхлоп, можно получить более 300 л.с.

Второй вариант даст вам максимальный прирост всего на 30 лошадей, но и не требует больших вложений. Monkey Wrench Racing холодный воздухозаборник, прямоточный выхлоп и распредвал второго уровня. Других настроек для 1ZZ-FE нет.

Заключение

Как и у любого другого двигателя, у 1ZZ-FE от Toyota есть свои плюсы и минусы.Несмотря на большие размеры, силовой агрегат не радует гонщика. Причина в относительно небольших ресурсах машины. Но его новаторство и удачная конструкция привели к тому, что в будущем этот двигатель послужит прототипом для другого двигателя Toyota — 2ZZ-GE или 4ZZ-FE.

Corolland: Двигатели Toyota Corolla

См. Также механические коробки передач C-50 и C-52 и автоматическую коробку передач A245E.

Corollas, выпускавшиеся с 1993 по 1997 год, предлагали два варианта двигателя: 1.6-литровый 4A-FE и 1,8-литровый 7A-FE (подробности, сравнения и диаграммы можно найти здесь!). Поскольку законы о выбросах и настройки изменились, цифры в лошадиных силах немного изменились, но не настолько, чтобы средний человек заметил: в 1993 году мощность составляла 110 л.с. при 5600 об / мин. К 1996 году пиковая мощность была меньше, но вы могли получить ее быстрее: 105 л.с. при 5200 об / мин. Крутящий момент увеличился на два футо-фунта за то же время, со 115 до 117.

Условием для названий двигателей является первая цифра (например.грамм. 1, 2, 4, 7) показано поколение двигателя в рамках его конструктивного семейства; Например, 4A претерпел несколько серьезных изменений, начиная с карбюраторов, затем с впрыском топлива, а затем с пятью клапанами на цилиндр.

Автомобили 1983 года получили новый 1,6-литровый двигатель 4A. 4A имел 1587 куб.см, диаметр цилиндра и ход поршня 3,94 x 3,03, степень сжатия 9,0: 1, 70 л.с. При 4800 об / мин, 85 фунт-фут при 2800 об / мин в 1983 году. 1,6-литровый 4A-GE имел более высокую степень сжатия (9,4: 1, а не 9.0: 1), с электронным впрыском топлива, 16-клапанная версия 4A, 112 лошадиных сил и 97 фунт-фут крутящего момента. В этом последнем двигателе использовались двойные кулачки, центральная свеча зажигания («полусухая») и регулируемая индукция — серия клапанов во впускных отверстиях для улучшения скорости впуска на низких оборотах двигателя и увеличения потока воздуха на более высоких скоростях. Масляный радиатор был стандартным. Коробки передач, используемые с 4A-GE, были пятиступенчатой ​​ручкой с близким передаточным числом и четырехступенчатой ​​автоматической коробкой передач.

Полное описание двигателей 4A-FE и 7A-FE находится на сайте Toyoland.

Модели 1998 года были оснащены новым семейством двигателей ZZ, в котором использовался алюминиевый блок с железными гильзами цилиндров, облегченная открытая дека и полноразмерный пояс коренного подшипника для усиления нижней части. 1ZZ-FE имел длинный ход для увеличения крутящего момента (диаметр 79 мм и ход 91,5 мм), с двумя верхними кулачками и четырьмя клапанами на цилиндр. Конструкция сужающейся зоны сжатия головок заставляет смесь топлива и воздуха к свече зажигания, обеспечивая высокую степень сжатия 10: 1 на обычном газе.Посмотрите на фотографиях отличный натяжитель цепи ГРМ «Сделай сам» для 1ZZ-FE.

В то время как каждая топливная форсунка срабатывала сразу на 4A-F, с двумя одновременно на 4A-FE (так что одна стреляла по закрытому клапану), двигатели 1ZZ-FE и более новые срабатывали по каждой форсунке, только когда впускной клапан этого цилиндра был открыт. Точно так же электронное зажигание 4A уступило место прямому зажиганию на двигателях ZZ и более поздних версиях. Все они имели блок и головку из алюминиевого сплава со стальными гильзами цилиндров и сдвоенными верхними распредвалами.

1ZZ-FE привнес в Corollas значительно большую мощность и экономичность; он дебютировал с 120 лошадиными силами при 5200 оборотах в минуту и ​​122 фунт-фут крутящего момента при 4400 оборотах в минуту. Это было больше мощности, чем у 7A-FE, при более низких оборотах двигателя, так что Corolla была бодрой на всех оборотах двигателя. В конце концов, 1ZZ-FE достигнет 130 л.с. и 125 Нм крутящего момента.

Седла клапанов были распылены, а не вдавлены в головку, поэтому они могли быть намного тоньше и более эффективно передавать тепло к головке; это означало, что на штоки клапанов попадало меньше тепла, что позволяло использовать более тонкие и легкие штоки клапанов и, в свою очередь, более тонкие кулачки, что сокращало паразитные потери и позволяло обоим кулачкам приводиться в движение с помощью тихой, компактной цепи ГРМ с одним роликом.

Впрыск топлива был безвозвратным, с регулятором давления в бензобаке, что уменьшало риск возгорания и повышало эффективность сгорания. Каталитический нейтрализатор был перемещен ближе к двигателю для большей эффективности, что потребовало перемещения алюминиевого впускного коллектора в переднюю часть двигателя. Длинные направляющие воздухозаборника, изготовленные из экструдированного алюминия (более гладкие, чем отливки), повышенной мощности на малых оборотах.

4A-F 4A-FE 1ZZ-FE 1ZZ-FE 1NZ-FE 900 Стандартное исполнение 1988-92 1993-97 2006-2008 2003-05 2008-?
Диаметр цилиндра и ход поршня 3.19×3.03 3,19×3.03 3,11 x 3,60 3,17 x 3,48
Рабочий объем 1587 1587 куб. См 1794 куб. : 1 9,5: 1 10,0: 1 10,7
Клапаны 8 16 16; ВВТ-и 16; VVT-i 16 VVT-i
Мощность в лошадиных силах 90 при 6000 105 при 5800 126 при 6000 130 при 6000 108 при 6000 137
Крутящий момент @ 3600 115 @ 2800 122 @ 4200 125 @ 4200 103/4 400 126

* Не продается в Северной Америке

Двигатель ZZ второго поколения появился 2000 Corollas; он добавил технологию регулируемого клапана («VVT-i»), которая принесла прирост мощности на пять лошадиных сил вместе с дополнительными 2–3 милю на галлон.Celica GT 2000 года представила высокопроизводительную версию мощностью 180 л.с. эта мелодия дошла до Corolla 2003-08 гг. Самая большая разница между ними заключалась в коротких бегунах из смолы, оптимизированных для максимальной мощности; система изменения фаз газораспределения также изменила подъемную силу на версии с 180 лошадиными силами.

2003 год ознаменовался еще одним крупным достижением, на этот раз в увеличении расхода топлива. Хотя Corolla 2003 года прибавила и вес, и немного лошадиных сил — еще 5 л.с., что в сумме составило 130 с крутящим моментом 125 фунт-фут — расход бензина фактически увеличился.Версия для США не могла использовать прямой впрыск, который использовался в японских версиях, из-за серы в бензине.

В 2006 году произошло еще одно обновление конструкции двигателя объемом 1,8 литра для моделей, продаваемых в Японии, начиная с 2007 года, с целью импорта в США в 2008 году или около того. Похоже, что это было главным образом усовершенствованием технологии регулируемых клапанов, а именно ее применение как к впускным, так и к выпускным клапанам, как в Dodge Caliber. С этой системой расход бензина немного увеличился, хотя мощность увеличивается более постепенно:

905 при 6000
Пиковая
л.с.
Максимальный крутящий момент
Нм (кг-м)

Крутящий момент
(фунт-фут)

2ZR-FAE 137 при 6100 126 126
2ZR-FE 134 при 6000 175 (17.9) 128-129
1NZ-FE
140 (14,4) 103

Пик крутящего момента был достигнут при 4400 об / мин для 2ZR-FE и 1NZ-FE, и при 4000 об / мин для 2ZR-FAE.

Экономия топлива и точные размеры двигателя:


(куб.см)
Пробег *
(км / л)
миль на галлон *
2ZR ИП 1,797 17.2 40,5
1NZ-FE 1,496 18,2 43

* Японские технические условия измерения

Corolla XRS 2009 года перешла с двигателя Celica на четырехцилиндровый Camry; мощность увеличилась со 180 до 158, но мощность среднего уровня была лучше. Крутящий момент был оценен в 162 фунт-фут.

США Двигатели 2013-2021 гг .: войдите в M20A-FKS (в 2019 г.)

На Toyota Corollas 2018 года были доступны две версии базового 1,8-литрового двигателя.Стандартным двигателем, доступным для всех, кроме LE Eco, был 2ZR-FE — 1,8-литровый четырехцилиндровый двигатель с двумя верхними кулачками и четырьмя клапанами на цилиндр; Он имел блок и головку из алюминиевого сплава и имел объем 1798 куб. Интеллектуальная система изменения фаз газораспределения использовалась как на впускных, так и на выпускных клапанах; Двигатель имел последовательный многоточечный впрыск топлива и прямое зажигание и работал на обычном топливе.

В LE Eco использовался новый 2ZR-FAE, основным отличием которого было использование системы «Valvematic».Valvematic звучит совершенно по-новому, но, похоже, является расширением интеллектуальной системы изменения фаз газораспределения «VVT-i», которая имеет более широкий диапазон подъема и фазировки на стороне впускного клапана.

,0 : 1 900 29/36 937 900 Вариатор
Двигатели для США 2ZR-FE 2ZR-FAE M20A-FKS
Диаметр цилиндра x ход 3,17 x 3,48 то же 3,17 x 3,84
10,7: 1 13: 1
Мощность 132 при 6000 137-140 при 6 100 169 при 6 600
Крутящий момент (фунт-фут) 128 при 4400 912 126 при 4000 151 при 4400
Выбросы ULEV II Калифорния LEV3
Ручной EPA mpg 27/35 30/40 28/36 29/38 31 / 38-40

Двухлитровый двигатель M20A-FKS представлял собой новую конструкцию для Corolla Hatchback 2019 года, в которой использовалась более легкая полимерная крышка головки блока цилиндров, мор Жесткий кривошип, и, несмотря на больший рабочий объем, меньший размер и меньший вес.Система впрыска топлива D-4S использовала прямой впрыск или впрыск топлива через порт низкого давления, в зависимости от условий движения; у него были двойные регулируемые фазы газораспределения, при этом впуск управлялся электродвигателем, а выпуск — гидравлическим давлением.

Двухлитровый рабочий объем достигается за счет более длинного хода; дополнительная эффективность достигается за счет сжатия до 13: 1. Увеличенный угол зазора клапана и покрытое лазером седло клапана увеличили перекачивание и объем воздуха; Поршни с круглой верхней поверхностью и наклонной боковой стенкой помогли снизить вибрацию и снизить детонацию (обеспечивая более высокое сжатие) при одновременном снижении трения.

Были и другие изменения. Теперь на цилиндр приходилось по три масляных форсунки, чтобы уменьшить детонацию, трение и расход масла; и дренажный канал внутри картера для возврата масла из головки блока цилиндров, что приводит к меньшему перемешиванию масла из коленчатого вала. Штоки были изготовлены из высокопрочной стали для уменьшения веса, а кулачок имел вогнутый профиль для увеличения подъема клапана.

В трансмиссии тоже были хитрые изменения. Шестиступенчатая «интеллектуальная механическая коробка передач» автоматически увеличивала обороты двигателя, чтобы соответствовать скоростям после смены; он упал на 15 фунтов и набрал 88 фунтов; и было 0.На 94 дюйма короче.

Между тем вариатор K120 имел специальную пусковую передачу, так что при трогании с полной остановки использовалась пусковая передача, что устраняло вялость вариатора и позволяло использовать гораздо более высокий диапазон передаточных чисел (до впечатляюще 7,5). Использование отдельного пускового механизма также уменьшило входную нагрузку, поэтому ремень и шкивы можно было уменьшить, а угол ремня сузить, что привело к ускорению «переключения» на 20%. CVT теперь имитирует десятиступенчатую, а не шестиступенчатую, и имеет спортивный режим.Это была первая в мире комбинация CVT + стартовая шестерня.

Двигатели Toyota серии ZZ. Нет места для ошибки

Eugenio, 77
[email protected]
© Toyota-Club.Net
декабрь 2003 г. — ноябрь 2019 г.

Двигатель Рабочий объем, см 3 Диаметр цилиндра x ход поршня, мм Степень сжатия Мощность, л.с. Крутящий момент, Нм RON EMS Стандартный Модель Год
1ZZ-FE 1794 79.0 х 91,5 10,0 130/6000 171/4000 91 EFI-L JIS ZZV50 1998
10,0 136/6000 171/4200 91 EFI- L JIS ZZV50 2000 10,0 125/6000 161/4200 91 EFI-L JIS ZNE14 2003 10.0 132/6000 170/4200 91 EFI-L JIS ZNM10 2007 10,0 140/6400 171/4400 91 EFI-L JIS MR-S 2004 10,0 129/6000 170/4200 95 EFI-L EEC ZZT220 2000
2ZZ-GE 1796 82.0 х 85,0 11,5 200/7800 180/6800 95 EFI-L EEC ZZE120 2001
3ZZ-FE 1598 79,0 x 81,5 10,5 110/6000 150/3800 95 EFI-L EEC ZZE120 2004
10,5 110/6000 150/4800 95 EFI- L EEC ZZT220 2000
4ZZ-FE 1398 79.0 х 71,3 10,5 96/6000 130/4400 95 EFI-L EEC ZZE120 2001

1ZZ-FE (1.8 EFI VVT) — поперечный, с традиционным многоточечным впрыском, для автомобилей изначально FF. Выпускался с 1997 года до второй половины 2000-х годов. Устанавливается на: Allion / Premio 240, Celica 230, Corolla 110U..130..140, Corolla / Fielder / Runx / Allex / Spacio 120, Isis, Lotus Elise, Matrix 130, MR2 30, MR-S, Opa, Pontiac Vibe. , RAV4 20, Vista 50, Voltz, Will VS, Wish 10.
3ZZ-FE (1.6 EFI VVT). Устанавливался на: Avensis 220..250, Corolla 110..120..140, Corolla Verso 120..10.
4ZZ-FE (1,4 EFI VVT). Устанавливался на: Corolla 110..120, Corolla / Auris 150.
.


Двигатель механический

Блок цилиндров — алюминиевая «открытая дека» с тонкими чугунными гильзами. тонкостенные чугунные гильзы. Это был второй после серии MZ опыт Toyota по внедрению массовых «легкосплавных» двигателей.Это был второй после серии МЗ опыт массовых «легкосплавных» двигателей. Вкладыши сплавлены в блок, а их особая шероховатая внешняя поверхность способствует прочному соединению. Преимущество — уменьшенная масса двигателя до ~ 100 кг вместо 130 кг у чугунного предшественника того же водоизмещения.


Отличительная особенность нового поколения — «открытая дека» — открытый верх рубашки охлаждения, что значительно снижает жесткость блока, но позволяет отливать блок в кристаллизатор.Традиционные блоки с «закрытой декой» прочнее и надежнее, но требуют больше времени для изготовления одноразовых литейных форм, имеют большие допуски и требуют большей последующей обработки поверхностей и станины подшипников.

Еще одна особенность ZZ — массивный картер, совмещающий крышки коренных подшипников коленчатого вала. Линия разъема проходит по оси коленчатого вала. Картер из алюминия (легкого сплава) выполнен как единое целое с оплавленными стальными крышками коренных подшипников, что увеличивает жесткость блока цилиндров.


1ZZ-FE — «длинноходный» двигатель — диаметр цилиндра 79 мм x ход поршня 91,5 мм. Это способствует более высокому крутящему моменту на низких оборотах, снижает теплопотери через стенки более компактной камеры сгорания. С другой стороны, из-за высокой средней скорости поршня повысились требования к состоянию поршневых колец.

Идея минимизации трения и компактности стала преобладающей, поэтому диаметр и длина шейки коленчатого вала были уменьшены — соответственно увеличилась нагрузка агрегата и интенсивность износа.


Для уменьшения потерь из-за большого хода поршня была вырезана юбка, что плохо сказывается на ее охлаждении. Кроме того, Т-образные выступающие поршни начинают стучать при переключении в мертвую точку намного раньше (при меньшем пробеге), чем их классические предшественники 1990-х годов.

Поршни соединены со шатунами полностью плавающими штифтами. Крышки шатунов крепятся болтами (без гаек).

Большой недостаток всех новых двигателей Toyota — их «одноразовость». Возможность переточки не предусмотрена, правильная замена гильз в принципе невозможна (естественно, в отчаянии эти двигатели подвергаются капитальному ремонту с заменой гильз на неоригинальные детали или аналогичные аналоги других марок). Проблемы существуют даже с подшипниками коленчатого вала увеличенного размера.

Головка блока цилиндров изготовлена ​​из сплава алюминия. Камера сгорания — коническая (при приближении поршня к верхней мертвой точке смесь выталкивается к центру камеры и образует завихрение около свечи зажигания, что способствует более быстрому и полному сгоранию).Компактный размер камеры и форма поршня (формирующий поток смеси у стенки — на ранней стадии сгорания давление равномерно повышается, а затем увеличивает скорость сгорания) способствовали снижению вероятности детонации.


Интересна конструкция седел клапанов. Вместо традиционных стальных запрессованных седел 1ZZ-FE имеют так называемые «лазерные» седла клапана. Он в несколько раз тоньше обычного и способствует лучшему охлаждению клапана, позволяя передавать тепло в корпус головки блока цилиндров не только через шток клапана, но и через головку клапана.Кроме того, несмотря на небольшой диаметр камеры сгорания, тонкие седла клапанов позволили увеличить диаметр впускного и выпускного каналов, а также уменьшить диаметр штока клапана (до 5,5 мм), что улучшило поток воздуха через порт. Естественно, данный агрегат ремонту категорически не подлежит.

Привод ГРМ — 16-ти клапанный DOHC. Уменьшение веса клапана позволило снизить усилие пружин клапана, небольшая ширина кулачков распределительного вала (менее 15 мм) означает снижение потерь на трение.Кроме того, Toyota заменила регулировочные прокладки клапанов набором «регулировочных толкателей» различной толщины, которые сочетают в себе функции прежних толкателей клапанов и регулировочных шайб (это имело бы смысл для двигателя с форсировкой высоких оборотов, но в этом случае просто регулировка клапана слишком сложная и дорогостоящая процедура, поэтому владельцы часто игнорируют ее необходимость).

Следующее радикальное нововведение для Toyota — привод ГРМ от однорядной роликовой цепи (шаг 8 мм) с внешним гидронатяжителем (снабженным храповым механизмом и пружиной предварительного натяга) и смазочной форсункой.Теоретически это означает более высокую надежность по сравнению с ременным приводом и отказ от плановых замен. Но на практике … Про повышенный уровень шума говорить не приходится. Даже натяжитель Тойоты недолговечен. Подвергались износу демпфер и тапочки натяжителя были установлены. Но главная проблема — цепочка «растягивается» (в зависимости от длины цепочки). Для OHV с нижним распределительным валом в блоке и короткой цепью это не проблема, но в обычных DOHC необходимо использовать длинные цепи.Некоторые производители устанавливают промежуточную звездочку и используют 2-3 относительно короткие цепи — одновременно это позволяет уменьшить диаметр ведомых звездочек, но создает проблемы из-за повышенного шума, увеличения количества элементов, надежности установки дополнительных звездочек), некоторые устанавливают ременные цепи … Однако цепи ZZ простые и длинные.

Хотя цепочка подразумевает снижение затрат на обслуживание, но на самом деле произошло обратное… Иногда замена цепи не требуется даже до пробега 200 000 км, но чаще критическое растяжение возникает на диапазоне 100-150 000 км (что проявляется в виде чрезмерного шума и кодов неисправностей, связанных с синхронизацией клапанов, из-за нарушения корреляции коленчатого и распределительного валов) Вместе с заменой цепи было бы целесообразно также заменить другие компоненты (звездочки, натяжитель, направляющие), так как использованные компоненты способствуют быстрому износу новой цепи, но поскольку звездочка распределительного вала впускных клапанов собирается с приводом VVT, поэтому большинство владельцев не делают этого. следуйте этой рекомендации.

Первые 1ZZ-FE для зарубежного рынка (тип ’97 для ZZE110, выпускались до 08.1999) имели фиксированные сроки без VVT, но тип ’98 уже был оснащен VVT-i (регулируемым синхронизацией клапана). Звездочка с приводом VVT установлена ​​на распредвал впускных клапанов, диапазон изменения фаз газораспределения — 40 °. Подробнее о работе Toyota VVT-i — VVT приветствуется как средство достижения баланса между крутящим моментом на низких оборотах и ​​выходной мощностью на высоких оборотах, но не забывайте и о повышенных требованиях к моторному маслу и чистоте масляных каналов.

Смазочная система

Циклоидный масляный насос в крышке цепи приводится в действие непосредственно от коленчатого вала. Масляный фильтр расположен вертикально под двигателем (что частично решает традиционные проблемы повышения давления масла после запуска).


Система охлаждения

Поток охлаждающей жидкости проходит через блок по U-образному пути, охватывая обе стороны цилиндров и улучшая охлаждение. Насос приводится в движение обычным змеевиком, термостат — «холодный» (80-84 ° С) механический, корпус дроссельной заслонки подогревается.

1 — бачок, 2 — термостат, 3 — водяной насос, 4 — радиатор, 5 — подогреватель ATF, 6 — корпус дроссельной заслонки, 7 — подогреватель.

Впускной и выпускной

Помимо классической серии двигателей заметна новая компоновка коллекторов — впуск спереди, выпуск сзади. Чтобы ускорить нагрев катализатора после запуска, он должен находиться как можно ближе к двигателю. Но для маленького моторного отсека столь «раскаленное» соседство не лучшее решение, поэтому катализатор перенесли под двигатель и под пол.

Длинный впускной канал увеличивает эффективность двигателя на низких и средних оборотах, но с учетом расположения впускного коллектора спереди довольно сложно сделать его достаточно удлиненным. Так, вместо традиционного литого коллектора с «параллельными» трубами (как для 1ZZ-FE типов 97 и 98) позже была установлена ​​«крестовина» с четырьмя алюминиевыми воздуховодами одинаковой длины, приваренными к общему литому фланцу. Плюс — воздуховоды из металлопроката имеют гораздо более гладкую поверхность, чем литые, минус — не всегда безупречная сварка фланца с трубами.


Однако, начиная с типа 00, японцы упростили конструкцию, заменив сложный металлический коллектор на обычный пластиковый. Это позволяет сэкономить легированный металл, упростить технологию и уменьшить нагрев всасываемого воздуха за счет более низкой теплопроводности пластика.

Система впрыска топлива

Система управления — «L-тип SFI», с датчиком массового расхода воздуха (MAF) типа «hot wire», совмещенная с датчиком температуры всасываемого воздуха.

1 — ECM, 2 — EVAP VSV, 3 — абсорбер, 4 — датчик положения дроссельной заслонки, 5 — ISCV, 6 — датчик массового расхода воздуха / датчик температуры всасываемого воздуха, 7 — форсунка, 8 — клапан VVT, 9 — датчик положения распределительного вала, 10 — катушка зажигания, 11 — датчик детонации, 12 — датчик положения коленчатого вала, 13 — датчик температуры охлаждающей жидкости, 14 — датчик кислорода.

Впрыск топлива — традиционный многоточечный, последовательный в нормальных условиях.Впрыск может быть синхронизированным (один раз за цикл при одном и том же положении коленчатого вала с регулируемым временем впрыска) или несинхронизированным (всеми форсунками одновременно).

Топливная система была существенно доработана по сравнению со старшей серией. Чтобы уменьшить нагревание и испарение топлива, Toyota отказалась от использования обратной топливной магистрали и регулятора вакуумного давления. Теперь регулятор давления установлен на погружаемый в бак топливный насосный агрегат, совмещенный с топливным фильтром.В топливной магистрали имеются разъемы «быстрого» типа.

Демпфер пульсаций установлен на топливной рампе.

Форсунки с форсункой с несколькими отверстиями используются для улучшения распыления топлива. Устанавливается непосредственно в головку блока цилиндров.

Привод дроссельной заслонки для типа 98/00 — механический, регулировка холостого хода — классический «поворотный соленоид».


Для моделей 2WD, выпущенных после 2004 года, был установлен блок электронного управления дроссельной заслонкой (ETCS).Двигатель постоянного тока, двухканальный бесконтактный датчик положения (эффект Холла), отдельный датчик положения педали акселератора. ETCS выполняет некоторые функции контроля тяги (TRC) и, на более поздних моделях, стабилизацию (VSC).
1 — датчик положения педали акселератора, 2 — реле топливного насоса, 3 — ECM, 4 — EVAP VSV, 5 — абсорбер, 6 — топливный насос, 7 — датчик положения дроссельной заслонки, 8 — ETCS, 9 — датчик массового расхода воздуха / датчик температуры воздуха, 10 — форсунка, 11 — клапан VVT, 12 — датчик положения распредвала, 13 — катушка зажигания, 14 — датчик детонации, 15 — датчик положения коленчатого вала, 16 — датчик температуры охлаждающей жидкости, 17 — датчик кислорода (B1S1), 18 — датчик кислорода ( B1S2).


В первой половине 2000-х годов был представлен «плоский» пьезоэлектрический датчик детонации, в отличие от старого типа резонансных датчиков детонации, он ощущает более широкий диапазон частот вибрации.
1 — пьезо, 2 — изолятор, 3 — стальная гиря, 4 — резистор, 5 — виброплита. А — «плоский» тип, В — резонансный.

Варианты установки кислородного датчика (89465) — перед катализатором (внутренний рынок) или перед катализатором и за катализатором (зарубежные рынки).Версии ETCS для внутреннего и североамериканского рынка в какой-то момент были оснащены датчиком AFS (89467).

1 — расширитель, 2 — окружающий воздух, 3 — подогреватель.

Система зажигания — у типа ’97 и ’98 без распределителя DIS-2 (одна катушка на две свечи зажигания), но все двигатели, начиная с типа ’00, были оснащены DIS-4 — отдельной катушкой зажигания для каждого цилиндра.Плюс — точность определения момента зажигания, отсутствие высоковольтных проводов и механических вращающихся частей (без учета роторов датчиков), меньшее количество циклов срабатывания каждой катушки. Минус — катушки (совмещенные с воспламенителями) подвергаются значительному нагреву внутри свечных отверстий ГБЦ, угол опережения зажигания не регулируется вручную, двигатель более чувствителен к состоянию свечей зажигания. На практике для традиционной распределительной системы зажигания катушка (особенно внешняя) практически никогда не попадала в список сломанных деталей, но для DIS любого производителя замена катушек зажигания (или даже «модулей зажигания») — привычная и регулярная часть обслуживания.

Свечи зажигания: для DIS-2 — двухэлектродные (Denso K16TR11), для DIS-4 — обычные (Denso K16R-U11 / NGK BKR5EYA11).

Вспомогательный привод (генератор, компрессор, водяной насос, насос гидроусилителя руля) — одинарным змеевиком. Плюс — компактные размеры, минус — большая нагрузка на один ремень, ресурс натяжителя, невозможность снять ремень с одного заклинившего узла.


Резюме

Итак, каков результат? Toyota создала современный, достаточно мощный и экономичный двигатель… Но история расхода масла была настолько громкой, что испортила репутацию всех новых серий. Хорошо, что «плановое» горение масла как минимум не обездвиживает машину, поэтому в канонической тройке двигателей Toyota ZZ занимают промежуточное положение — между удачным NZ и более неудачным AZ.

Борьба технологичности и надежности закончилась не в пользу потребителя. И очень жаль, что альтернативы двигателям нового поколения больше нет …


3ZZ-FE (1.6 EFI) / 4ZZ-FE (1,4 EFI)

Минимальные отличия по сравнению с 1ZZ-FE:
— Коленчатый вал с 4 противовесами вместо 8.
— Форсунки с 4 отверстиями в сопле вместо 12.

С 2004 года 3ZZ-FE оснащалась ETCS.
4ZZ-FE оставался с механическим дросселем до конца выпуска. Кроме того, он выделялся системой управления двигателем Bosch и системой зажигания со свечами зажигания FR8KCU.




После внедрения двигателей нового поколения встал вопрос о новом форсированном двигателе для моделей FF на замену 4A-GE и 3S-GE.Он должен был иметь такие же габариты, как 1ZZ-FE, мощность «лучшие мировые аналоги» и минимальный вес. Разумеется, не используя наддув, а сочетая высокую мощность на высоких оборотах с достаточным крутящим моментом на низких оборотах.
Первый 2ZZ-GE, созданный при традиционном участии Yamaha, был представлен за рубежом с новой Celica 230 в 1999 году. Характеристики

ZZ описаны выше. Но у нового мотора было много кардинальных отличий …

Главная гордость — новый алюминиевый безгильзовый блок на базе MMC (это не «Митсубиси Моторс», а «композитный» материал с алюмосиликатными волокнами и включениями).


1ZZ-FE — очень длинноходный двигатель, поэтому дальнейшее форсирование на оборотах было невозможно при том же соотношении диаметр цилиндра / ход поршня. В результате был максимально увеличен канал ствола и толщина стенки между цилиндрами уменьшилась до 5,5 мм. Разбавитель невозможен, потому что прокладка не герметизирует стык головки / блока. Даже если бы в это место можно было вставить лайнер, температура моста превысила бы все пределы — поэтому Toyota сделала своего рода «композитный лайнер».

Основные проблемы связаны с нюансами формования и в связи с отсутствием традиционной чугунной гильзы не устраняются:
— равномерность затвердевания (вызывает образование отверстий)
— пористость (процесс затвердевания замедляется вблизи включений с меньшей теплопроводностью)
— трещины (из-за разной скорости затвердевания вблизи включений ГМК и в основном объеме алюминия, на поверхности формы и внутри нее)


С дефектами литья Toyota боролась за счет сильного предварительного нагрева формы, ламинарного заполнения ее жидким металлом, вакуумно-дегазированных форм и т. Д.

MMC имел низкую износостойкость — известная чугунная гильза или блок длительное время сохраняет хонингованную решетку, а в полностью алюминиевом блоке решетка даже не «порезалась», а «схлопнулась» (поверхность пластически деформировалась). Эта «особенность» не может быть устранена, поэтому Toyota добилась максимально возможного сопротивления составом — и объявила его «достаточным».

Поршень этого двигателя также был изготовлен по технологии MMC, а внешняя часть юбки была покрыта фосфор- и железосодержащим нанесенным составом для повышения твердости.

Довольно много времени ушло на то, чтобы отрегулировать так называемую пару «гильза» / поршневые кольца, чтобы вместо заведомо ослабленной стенки цилиндра обеспечить износ колец из-за износа.

Вторым революционным нововведением стала система VVTL-i (регулируемая синхронизация и подъем клапана).

Традиционная деталь VV «T» аналогична 1ZZ-FE и отвечает за улучшение крутящего момента на низких оборотах, дополнительный VV «L» улучшает максимальную мощность при скорости более 6000 об / мин за счет увеличения подъема клапана с 7,6 мм до 10,0 / 11,2 мм.

Механизм VVTL достаточно простой.На каждую пару клапанов по два кулачка с разным профилем на распредвале («нормальный» и «агрессивный»), а на коромысле — два разных толкателя (соответственно ролик и бегунок). В нормальном режиме коромысло (и клапан) приводится в движение «обычным» кулачком через роликовый толкатель, а подпружиненный ползун на холостом ходу перемещается в коромысле. В силовом режиме стопорный штифт перемещается под давлением масла и подпирает шток толкателя, жестко соединяя его с коромыслом. Когда давление снимается, пружина выдавливает штифт, и скользящий толкатель снова отпускается.

Использование различных толкателей, поскольку ролик (с игольчатыми подшипниками) допускает меньшие потери на трение, но при той же высоте профиля кулачка обеспечивает меньшее заполнение (мм * градусы), но на высокой скорости потери на трение почти уравновешиваются, поэтому для максимизации вывод ползунка становится более выигрышным. Роликовый толкатель изготовлен из закаленной стали, ползун из антизадирного ферросплава, но требует использования специальной системы напыления, установленной в головке блока цилиндров.

Работа на низкой и средней скорости


Самой ненадежной деталью VVTL был стопорный штифт.Он не может перейти в рабочее положение за один оборот кулачка, поэтому неизбежно происходит частичное столкновение стержня и штифта перекрытия, вызывающее прогрессирующий износ. В конце концов изношенный штифт всегда будет отжиматься штоком в исходном положении и не сможет его исправить, поэтому всегда будет работать только кулачок низких оборотов. Toyota пыталась решить проблему путем тщательной обработки поверхности, уменьшения веса пальца, увеличения давления масла в магистрали, но безуспешно. На практике поломки коромысел все же случаются.

Второй распространенный дефект — ломается болт крепления вала коромысел, из-за чего вал свободно вращается, поэтому подача масла к коромыслам прекращается и VVTL не работает (также ухудшается смазка агрегата).

Остальные улучшения можно считать менее значительными. Модифицированный масляный поддон для предотвращения захвата воздуха масляным насосом во время разгона. Впускной коллектор с большим резонатором, перегородка в выхлопе для уменьшения теплопотерь и более быстрого прогрева катализатора.


Резиновые прокладки между впускным коллектором и головкой блока цилиндров для уменьшения шума.

Резюме (2ZZ)

Казалось, Toyota сделала новый, высокотехнологичный, достаточно компактный, легкий и мощный двигатель. Более того, в отличие от предшественников он носил достаточно «гибкий» характер с нормальным крутящим моментом на низких оборотах.

Но, кроме остальных особенностей ZZ:
— повышенная степень сжатия (11,5) требует бензина с высоким октановым числом (RON 95).
— «сырая» и ненадежная конструкция коромысел VVTL
— «Одноразовый», как и все новые двигатели, сочетается с высокими нагрузками и использованием специальных материалов — так что это самый деликатный из двигателей Toyota.Как показывает практика, по надежности 2ZZ-GE и 4A-GE / 3S-GE — совершенно разные миры.




1ZZ / 3ZZ / 4ZZ

• Основная проблема серии ZZ настолько известна, что вошла в фольклор, — высокий расход масла, который часто имел место даже во время гарантийного срока. Основная причина — дефекты конструкции, вызывающие заклинивание поршневых колец.

«Проблемы с двигателями были до 2001 года, но потом они были устранены, и теперь все в порядке» — такую ​​прямую дезинформацию часто используют владельцы, которым необходимо перепродать автомобили с этими злосчастными двигателями.На самом деле неоднократные попытки Toyota решить проблему только установкой колец новой модификации были абсолютно бесполезны.

Заметный результат был получен после серьезной модернизации в середине 2005 года, когда были внедрены новые поршни и новые поршневые кольца и на пол-литра была увеличена номинальная мощность системы смазки. Расширенная 7-летняя гарантия (для самых удачливых владельцев) покрывает замену короткоблочного узла (~ 4800 долларов), но при устранении дефекта за свой счет — придется ограничиться новым комплектом поршней (~ 660 долларов), колец (~ 200 долларов). ), а также замену сальников (а в идеале — вместе с сальниками цепи ГРМ и коленвала).


Отличия новых поршней — восемь больших сливных отверстий вместо четырех маленьких, а также прорези на дне канавок маслосъемного кольца. Кустарная практика сверления дополнительных отверстий для слива масла в поршнях старого типа вряд ли будет приветствоваться, к тому же такая «народная» схема расположения отверстий сильно отличается от новых оригинальных поршней.

На начало 2010-х актуальны модификации поршней для большинства моделей — 13101-0D062 (зарубежный рынок) и 13101-22180 (внутренний рынок).Первые «правильные» поршни (13101-22032) тоже имеют право на существование, но отличаются от -22180 отсутствием специального антифрикционного покрытия на юбке. Конечно, комплект поршневых колец должен быть последних модификаций (13011-22220 / 22221, 13011-0D111). Новый масляный манометр с пресловутой «зеленой меткой» на рукоятке (15301-0D011, 15301-22050) отличается от старого только расположением точек контроля.

• Но часто после капремонта двигателя (даже при пробеге всего 150-200.000 км) выявляет мрачную картину — на стенках цилиндров нет заточенной сетки или стенки отполированы до зеркального блеска.

В цивилизованных условиях для «одноразовых» моторов с вваренными в них тонкостенными гильзами должен быть однозначный вердикт — «на помойку». Но цивилизации здесь нет … так что много «отремонтированных» ZZ на российских дорогах. Более того, не утруждая себя поиском качественных запчастей, некоторые владельцы часто устанавливают гильзы сомнительного происхождения на двигатели ВАЗ (аналог Fiat 124 ‘1966 г.), а еще растачивают гильзы на любые негабаритные поршни вторичного рынка… Поскольку результаты этих ремонтов сложно назвать «Тойотой», установка «б / у» двигателей более поздних выпусков выглядит более уместной, к счастью, двигатели 1ZZ-FE были обычными для всех рынков (включая Японию). А вот 3ZZ-FE и 4ZZ-FE — эти двигатели устанавливались в европейских версиях (для Японии использовался гораздо более удачный 1NZ-FE).

Как ни странно, классические двигатели Тойоты можно было перебрать, но в большинстве случаев было достаточно простого капитального ремонта с заменой колец, чтобы снизить расход масла.Когда при таком же пробеге требуется ремонт ZZ, гораздо более вероятно, что потребуется «переточка» — но, увы, непреднамеренная.

• В конце карьеры ZZ был обнаружен еще один структурный дефект 3ZZ-FE и 4ZZ-FE до 2008 г. — детонация в двигателе, вызванная осевым люфтом коленчатого вала. Рецепт: замена коленвала с подшипниками и упорными шайбами.


Остальные моменты — общие эксплуатационные «особенности» Toyota.

• Обычный «хрип» ВВТ после холодного пуска на ЗЗ не так выражен и выглядит как возрастная проблема. Однако «плохие» приводы существуют, поэтому при борьбе с шумом или ослаблением цепи рекомендуется заменить привод на самую последнюю версию (13050-22012, но лучше -0D010). При капитальном ремонте настоятельно рекомендуется заменить звездочку с приводом VVT в сборе.

• Еще ​​раз отметим ограниченный срок службы цепи привода ГРМ и натяжителя цепи.

• Нестабильные или слишком низкие обороты холостого хода или глохнет после первой попытки холодного пуска — имеют место, но не имеют универсального решения.Убедитесь, что корпус дроссельной заслонки и ISCV очищены от сажи и шлама, а также датчик массового расхода воздуха.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

© 2011 - 2021 17NA19.RU