Где находится диагностический разъем хендай акцент: Ответы@nkscooters.ru: Где в хёндае акценте г. в. диагностический разъём OBD2? – 403 — Доступ запрещён

Содержание

Ответы@nkscooters.ru: Где в хёндае акценте г. в. диагностический разъём OBD2?


ELM 327 на хёндай акценте


Сосчитайте число вспышек в каждой серии и запишите коды в последовательности их появления. Для того, чтобы снова приспособить систему к Вашему двигателю, потребуется запустить двигатель изхоподного состояния, а затем поездить на автомобиле при разных оборотах двигателя 20…30минут. Основным элементом системы является бортовой процессор, чаще называемый электронным модулем управления ЕСМлибо модулем управления функционированием силового агрегата РСМ.

АБС Хендай Акцент: особенности, диагностика и ремонт своими руками.  цепей АБС. контрольных ламп в комбинации…

Для диагностики электронных систем двигателя, автоматической трансмиссии, ABS, SRS применяются специальные диагностические сканеры Pointer или тестеры Retriever с определенным картриджем если предусмотрен , универсальным кабелем и разъемом.

Также стоит упомянуть и о том, что датчики ремонту не подлежат — при поломке лучше установить новые. Так, свечение зеленого светодиода с маркировкой L—line, свидетельствует о соединении линии L с корпусом автомобиля.

Снимаете гидроблок HECU и кронштейн.

Отсоединяете от корпуса блока электропровода. Обратите внимание на то, что нельзя самостоятельно разбирать гидроблок HECU. А транспортировать его допускается только в строго вертикальном положении. Все отверстия должны закрываться при помощи подходящих заглушек.

Не допускается опустошение блока от тормозной жидкости. Установка блока производится в обратном порядке. Все болты необходимо затягивать с соблюдением всех правил.

Так, болт крепежа блока должен затягиваться динамометрическим ключом, момент Все гайки креплений трубок — Датчики скорости вращения колес Как было упомянуто ранее, на всех четырех колесах устанавливаются датчики для измерения частоты вращения. Процедуры снятия на передних и задних колесах немного отличаются.

Давайте рассмотрим, как снять прибор на переднем колесе: Отсоедините колодку с проводами. Извлеките из посадочного места датчик. Как видите, нет в этом ничего сложного.

Второй, не менее важной, причиной является тот факт, что внутренний контур цифрового мультиметра, имеет достаточно высокий импеданс внутреннее сопротивление прибора составляет 10 мОм. Так как вольтметр подсоединяется к проверяемой цепи параллельно, точность измерения тем выше, чем меньший ток будет проходить через собственно прибор.

Данный фактор не является существенным при измерении относительно высоких значений напряжения 9 ё 12 В , однако становится определяющим при диагностике выдающих низковольтные сигналы элементов, таких, как, например, l—зонд, где речь идет об измерении долей вольта.

Параллельное наблюдение параметров сигналов, сопротивлений и напряжений во всех цепях управления возможно при помощи разветвителя, включенного последовательно в разъем блока управления двигателем. При этом на выключенном, работающем двигателе или во время движения автомобиля, производится измерение параметров сигналов на клеммах разветвителя, из чего делается вывод о возможных дефектах.

Для диагностики электронных систем двигателя, автоматической трансмиссии, ABS, SRS применяются специальные диагностические сканеры Pointer или тестеры Retriever с определенным картриджем если предусмотрен , универсальным кабелем и разъемом. Кроме того, для этой цели можно применить дорогостоящий специализированный автомобильный диагностический компьютер, специально разработанный для полной диагностики большинства систем современных автомобилей например, ADC фирмы Launch HiTech, либо ESA, FSA, BEA фирмы Bosch , или обычный компьютер со специальным кабелем и программой броузером OBD например, программа Bosch ESI[tronic] на русском языке www.

Универсальный адаптер K—L—line www. К разъемам адаптера могут подключаться различные кабели, необходимые для диагностики конкретной марки автомобиля.

Установленные в адаптере переключатели и элементы индикации позволяют выбирать необходимые режимы работы и примерно оценивать работу выходных линий.

Так, свечение зеленого светодиода с маркировкой L—line, с

Расположение диагностического разъема Хендай Акцент

где разьем под диагностику Хендай акцент Тагаз

Сканер OBD2 ELM327 v.2.1 в Hyundai Accent

Елм 327 _ диагностика Hyundai Accent 2010 AT

Автосканер ELM327 Ford Transit 2008 ISO 15765 4 CAN 11 bit ID 500 kbaud Дизель

Hyundai Accent Iv 2010 11 Diagnostic Obd Port Connector Socket Location Obd2 Dlc Data Link 641

Hyundai Solaris — где находится диагностический разъём

Автосканер ELM327 Subaru Legacy 1998 ISO9141 2 ISO14230 4 Gasoline

Hyundai Accent Iii 2005 11 2010 11 Diagnostic Obd Port Connector Socket Location Obd2 Dlc Data Link

Hyundai Accent II 1.5L (by Tagaz) 2008-го.

Скрутить пробег Hyundai Creta 2017г.в.,без разбора, через разъем OBD, Раменское, Жуковский, Москва

Также смотрите:

  • Шевроле Лачетти противотуманки установка видео
  • Проверка дмрв на Шкода Октавия тур
  • Нива Шевроле в заводском тюнинге
  • Замена сальников рулевой рейки БМВ Е39
  • Какая максимальная скорость у Honda cb 400
  • Код цвета белый перламутр на Ниссан
  • Бампер для Мерседес с 202 кузов
  • Отзывы о Форде эскорт 1996
  • Коды неисправностей на автомобилях Lexus
  • Отзывы о Мазде 323 1987
  • Замена тормозной жидкости Мерседес W212
  • Размер дисков на Мицубиси шариот
  • Где установить круиз контроль на Митсубиси аутлендер
  • Мицубиси аутлендер мкпп в россии
  • Замена масла в подвесном моторе Сузуки
Главная » Видео » Расположение диагностического разъема Хендай Акцент

Хендай Акцент 1997 диагностический разъем

где разьем под диагностику Хендай акцент Тагаз

OBD2 ELM27 Hyundai Accent

Сканер OBD2 ELM327 v.2.1 в Hyundai Accent

Диагностика датчиков через OBD II Hyundai Getz

Автосканер Hyundai Accent 1997 Бензин Canada

Автосканер ELM327 Hyundai Accent 1997 ISO9141 2 ISO14230 4 Gasoline Canada

Компьютерная диагностика автомобиля ELM327 (Часть 1)

Автосканер Nissan Terrano 1997

VAG COM KKL ДЛЯ ДИАГНОСТИКИ ( HYUNDAI )

CAR Diagnostic ELM327 OBD2 on Hyundai Accent

Также смотрите:

  • Мицубиси кольт 2008 размер шин
  • Эко актив на Хендай аванте
  • Как заменить бензонасос на Опель фронтера видео
  • Расположение фильтров на Фольксваген гольф 6
  • Тест драйв ситроен элизе седан 2013 видео
  • Ремонт генератора Опель вектра в z22se
  • Аккумуляторы автомобильные для дизеля Volvo
  • Как слить солярку через обратку на КАМАЗе
  • Mercedes Benz sprinter в бишкеке
  • Пежо 206 защита на ремень грм
  • Утеплитель двигателя для Kia ceed
  • Предохранитель на сигнал Ниссан альмера классик
  • Размер колес на Ниссан мурано 2013
  • Защита картера на Опель астра н пластик
  • Honda crf 250 2010 год
Главная » Новое » Хендай Акцент 1997 диагностический разъем

Диагностические разъемы Hyundai

Тип разъема №1

Тип разъема №1 — 12-ти контактный прямоугольный разъем

Марки и года (ориентировочно): все модели 1990-1996 гг.; часть моделей после 1996 г. Типичное расположение: в салоне под торпедой со стороны водителя

Вывод   Назначение

1

  K-линия диагностики span cистемы управления двигателем. Также вывод для считывания медленных кодов

2

  K-линия диагностики подушек безопасности

3

  none

4

  K-линия диагностики антиблокировочной cистемы

5

  none

6

  K-линия диагностики коробки передач

7

  none

8

  none

9

  none

10

  L-линия диагностики двигателя. Вывод для считывания медленных кодов

11

  Сигнал скорости

12

  Масса

Тип разъема №2

Тип разъема №2 — 16-ти контактный разъем OBD-II-Hyundai

Марки и года (ориентировочно): все модели после 1996 г. Типичное расположение: в салоне под торпедой со стороны водителя

Контакт   Назначение

1

 

K-линия диагностики коробки передач

2

 

? К-линия диагностики антиблокировочной системы (ABS) ; J1850 Шина+

3

  none

4

 

Заземление кузова

5

 

Сигнальное заземление

6

 

? Линия CAN-High, J-2284. К-линия диагностики антиблокировочной системы (ABS/ASR)

7

 

К-линия диагностики (ISO 9141-2 и ISO/DIS 14230-4)

8

 

К-линия диагностики антиблокировочной системы (ABS)

9

 

? K-линия диагностики системы круиз-контроль

10

 

? J1850 Шина-

11

 
none

12

 

K-линия диагностики подушек безопасности (AirBag)

13

  none

14

 

? Линия CAN-Low, J-2284; Сигнал VSS (скорость автомобиля)

15

 

L-линия диагностики (ISO 9141-2 и ISO/DIS 14230-4)

16

 

Питание +12В от АКБ

Hyundai Accent | Система бортовой диагностики (OBD) — принцип функционирования

Система бортовой диагностики (OBD) — принцип функционирования и коды неисправностей

Сведения о диагностических приборах

Проверка исправности функционирования компонентов систем впрыска и снижения токсичности отработавших газов производится при помощи универсального цифрового измерителя (мультиметра). Использование цифрового измерителя предпочтительно по нескольким причинам. Во-первых, по аналоговым приборам достаточно сложно (порой, невозможно), определить результат показания с точностью до сотых и тысячных долях, в то время как при обследовании контуров, включающих в свой состав электронные компоненты, такая точность приобретает особое значение. Второй, не менее важной, причиной является тот факт, что внутренний контур цифрового мультиметра, имеет достаточно высокий импеданс (внутреннее сопротивление прибора составляет 10 миллионов Ом). Так как вольтметр подсоединяется к проверяемой цепи параллельно, точность измерения тем выше, чем меньший паразитный ток будет проходить через собственно прибор. Данный фактор не является существенным при измерении относительно высоких значений напряжения (9 ÷ 12 В), однако становится определяющим при диагностике выдающих низковольтные сигналы элементов, таких, как, например, кислородный датчик, где речь идет об измерении долей вольта.

Наиболее удобным прибором для диагностики систем управления двигателем современных моделей автомобилей являются ручные считыватели сканерного типа. Сканеры первого поколения служат для считывания кодов неисправностей систем OBD-I. Перед применением считыватель следует проверить на соответствие модели и году выпуска проверяемого автомобиля. Некоторые сканеры являются многофункциональными, за счет возможности смены картриджа в зависимости от модели диагностируемого автомобиля (Ford, GM, Chrysler и т.п.), другие привязаны к требованиям региональных властей и предназначены для использования в определенных районах мира (Европа, Азия, США и т.д.).


С введением в производство отвечающей требованиям последних законодательств по охране окружающей среды системы бортовой диагностики второго поколения (OBD-II) начали выпускаться считыватели специальной конструкции. Некоторые производители наладили выпуск сканеров, предназначенных для использования механиками-любителями в домашних условиях, — спрашивайте в магазинах автомобильных аксессуаров. В принципе, считывание записанных в память системы самодиагностики кодов неисправностей может быть произведено при помощи провода-перемычки, устанавливаемого между конкретными клеммами 16-контактного диагностического разъема.

Общее описание системы OBD

В состав системы OBD входят несколько диагностических устройств, производящих мониторинг отдельных параметров систем снижения токсичности и фиксирующих выявленные отказы в памяти бортового процессора в виде индивидуальных кодов неисправностей. Система производит также проверку датчиков и исполнительных устройств, контролирует эксплуатационные циклы транспортного средства, обеспечивает возможность замораживания параметров и очистки блока памяти.

Все описываемые в настоящем Руководстве модели оборудованы системой бортовой диагностики второго поколения (OBD-II). Основным элементом системы является бортовой процессор, чаще называемый электронным модулем управления (ЕСМ), либо модулем управления функционированием силового агрегата (РСМ). РСМ является мозгом системы управления двигателем. Исходные данные поступают на модуль от различных информационных датчиков и других электронных компонентов (выключателей, реле и т.д.). На основании анализа поступающих от информационных датчиков данных и в соответствии с заложенными в память процессора базовыми параметрами, РСМ вырабатывает команды на срабатывание различных управляющих реле и исполнительных устройств, осуществляя тем самым корректировку рабочих параметров двигателя и обеспечивая максимальную эффективность его отдачи при минимальном расходе топлива. Считывание данных памяти процессора OBD-II производится при помощи специального сканера, подключаемого к 16-контактному диагностическому разъему считывания базы данных (DLC), расположенному под панелью приборов с водительской стороны автомобиля.

В принципе, считывание записанных в память системы самодиагностики кодов неисправностей может быть произведено при помощи провода-перемычки, устанавливаемого между конкретными клеммами 16-контактного диагностического разъема.


На обслуживание компонентов систем управления двигателем/снижения токсичности отработавших газов распространяются особые гарантийные обязательства с продленным сроком действия. Не следует предпринимать попыток самостоятельного выполнения диагностики отказов РСМ или замены компонентов системы, до выхода сроков данных обязательств, — обращайтесь к специалистам фирменных станций техобслуживания компании Honda.

Информационные датчики

Кислородные датчики (l-зонды) — Датчик вырабатывает сигнал, амплитуда которого зависит от разницы содержания кислорода (О 2 ) в отработавших газах двигателя и наружном воздухе.
Датчик положения коленчатого вала (СКР) — Датчик информирует РСМ о положении коленчатого вала и оборотах двигателя. Данная информация используется процессором при определении моментов впрыска топлива и установке угла опережения зажигания.
Датчик положения поршней (CYP) — На основании анализа поступающих от датчика сигналов РСМ вычисляет положение поршня первого цилиндра и использует данную информацию при определении моментов и последовательности впрыска топлива в камеры сгорания двигателя.
Датчик ВМТ (TDC) — Вырабатываемые датчиком сигналы используются РСМ при определении установок угла опережения зажигания в момент запуска двигателя.
Датчик температуры охлаждающей жидкости двигателя (ЕСТ) — На основании поступающей от датчика информации ЕСМ/РСМ осуществляет необходимые корректировки состава воздушно-топливной смеси и угла опережения зажигания, а также контролирует работу системы EGR.
Датчик температуры всасываемого воздуха (IAT) — РСМ использует поступающую от датчика IAT информацию при корректировках потока топлива, установок угла опережения зажигания и управлении функционированием системы EGR.
Датчик положения дроссельной заслонки (TPS) — Датчик расположен на корпусе дросселя и соединен с осью дроссельной заслонки. По амплитуде выдаваемого TPS сигнала РСМ определяет угол открывания дроссельной заслонки (управляется водителем от педали газа) и соответствующим образом корректирует подачу топлива во впускные порты камер сгорания. Отказ датчика, либо ослабление его крепления приводит к перебоям впрыска и нарушениям стабильности оборотов холостого хода.
Датчик абсолютного давления в трубопроводе (МАР) — Датчик контролирует вариации глубины разрежения во впускном трубопроводе, связанные с изменениями оборотов коленчатого вала и нагрузки на двигатель и преобразует получаемую информацию в амплитудный сигнал. РСМ использует поставляемую датчиками МАР и IAT информацию при тонких корректировках подачи топлива.
Барометрический датчик давления — Датчик вырабатывает амплитудный сигнал, пропорциональный изменениям атмосферного давления, который используется РСМ при определении продолжительности моментов впрыска топлива. Датчик встроен в модуль РСМ и обслуживанию в индивидуальном порядке не подлежит.
Датчик детонации — Датчик реагирует на изменение уровня вибраций, связанных с детонациями в двигателе. На основании поступающей от датчик информации РСМ осуществляет соответствующую корректировку угла опережения зажигания.
Датчик скорости движения автомобиля (VSS) — Как следует из его названия, датчик информирует процессор о текущей скорости движения автомобиля.
Датчик величины открывания клапана EGR — Датчик оповещает РСМ о величине смещения плунжера клапана EGR. Полученная информация используется затем процессором при управлении функционированием системы рециркуляции отработавших газов.
Датчик давления в топливном баке — Датчик является составным элементом системы улавливания топливных испарений (EVAP) и служит для отслеживания давления паров бензина в баке. На основании поступающей от датчика информации РСМ выдает команды на срабатывание электромагнитных клапанов продувки системы.
Датчик-выключатель давления системы гидроусиления руля (PSP) — На основании поступающей от датчика-выключателя PSP информации РСМ обеспечивает повышение оборотов холостого хода за счет срабатывания датчика IAC с целью компенсации возрастающих нагрузок на двигатель, связанных с функционированием рулевого гидроусилителя при совершении маневров.
Трансмиссионные датчики — В дополнение к данным, поступающим от VSS, РСМ получает также информацию от датчиков помещенных внутрь коробки передач, либо подсоединенных к ней. К числу таких датчиков относятся: (а) датчик оборотов вторичного (коренного) вала и (b) датчик оборотов промежуточного вала.
Датчик-выключатель управления включением муфты сцепления кондиционера воздуха — При подаче питания от батареи к электромагнитному клапану компрессора К/В соответствующий информационный сигнал поступает на РСМ, который расценивает его как свидетельство возрастания нагрузки на двигатель и соответствующим образом корректирует обороты его холостого хода.

Исполнительные устройства

Главное реле PGM-FI (реле топливного насоса) — РСМ производит активацию реле топливного насоса при поворачивании ключа зажигания в положение START или RUN. При включении зажигания активация реле обеспечивает подъем давления в системе питания. Более подробная информация по главному реле приведена в Главе Системы питания и выпуска.
Инжекторы впрыска топлива — РСМ обеспечивает индивидуальное включение каждого из инжекторов в соответствии с установленным порядком зажигания. Кроме того, модуль контролирует продолжительность открывания инжекторов, определяемую шириной управляющего импульса, измеряемой в миллисекундах и определяющей количество впрыскиваемого в цилиндр топлива. Более подробная информация по принципу функционирования системы впрыска, замене и обслуживанию инжекторов приведена в Главе Системы питания и выпуска.
Модуль управления зажиганием (ICM) — Модуль управляет функционированием катушки зажигания, определяя требуемое базовое опережение на основании вырабатываемых РСМ команд. На всех рассматриваемых в настоящем Руководстве моделях автомобилей используется встроенный в распределитель зажигания ICM, подробнее см. Главу Электрооборудование двигателя.
Клапан стабилизации оборотов холостого хода (IAC) — Клапан IAC осуществляет дозировку количества воздуха, перепускаемого в обход дроссельной заслонки, когда последняя закрыта, либо занимает положение холостого хода. Открыванием клапана и формированием результирующего воздушного потока управляет РСМ.
Электромагнитный клапан продувки угольного адсорбера — Клапан является составным элементом системы улавливания топливных испарений (EVAP) и, срабатывая по команде РСМ, осуществляет выпуск скопившихся в адсорбере паров топлива во впускной трубопровод с целью сжигания их в процессе нормального функционирования двигателя.
Электромагнит управления продувкой угольного адсорбера — Электромагнит используется РСМ при проверке системой OBD-II исправности функционирования системы EVAP.

Считывание кодов неисправностей

1. При выявлении неисправности, повторяющейся подряд в дух поездках, РСМ выдает команду на включение вмонтированной в приборный щиток контрольной лампы “Проверьте двигатель”, называемой также индикатором отказов. Лампа будет продолжать гореть до тех пор, пока память системы самодиагностики не будет очищена от занесенных в нее кодов выявленных неисправностей. Считывание кодов неисправностей в системе OBD-II может быть произведено двумя различными способами. Первый способ требует замыкания между собой проводом-перемычкой клемм №№ 8 и 13 16-контактного разъема базы данных (DLC). Во втором случае считывание производится при помощи специального сканера, интерфейс которого позволяет произвести подключение его к 16-контактному разъему DLC системы OBD-II. Ниже приведено подробное описание метода считывания кодов при помощи провода-перемычки. В случае необходимости выполнение процедуры может быть поручено специалистам автосервиса.
2. Не запуская двигатель, включите зажигание, — контрольная лампа “Проверьте двигатель” должна загореться, в противном случае ее следует заменить. Проверив исправность состояния лампы, вновь выключите зажигание.

3. Отыщите слева под панелью приборов 16-контактный диагностический разъем DLC и при проводом-перемычкой замените между собой его клеммы №№ 8 и 13.

Соблюдайте осторожность, — постарайтесь не повредить клеммы.

4. Включите зажигание, повернув ключ в положение ON. Если в памяти процессора занесены коды имевших место неисправностей, они начнут последовательно высвечиваться контрольной лампой “Проверьте двигатель” на приборном щитке автомобиля. Первая цифра двузначного кода высвечивается длинными миганиями лампы, вторая — короткими (например, одно длинное включение, сопровождаемое шестью короткими, соответствует коду 16).

Если в память модуля управления записано более одного кода, они будут высвечиваться поочередно, затем, после паузы высвечивание кодов повторится. Если память системы чиста, контрольная лампа не включится.

Очистка памяти ЕСМ/РСМ

1. При занесении кода неисправности в память РСМ на приборном щитке автомобиля загорается контрольная лампа “Проверьте двигатель”. Код остается записанным в память модуля до тех пор, пока от него не будет отключено питание. Для очистки памяти модуля выключите зажигание и на 10 ÷ 15 секунд извлеките предохранитель № 13 (BACK-UP) на 7.5 А из монтажного блока, расположенного в правой части двигательного отсека (см. Главу Бортовое электрооборудование). В случае необходимости выполнение процедуры очистки памяти системы OBD может быть поручено специалистам автосервиса.

Не производите очистку памяти OBD путем отсоединения отрицательного провода от батареи, так как это приведет к стиранию установочных параметров двигателя и нарушению стабильности его оборотов в течение первого времени после первичного запуска.

2. Проследите, чтобы память системы была очищена перед установкой на двигатель новых компонентов систем снижения токсичности отработавших газов. Если перед запуском системы после замены вышедшего из строя информационного датчика не произвести очистку памяти отказов, РСМ занесет в нее новый код неисправности. Очистка памяти позволяет процессору произвести перенастройку на новые параметры. При этом в первые 50 ÷ 20 минут после первичного запуска двигателя может иметь место некоторое нарушение стабильности его оборотов.

Список кодов неисправностей системы самодиагностики OBD-II

Номер кода (количество вспышек контрольной лампы)

Возможная причина отказа

Р0107 (3) Низкий входной сигнал датчика МАР
Р0108 (3) Высокий входной сигнал датчика МАР
Р0112 (10) Низкий входной сигнал датчика IAT
Р0113 (10) Высокий входной сигнал датчика IAT
Р0116 (86) Датчик ЕСТ/проблемы с эффективностью отдачи двигателя
Р0117 (6) Низкий входной сигнал датчика ЕСТ
Р0118 (6) Высокий входной сигнал датчика ЕСТ
Р0122 (7) Низкий входной сигнал датчика TPS
Р0123 (7) Высокий входной сигнал датчика TPS
Р0131 (1) Низкое напряжение цепи первичного подогреваемого l-зонда (кислородный датчик 1)
Р0132 (1) Высокое напряжение цепи первичного подогреваемого l-зонда
(кислородный датчик 1)
Р0133 (61) Медленное реагирование первичного подогреваемого l-зонда (кислородный датчик 1)
Р0135 (41) Неисправность в цепи первичного l-зонда (кислородный датчик 1)
Р0137 (63) Низкое напряжение цепи вторичного подогреваемого l-зонда (кислородный датчик 2)
Р0138 (63) Высокое напряжение цепи вторичного подогреваемого l-зонда
(кислородный датчик 2)
Р0139 (63) Медленное реагирование вторичного подогреваемого l-зонда (кислородный датчик 2)
Р0141 (65) Неисправность в цепи нагревателя вторичного l-зонда (кислородный датчик 2)
Р0171 (45) Переобеднение смеси
Р0172 (45) Переобогащение смеси
Р0300 (71) Случайные пропуски зажигания
Р0301 (71) Пропуски зажигания в цилиндре № 1
Р0302 (72) Пропуски зажигания в цилиндре № 2
Р0303 (73) Пропуски зажигания в цилиндре № 3
Р0304 (74) Пропуски зажигания в цилиндре № 4
Р0305 (75) Пропуски зажигания в цилиндре № 5
(модели V6)
Р0306 (76) Пропуски зажигания в цилиндре № 6
(модели V6)
Р0325 (23) Неисправность в цепи датчика детонации
(4-цилиндровые модели)
Р0335 (4) Неисправность в цепи датчика СКР
Р0336 (4) Датчик СКР
Р0401 (80) Выявлен слишком малый поток EGR
Р0420 (67) Недостаточная эффективность функционирования каталитического преобразователя
Р0452 (91) Низкий входной сигнал датчика давления в топливном баке (система EVAP)
Р0453 (91) Высокий входной сигнал датчика давления в топливном баке (система EVAP)
Р0500 (17) Неисправность в цепи VSS (4-цилиндровые модели с РКПП)
Р0505 (14) Неисправность в цепи датчика IAC
Р0715 (70) Неисправность АТ
Р0720 (70) Неисправность АТ
Р0725 (70) Неисправность АТ
Р0730 (70) Неисправность АТ
Р0740 (70) Неисправность АТ
Р0753 (70) Неисправность АТ
Р0758 (70) Неисправность АТ
Р0763 (70) Неисправность АТ
Р1106 (13) Барометрический датчик
Р1107 (13) Низкий входной сигнал барометрического датчика
Р1108 (13) Высокий входной сигнал барометрического датчика
Р1121 (7) Низкий входной сигнал датчика TPS
Р1122 (7) Высокий входной сигнал датчика TPS
Р1128 (5) Абсолютное давление в трубопроводе ниже ожидаемого (низкий входной сигнал датчика МАР)
Р1129 (5) Абсолютное давление в трубопроводе выше ожидаемого (высокий входной сигнал датчика МАР)
Р1149 (61) Неисправность первичного l-зонда
(4-цилиндровые модели)
Р1162 (48) Неисправность в цепи первичного l-зонда
(4-цилиндровые модели)
Р1163 (61) Слишком медленное реагирование первичного l-зонда (4-цилиндровые модели)
Р1164(61) Неисправность первичного l-зонда
(4-цилиндровые модели)
Р1165 (61) Неисправность первичного l-зонда
(4-цилиндровые модели)
Р1166 (41) Неисправность первичного l-зонда
(4-цилиндровые модели)
Р1167 (41) Неисправность в цепи нагревателя первичного l-зонда (4-цилиндровые модели)
Р1253 (21) Неисправность функционирования системы VTEC (4-цилиндровые модели)
Р1257 (22) Неисправность функционирования системы VTEC (4-цилиндровые модели)
Р1258 (22) Неисправность функционирования системы VTEC (4-цилиндровые модели)
Р1259 (22) Неисправность функционирования системы VTEC
Р1297 (20) Низкий входной сигнал ELD
Р1298 (20) Высокий входной сигнал ELD
Р1359 (8) Отсоединен датчик СКР/TDC
Р1361 (8) Нестабильность показаний датчика TDC
Р1362 (8) Нет сигнала от датчика TDC
Р1366 (58) Нестабильность показаний датчика TDC-2 (модели V6)
Р1367 (58) Нет сигнала от датчика TDC (модели V6)
Р1381 (9) Нестабильность показаний датчика CYP (4-цилиндровые модели)
Р1381 (9) Нет сигнала от датчика CYP (4-цилиндровые модели)
Р1456 (90) Имеют место утечки топливных испарений в бензобаке (EVAP)
Р1457 (90) Имеют место утечки топливных испарений в угольном адсорбере (EVAP)
Р1491 (12) Недостаточна степень открывания клапана EGR
Р1498 (12) Датчик открывания клапана EGR выдает слишком высокий сигнал
Р1519 (14) Неисправность в цепи клапана IAC
Р1607 (-) Неисправность внутренней цепи РСМ
Р1705 (-) Неисправность АТ
Р1706 (-) Неисправность АТ
Р1738 (-) Неисправность АТ
Р1739 (-) Неисправность АТ
Р1753 (-) Неисправность АТ
Р1768 (-) Неисправность АТ
Р1773 (-) Неисправность АТ
Р1791 (-) Неисправность АТ

Ответы@Mail.Ru: У Hyundai Accent есть OBD II

да, под рулевой колонкой должон быть.

правильнее сказать не есть ли а этот ли разъем) он всего один а не несколько)) ) в районе руля ищи крышечку под ней должен быть разъем полюбому должен быть обд иномарки уже давно под него делают евростандарт всетаки)

<a rel=»nofollow» href=»http://www.multitronics.ru/hyundai/» target=»_blank»>http://www.multitronics.ru/hyundai/</a>

<a rel=»nofollow» href=»http://www.masterkit.ru/main/set.php?code_id=215984″ target=»_blank»>http://www.masterkit.ru/main/set.php?code_id=215984</a>

Система управления двигателем Хендай Акцент Hyundai Accent (хундай)

 

     

Размещение элементов системы управления MFI

1 – измеритель расхода воздуха «OBD»;
2 – датчик температуры поступающего в двигатель воздуха;
3 – измеритель расхода воздуха, кроме «OBD»;
4 – датчик топливовоздушной смеси, кроме «OBD»;
5 – датчик температуры охлаждающей жидкости;
6 – датчик положения дроссельной заслонки;
7 – датчик положения распределительного вала;
8 – датчик угла поворота коленчатого вала;
9 – обогреваемый датчик кислорода;
10 – топливные форсунки;
11 – модулятор частоты холостого хода;
12 – датчик скорости автомобиля;
13 – датчик детонации;
14 – переключатель диапазонов коробки передач;
15 – замок зажигания;
16 – блок управления двигателем ЕСМ;
17 – реле системы кондиционирования воздуха;
18 – электромагнитный клапан очистки канистры с активированным углем;
19 – главное реле MFI;
20 – катушки зажигания;
21 – топливный насос;
22 – датчик ускорения;
23 – диагностический разъем.

Управление топливной системой осуществляется блоком управления двигателем ЕСМ (Engine Control Module). Блок ЕСМ проводит регулировку угла опережения зажигания, определяет количество подаваемого в двигатель топлива, управляет системой снижения токсичности отработавших газов и частотой вращения коленчатого вала двигателя на холостом ходу, а также сцеплением компрессора кондиционера и т.д. Блок ЕСМ изменяет режимы работы двигателя в зависимости от изменяющихся эксплуатационных режимов на основании сигналов от различных переключателей и датчиков.

Например, блок ЕСМ регулирует угол опережения зажигания на основании сигналов датчиков, которые реагируют на частоту вращения коленчатого вала, температуру охлаждающей жидкости, положение дроссельной заслонки, включенной в данный момент передачи, скорость автомобиля и т.д.

Блок ЕСМ регулирует частоту вращения коленчатого вала холостого хода на основании сигналов датчиков, которые реагируют на положение дроссельной заслонки, скорость автомобиля, включенную в данный момент передачу и т.д.

Датчик измерителя расхода воздуха «OBD» (MAF – Mass Airflow Sensor)

Измеритель расхода воздуха обеспечивает самый прямой метод измерять нагрузки двигателя, так как он измеряет количество воздуха, поступающего в двигатель. Поток воздуха поступает в двигатель через измеритель с нагретым и холодным проволочными элементами, образующими часть мостовой схемы. Ток, проходящий через нагретый проволочный элемент, поддерживает его постоянную температуру на постоянном уровне, которая выше, чем температура поступающего в двигатель воздуха. Масса воздуха определяется по силе тока, необходимой для поддержания температуры проволочного элемента. Чем больше поток воздуха и, естественно, его охлаждение, тем больше величина сигнала, подаваемого на блок ЕСМ.

Датчик температуры поступающего в двигатель воздуха «OBD» (IAT – intake air temperature)

Датчик температуры поступающего в двигатель воздуха представляет собой термистор, сопротивление которого изменяется в зависимости от температуры. Блок ЕСМ учитывает сигнал датчика и корректирует ширину импульса, подаваемого на форсунки, в результате чего изменяется количество топлива, подаваемого в цилиндры двигателя, а также изменяет угол опережения зажигания.

Проверка датчика

1. Измерьте напряжение между контактами 1 и 3 разъема датчика.

Температура

Выходное напряжение

0°C

3,3–3,7 В

20°C

2,4–2,8 В

40°C

1,6–2,0 В

80°C

0,5–0,9 В

2. Если выходное напряжение датчика отличается от требуемого, замените датчик.

Датчик абсолютного давления во впускном коллекторе, кроме «OBD» (MAF – Manifold Absolute Pressure)

Датчик абсолютного давления во впускном коллекторе представляет собой чувствительный переменный резистор. Он измеряет давление во впускном коллекторе, которое изменяется в зависимости от эксплуатационных режимов двигателя и преобразовывается в напряжение. Датчик также используется для измерения атмосферного давления при запуске двигателя и обеспечивает режимы работы двигателя на разных высотах над уровнем моря. На основании информации от датчика блок управления двигателем регулирует количество подаваемого в двигатель топлива, а также изменяет угол опережения зажигания.

Проверка

1. Измерьте напряжение между контактами 1 и 4 разъема датчика.

Выходное напряжение при включенном зажигании и неработающем двигателе: 4–5 В
Выходное напряжение на частоте холостого хода: 0,5–2,0 В

2. Если выходное напряжение датчика отличается от требуемого, замените датчик.

Датчик температуры поступающего в двигатель воздуха (IAT – intake air temperature)

Датчик температуры поступающего в двигатель воздуха представляет собой термистор, сопротивление которого изменяется в зависимости от температуры. Блок ЕСМ учитывает сигнал датчика и корректирует ширину импульса, подаваемого на форсунки, в результате чего изменяется количество топлива, подаваемого в цилиндры двигателя, а также изменяет угол опережения зажигания.

Проверка

1. Измерьте сопротивление между контактами 1 и 2 разъема датчика.

Температура

Сопротивление

0°C

4,5–7,5 Ом

20°C

2,0–3,0 Ом

40°C

0,7–1,6 Ом

80°C

0,2–0,4 Ом

2. Если сопротивление датчика отличается от требуемого, замените датчик.

Датчик температуры охлаждающей жидкости (ECT – Engine Coolant temperature)

Датчик температуры охлаждающей жидкости контролирует температуру охлаждающей жидкости и на основании сигнала датчика блок ЕСМ вычисляет ширину импульса, подаваемого на форсунки, в результате чего изменяется количество топлива, подаваемого в цилиндры двигателя, а также изменяет угол опережения зажигания.

На холодном двигателе блок ЕСМ работает в режиме открытой петли, в результате чего в цилиндры двигателя подается более богатая топливновоздушная смесь и увеличивается частота вращения холостого хода. Это продолжается до достижения двигателем нормальной рабочей температуры.

Снятие


1. Снимите датчик с двигателя.
2. Нагревая сосуд с водой и расположенным в нем датчиком, проверьте его сопротивление.

Температура

Сопротивление

–30°C

22,22–31,78 кОм

–10°C

8,16–10,74 кОм

0°C

5,18–6,60 кОм

20°C

2,27–2,73 кОм

60°C

1,059–1,281 кОм

40°C

0,538–0,650 кОм

80°C

0,298–0,322 кОм

90°C

0,219–0,243 кОм


3. Если сопротивление датчика отличается от требуемого, замените датчик.

Установка
1. Нанесите на резьбу датчика герметик LOCTITE 962T.
2. Вверните датчик в блок цилиндров и затяните его требуемым моментом.

Момент затяжки: 15–20 Н•м

3. Подсоедините к датчику электрический разъем.

Датчик положения дроссельной заслонки (TP – Throttle Position)

Датчик положения дроссельной заслонки передает информацию, на основании которой блок ЕСМ определяет, когда дроссельная заслонка закрыта, полностью открыта или находится в промежуточных положениях. Датчик жестко соединен с валом дроссельной заслонки. В зависимости от положения дроссельной заслонки изменяется сопротивление датчика. Для питания датчика с блока ЕСМ на него подается напряжение 5 В. Выходное напряжение датчика изменяется от 0,25 В при минимальном открытии дроссельной заслонки до 4,7 В при полном открытии дроссельной заслонки.

Проверка

1. Отсоедините разъем от датчика положения дроссельной заслонки.
2. Измерьте сопротивление между контактами 1 и 2 разъема датчика.

Сопротивление: 0,7–3,0 кОм


3. Подсоедините омметр к контактам 1 и 3 разъема датчика.

4. Медленно откройте дроссельную заслонку и убедитесь, что сопротивление датчика плавно изменяется пропорционально открытию дроссельной заслонки.

5. Если сопротивление датчика отличается от требуемого или изменяется скачкообразно, замените датчик.

Момент затяжки: 1,5–2,5 Н•м


Датчик положения распределительного вала (CMP – Camshaft Position Sensor)
Датчик положения распределительного вала вырабатывает импульсы, на основании которых блок ЕСМ идентифицирует первый цилиндр и время открытия форсунки.

Датчик угла поворота коленчатого вала (CKP – Crankshaft Position Sensor)

Датчик угла поворота коленчатого вала передает блоку ЕСМ информацию о положении коленчатого вала. На основании информации выходного сигнала этого датчика и сигналом датчика положения распределительного вала блок ЕСМ определяет угол опережения зажигания и цилиндр, в который необходимо подать топливо. При отсутствии выходных сигналов датчика двигатель не запустится.

Проверка


1. Отсоедините разъем от датчика угла поворота коленчатого вала
2. Измерьте сопротивление между контактами 1 и 2 разъема датчика.

Сопротивление: 0,486–0,594 кОм при 20°С


3. Если сопротивление датчика отличается от требуемого, замените датчик.

Зазор между ротором и датчиком угла поворота коленчатого вала: 0,5–1,0 мм
Момент затяжки: 9–11 Н•м


Датчик кислорода

В зависимости от содержания кислорода в отработавших газах датчик кислорода индуцирует напряжение от 0 до 1 В. На основании этих данных блок управления двигателем изменяет время открытия форсунок и соотношение топлива в топливновоздушной смеси. Для того, чтобы происходило полное сгорание горючей смеси и в отработавших газах отсутствовали вредные вещества, на 14,7 весовых частей воздуха должна приходиться 1 часть топлива.

Датчик кислорода оборудован обогревателем, который поддерживает температуру датчика в определенном интервале при работе двигателя на всех эксплуатационных режимах. Поддержание определенной температуры датчика позволяет системе быстрее включиться в работу и работать в режиме холостого хода.

Проверка


 Перед проверкой прогрейте двигатель до тех пор, пока температура охлаждающей жидкости не будет равна 80–95°C.
 Точным цифровым вольтметром измерьте выходное напряжение датчика.


Если выходное напряжение датчика отличается от требуемого, замените датчик.

Момент затяжки: 50–60 Н•м


Топливные форсунки

Топливные форсунки на основании сигналов от блока ЕСМ впрыскивают топливо в цилиндры двигателя. Количество подаваемого топлива зависит от времени открытия форсунок, т.е. от ширины импульса напряжения подаваемого на обмотку форсунки.

Проверка

1. При работе двигателя на холостом ходу стетоскопом или пальцем руки проверьте работу форсунок по наличию щелчков.

2. Если щелчки отсутствуют, проверьте надежность подсоединения разъемов к форсункам и выходное напряжение блока управления.
3. Отсоедините разъем от топливной форсунки и измерьте сопротивление между контактами разъема.

Сопротивление: 15,9± 0,35 Ом

4. Подсоедините разъем к топливной форсунке.

Датчик детонации

Датчик детонации реагирует на высокочастотные колебания блока цилиндров и преобразовывает их в электрические сигналы, величина которых увеличивается при увеличении детонации. На основании этих сигналов блок ЕСМ смещает момент зажигания в сторону запаздывания, в результате чего устраняется детонация.

Топливные трубопроводы и шланги

Топливные трубопроводы и шланги обеспечивают передачу топлива от топливного бака к топливной магистрали и форсункам и возвращают лишнее топливо в бак. Топливные трубопроводы, закрепленные на днище автомобиля, необходимо периодически осматривать на отсутствие вмятин и деформации, так как за счет сужения их проходов возможно ограничение потока топлива.
Топливные трубопроводы и шланги также обеспечивают передачу паров топлива от топливного бака к канистре с активированным углем, где они собираются при выключенном двигателе. После пуска двигателя и прогрева до рабочей температуры блок управления двигателем открывает электромагнитный клапан, и пары топлива из канистры поступают в двигатель и сжигаются.


Топливная система
Топливный насос
Давление топливного насоса
Система впрыска
Лампочка неисправностей
Коды неисправностей (OBD-2)
Коды неисправностей
Топливный фильтр
Ограничитель переполнения
Топливный датчик
Система управления двигателем
Форсунки топлива
Дроссельный узел
Карбюраторная система
Частота вращения холостого хода
Регулировка частоты холостого хода
Регулировка топлива
Пусковое устройство
Ход троса акселератора
Топливный бак
Канистра улавливания топливных паров
Как заменить топливный фильтр
Карбюратор
Педаль газа и трос
Неисправности карбюраторной топливной системы

Система контроля и снижения токсичности
Тех.данные системы контроля
Система вентиляции картера
Клапан вентиляции картера
Система улавливания топливных паров
Активированный уголь
Эл.магнитный клапан угольной канистры
Крышка бензобака
Неисправности системы контроля

Добавить комментарий

Ваш адрес email не будет опубликован.