Как работает бензиновый двигатель – Бензиновый двигатель: устройство, принцип действия, достоинства и недостатки

Бензиновый двигатель внутреннего сгорания: принцип работы

В основе принципа работы любого двигателя внутреннего сгорания лежит воспламенение небольшого количества топлива, обязательно высокоэнергетического, в небольшом замкнутом пространстве. При этом выделяется большое количество энергии, в виде теплового расширения нагретых газов. Так как давление под поршнем равно нормальному атмосферному, а компрессия в цилиндре намного превышает его, то под действием разницы давлений поршень совершает движение.

Бензиновый двигатель внутреннего сгорания: принцип работы

Для того чтобы двигатель внутреннего сгорания постоянно производил полезную механическую энергию, камеру сгорания цилиндра необходимо циклично заполнять новыми дозами воздушно-топливной смеси. В результате, поршень приводит в действие коленчатый вал, который и придает движение колесам автомобиля.

Двигатели почти всех современных автомобилей являются четырёхтактными по своему циклу работы, и энергия, полученная от сжигания бензина, почти полностью преобразовывается в полезную. Цикл Отто, так называется подобный принцип, по имени Николауса Отто, изобретателя двигателя внутреннего сгорания (1867 год).

Схема работы бензинового двигателя внутреннего сгорания:

— такт впуска;

— такт сжатия;

— рабочий такт;

— такт выпуска.

Главным элементом двигателя внутреннего сгорания является поршень, который связан шатуном с коленчатым валом. Так называемый, кривошипно-шатунный механизм, преобразующий прямолинейное возвратно-поступательное движение поршня в радиальное движение коленвала.

Ниже более подробно расписан рабочий цикл бензинового двигателя:

1. Такт впуска

Поршень опускается из верхней крайней точки в нижнюю крайнюю точку, при этом кулачки распределительного вала открывают впускной клапан, и через него воздушно-топливная смесь поступает из карбюратора в камеру сгорания цилиндра. Когда поршень доходит до нижней мертвой точки, впускной клапан закрывается.

2. Такт сжатия

Поршень возвращается из нижней мертвой точки в верхнюю, сжимая топливную смесь. При этом существенно увеличивается температура смеси. Когда поршень доходит до верхней крайней точки, свеча зажигания воспламеняет сжатую рабочую смесь.

3. Рабочий такт

Воспламененная горючая смесь сгорает при высокой температуре, образовавшиеся газы моментально расширяются и толкают поршень вниз. Впускной и выпускной клапаны, во время этого такта, закрыты.

4. Такт выпуска

Коленвал продолжает вращаться по инерции, поршень идет в верхнюю мертвую точку. В то же время открывается клапан выпуска, и поршень вытесняет отработанные газы в выхлопную трубу. Когда он достигает верхней крайней точки, выпуск закрывается.

Следующий такт необязательно должен начинаться после окончания предыдущего. Такая ситуация, когда одновременно открыты оба клапана (впуска и выпуска), называется перекрытием клапанов. Это необходимо для эффективного наполнения цилиндра воздушно-топливным соединением, а также для более результативной очистки цилиндров от выхлопных газов. После этого рабочий цикл повторяется.

 

Отличительной особенностью двигателя внутреннего сгорания является то, что поршень двигается прямолинейно, а движение, осуществляющееся при сгорании топливной смеси, — вращательное. Линейный ход поршней преобразовывается в поворотное движение, необходимое для работы колес автомобиля, при помощи коленчатого вала.

Ниже рассмотрены основные элементы двигателя, которые принимают участие в преобразовании тепловой энергии в механическую.

1. Свеча зажигания

Искровая свеча вырабатывает электрическую искру, которая воспламеняет воздушно-топливную смесь. Для равномерной и бесперебойной работы поршня искра должна появляться в заданный момент времени.

2. Клапаны

Выпускные и впускные клапаны закрываются и открываются в заданный момент, впуская воздух в цилиндр и выпуская отработанные газы. Во время процесса горения топливной смеси оба клапана закрыты. Клапан выпуска открывается до достижения поршня крайней нижней точки и остается открытым до прохождения поршня к верхней крайней точке. К этому моменту впускной уже будет открыт.

3. Поршень

Образующиеся во время сгорания топливной смеси горячие газы выдавливают поршень, передавая энергию через шатун и палец коленвалу. Для сохранения компрессии в цилиндрах на поршень устанавливаются уплотняющие кольца, изготовленные из высокопрочного чугуна. Для повышения износостойкости поршневые кольца покрываются тонким слоем пористого хрома. К основным характеристикам колец относятся следующие показатели: высота, наружный диаметр, радиальная толщина, форма разреза в стыке и упругость. Внешний диаметр поршневого кольца должен соответствовать внутреннему диаметру цилиндра. В настоящее время применяются узкие кольца (высотой — 1,5-2 мм) и широкие (высотой — 2,5-3 мм). Первые более надежны при частом движении поршня. Радиальная толщина увеличивается с возрастанием диаметра цилиндра. Износ поршневых колец происходит, в среднем, через каждые 3 тысячи километров пробега.

4. Шатун

Шатун соединяет коленчатый вал с поршнем. Вращение шатуна является двухсторонним, это нужно для того, чтобы его угол мог изменяться в зависимости от местоположения поршня, обеспечивая движение коленвала. Обычно шатуны бывают стальными, иногда — алюминиевыми.

5. Коленчатый вал

Поворот коленчатого вала осуществляется вследствие вертикального хода поршня. Коленвал приводит в движение колеса автомобиля.

 

Современные двигатели внутреннего сгорания делятся на два типа: карбюраторные и инжекторные.

В карбюраторном двигателе процесс приготовления воздушно-топливной смеси происходит в специальном устройстве — карбюраторе. В нем, используя аэродинамическую силу, горючее смешивается с воздушным потоком, засасываемым двигателем.

В инжекторном типе двигателя топливо впрыскивается под давлением в поток воздуха при помощи специальных форсунок. Дозировка горючего происходит при помощи электронного блока управления, который открывает форсунку электрическими импульсами. В двигателях устаревшей конструкции, этот процесс происходит с использованием специфической механической системы. Последний тип почти полностью вытеснил устаревшие карбюраторные силовые агрегаты. Это произошло из-за современных экологических стандартов, которые устанавливают высокие нормы чистоты выхлопных газов. Что повлекло за собой внедрение новых эффективных нейтрализаторов выхлопа (каталитических конвертеров или катализаторов). Такие системы нейтрализации требуют постоянного состава отработанных газов, который могут обеспечить только инжекторные системы впрыска топлива, контролируемые электронным блоком управления. Нормальная работа катализатора обеспечивается исключительно при соблюдении стабильного состава выхлопных газов. Необходимостью этого является то, что он требует содержания определенных пропорций кислорода в отработанных газах. Для соблюдения подобных условий в таких системах катализации обязательно устанавливается кислородный датчик (лямбда-зонд), который анализирует процент содержания кислорода в выхлопных газах и контролирует точность пропорций оксида азота, несгоревших остатков топлива и углеводородов.

 

Основными вспомогательными системами являются:

Система зажигания. Отвечает за поджигание топливной смеси в нужный момент. Она бывает контактной, бесконтактной и микропроцессорной. Система контактного типа состоит из распределителя-прерывателя, катушки, выключателя зажигания и свечей. Бесконтактная система аналогична предыдущей, только вместо прерывателя стоит индукционный датчик. Управление системой зажигания микропроцессорного типа осуществляется специальным компьютерным блоком, в ее состав входит датчик положения коленвала, коммутатор, блок управления зажиганием, катушки, датчик температуры двигателя и свечи. В двигателях с инжекторной системой к ней добавляется еще датчик положения дроссельной заслонки и термоанемометрический датчик массового расхода воздуха.

Система запуска двигателя. Состоит из специального электромотора (стартера), подключенного к аккумулятору, или механического стартера, использующего физические усилия человека. Применение этой системы объясняется тем, что для запуска рабочего цикла двигателя необходимо, чтобы коленчатый вал произвел хотя бы один оборот.

Система выпуска выхлопных газов. Обеспечивает своевременное удаление продуктов горения топливной смеси из цилиндров. Включает в себя выпускной коллектор, катализатор и глушитель.

Система приготовления воздушно-топливной смеси. Предназначена для приготовления и впрыска смеси горючего с воздухом, в камеру сгорания цилиндров двигателя. Может быть карбюраторной или инжекторной.

Система охлаждения. Современная система состоит из вентилятора, радиатора, термостата, расширительного бачка, жидкостного насоса, датчика температуры, рубашки и головки охлаждения блока цилиндров. Предназначена для создания и поддержания приемлемого температурного режима работы ДВС. Обеспечивает отвод тепла от цилиндров клапанной системы и поршневой группы. Может быть воздушной, жидкостной или гибридной.

Система смазки. Состоит из масляного фильтра, маслонасоса с маслоприемником, каналов в блоке и головках цилиндров для впрыска масла под высоким давлением, поддона картера. Предназначена для подачи автомобильного масла с целью уменьшения трения и охлаждения, к взаимодействующим деталям двигателя. Также циркуляция масла смывает нагар и продукты механического износа.

Источник: Авто Релиз.ру.

Устройство бензинового двигателя внутреннего сгорания

Расскажу об устройстве и принципе работы бензинового инжекторного двигателя. Поршневые двигатели внутреннего сгорания преобразуют тепловую энергию, выделяющуюся при сгорании топлива непосредственно в цилиндре, в механическую работу. Конструкции моторов имеют различную сложность, но сходны по принципиальной схеме. 

Устройство бензинового двигателя

Бензиновые моторы наиболее популярны в настоящее время, поэтому рассмотрим их устройство.

В качестве примера взят шестнадцатиклапанный четырехцилиндровый четырехтактный инжекторный агрегат внутреннего сгорания 1zz-fe.

Агрегат устроен достаточно просто, но из сложных деталей . Если вы пару раз разберете и соберете какой-либо бензиновый аппарат, вы уже будете намного лучше понимать его устройство и принцип работы.

Основные составляющие инжекторного двигателя

Двигатель стостоит из:

  • блока цилиндров
  • поршней и коленвала
  • головки блока цилиндров
  • распредвалов
  • ну и некоторого навесного оборудования

Самой массивной частью является блок цилиндров.

На большинстве моторов он выполнет из чугуна, но в нашем примере блок цилиндров аллюминиевый.

По словам разработчиков такой конструкции имполнение из аллюминия делает агрегат намного легче.

И к тому же аллюминий быстрее нагревается, что будет способствовать скорейшему выходу на рабочие температуры.

Блок цилиндров служит основой всего устройства бензиновых двигателей.

Снизу блок цилиндров закрывается так называемым блоком коренных крышек, а сверху на него устанавливается головка блока цилиндров.

Четыре отверстия в болоке собственно и есть цилиндры. Здесь их четыре. Есть бензиновые моторы содержащие три, шесть или восемь цилиндров и более.

В цилиндрах находятся поршни, они перемещаются по цилиндрам вверх и вниз с большой скоростью, поэтому при изготовлении деталей требуется их тщательная подгонка и точное соблюдение размеров.

Поршень перемещается в цилиндре за счет энергии, получаемой при сгорании топливно-воздушной смеси. Сам поршень крепится к шатуну, который в свою очередь, закреплен на коленвалу. Все эти соединения скользащие, то есть не жесткие и позволяют деталям вращаться относительно друг друга.

А чтобы не происходило перегрева при трении частей используется система смазки. В четырех цилиндрах поочередно происходит взрыв топливной смеси и поршни через шатуны приводят во вращение коленчатый вал двигателя. На валу жестко посажен маховик.

Именно маховик используется для первичного запуска. При запуске зубья стартера входят в зацепление с зубьями маховика и вращают его.

К маховику крепится корзина сцепления, через нее передается вращающий момент от мотора на коробку передач.

С другой стороны коленвала крепятся зубчатый шкив вращающий цепь привода газораспределительного механизма или проще говоря распредвалов. И шкив ремня для вращения навесного оборудования (генератор, насос гура, компрессор и т.п)

Устройство ГРМ бензинового двигателя

Газораспределительный механизм нашего мотора состоит из двух распределительных валов, их привода и клапанов с толкателями. В задачу грм входит подача топливно воздушной смеси в цилиндры и отвод выхлопных газов из цилиндров. Причем устройство системы таково, что при распределенном впрыске смесь подается только в тот цилиндр, в котором происходит такт впуска.

Кулачки впускного распредвала нажимают на толкатель клапана, клапан опускается вниз, открывая впускное отверстие. Через него в блок попадает бензин в смеси с воздухом. Топливо впрыскивается форсунками непосредственно перед клапаном и смешивается с воздухом. После открытия клапана эта смесь всасывается в цилиндр, так как поршень на такте впуска идет вниз.

Распредвалы и клапана расположены в головке блока цилиндров (не путать с крышкой головки блока), она крепится сверху на блок цилиндров.

Распредвалы приводятся в движение цепью или ремнем, в нашем случае это цепь. Здесь все точно расчитано и поэтому при снятии цепи ее необходимо выставить по меткам на распредвалах и шкиву коленвала. Иначе у нас открытие и закрытие клапанов будет происходить в разнобой с работой мотора.

Распревал толкает клапана в нужный момент, а обратно клапан возвращается за счет пружины.

Впускной и выпускной распредвалы и клапана расположены по разным сторонам цилиндров. В центре между ними находятся свечные колодцы со свечами зажигания.

На каждой свече установлена индивидуальная катушка зажигания. Искра в бензиновых агрегатах с распределенным впрыском топлива может подаваться как попарно-параллельно (1-4 и 2-3 цилиндры), так и отдельно в каждый цилиндр на нужном такте.

На рисунке ниже схема расположения основных элементов двигателя.

Внизу под коленвалом находится масляный поддон в который стекает масло. При работе масляный насос подает масло ко всем узлам для смазки и частично для охлаждения. Мотор работающий без масла из-за больших сил трения очень быстро придет в негодность. Так что не забывайте следить за уровнем масла в автомобиле.

Коротко о системе смазки читайте в этой статье.

Так же внимательно изучите устройство системы охлаждения.

Похожие статьи

 

Газовый двигатель — Википедия

Автомобильная газозаправочная станция в Казани

Газовый двигатель — двигатель внутреннего сгорания, использующий в качестве топлива сжиженные углеводородные газы (пропан-бутан) или природный газ (метан).

Газовый двигатель работает по тепловому циклу Отто, когда теплота подводится к рабочему телу при постоянном объёме. Отличие от бензиновых двигателей, работающих по этому циклу — более высокая степень сжатия (около 17-ти). Объясняется это тем, что используемые газы имеют более высокое октановое число, чем бензин.

В 1930-е—1940-е годы в связи с нехваткой бензина широкое распространение получили газогенераторные автомобили. На автомобиль устанавливался Газогенератор, из древесных чурок производился генераторный газ. В связи с низкой калорийностью газа (состав: окись углерода и водород) эти типы двигателей ушли в прошлое.

Как правило, газовые двигатели редко выпускаются серийно, за исключением применения их для специализированных задач в науке и технике.

Для работы на транспорте используются газовые двигатели, переоборудованные из традиционных бензиновых, а с недавнего времени — после развития в Европе соответствующих технологий — и из традиционных дизельных.

По причине более высокой степени сжатия дизельные двигатели более полно раскрывают потенциал газового двигателя по сравнению с бензиновыми «собратьями». Однако, переоборудование дизелей под использование газа имеет свои особенности. По причине того, что газ не воспламеняется, подобно дизельному топливу, при увеличении давления в цилиндре на такте сжатия, необходимо дооборудование дизелей системой зажигания (подобно бензиновым вариантам), либо использование в топливо-воздушной смеси части дизельного топлива в виде т. н. «запальной дозы» (от 30 до 50 % от всего количества топлива). В остальном, применение газа на дизельных двигателях все больше приобретает популярность, и обещает в ближайшие годы получить широкое распространение, как в виде газовых двигателей в «чистом виде», так и в универсальных газодизелях.

В целом, переоборудование двигателей внутреннего сгорания на транспорте под газовый двигатель существенно экономит средства их владельцам по причине более низкой отпускной цены на такой вид топлива.

Устройство и принцип работы газобаллонного автомобиля[править | править код]

Газозаправочная аппаратура на автомобиле Карбюратор-смеситель

Автомобиль, оснащённый газобаллонным оборудованием (ГБО), использует в качестве топлива сжиженный нефтяной газ (смесь газов «пропан-бутан») или сжатый природный газ (метан).

На автомобиле сжиженная пропан-бутановая смесь находится в баллонах, установленных на раме, под полом салона автобуса или в багажнике легкового автомобиля. Сжиженный газ находится в баллоне под давлением 16 атмосфер (баллон рассчитан на максимальное давление 25 атмосфер).

На баллоны для сжиженного газа устанавливается специальный мультиклапан, через который производится заправка баллона и отбор газа в топливную систему двигателя. Мультиклапан является важным компонентом газобаллонного оборудования, обеспечивающим его безопасное использование. Он включает в себя[1]:

  • Заправочный и расходный вентиль
  • Указатель уровня газа в баллоне. Представляет собой поплавок на рычаге, находящийся внутри баллона, и связанный с ним стрелочный индикатор либо электронную схему, передающую информацию о положении поплавка на индикатор внутри салона автомобиля
  • Обратный клапан в заправочной магистрали, предотвращающий вытекание газа через неё
  • Скоростной клапан в расходной магистрали, перекрывающий подачу газа при превышении его расходом некоторого порогового значения. Порог подобран так, чтобы клапан закрывался только при разрыве расходной магистрали (предотвращая, таким образом, сильную утечку газа), и оставался открытым при обычном уровне расхода газа.
  • Стопорный клапан, предотвращающий наполнение баллона газом более чем на 80-90 %%. Клапан находится в заправочной магистрали и закрывается при достижении указанной степени заполнения баллона. Ограничение максимального наполнения баллона необходимо для предотвращения чрезмерного повышения давления в нём в случае нагрева (например, на солнце в жаркую погоду)

Мультиклапан также может содержать в себе предохранительный клапан (стравливает газ при высоком давлении, например при перегреве баллона), пробку из легкоплавкого сплава (не допустить взрыва баллона при пожаре, сбросить газ в атмосферу, чтобы он просто сгорел) и дополнительный вентиль для отбора в двигатель паровой фазы при запуске холодного двигателя. Однако, наличие данных компонентов в мультиклапане не обязательно.

Баллоны для сжатого природного газа находятся на раме, под полом салона автобуса или на его крыше. Сжатый метан находится под давлением до 200 атмосфер. Несколько баллонов объединены в общую магистраль, имеется общий заправочный вентиль, каждый баллон также имеет собственный вентиль.

Газ из общей магистрали поступает в испаритель (подогреватель) — теплообменник, включён в систему жидкостного охлаждения, после прогрева двигателя газ подогревается (сжиженный газ испаряется) до температуры ≈75 °C. Далее газ проходит через магистральный фильтр.

Затем газ поступает в двухступенчатый газовый редуктор, где его давление снижается до рабочего. Современные газовые редукторы обычно совмещают эти два устройства (испаритель и собственно редуктор) в едином устройстве[2].

Далее, газ поступает в смеситель (или в карбюратор-смеситель или в смесительную проставку под штатным карбюратором, определяется конструкцией топливной аппаратуры). В силу того, что в смесителе происходит смешивание двух газов, их конструкция существенно проще чем конструкция бензиновых карбюраторов[3], в которых происходит смешивание двух разных фаз — жидкой (бензин) и газообразной (воздух), из-за чего в конструкции карбюратора имеются довольно сложные системы для поддержания постоянного состава смеси при разных расходах.

Двигатели разделяются на:

  • специальные (или модифицированные), предназначенные только для работы на газе, бензин используется краткосрочно при неисправности газовой аппаратуры, когда нет возможности произвести ремонт на месте;
  • универсальные, рассчитанные на длительную работу как на газе, так и на бензине.

Бензобак и топливный насос на автомобилях с газовыми двигателями сохраняются.

В холодное время года запуск двигателя, работающего на сжиженном газе производится путём отбора паровой фазы, после прогрева испарителя происходит переключение на жидкую фазу. Однако, для бензиновых двигателей, переоборудованных для работе на газе, крайне рекомендуется[4] пуск двигателя осуществлять на бензине, а на газ двигатель переключать после прогрева до температуры 40-50 °C.

Бензиновый двигатель, устройство и принцип работы

Современный бензиновый двигатель входит в класс агрегатов внутреннего сгорания, где поджигание смеси происходит непосредственно в цилиндрах с помощью искры, образуемой электричеством. Мощность таких моторов регулируется подачей воздуха с помощью дроссельной заслонки.

Дроссельная заслонка карбюраторных автомобилей, регулирует объем подаваемой смеси в камеру сгорания. Все управление происходит напрямую от педали акселератора. Во всех современных автомобилях, выпускаемых последние годы, механическое управление заслонкой сменили на электронное. При нажатии на газ потенциометр подает сигнал на электронный блок управления, который, в свою очередь, управляет электродвигателем для перемещения заслонки.

Четырёхтактный двигательЧетырёхтактный двигатель

Как классифицируют бензиновые агрегаты?

Каждый бензиновый двигатель проходит классификацию по следующим параметрам:

  • Способу смесеобразования;
  • Количеству тактов;
  • Числу цилиндров;
  • Способу охлаждения;
  • Расположению цилиндров;
  • Типу смазки;
  • Виду применяемого топлива;
  • Степени сжатия;
  • Частоте вращения;
  • Назначению;
  • Способу подачи воздуха и горючей смеси.

Каждый современный автомобиль с бензиновым двигателем, для подготовки горючей смеси использует карбюратор либо инжектор.

Двигателя бывают двухтактные и четырехтактные. Двухтактные при своих небольших размерах выдают больше мощности, но проигрывают по КПД. Поэтому для экономичности, четырехтактные двигатели используют на всех транспортных средствах, кроме мотоциклов.

Двигатель на бензине может быть одноцилиндровым, двухцилиндровым или многоцилиндровым. По их расположению двигателя бывают: рядными, V-образными, оппозитными и звездообразными. Устройство охлаждения используется жидкостное или воздушное.

Смазка происходит смешанным и раздельным типом. При смешанном, в топливо добавляется масло для бензиновых двигателей, тогда как в раздельном типе, масло заливается только в картер.

На многих автомобилях используют атмосферные двигателя, работа которых заключается в подаче горючей смеси до камеры сгорания, с помощью всасывающего хода поршня. Но есть еще и двигателя с наддувом. Они оборудованы турбокомпрессором, который создает давление для подачи горючей смеси в цилиндр. Благодаря наддуву, бензиновый двигатель получает дополнительную мощность и значительную экономию топлива.

Как происходит рабочий цикл четырехтактных и двухтактных агрегатов?

Полный рабочий цикл проходит за четыре такта:

  • Впуск;
  • Сжатие;
  • Рабочий ход;
  • Выпуск.

Рабочий цикл двухтактного двигателя происходит за один оборот коленчатого вала и включает в себя только два такта: сжатие и рабочий ход. Благодаря этому, бензиновый двигатель получает в 1,5 раза большую мощность при таком же объеме.

Основные преимущества 4-тактных агрегатов: большой ресурс; экономичность; меньший шум и выброс вредных веществ; отсутствие потребности добавления масла в топливо. Масло для бензиновых двигателей подбирается по классификациям в зависимости от его износа.

Отличия карбюраторных моторов от инжекторных

Инжекторный моторИнжекторный мотор

Работа карбюраторного мотора зависит от точного смешивания топлива подаваемого в карбюратор с воздухом.

Устройство инжекторного двигателя значительно отличается. Его работа зависит напрямую от форсунок, подающих топливо под давлением. За правильную дозировку отвечает электронный блок управления.

Массовое производство инжекторов для бензинового мотора, началось после повышения норм по выбросу вредных веществ. Благодаря точному впрыску топлива, за который отвечает программа ЭБУ, получилось достичь постоянства выхлопных газов. А стабильная работа двигателя с помощью катализатора помогла значительно уменьшить его шум.

Устройство системы зажигания бензинового мотора бывает бесконтактным, микропроцессорным или контактным. Бензиновый двигатель с контактной системой включает в себя:

  • Прерыватель-распределитель;
  • Катушку;
  • Выключатель зажигания;
  • Свечи.
Катушка зажиганияКатушка зажигания

Работа бензинового агрегата с бесконтактной системой, зависит от того же оборудования, за исключением индукционного датчика, используемого вместо прерывателя. Устройство микропроцессорной системы зажигания оборудовано: датчиком положения коленчатого вала, блоком управления, коммутатором, катушками, свечами, датчиком температуры бензинового мотора. Стабильная работа инжекторного агрегата была достигнута при помощи добавленного датчика положения заслонки и датчика расхода воздуха.

Специфические особенности современных моторов

Долговечная работа любого мотора зависит от его надежности. Поэтому для достижения максимальной надежности, было принято использовать индивидуальную катушку зажигания для каждой свечи отдельно. Этого правила поддерживаются как при сборке советских автомобилей, так и при комплектации современных японских агрегатов.

Последнее время, приняли использовать на один цилиндр по 2 клапана на впуск и выпуск. Раньше их было по одному, но за счет увеличения площади отверстий в головках, большой клапан перестал справляться со своевременным закрытием отверстия до начала следующего цикла. Эти изменения сразу сказались, и работа мотора стала нестабильной.

За точное управление дроссельной заслонкой стал отвечать электропривод вместо привычного тросика ведущего от педали акселератора. После появления электропривода, автомобили начали оснащать функцией «Cruise Control», которая очень полезна для дальних дистанций.

Среди систем, которые остались неизменными для большинства двигателей является:

  • Охладительная система;
  • Система выпуска отработанных газов;
  • Система запуска двигателя.

Система охлаждения обычно применяется смешанная. За выпуск отработанных газов в атмосферу отвечает выпускной коллектор на пару с каталитическим конвертером и глушителем. Смазка всех современных автомобилей не имеет отдельного маслоблока и происходит за счет залитого через клапанную крышку масла, прямо в мотор. Запуск агрегата происходит с помощью стартера, который питается от аккумулятора.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *