принцип работы, импульсная модель, универсальный регулируемый прибор
Чтобы эффективно побороть различные помехи в сети, необходимо использовать простые стабилизаторы тока. Современные производители занимаются промышленным изготовлением таких устройств, благодаря чему каждая модель отличается своими функциональными и техническими характеристиками. В бытовой отрасли нет больших требований к стабилизаторам тока, но высококачественное измерительное оборудование всегда нуждается в стабильном напряжении.
Краткое описание
Опытные мастера прекрасно знают, что простейшие ограничители тока представлены в виде обычных резисторов. Такие агрегаты часто называют стабилизаторами, что не является действительностью, так как они не способны убрать все помехи при колебании напряжения на своём входе. Использование резистора в схеме питания того или иного прибора возможно только в том случае, если всё входное напряжение стабилизируется.
В иной ситуации даже мельчайшие скачки напряжения воспринимаются как повышенная нагрузка, что негативно отражается на работе всего устройства. Эффективность работы резистивных ограничителей тока является довольно низкой, так как потребляемая ими энергия рассеивается в виде тепла.
Более высоким уровнем КПД обладают те конструкции, которые изготовлены на базе готовых интегральных микросхем линейных стабилизаторов. Схемы таких устройств отличаются минимальным набором элементов, простотой настройки и отсутствием помех. Чтобы избежать нежелательного перегрева регулирующего элемента, различия между входным и выходным напряжением должны быть минимальными. В противном случае корпус микросхемы будет вынужден рассеивать всю невостребованную энергию, что в несколько раз снижает итоговый показатель КПД.
Наибольшей эффективностью обладают схемы с широтно-импульсной модуляцией. Их производство основано на использовании универсальных микросхем, где присутствует цепь обратной связи и специальные защитные механизмы, благодаря чему существенно возрастает надёжность всего устройства. Использование импульсного трансформатора ведёт к удержанию схемы, что положительно влияет на уровень КПД и продолжительность эксплуатационного срока. Стоит отметить, что такие стабилизаторы мастера часто изготавливают своими руками, используя для этого специальные детали.
Функциональные возможности
Только тот мастер, который хорошо знает принцип работы стабилизатора тока, сможет эффективно применять это устройство в различных сферах. Основная сложность в том, что электросети насыщены различными помехами, которые негативно влияют на работоспособность оборудования и приборов. Чтобы эффективно преодолеть источники отрицательного воздействия, специалисты повсюду применяют стабилизаторы напряжения и тока.
В каждом таком изделии присутствует незаменимый элемент — трансформатор, который обеспечивает стабильную и безотказную работу всей системы. Даже самая элементарная схема обязательно укомплектована универсальным выпрямительным мостом, который соединён с разными резисторами, а также конденсаторами. К главным эксплуатационным характеристикам относятся предельный уровень сопротивления и индивидуальная ёмкость.
Квалифицированные специалисты отмечают, что простой стабилизатор тока функционирует по самой элементарной схеме. Всё дело в том, что электрический ток поступает на основной трансформатор, благодаря чему меняется его предельная частота. На входе она всегда совпадает с этим показателем в электросети, находясь в пределах 50 герц. Только после того, как произошло преобразование тока, предельная частота будет снижена до оптимальной отметки.
Стоит отметить, что в традиционной схеме присутствуют мощные высоковольтные выпрямители, которые помогают определить полярность напряжения. А вот конденсаторы участвуют в качественной стабилизации тока, резисторы устраняют имеющиеся помехи.
Изготовление простого преобразователя для светодиодов
Опытные мастера согласятся, что собрать качественный и долговечный стабилизатор не так уж и сложно. Главная особенность состоит в том, что на блок может быть установлена целая система низковольтных конденсаторов на 20 вольт, а импульсная микросхема может иметь вход до 35 В. Наиболее простой светодиодный стабилизатор, выполненный своими руками — это вариант LM317. Потребуется только правильно рассчитать резистор для используемого светодиода с помощью специализированного онлайн-калькулятора.
Важным фактом остаётся то, что для слаженной работы такого агрегата отлично подходит подручное питание:
- Стандартный блок на 19 вольт от ноутбука.
- На 24 В.
- Более мощный агрегат на 32 вольт от обычного принтера.
- Либо на 9 или на 12 вольт от какой-либо бытовой электроники.
К основным преимуществам такого преобразователя всегда относят его доступность, минимальное количество элементов, высокую степень надёжности, а также наличие в магазинах. Собирать самостоятельно более сложную схему весьма нерационально. Если мастер не обладает необходимым опытом, тогда импульсный стабилизатор тока лучше купить в готовом виде. При необходимости его всегда можно усовершенствовать.
Продолжительность работы светодиода без потери яркости зависит от режима. Главное достоинство простейших стабилизаторов (драйверов), таких как микросхема-стабилизатор LM317, — их довольно трудно сжечь. Схема подключения LM317 требует всего двух деталей: самой микросхемы, включаемой в режим стабилизации, и резистора. Сам процесс сборки состоит из нескольких основных этапов:
- Потребуется купить переменный резистор сопротивлением в 0.5 кОм (имеет три вывода и ручку регулировки). Заказать его можно через интернет или купить в «Радиолюбителе».
- Провода припаиваются к среднему выводу, а также к одному из крайних.
- С помощью мультиметра, включённого в режиме измерения сопротивления, замеряется сопротивление резистора. Нужно добиться максимального показания в 500 Ом (чтобы светодиод не перегорел при низком сопротивлении резистора).
- После внимательной проверки правильности соединений перед подключением собирается цепь.
Для любого устройства можно добиться подачи 10 А (задаётся низкоомным сопротивлением). Для этих целей можно использовать транзистор КТ825 или установить аналог с лучшими техническими характеристиками и системой охлаждения. Максимальная мощность LM317 — 1.5 ампер. Если есть необходимость увеличить ток, то в схему можно добавить полевой или обычный транзистор.
Универсальная регулируемая модель
Многие мастера сталкиваются с необходимостью использования высококачественного стабилизатора, который позволил бы проводить настройки сети в широком диапазоне. Некоторые современные схемы отличаются тем, что в них предусмотрено наличие токозадающего резистора с пониженными характеристиками. Сами специалисты отмечают, что такое устройство позволяет проводить усиление напряжения в другом резисторе. Это состояние принято называть усиленным напряжением ошибки.
Параметры опорного и ошибочного напряжения можно сравнить при помощи опорного усилителя, благодаря этому мастер осуществляет настройку состояния полевого транзистора. Стоит отметить, что такая схема требует дополнительного питания, которое обязательно должно поступать к отдельному разъёму. Всё дело в том, что питающее напряжение должно обеспечивать слаженную работу абсолютно всех компонентов используемой схемы. Допустимый уровень не должен быть превышен, так как это чревато преждевременной поломкой оборудования.
Чтобы максимально правильно настроить работу регулируемого стабилизатора тока, необходимо использовать специальный ползунок. Именно подстроечный резистор позволяет мастеру выставить максимальное значение тока. Настройка сети получается более гибкой, так как все параметры можно самостоятельно корректировать в зависимости от интенсивности эксплуатации.
Многофункциональный прибор
В datasheet указывается уровень сопротивления, необходимый для получения нужного тока. Если установить регулируемый резистор, то количество Ампер будет настраиваемым (но без превышения указанной номинальной мощности).
Ещё недавно высокой популярностью пользовался универсальный модуль XL4015. По своим характеристикам он подходит для подключения светодиодов с высокой мощностью (до 100 Ватт). Стандартный вариант его корпуса припаян к плате, выполняющей функции радиатора. Чтобы улучшить охлаждение XL4015, схема должна быть доработана с установкой радиатора на коробку устройства.
Многие пользователи просто ставят его сверху, однако, эффективность такой установки довольно низкая. Систему охлаждения желательно располагать внизу платы, напротив пайки микросхемы. Для оптимального качества её можно отпаять и установить на полноценный радиатор, используя термопасту. Провода потребуется удлинить. Дополнительное охлаждение можно монтировать и для диодов, что значительно повысит эффективность работы всей схемы.
Среди драйверов наиболее универсальным считается регулируемый. Обязательно устанавливается переменный резистор, который задаёт количество ампер. Эти характеристики обычно указываются в следующих документах:
- В сопроводительной документации к микросхеме.
- В datasheet.
- В стандартной схеме включения.
Без добавочного охлаждения микросхемы такие устройства выдерживают 1—3 А (в соответствии с моделью контроллера широтно-импульсной модуляции). Главный недостаток этих драйверов — чрезмерный нагрев диода и дросселя. Выше 3 А потребуется охлаждение мощного диода и контроллера. Дроссель заменяют более подходящим либо перематывают толстым проводом.
Незаменимое устройство постоянного тока
Даже начинающий мастер знает, что такой агрегат работает по принципу двойного интегрирования. Абсолютно во всех моделях за этот процесс отвечают преобразователи. Универсальные двухканальные транзисторы предназначены для увеличения существующих динамических характеристик. Важно помнить, что для устранения тепловых потерь нужно использовать конденсаторы с большой ёмкостью.
Сделать показатель выпрямления можно только благодаря точному расчёту необходимого значения. Как показывает практика, если при выходном напряжении постоянного тока получается 12 ампер, то предельное значение должно составлять 5 В. Устройство сможет стабильно поддерживать рабочую частоту на отметке 30 Гц. Относительно порогового напряжения — всё зависит от блокировки сигнала, который поступает от трансформатора. Но фронт импульсов не должен превышать 2 МКС.
Только качественное преобразование тока позволяет обеспечить слаженную работу главных транзисторов. В этой схеме допускается использование исключительно полупроводниковых диодов. Если резисторы балластные, то это чревато большими тепловыми потерями. Именно поэтому коэффициент рассевания существенно увеличивается. Мастер может увидеть, что амплитуда колебаний возросла, а процесс индуктивности не произошёл.
Современная схема на базе КРЕН
Такое устройство будет стабильно работать только с элементами LM317 и КР142ЕН12. Это связано с тем, что они выступают в качестве универсальных стабилизаторов напряжения, хорошо справляясь с током до 1.5 А и выходным напряжением до 40 вольт. В классическом тепловом режиме эти элементы способны качественно рассеивать мощность до 10 Ватт. Сами микросхемы отличаются низким собственным потреблением, так как этот показатель составляет всего 8 мА. Главное, что этот показатель остаётся неизменным даже в том случае, если напряжение колеблется.
Отдельного внимания заслуживает микросхема LM317, которая способна удерживать постоянное напряжение на основном резисторе. Этот агрегат с неизменным сопротивлением обеспечивает максимальную стабильность проходящего через него тока, благодаря чему его часто называют токозадающим резистором. Современные стабилизаторы на КРЕН отличаются от своих аналогов относительной простотой, за счёт чего активно эксплуатируются в качестве зарядки для аккумуляторов и для электронной нагрузки.
Как из простого преобразователя сделать стабилизатор тока. Как сделать стабилизатор тока своими руками. Описание и схема
Я уже как-то рассказывал про схему, позволяющую сделать индикацию тока нагрузки выше определенного порога. Сегодня расскажу про то, как при помощи этой схемы доработать простой преобразователь напряжения и получить в итоге стабилизатор тока.Наверняка в хозяйстве многих радиолюбителей валяются подобные мелкие платки преобразователей напряжения. Стоят они копейки и часто их продают на вес десятками.
Платка мелкая, но очень полезная, но она позволяет работать только в режиме стабилизации напряжения, которое выставляется подстроечным резистором.
Также иногда бывают ситуации, когда надо сделать стабилизатор тока буквально "из палок и веревок", например для питания светодиодов, заряда аккумуляторов и прочего.
В этом может помочь простой индикатор тока потребления, о котором я подробно рассказывал в отдельном видео.
Собран он по простейшей схеме.
При прохождении тока через данную схему на резисторе R1 падает некоторое напряжение, которое зависит от силы тока.
Напряжение которое падает на резисторе R1 открывает транзистор когда для этого будет достаточно тока. Обычно транзистор открывается когда на резисторе R1 падает около 0.6-0.7 Вольта.
Открывшись, транзистор подает ток в цепь светодиода, засвечивая его. Изменяя номинал резистора R1 можно менять ток, при котором будет светиться светодиод. Например при номинале в 1 Ом этот ток составляет около 0.6-0.7 Ампера. Если поставить резистор в два раза меньше сопротивлением, то соответственно ток будет уже 1.2-1.4 Ампера, т.е. изменение пропорционально изменению сопротивления.
Транзистор, используемый в данной схеме — BC557B, хотя на самом деле выбор очень большой, например банальный КТ361, а если сделать схему "наизнанку", то и КТ315.
В качестве примера я попробую сделать стабилизатор тока для питания вот такой светодиодной сборки. На ней светодиоды включены параллельно-последовательно, т.е. общее падение около 7 Вольт при токе в 700мА.
Можно конечно было сделать стабилизатор тока на привычной LM317, но это линейный стабилизатор, потому греться он будет ощутимо.
Но мы пойдет другим путем.
Слева синим цветом выделена упрощенная схема понижающего стабилизатора напряжения, который я показал в самом начале. Микросхема контролирует выходное напряжение через вывод FB (FeedBack)
Красным цветом выделена показанная выше платка.
Чтобы правильно все подключить, надо найти где у микросхемы вход обратной связи, на схемах он также обозначается как FB либо Feedback.
На мой плате установлена LM2596, находим описание и выясняем что это вывод номер 4.
Припаиваем проводок прямо к выводу микросхемы, обычно выводы луженые и паяются очень легко.
Подключаем этот провод к коллектору транзистора платы контроля тока, попутно соединяем выход платы преобразователя со входом платы контроля.
На вход преобразователя подаем наше входное напряжение, в моем случае я подал около 17 Вольт. На выходе выставляем напряжение выше, чем надо диодной сборке, например 10-12 Вольт и подключаем сборку к выходу платы контроля тока.
Отлично, ток в цепи получился 650 мА, все работает отлично.
В некоторых ситуациях может потребоваться установка диода между выходом нашей платы и преобразователем, это необходимо чтобы наша схема не оказывала влияния на установку выходного напряжения преобразователя (зависит от примененного ШИМ контроллера).
А если мы хотим чтобы еще и светодиод светился в режиме ограничения тока, то желательно установить еще и резистор, как показано на схеме (R6), номиналом около 56-470 Ом.
Выше я писал насчет аккумуляторов.
Если верхний резистор делителя переключить с выхода преобразователя на выход платы контроля тока, как это показано на схеме, то плата вполне будет способна заряжать и аккумуляторы. Без этого резистора также можно заряжать, но падение напряжения на резисторе R1 будет оказывать некоторое влияние на напряжение окончания заряда.
В качестве дополнения я снял видео, возможно будет полезно.
На этом у меня все, как всегда буду рад вопросам. Кстати, есть вариант такой же доработки, но уже не преобразователя, а блока питания.
Эту страницу нашли, когда искали:
стабилизатор тока из адаптера, импульсные стабилизаторы напряжения своими руками, стабилизатор тока 150 ма, схемы китайских стабилизаторов напряжения постоянного тока, стабилизатор тока на транзисторе для светодиодов своими руками схема описание работы, самодельный стабилизатор тока для светодиодов все делаем сами, диоды для стабилизации тока, транзистор в режиме стабилизации тока, стабилизированный источник тока на шим, регулируемый стабилизатор напряжения своими руками, простые на тс схема бп на 6.3 7 вольт мощность 1а, самодельный стабилизатор своими руками на xl4015, схемы высоковольтных стабилизаторов тока для светодиодов, схема блока питания на lm317 co стабилизатором тока, схемы стабилизаторов тока на полевых транзисторах, авто для светодіодів що краще стабілізатор тока чи стабілізатор напруги, pt4501, преобразователь напряжения лм2596 со стабилизатором тока, схема стабилизированного модуля регулировки по току., микросхема стабилизатора тока 3 а, простой стабилизатор тока для импульсного блока схема, схема стабилизатор тока на 12 вольт, преобразователь напряжения 12 220 со стабилизацией напряжения и тока своими руками, схема стабилизатора тока 6а напряжения 30 вольт., импульсный стабилизатор тока схемы скачать, стабилизатор тока своими руками, стабилизатор тока схема, для начинающих радиолюбителей, простой стабилизатор
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.
Стабилизатор напряжения и стабилизатор тока
В обсуждениях электрических схем часто встречаются термины «стабилизатор напряжения» и «стабилизатор тока». Но какая между ними разница? Как работают эти стабилизаторы? В какой схеме нужен дорогой стабилизатор напряжения, а где достаточно простого регулятора? Ответы на данные вопросы вы найдёте в этой статье.Рассмотрим стабилизатор напряжения на примере устройства LM7805.В его характеристиках указано: 5В 1,5А. Это значит стабилизирует он именно напряжение и именно до 5В. 1,5А — это максимальный ток, который может проводить стабилизатор. Пиковая сила тока. То есть от может отдать и 3 миллиампера, и 0,5 ампер, и 1 ампер. Столько, сколько тока требует нагрузка. Но не больше полутора. Это главное отличие стабилизатора напряжения от стабилизатора тока.
Виды стабилизаторов напряжения
Различают всего 2 основных типа стабилизаторов напряжения:
- линейные
- импульсные
Линейные стабилизаторы напряжения
Например, микросхемы КРЕН или LM7805, LM1117, LM350.
Кстати, КРЕН — это не аббревиатура, как многие думают. Это сокращение. Советская микросхема-стабилизатор, аналогичная LM7805 имела обозначение КР142ЕН5А. Ну а ещё есть КР1157ЕН12В, КР1157ЕН502, КР1157ЕН24А и куча других. Для краткости всё семейство микросхем стали называть «КРЕН». КР142ЕН5А тогда превращается в КРЕН142.
Советский стабилизатор КР142ЕН5А. Аналог LM7805.
Стабилизатор LM7805
Наиболее распространенный вид. Недостаток их в том, что они не могут работать на напряжении ниже, чем заявленное выходное напряжение. Если LM7805 стабилизирует напряжение на 5 вольтах, то на вход ему подать нужно как минимум на полтора вольта больше. Если подать меньше 6,5 В, то выходное напряжение «просядет», и мы уже не получим 5 В. Еще один минус линейных стабилизаторов — сильный нагрев при нагрузке. Собственно, в этом и заключается принцип их работы — всё, что выше стабилизируемого напряжения, просто превращается в тепло. Если мы на вход LM7805 подадим 12 В, то 7 потратятся на нагрев корпуса, а 5 пойдут потребителю. Корпус при этом нагреется настолько сильно, что без радиатора микросхема просто сгорит. Из всего этого вытекает ещё один серьёзный недостаток — линейный стабилизатор не стоит применять в устройствах с питанием от батареек. Энергия батареек будет тратиться на нагрев стабилизатора. Всех этих недостатков лишены импульсные стабилизаторы.
Импульсные стабилизаторы напряжения
Импульсные стабилизаторы — лишены недостатков линейных, но и стоят дороже. Это уже не просто микросхема с тремя выводами. Выглядят они, как плата с детальками.
Один из вариантов исполнения импульсного стабилизатора.
Импульсные стабилизаторы бывают трех видов: понижающие, повышающие и всеядные. Наиболее интересные — всеядные. Независимо от напряжения на входе, на выходе будет именно то, которое нам нужно. Всеядному импульснику все равно, что на входе напряжение ниже или выше нужного. Он сам автоматом переключается в режим повышения или понижения напряжения и держит заданное на выходе. Если в характеристиках заявлено, что стабилизатору на вход можно подать от 1 до 15 вольт и на выходе будет стабильно 5, то так оно и будет. Кроме того, нагрев импульсных стабилизаторов настолько незначителен, что в большинстве случаев им можно пренебречь. Если ваша схема будет питаться от батареек или размещаться в закрытом корпусе, где сильный нагрев линейного стабилизатора недопустим — ставьте импульсный. Я использую настраиваемые импульсные стабилизаторы напряжения за копейки, которые заказываю с Aliexpress. Купить можно здесь.
Хорошо. А что со стабилизатором тока?
Не открою Америку, если скажу, что стабилизатор тока стабилизирует ток.
Токовые стабилизаторы ещё иногда называют светодиодным драйвером. Внешне они похожи на импульсные стабилизаторы напряжения. Хотя сам стабилизатор — маленькая микросхема, а всё остальное нужно для обеспечения правильного режима работы. Но обычно драйвером называют всю схему сразу.
Примерно так выглядит стабилизатор тока. Красным кружком обведена та самая схема, которая и является стабилизатором. Всё остальное на плате — обвязка.
Итак. Драйвер задаёт ток. Стабильно! Если написано, что на выходе будет ток в 350мА, то будет именно 350мА. А вот напряжение на выходе может меняется в зависимости от требуемого потребителем напряжения. Не будем пускаться в дебри теории о том. как всё это работает. Просто запомним, что вы напряжение не регулируете, драйвер сделает все за вас исходя из потребителя.
Ну так и зачем всё это нужно то?
Теперь вы знаете, чем стабилизатор напряжения отличается от стабилизатора тока и можете ориентироваться в их многообразии. Возможно, вам так и не стало понятно, зачем эти штуки нужны.
Пример: вы хотите запитать 3 светодиода от бортовой сети автомобиля. Как вы можете узнать из статьи о светодиоде, для светодиода важно контролировать именно силу тока. Используем самый распространенный вариант соединения светодиодов: последовательно соединены 3 светодиода и резистор. Напряжение питания — 12 вольт.
Резистором мы ограничиваем ток на светодиоды, чтобы они не сгорели. Падение напряжения на светодиоде пусть будет у нас 3.4 вольта.
После первого светодиода остается 12-3.4= 8.6 вольт.
Нам пока хватает.
На втором потеряется еще 3.4 вольта, то есть останется 8.6-3.4=5.2 вольта.
И для третьего светодиода тоже хватит.
А после третьего останется 5.2-3.4=1.8 вольта.
При желании добавить четвёртый светодиод — уже не хватит.
Если напряжение питания поднять до 15В, то тогда хватит. Но тогда и резистор тоже надо будет пересчитать. Резистор — простейший стабилизатор (ограничитель) тока. Их часто ставят на те же ленты и модули. У него есть минус — чем ниже напряжение, тем меньше будет и ток на светодиоде (закон Ома, с ним не поспоришь). Значит, если входное напряжение нестабильно (в автомобилях обычно так и есть), то предварительно нужно стабилизировать напряжение, а потом можно ограничить резистором ток до необходимых значений. Если используем резистор, как токовый ограничитель там, где напряжение не стабильно, нужно стабилизировать напряжение.
Стоит помнить, что резисторы имеет смысл ставить только до определенной силы тока. После некоторого порога резисторы начинают сильно греться и приходится ставить более мощные резисторы (зачем резистору мощность рассказано в статье о этом приборе) . Тепловыделение растёт, КПД падает.
Импульсный стабилизатор тока
Импульсный стабилизатор тока тоже называют светодиодным драйвером. Часто те, кто не сильно разбирается в этом, стабилизатор напряжения называют просто драйвером светодиодов, а импульсный стабилизатор тока — хорошим светодиодным драйвером. Он выдаёт сразу стабильное напряжение и ток. И почти не нагревается. Вот так он выглядит:
Импульсный стабилизатор тока
Стабилизатор тока и стабилизатор напряжения.
360
Стабилизатор тока и стабилизатор напряжения.
Эта статья является продолжением статьи «Генератор тока (источник тока). Различия и сходства стабилизаторов тока и напряжения».
Как одно превратить в другое.
***
Временами я просматриваю статистику посещаемости моего сайта в Яндекс Метрике. Там же можно увидеть по каким запросам читатели приходят на ту или иную статью. Так вот на статью о генераторах тока зачастую читатели попадают, набирая запросы такого характера:
— Как из стабилизатора напряжения сделать генератор тока?
— Как источник тока переделать в стабилизатор напряжения?
Ну и тому подобное.
Раньше у меня такие вопросы вызывали только улыбку. Но сейчас я решил, что нужно вполне серьёзно на них ответить. Рассказать, чем же отличается схемотехника стабилизаторов тока и стабилизаторов напряжения. Вместо слова стабилизатор можете подставить генератор или источник.
Итак, для начала нам нужно твёрдо себе уяснить основное различие источников тока и напряжения:
Идеальный источник тока создаёт в нагрузке ток стабильной, неизменной величины.
Идеальный источник напряжения создаёт на нагрузке напряжение стабильной неизменной величины.
Далее я буду употреблять в тексте слова стабилизатор, генератор, источник. Все они будут являться синонимами словосочетания «Идеальный источник». Не пугайтесь слова «идеальный». Практически любой бытовой источник напряжения является условно идеальным, до того момента пока вы не нарушите условий его эксплуатации. Ну не включите, например слишком большую нагрузку, или не закоротите накоротко.
Исключение составляют зарядные устройства. Но там разговор особый.
Таким образом если мы изменяем сопротивление нагрузки у источника напряжения, то напряжение на нагрузке остаётся стабильным, а ток, протекающий через нагрузку, изменяется.
Uн → const,
Iн → var.
Если мы изменяем сопротивление нагрузки у источника тока, то ток, протекающий через нагрузку, остаётся неизменным, а напряжение на нагрузке изменяется.
Uн → var.
Iн → const,
Сразу оговорюсь что никакие химические, фотоэлектрические, электромеханические и т.д. и т.п. источники электроэнергии, не оснащённые специальными схемами стабилизации выходных характеристик, не могут рассматриваться ни как источник напряжения ни как источник тока. Они нечто среднее между тем и другим так как и ток и напряжение на выходе у них изменяются и при изменении сопротивления нагрузки, и с течением времени и по разным другим причинам. Такие источники являются источниками ЭДС.
Итак, чем же различаются схемы стабилизаторов тока и стабилизаторов напряжения?
Рассмотрим для начала что такое стабилизатор вообще. Функциональная схема любого стабилизатора выглядит так как показано на Рис. 1.
Рис. 1 Функциональная схема стабилизатора.
Здесь:
— УМ — усилитель мощности. Надо понимать, что несмотря на грозное название усилителем мощности может послужить обычный транзистор. Внутри интегральных микросхем таких усилителей мощности пруд пруди.
— УО — расшифровывается не как умственно отсталый, а как усилитель ошибки.
Как это работает.
Вход подключен к какому-либо источнику питания. На выходе начинает протекать ток, который создаёт некоторое падение напряжения на сопротивлении подключенной нагрузки. УО включен в цепь глубокой отрицательной обратной связи (ОС).
Выходной параметр, ток или напряжение подаётся на один из входов УО. Ко второму входу подключен некий эталон. Если величина параметра на выходе УМ не совпадает с величиной эталона, то образуется некоторая разница между первым и вторым входом. Эта разница называется ошибкой.
УО усиливает эту ошибку во много раз и выдаёт на УМ в виде управляющего сигнала, этот сигнал заставляет УМ изменить свои характеристики так чтобы выходной параметр (ток или напряжение) пришёл в соответствие с эталоном.
Думаю, должно быть понятно, что для того, чтобы поддерживать минимальную разность между выходным параметром и эталоном УО должен обладать очень большим коэффициентом усиления (Ку).
Теперь давайте посмотрим, как это всё можно реализовать на практике.
Начнём с простейшего стабилизатора напряжения, Рис. 2. Кстати, схемы, построенные по такому принципу в основном и были распространены примерно до 1980 года.
Для начала немного о терминологии.
— Эталон теперь будет называться опорным напряжением (Uоп). Независимо от того стабилизатор чего мы строим тока или напряжения, на вход 1 УО будет подаваться напряжение.
— ИОН — источник опорного напряжения.
Рис. 2 Схема простого стабилизатора напряжения.
В этой схеме роль УМ выполняет биполярный транзистор структуры n-p-n. В качестве ИОН задействован стабилитрон VD1. Остаётся вопрос — а где же УО? Роль УО выполняет p-n переход база-эмиттер транзистора. Вход 1 это эмиттер, на нём присутствует выходное напряжение. Роль входа 2 выполняет база транзистора, на неё подано опорное напряжение с катода VD1.
Действительно, переход Б-Э это фактически включенный в прямом направлении полупроводниковый диод. А как известно на p-n переходе диода при прямом включении возникает некоторое довольно стабильное падение напряжение. И это напряжение очень слабо зависит от протекающего через диод тока. Стабильность напряжения Б-Э зависит от крутизны вольтамперной характеристики этого диода. Чем круче характеристика, тем меньше влияние тока протекающего через диод на падение напряжения на нём, что эквивалентно большому Ку усилителя ошибки.
Напряжение на нагрузке вычисляется по следующей формуле:
Uн = Uоп — Uбэ
Так как Uоп и Uбэ стабильны то и Uн также стабильно. Причём, при идеальных Uоп и Uбэ, Uн не будет зависеть ни от изменения питающего напряжения, ни от изменения сопротивления нагрузки. В разумных пределах, конечно.
Тот, кто читал мою статью «Генератор тока (источник тока). Различия и сходства стабилизаторов тока и напряжения», тот думаю сам сможет оценить эти самые пределы.
Теперь давайте подумаем, как нам этот стабилизатор напряжения переделать в стабилизатор (генератор) тока.
На самом деле всё очень просто.
Так как ток, протекающий через нагрузку, течёт от источника питания к коллектору транзистора, а затем в эмиттер, то следовательно ток в нагрузке практически точно соответствует току, протекающему через коллектор.
Если вместо Rн запаять постоянный резистор тогда величина тока, протекающего через коллектор, будет постоянна и не будет зависеть от изменения напряжения питания, Рис. 3.
Рис. 3
Вычисляться этот ток будет по следующей формуле:
Iк = Uэ / R2 = (Uоп — Uбэ) / R2
Вот мы, собственно говоря, уже и получили генератор (источник) тока. Правда работать он будет сам на себя, а потому в таком виде никому не нужен.
Преобразовать его в полноценный генератор тока совсем просто. Нужно оторвать коллектор транзистора от цепи питания и включить в разрыв нагрузку, Рис. 4.
Рис. 4 Схема простого генератора (стабилизатора) тока.
В этой схеме ток в нагрузке будет стабильным и не будет зависеть от напряжения питания и сопротивления нагрузки, опять же — в разумных пределах. Как эти пределы рассчитать я рассказывал в предыдущей статье.
Таким образом стабилизатор напряжения (Рис. 2) я преобразовал в генератор тока (Рис. 4). Но в этих схемах есть один недостаток — очень низкий коэффициент стабилизации. Связано это как малой стабильностью ИОН на стабилитроне VD1, так и с низкой стабильностью Uбэ.
В предыдущей статье я приводил такой пример схемы генератора тока, Рис. 5.
Рис. 5 Схема генератора тока с операционным усилителем в цепи обратной связи.
В этой схеме ИОН может быть построен на стабилитронах или на более современных компонентах, например трёхвыводная микросхема TL431 или её аналог.
Операционный усилитель ОУ выполняет роль усилителя ошибки. Такое построение схемы позволяет получить очень высокую стабильность выходных характеристик. Здесь резистор Rэ выполняет роль датчика тока (ДТ). Падение напряжения на этом датчике тока изменяется пропорционально изменению протекающего через него тока.
Ну и как вы уже, наверное, поняли её также легко превратить в стабилизатор напряжения, Рис. 6.
Рис. 6 Схема стабилизатора напряжения с операционным усилителем в цепи обратной связи.
ИОН обычно выдаёт Uоп в районе (2 — 5) Вольт. Делителем R1R2 устанавливают требуемое выходное напряжение. Чем больше коэффициент деления делителя, тем больше выходное напряжение.
Что можно сказать по поводу этих двух схем.
Генераторы тока по схеме изображённой на Рис. 5 вполне себе строятся так как от генераторов тока обычно не требуется большая мощность. Обычно они питают различные резистивные датчики температуры, давления, освещённости. В этих случаях требуется высокая стабильность генератора тока, а не мощность.
Стабилизаторы напряжения в наше время в основном представляют из себя импульсные источники питания. Это позволяет получить высокий КПД и хорошие массогабаритные характеристики. Но в некоторых случаях не обойтись и без аналоговых стабилизированных источников питания. Например, там, где предъявляются высокие требования к уровню высокочастотных помех. Все импульсные источники довольно сильно фонят.
Применение.
Стабилизаторы напряжения окружают нас со всех сторон. Ни один компьютер или телевизор не может обойтись без них. Даже мобильник нужно время от времени заряжать через зарядное устройство, которое представляет собой ничто иное как стабилизированный источник напряжения.
Генераторы тока для нас не так заметны. Но могу вас уверить что вы их постоянно неосознанно используете.
Практически каждая интегральная микросхема содержит внутри себя генератор тока (источник стабильного тока). В больших интегральных микросхемах их сотни если не тысячи.
Но также находят применение и мощные генераторы тока, вот два примера.
Специализированные зарядные устройства для мощных аккумуляторов.
Как известно заряд аккумулятора нужно проводить стабильным током. Для этого используют мощный источник питания, в который встроены две цепи обратной связи, одна по напряжению, она не даёт выходному напряжению превысить некоторый установленный уровень. Другая по току ограничивающая выходной ток устройства, а следовательно, и ток заряда.
Таким образом когда вы подключаете разряженный аккумулятор к зарядному устройству возникает режим перегрузки. Обратная связь по току реагирует на это и ограничивает ток на выходе. Напряжение на выходных клеммах при этом падет. В дальнейшем по мере заряда аккумулятора напряжение растёт, ток при этом остаётся неизменным.
Это означает что зарядное устройство работает в режиме генератора тока.
Вторым примером может служить полупроводниковый сварочный аппарат. Здесь та же ситуация, а вернее даже ещё хуже, так как в начале процесса сварки на выходе аппарата вообще создаётся короткое замыкание. Но обратная связь по току не даёт току вырасти до опасной величины и сбрасывает уровень выходного напряжения. Дальше уже в процессе сварки эта же обратная связь следит за постоянством тока в электрической дуге, выходное напряжение при этом будет колебаться. Таким образом сварочный аппарат работает в режиме генератора тока.
То есть и сварочный аппарат, и зарядное устройство если правильно организовать обратные связи и ввести соответствующие переключатели, можно использовать по прямому назначению, то есть в режиме генератора (стабилизатора) тока, а также как стабилизированные источники напряжения.
Всё зависит от того откуда снимается сигнал для ОС. Если непосредственно с выхода, то получаем стабилизатор напряжения. Если с датчика тока, то получим генератор тока.
Правда если говорить о современных источниках питания, то они представляют собой стабилизированные источники напряжения со схемой ограничения по току.
То есть в них присутствуют обе обратные связи: и по напряжению, и по току. Но обратная связь по току включается в работу только в случае перегрузки. Именно поэтому большинство современных источников питания способны выдерживать даже длительные короткие замыкания на выходе.
Стабилизатор тока светодиода, схемы
См. также: Электронный балласт для светодиодной лампы. Схемотехника.
Статья-ликбез по стабилизаторам тока светодиодов и не только. Рассматриваются схемы линейных и импульсных стабилизаторов тока.
Стабилизатор тока для светодиода устанавливается во многие конструкции светильников. Светодиоды, как и все диоды имеют нелинейную вольт-амперную характеристику. Это означает, что при изменении напряжения на светодиоде, ток изменяется непропорционально. По мере увеличения напряжения, сначала ток растёт очень медленно, светодиод при этом не светится. Затем, при достижении порогового напряжения, светодиод начинает светиться и ток возрастает очень быстро. При дальнейшем увеличении напряжения, ток возрастает катастрофически и светодиод сгорает.
Пороговое напряжение указывается в характеристиках светодиодов, как прямое напряжение при номинальном токе. Номинальный ток для большинства маломощных светодиодов — 20 мА. Для мощных светодиодов освещения, номинальный ток может быть больше — 350 мА или более. Кстати, мощные светодиоды выделяют тепло и должны быть установлены на теплоотвод.
Для правильной работы светодиода, его надо питать через стабилизатор тока. Зачем? Дело в том, что пороговое напряжение светодиода имеет разброс. Разные типы светодиодов имеют разное прямое напряжение, даже однотипные светодиоды имеют разное прямое напряжение — это указано в характеристиках светодиода как минимальное и максимальное значения. Следовательно, два светодиода, подключенные к одному источнику напряжения по параллельной схеме будут пропускать разный ток. Этот ток может быть настолько разным, что светодиод может раньше выйти из строя или сгореть сразу. Кроме того, стабилизатор напряжения также имеет дрейф параметров (от уровня первичного питания, от нагрузки, от температуры, просто по времени). Следовательно, включать светодиоды без устройств выравнивания тока — нежелательно. Различные способы выравнивания тока рассмотрены отдельно. В этой статье рассматриваются устройства, устанавливающие вполне определённый, заданный ток — стабилизаторы тока.
Типы стабилизаторов тока
Стабилизатор тока устанавливает заданный ток через светодиод вне зависимости от приложенного к схеме напряжения. При увеличении напряжения на схеме выше порогового уровня, ток достигает установленного значения и далее не изменяется. При дальнейшем увеличении общего напряжения, напряжение на светодиоде перестаёт меняться, а напряжение на стабилизаторе тока растёт.
Поскольку напряжение на светодиоде определяется его параметрами и в общем случае неизменно, то стабилизатор тока можно назвать также стабилизатором мощности светодиода. В простейшем случае, выделяемая устройством активная мощность (тепло) распределяется между светодиодом и стабилизатором пропорционально напряжению на них. Такой стабилизатор называется линейным. Также существуют более экономичные устройства — стабилизаторы тока на базе импульсного преобразователя (ключевого преобразователя или конвертера). Они называются импульсными, поскольку внутри себя прокачивают мощность порциями — импульсами по мере необходимости для потребителя. Правильный импульсный преобразователь потребляет мощность непрерывно, внутри себя передаёт её импульсами от входной цепи к выходной и выдаёт мощность в нагрузку уже опять непрерывно.
Линейный стабилизатор тока
Линейный стабилизатор тока греется тем больше, чем больше приложено к нему напряжение. Это его основной недостаток. Однако, он имеет ряд преимуществ, например:
- Линейный стабилизатор не создаёт электромагнитных помех
- Прост по конструкции
- Имеет низкую стоимость в большинстве применений
Поскольку импульсный преобразователь не бывает абсолютно эффективным, существуют приложения, когда линейный стабилизатор имеет сравнимую или даже большую эффективность — когда входное напряжение лишь немного превышает напряжение на светодиоде. Кстати, при питании от сети, часто используется трансформатор, на выходе которого устанавливается линейный стабилизатор тока. То есть, сначала напряжение снижается до уровня, сравнимого с напряжением на светодиоде, а затем, с помощью линейного стабилизатора устанавливается необходимый ток.
В другом случае, можно приблизить напряжение светодиода к напряжению питания — соединить светодиоды в последовательную цепочку. Напряжение на цепочке будет равняться сумме напряжений на каждом светодиоде.
Схемы линейных стабилизаторов тока
Самая простая схема стабилизатора тока — на одном транзисторе (схема «а»). Поскольку транзистор — это усилитель тока, то его выходной ток (ток коллектора) больше тока управления (ток базы) в h21 раз (коэффициент усиления). Ток базы можно установить с помощью батарейки и резистора, или с помощью стабилитрона и резистора (схема «б»). Однако такую схему трудно настраивать, полученный стабилизатор будет зависеть от температуры, кроме того, транзисторы имеют большой разброс параметров и при замене транзистора, ток придётся подбирать снова. Гораздо лучше работает схема с обратной связью «в» и «г». Резистор R в схеме выполняет роль обратной связи — при увеличении тока, напряжение на резисторе возрастает, тем самым запирает транзистор и ток снижается. Схема «г», при использовании однотипных транзисторов, имеет бóльшую температурную стабильность и возможность максимально уменьшить номинал резистора, что снижает минимальное напряжение стабилизатора и выделение мощности на резисторе R.
Стабилизатор тока можно выполнить на базе полевого транзистора с p-n переходом (схема «д»). Напряжение затвор-исток устанавливает ток стока. При нулевом напряжении затвор-исток, ток через транзистор равен начальному току стока, указанному в документации. Минимальное напряжение работы такого стабилизатора тока зависит от транзистора и достигает 3 вольт. Некоторые производители электронных компонентов выпускают специальные устройства — готовые стабилизаторы с фиксированным током, собранные по такой схеме — CRD (Current Regulating Devices) или CCR (Constant Current Regulator) . Некоторые называют его диодным стабилизатором, поскольку в обратном включении он работает как диод.
Компания On Semiconductor выпускает линейный стабилизатор серии NSIxxx, например NSIC2020B, который имеет два вывода и для увеличения надежности, имеет отрицательный температурный коэффициент — при увеличении температуры, ток через светодиоды снижается.
Импульсный стабилизатор тока
Стабилизатор тока на базе импульсного преобразователя по конструкции очень похож на стабилизатор напряжения на базе импульсного преобразователя, но контролирует не напряжение на нагрузке, а ток через нагрузку. При снижении тока в нагрузке, он подкачивает мощность, при увеличении — снижает. Наиболее распространённые схемы импульсных преобразователей имеют в своём составе реактивный элемент — дроссель, который с помощью коммутатора (ключа) подкачивается порциями энергии от входной цепи (от входной ёмкости) и в свою очередь передаёт её нагрузке. Кроме очевидного преимущества экономии энергии, импульсные преобразователи обладают рядом недостатков, с которыми приходится бороться различными схемотехническими и конструктивными решениями:
- Импульсный конвертер производит электрические и электромагнитные помехи
- Имеет как правило сложную конструкцию
- Не обладает абсолютной эффективностью, то есть тратит энергию для собственной работы и греется
- Имеет чаще всего бóльшую стоимость, по сравнению, например, с трансформаторными плюс линейными устройствами
Поскольку экономия энергии во многих приложениях является решающей, разработчики компонентов, схемотехники стараются снизить влияние этих недостатков, и, зачастую, преуспевают в этом.
Схемы импульсных преобразователей
Поскольку стабилизатор тока основан на импульсном преобразователе, рассмотрим основные схемы импульсных преобразователей. Каждый импульсный преобразователь имеет ключ, элемент, который может находиться только в двух состояниях — включенном и выключенном. В выключенном состоянии, ключ не проводит ток и, соответственно, на нём не выделяется мощность. Во включенном состоянии, ключ проводит ток, но имеет очень малое сопротивление (в идеале — равное нулю), соответственно на нём выделяется мощность, близкая к нулю. Таким образом, ключ может передавать порции энергии от входной цепи к выходной практически без потерь мощности. Однако, вместо стабильного тока, какой можно получить от линейного источника питания, на выходе такого ключа будет импульсное напряжение и ток. Для того, чтобы получить снова стабильные напряжение и ток, можно поставить фильтр.
С помощью обычного RC фильтра можно получить результат, однако, эффективность такого преобразователя не будет лучше линейного, поскольку вся избыточная мощность выделится на активном сопротивлении резистора. Но если использовать вместо RC — LC фильтр (схема «б»), то, благодаря «специфическим» свойствам индуктивности, потерь мощности можно избежать. Индуктивность обладает полезным реактивным свойством — ток через неё возрастает постепенно, подаваемая на него электрическая энергия преобразуется в магнитную и накапливается в сердечнике. После выключения ключа, ток в индуктивности не пропадает, напряжение на индуктивности меняет полярность и продолжает заряжать выходной конденсатор, индуктивность становится источником тока через обводной диод D. Такая индуктивность, предназначенная для передачи мощности, называется дросселем. Ток в дросселе правильно работающего устройства присутствует постоянно — так называемый неразрывный режим или режим непрерывного тока (в западной литературе такой режим называется Constant Current Mode — CCM). При снижении тока нагрузки, напряжение на таком преобразователе возрастает, энергия, накапливаемая в дросселе снижается и устройство может перейти в разрывный режим работы, когда ток в дросселе становится прерывистым. При таком режиме работы резко повышается уровень помех, создаваемых устройством. Некоторые преобразователи работают в пограничном режиме, когда ток через дроссель приближается к нулю (в западной литературе такой режим называется Border Current Mode — BCM). В любом случае, через дроссель течет значительный постоянный ток, что приводит к намагничиванию сердечника, в связи с чем, дроссель выполняется особой конструкции — с разрывом или с использованием специальных магнитных материалов.
Стабилизатор на базе импульсного преобразователя имеет устройство, регулирующее работу ключа, в зависимости от нагрузки. Стабилизатор напряжения регистрирует напряжение на нагрузке и изменяет работу ключа (схема «а»). Стабилизатор тока измеряет ток через нагрузку, например с помощью маленького измерительного сопротивления Ri (схема «б»), включенного последовательно с нагрузкой.
Ключ преобразователя, в зависимости от сигнала регулятора, включается с различной скважностью. Есть два распространённых способа управления ключом — широтно-импульсная модуляция (ШИМ) и токовый режим. В режиме ШИМ, сигнал ошибки управляет длительностью импульсов при сохранении частоты следования. В токовом режиме, измеряется пиковый ток в дросселе и изменяется интервал между импульсами.
В современных ключевых преобразователях в качестве ключа обычно используется MOSFET транзистор.
Понижающий преобразователь
Рассмотренный выше вариант преобразователя называется понижающим, поскольку напряжение на нагрузке всегда ниже напряжения источника питания.
Поскольку в дросселе постоянно течёт однонаправленный ток, требования к выходному конденсатору могут быть снижены, дроссель с выходным конденсатором играют роль эффективного LC фильтра. В некоторых схемах стабилизаторов тока, например для светодиодов, выходной конденсатор может отсутствовать вообще. В западной литературе понижающий преобразователь называется Buck converter.
Повышающий преобразователь
Схема импульсного стабилизатора, приведённая ниже, также работает на основе дросселя, однако дроссель всегда подключен к выходу источника питания. Когда ключ разомкнут, питание поступает через дроссель и диод на нагрузку. Когда ключ замыкается, дроссель накапливает энергию, когда ключ размыкается, возникающее на его выводах ЭДС добавляется к ЭДС источника питания и напряжение на нагрузке возрастает.
В отличие от предыдущей схемы, выходной конденсатор заряжается прерывистым током, следовательно выходной конденсатор должен быть большим, и, возможно, понадобится дополнительный фильтр. В западной литературе повышающе-понижающий преобразователь называется Boost converter.
Инвертирующий преобразователь
Еще одна схема импульсного преобразователя работает аналогично — когда ключ замыкается, дроссель накапливает энергию, когда ключ раз
Стабилизаторы тока | PRO-диод
Стабилизаторы тока
25.10.2013 | Рубрика: Электроника
Бывают случаи, когда необходимо пропускать стабильный ток через светодиоды, ограничить ток зарядки аккумуляторов или испытать источник питания, а реостата под рукой нет. В этом, и не только, случае помогут специальные схемотехнические решения ограничивающие, регулирующие и стабилизирующие ток. Далее подробно рассмотрены схемы стабилизаторов и регуляторов тока
Источники тока, в отличие от источников напряжения, стабилизируют выходной ток, изменяя выходное напряжение так, чтобы ток через нагрузку всегда оставался одинаковым.
Таким образом, источник тока отличается от источника напряжения, как вода отличается от суши. Типичное применение источников тока – питание светодиодов, зарядка аккумуляторов и т.п.
Внимание! Не путайте стабилизатор тока со стабилизатором напряжения! Это может плохо кончиться =)
Простой стабилизатор тока на КРЕНке
Для этого стабилизатора тока достаточно применить КР142ЕН12 или LM317. Это регулируемые стабилизаторы напряжения способные работать с токами до 1,5А, входными напряжениями до 40В и рассеивают мощность до 10Вт (при соблюдении теплового режима).
Схема и применение показаны на рисунках ниже
Стабилизатор тока на КР142ЕН12 (LM317)
Стабилизатор тока на КРЕН в качестве зярядного устройства
Собственное потребление данных микросхем относительно невелико – около 8мА и это потребление практически не меняется при изменении тока протекающего через крен или изменения входного напряжения. Как видим, в вышеприведенных схемах, стабилизатор LM317 работает как стабилизатор напряжения, удерживая на резисторе R3 постоянное напряжение, которое можно регулировать в некоторых пределах построечным резистором R2. В данном случае R3 называется токозадающим резистором. Поскольку сопротивление R3 неизменно, то ток через него будет стабильным. Ток на входе крен будет примерно на 8мА больше.
Таким образом, мы получили простой как веник стабилизатор тока, который может применяться как электронная нагрузка, источник тока для заряда аккумуляторов и т.п.
Интегральные стабилизаторы достаточно шустро реагируют на изменение входного напряжения. Недостаток же такого регулятора тока – весьма большое сопротивление токозадающего резистора R3 и как следствие необходимость применять более мощные и более дорогие резисторы.
Простой стабилизатор тока на двух транзисторах
Достаточно широкое распространение получили простенькие стабилизаторы тока на двух транзисторах. Основной минус данной схемы – не очень хорошая стабильность тока в нагрузке при изменении питающего напряжения. Впрочем, для многих применений сгодятся и такие характеристики.
Далее показана схема стабилизатора тока на транзисторе. В данной схеме токозадающим резистором является R2. При увеличении тока через VT2, увеличится напряжение на токозадающем резисторе R2, которое при величине примерно 0,5…0,6В начинает открывать транзистор VT1. Транзистор VT1 открываясь начинает закрывать транзистор VT2 и ток через VT2 уменьшается.
Стабилизатор тока на транзисторах
Зарядка аккумуляторов
Вместо биполярного транзистора VT2, можно применить MOSFET – полевой транзистор.
Стабилитрон VD1 выбирается на напряжение 8…15В и необходим в случаях, когда напряжение источника питания достаточно велико и может пробить затвор полевого транзистора. Для мощных MOSFET это напряжение составляет порядка 20В. Далее показана схема стабилизатора тока с использованием MOSFET.
Стабилизатор тока на полевом транзисторе
Нужно учитывать, что MOSFET открываются при напряжении на затворе не менее 2В, соответственно увеличивается и напряжение, необходимое для нормальной работы схемы стабилизатора тока. При зарядке аккумуляторов и некоторых других задачах вполне достаточно будет включить транзистор VT1 с резистором R1 непосредственно к источнику питания так, как это показано на рисунке:
Стабилизатор тока на полевом транзисторе
В схемах стабилизатора тока на транзисторах необходимое значение токозадающего резистора для заданного значения тока примерно в два раза меньше, чем в схемах со стабилизатором на КР142ЕН12 или LM317. Это позволяет применить токозадающий резистор меньшей мощности.
Стабилизатор тока на операционном усилителе (на ОУ)
Если необходимо собрать регулируемый в широких пределах стабилизатор тока или стабилизатор тока с токозадающим резистором на порядок или даже два ниже, чем на схемах, показанных ранее, можно применить схему с усилителем ошибки на ОУ (операционном усилителе). Схема такого стабилизатора тока показана на рис:
Стабилизатор тока на операционном усилителе
В данной схеме токозадающим является резистор R7. ОУ DA2.2 усиливает напряжение токозадающего резистора R7 – это усиленное напряжение ошибки. ОУ DA2.1 сравнивает опорное напряжение и напряжение ошибки и регулирует состояние полевого транзистора VT1.
Обратите внимание, что схема требует отдельного питания, подаваемого на разъем XP2. Напряжение питания должно быть достаточным для работы компонентов схемы и не превышать значения напряжения пробоя затвора MOSFET VT1.
В качестве генератора опорного напряжения в схеме на рис. 7 применена микросхема DA1 REF198 с выходным напряжением 4,096В. Это достаточно дорогая микросхема, поэтому ее можно заменить обычной кренкой, а если напряжение питания схемы (+U) является стабильным, то и вовсе обойтись без стабилизатора напряжения в данной схеме. В этом случае переменный резистор R подсоединяется не к REF, а к +U. В случае электронного управления схемой вывод 3 DA2.1 можно подключить непосредственно к выходу ЦАП.
Для настройки схемы необходимо выставить ползунок переменного резистора R1 в верхнее по схеме положение, подстроечным резистором R3 установить необходимое значение тока – это значение будет максимальным. Теперь резистором R1 можно регулировать ток через VT1 от 0 до установленного при настройке максимального тока. Элементы R2, C2, R4 необходимы для предотвращения возбуждения схемы. Из-за этих элементов временные характеристики не являются идеальными, что видно по осциллограмме
Осциллограмма стабилизатора тока на ОУ
На осциллограмме луч 1 (желтый) показывает напряжение нагружаемого ИП (источника питания), луч 2 (голубой) показывает напряжение на токозадающем резисторе R7. Как видно, в течение 80 мкс через схему протекает ток в несколько раз больше установленного.
Стабилизатор тока на микросхеме импульсного стабилизатора напряжения
Иногда от стабилизатора тока требуется не только работать в широком диапазоне питающих напряжений и нагрузок, но и иметь высокий КПД. В этих случаях компенсационные стабилизаторы не годятся и на смену им приходят стабилизаторы импульсные (ключевые). Кроме того, импульсные стабилизаторы могут при небольшом входном напряжении получать высокое напряжение на нагрузке.
Далее предлагается к рассмотрению широко распространенная микросхема MAX771. Основные характеристики MAX771:
- Напряжение питяния 2…16,5В
- Собственное потребление 110uA
- Выходная мощность до 15W
- КПД при токе нагрузки 10mA…1A достигает 90%
- Опорное напряжение 1,5V
На рисунке показан один из вариантов включения микросхемы, именно его мы и возьмем за основу нашей схемы.
MAX771 включен как повышающий стабилизатор напряжения
Упрощенно процесс стабилизации выглядит следующим образом. Резисторы R1 и R2 являются делителями выходного напряжения микросхемы, как только делимое напряжение, поступающее на вывод FB микросхемы MAX771, больше опорного напряжения (1,5V) микросхема уменьшает выходное напряжение и наоборот — если напряжение на выводе FB меньше 1,5V, микросхема увеличивает входное напряжение.
Очевидно, что если контрольные цепи изменить так, чтобы MAX771 реагировала (и соответственно регулировала) выходной ток, то мы полчим стабилизированный источник тока.
Ниже показаны модифицированная схема с ограничением выходного напряжения и вариант нагрузки.
- Схема стабилизатора тока на MAX771
- Нагрузка для стабилизатора тока
При небольшой нагрузке, пока падение напряжения на токоизмерительном резисторе R3 меньше 1,5V, схема на Рис.10a работает как стабилизатор напряжения, стабилизируя напряжение на уровне стабилитрона VD2 + 1,5V. Как только ток нагрузки становится достаточно большим, на R3 падение напряжения увеличивается и схема переходит в режим стабилизации тока.
Резистор R8 устанавливается в том случае, если напряжение стабилизации может быть большим — больше 16,5V. Резистор R3 является токозадающим и рассчитывается по формуле: R3 = 1,5/Iст.
Недостатком схемы является достаточно большое падение напряжения на токоизмерительном резисторе R3. Данный недостаток устраняется применением операционного усилителя (ОУ) для усиления сигнала с резистора R3. Например, если резистор требуется уменьшить в 10 раз при заданном токе, то усилитель на ОУ должен усилить напряжение падающее на R3 тоже в 10 раз.
Заключение
Итак, было рассмотрено несколько схем выполняющих функцию стабилизации тока. Конечно же, эти схемы можно улучшать, увеличивая быстродействие, точность и т.д. Можно применять в качестве датчика тока специализированные микросхемы и делать сверхмощные регулирующие элементы, но эти схемы идеально подходят в тех случаях, когда требуется быстро создать инструмент для облегчения своей работы или решения определенного круга задач.
Метки:: Стабилизатор тока
определение, как работает, зачем нужен, основные типы
02.09.2019
В данной статье рассмотрим что такое стабилизатор переменного напряжения, случаи его применения, особенности основных типов.
Не будет преувеличением сказать, что применение стабилизаторов сетевого напряжения стало необходимостью для каждого дома. И связано это не только с качеством поставляемой в наши дома и квартиры электроэнергией, но и с появлением сложной бытовой техники с электронным управлением, требовательной к качеству питающего напряжения.
Развитие технологий не обошло стороной и производителей стабилизаторов напряжения. Ведущие бренды уже несколько лет назад начали выпускать устройства нового инверторного типа, использующие схему двойного преобразования напряжения. Инверторные стабилизаторы, благодаря применению в них микропроцессорных чипов и электронных ключей, превосходят ранние трансформаторные модели по техническим характеристикам, функциональным возможностям и эффективности работы. Подробнее о достоинствах и недостатках разных типов стабилизаторов читайте в конце статьи.
Что такое стабилизатор переменного напряжения?
Стабилизатор переменного напряжения – это преобразующее устройство, главным назначением которого является защита электроприборов (например, холодильника, телевизора, стиральной, машинки, сплит-системы) от воздействий колебаний и скачков напряжения в питающей сети, способных привести их к поломке и выходу из строя.
Первые стабилизаторы появились в середине прошлого века. Это были устройства электромагнитного типа, работа которых основана на явлении электромагнитной индукции – возникновении электрического тока в замкнутом контуре автотрансформатора. Они не отличались высокими значениями таких показателей эффективности работы как точность стабилизации напряжения, скорость реагирования на его изменение в сети, КПД, перегрузочная способность. К тому же, даже маломощные устройства тех времен были громоздкими и тяжёлыми.
Во многих современных автоматических регуляторах напряжения (AVR — Automatic Voltage Regulator) в качестве устройства преобразования до сих пор применяется автотрансформатор. В наиболее продвинутых инверторных устройствах нового поколения используется технология двойного, бестрансформаторного преобразования электроэнергии.
В зависимости от типа напряжения питающей сети, на которую рассчитаны стабилизаторы, существуют однофазные, трехфазные и устройства, имеющие конфигурацию 3:1 («три в один»). Первые применяются только для стабилизации питания однофазных электроприборов. Трехфазные стабилизаторы предназначены для работы в трехфазных сетях для питания оборудования, рассчитанного на 380 В, но при пофазн