Принцип работы турбины самолета
Как работает авиационный двигатель — простым языком.
То что вы видите под крылом — это не турбина, а именно авиационный двигатель, а турбина — это его составная часть.
Авиационный турбовентиляторный реактивный двигатель необходим для создания тяги, которая преодолеет сопротивление воздуха, сопротивление самолета и его частей, разгонит самолет до скорости, на которой вырастет подъемная сила, способная оторвать самолет от земли и унести его с полной загрузкой в небо.
Передняя часть двигателя называется воздухозаборник. Воздух, попадая в него, начинает частично сжиматься. Далее воздух попадает на ступени вентилятора и ряд лопаток, где его давление и температура от сжимания начинает расти.
Воздух дальше идет по двум контурам. Внешний контур сжимает воздух благодаря своей форме. Воздух, который пошел во внутренний контур все больше сжимается, проходя каждый ряд статичных и крутящихся лопаток, сделанных из титана.
В компрессоре высокого давления он сжимается и его температура растет. И вот воздух попадает в камеру сгорания, где он смешивается с топливом. В результате этого резко растет тепловая энергия.⠀
Разогретые до огромной температуры газы выходят с бешеной скоростью из камеры сгорания и расширяются. Попадая на колесо турбины, они приводят ее в вращение.Турбина сидит на одном валу с компрессором. Компрессор начинает вращаться и получается замкнутая цепь. Воздух вновь засасывается компрессором и процесс продолжается.
Далее происходит следующее: разогретые до огромной температуры газы выходят с бешеной скоростью из камеры сгорания и расширяются. Попадая на колесо турбины, они приводят ее во вращение.
Турбина сидит на одном валу с компрессором. Компрессор начинает вращаться. Получается замкнутая цепь: воздух вновь засасывается компрессором, и процесс повторяется.
Выходящие газы попадают в сопло и на выходе из него смешиваясь с воздухом с внешнего контура создают реактивную струю, которая и толкает самолет сквозь воздушную среду.
Турбореактивный двигатель (ТРД)
ТРД стал самым распространённым в авиации воздушно-реактивным двигателем. Он является базой для создания целого семейства двигателей, объединяемых под общим названием газотурбинных двигателей. ТРД используют в качестве горючего керосин, находящийся в топливных баках, а в качестве окислителя – кислород воздуха.
Поток воздуха, попадающего в двигатель, тормозится во входном устройстве (1), в результате чего давление воздуха перед осевым компрессором (2) повышается. Ротор (вращающаяся часть) объединяет ряд рабочих колёс компрессора (3), представляющих собой диски с закреплёнными на них рабочими лопатками.
Сжатый воздух из компрессора попадает в камеру сгорания (7). Примерно 25–35% от общего потока воздуха направляется непосредственно в жаровые трубы, где происходит основной процесс сгорания керосина, поступающего в распылённом состоянии через форсунки (5).
Другая часть воздуха обтекает наружные поверхности жаровых труб, и на выходе из камеры сгорания смешивается с продуктами сгорания для их охлаждения, что позволяет поддерживать температуру газовоздушной смеси в камере сгорания на уровне, определяемом допустимой теплопрочностью стенок камеры сгорания, лопаток ротора (8) и лопаток спрямляющего аппарата турбины (9).
Часть механической мощности отбирается от вала (6) для привода агрегатов двигателя и привода электрогенераторов, обеспечивающих энергией различные бортовые системы. Основная часть энергии продуктов сгорания идёт на ускорение газового потока в выходном устройстве ТРД – реактивное сопло (10), т. е. на создание реактивной тяги.
Стартовая закрутка вала (5) осуществляется стартером, приводимым при запуске двигателя от наземного или бортового электроагрегата, при дальнейшей работе двигателя вращение вала поддерживается вращением ротора турбины.
Турбонаддув
Турбонаддув – это система, позволяющая увеличить максимальную мощность двигателя, используя для этого энергию выхлопных газов.
Первые турбины хотя и давали весьма ощутимую прибавку в мощности, но из-за своей громоздкости во много раз увеличивали и без того немаленький вес двигателей автомобилей тех лет.
Конструкторы со временем усовершенствовали технологию, сделав элементы системы более легковесными, одновременно повысив ее производительность. Но одним из существенных недостатков оставался повышенный расход топлива.
Конструкторам удалось решить одну из главных проблем турбодвигателя – расход топлива, ведь, как известно, дизельный агрегат менее «прожорливый», чем бензиновый.
Еще один несомненный плюс дизельного топлива – его отработанные газы имеют температуру ниже, чем бензиновые, стало быть, основные агрегаты системы турбонаддува можно было производить из менее тяжеловесных и жаростойких материалов.
Работа реактивного двигателя
Реактивное движение – это такой процесс, при котором от определенного тела с некоторой скоростью отделяется одна из его частей. Сила, которая возникает при этом, работает сама по себе, без малейшего контакта с внешними телами. Реактивное движение стало толчком к созданию реактивного двигателя.
Представим выстрел из любого огнестрельного оружия. Струя раскаленного газа, который образовался в процессе сгорания заряда в патроне, отталкивает оружие назад. Чем мощнее заряд, тем сильнее будет отдача.
В качестве горючего для реактивных двигателей вначале применяли дымный порох. Реактивные двигатели требовали топлива с основой из нитроцеллюлозы, которая растворялась в нитроглицерине. В больших агрегатах сегодня используют специальную смесь полимерного горючего с перхлоратом аммония в качестве окислителя.
Принцип действия РД
В качестве топлива в реактивных двигателях используется жидкий кислород либо азотная кислота. В качестве горючего применяют керосин.
Компоненты поступают в камеру сгорания из двух отдельных баков. После смешивания они превращаются в массу, которая при сгорании выделяет огромное количество тепла и десятки тысяч атмосфер давления. Окислитель подается в камеру сгорания.
Топливная смесь по мере прохождения между сдвоенными стенками камеры и сопла охлаждает эти элементы. Далее горючее попадет через огромное количество форсунок в зону воспламенения. Струя вырывается наружу. За счет этого и обеспечивается толкающий момент.
Несмотря на то что жидкостные двигатели потребляют очень много горючего, их до сих пор используют в качестве маршевых агрегатов для ракеты-носителей и маневровых для орбитальных станций.
Устройство
Устроен РД следующим образом:
— компрессор;
— камера для сгорания;
— турбины;
— выхлопная система.
Компрессор представляет собой несколько турбин. Их задача – всасывать и сжимать воздух по мере того, как он проходит через лопасти. В процессе сжатия повышается температура и давление воздуха.
Смесь выходит из камеры сгорания на высокой скорости, а затем расширяется. Далее она следует через турбину, лопасти которой вращаются за счет воздействия газов. Эта турбина, соединяясь с компрессором, находящимся в передней части агрегата, и приводит его в движение. Воздух, нагретый до высоких температур, выходит через выпускную систему.
Двухконтурный РД
Эти агрегаты имеют массу преимуществ перед турбореактивными (меньший расход топлива при той же мощности).
Воздух, захватываемый турбиной, частично сжимается и подается в первый контур на компрессор и на второй – к неподвижным лопастям. Турбина при этом работает в качестве компрессора низкого давления.
В первом контуре двигателя воздух сжимается и подогревается, а затем подается в камеру сгорания. Здесь происходит смесь с топливом и воспламенение. Образуются газы, которые подаются на турбину высокого давления, за счет чего и вращаются лопасти турбины.
Затем газы проходят через турбину низкого давления. Она приводит в действие вентилятор, и газы попадают наружу, создавая тягу.
Турбовинтовой двигатель
Конструкция и принцип работы были взяты из механизма турбореактивного мотора, а от поршневого — воздушные винты. Таким образом, стало возможным совмещение небольших габаритов, экономичности и высокого коэффициента полезного действия.
Однако для сверхзвуковой скорости они годными не были. Поэтому с появлением таких мощностей в военной авиации от них отказались. Зато гражданские самолеты в основном снабжаются именно ими.
Схема турбовинтового двигателя выглядит следующим образом: после нагнетания и сжатия компрессором воздух попадает в камеру сгорания. Туда же впрыскивается топливо. Полученная смесь воспламеняется и создает газы, которые при расширении поступают в турбину и вращают ее. Нерастраченная энергия выходит через сопло, создавая реактивную тягу.
Турбина
Турбина способна развить скорость до 20 тысяч оборотов в минуту, но винт не сможет ей соответствовать, поэтому здесь имеется понижающий редуктор. Редукторы могут быть разными, но главная их задача — снижать скорость и повышать момент.
Для повышения тяги иногда двумя винтами снабжается турбовинтовой двигатель. Принцип работы при этом у них реализуется за счет вращения в противоположные стороны, но при помощи одного редуктора.
Преимуществами турбовинтового двигателя являются:
- малый вес по сравнению с поршневыми агрегатами;
- экономичность по сравнению с турбореактивными моторами.
Турбокомпрессор
Принцип работы турбокомпрессора сводится к следующему:
- при попадании в мотор топливовоздушной смеси происходит ее сгорание, которая затем выходит через выхлопную трубу. В начале выпускного коллектора установлена крыльчатка, крепко соединенная с другой крыльчаткой, расположенной во впускном коллекторе;
- поток выходящих из двигателя выхлопных газов раскручивает крыльчатку, находящуюся в выпускном коллекторе, которая в свою очередь приводит в движение крыльчатку, установленную на впуске;
- в мотор поступает большее количество воздушной массы, в него подается больше топлива.
Преимущества и недостатки турбонаддува
Турбокомпрессор используется ввиду простоты конструкции и хороших эксплуатационных параметров. Турбонаддув позволяет увеличить мощность двигателя.
Двигатель с турбокомпрессором имеет меньший выброс вредных газов в атмосферу, так как вырабатываются дополнительные выхлопные газы в двигатель. У сгораемого топлива становится меньше отходов.
Использование двух турбокомпрессоров и других турбо деталей
На некоторые двигатели устанавливается два турбокомпрессора разного размера. Малый турбокомпрессор быстрее набирает обороты, снижая тем самым задержку ускорения, а большой обеспечивает больший наддув при высокой скорости вращения двигателя.
Охладитель воздуха или охладитель наддувочного воздуха является дополнительным устройством, которое выглядит как радиатор, только воздух проходит как внутри, так и снаружи охладителя.
Охладитель увеличивает мощность двигателя, охлаждая сжатый воздух от компрессора перед его подачей в двигатель.
Турбокомпрессоры также обладают преимуществом на большой высоте, где плотность воздуха ниже. Обычные двигатели будут работать слабее на большой высоте над уровнем моря, т.к. на каждый ход поршня подаваемая масса воздуха будет меньше. Мощность двигателя с турбокомпрессором также снизится, но менее заметно, т.к. разреженный воздух легче сжимать.
Принцип работы газовых турбин
Газовой турбиной принято называть своеобразный тепловой двигатель, его рабочим частям предопределено только одно задание – вращаться вследствие воздействия струи газа.
История создания газовой турбины
Интересно, что механизмы турбин начали разрабатываться инженерами уже очень давно. Первая примитивная паровая турбина была создана ещё в I веке до н. э.
Активно разрабатываться турбины начали в конце XIX века одновременно с развитием термодинамики, машиностроения и металлургии.
Технические характеристики газовой турбины
Главная часть турбины представлена колесом, на которое прикреплены наборы лопаток. Газ, воздействуя на лопатки газовой турбины, заставляет их двигаться и вращать колесо. Колесо жёстко скреплено с валом.
Это ротор турбины. Вследствие этого движения достигается получение механической энергии, которая передаётся на электрогенератор, на гребной винт корабля, на воздушный винт самолёта и другие рабочие механизмы аналогичного принципа действия.
Активные и реактивные турбины
Активная турбина характеризуется тем, что здесь отмечается большая скорость поступления газа на рабочие лопатки. При помощи изогнутой лопатки струя газа отклоняется от своей траектории движения. В результате отклонения развивается большая центробежная сила.
В реактивной турбине поступление газа к рабочим лопаткам осуществляется на незначительной скорости и под воздействием большого уровня давления. Форма лопаток так же отлична, благодаря чему скорость газа значительно увеличивается.
Схема и принцип действия газотурбинного двигателя
Газотурбинным двигателем (ГТД) называют тепловую машину, в которой энергия топлива преобразуется в кинетическую энергию струи и в механическую работу на валу. Основными элементами ГТД являются компрессор, камера сгорания и газовая турбина.
Принцип действия ГТД следующий.
1. Воздух из атмосферы поступает в компрессор (сечение «В-В»), где происходит сжатие воздуха (плотность, давление и температура возрастают). Если компрессор идеальный, то сжатие воздуха осуществляется в адиабатном процессе ( ), показатель адиабаты к=1.4.
Отношение давления воздуха на выходе из компрессора к давлению на входе называется степенью повышения давления в компрессоре: .
2. Из компрессора (сечение «К-К») воздух поступает в камеру сгорания, где при постоянном давлении происходит подвод тепла к потоку воздуха при горении топлива. В результате подогрева в камере сгорания газ на её выходе имеет высокую температуру. Отношение температуры газа на выходе из камеры сгорания к температуре атмосферного воздуха называется степенью подогрева воздуха в двигателе: .
3. Из камеры сгорания газ поступает в турбину (сечение «Г-Г»), где происходит расширение газа (плотность газа уменьшается). Если турбина идеальная, то процесс расширения принимается адиабатным. Показатель адиабаты газа равен 1.33.
4. Из турбины (сечение «Т-Т») газ направляется в выходной канал двигателя. Таким образом, ГТД представляет собой открытую термодинамическую систему, в которой реализуется цикл Брайтона.
Принцип действия и устройство турбин. Активные и реактивные принципы работы турбин
Особенности турбины как теплового двигателя
Турбина является тепловым ротационным двигателем, в котором потенциальная тепловая энергия пара (или газа) превращается в кинетическую, а последняя в свою очередь преобразуется в механическую работу вращения вала.
Пар с давлением более высоким, чем за турбиной, поступает в одно или несколько неподвижных каналов 5. В сопловых каналах пар расширяется, давление его падает, а скорость возрастает.
Из сопл пар поступает в рабочие каналы, образованные рабочими лопатками 3, закрепленными на диске 2. Двигаясь в рабочих каналах между рабочими лопатками и изменяя свое направление, поток пара оказывает силовое воздействие на рабочие лопатки. В результате чего они вращаются вместе с диском и валом 1, установленным в опорных подшипниках 4.
Комплект, состоящий из сопл и рабочих лопаток, в которых совершается процесс расширения пара, называется ступенью давления турбины. Простейшие турбины, имеющие лишь одну ступень, называются одноступенчатыми, в отличие от более сложных многоступенчатых турбин.
Тремя основными элементами, содержащимися в конструкции турбокомпрессора являются: центробежный компрессор, турбина и центральный корпус. Кинетическая энергия отработанных газов под воздействием турбины преобразуется во вращательное движение компрессора.
Также турбина соединяет турбинное колесо, помещённое в специальный корпус в форме улитки.
Поступая в улитку, отработавшие газы перемещаются по каналу и попадают на лопасти турбинного колеса. Вал, к которому приварено турбинное колесо, передаёт на колесо компрессора энергию, которая придаёт его вращению.
Лопасти турбинного колеса становятся проводниками отработавших газов, которые затем покидают турбину через отверстие в центре турбокомпрессора и выходят в выпускную систему.
От формы и размера турбины напрямую зависит производительность турбокомпрессора. Значительный прирост мощности наблюдается в турбинах большего размера, потому что они могут использовать большее давление отработавших газов. Однако в таких турбокомпрессорах, на низких оборотах, значительна вероятность возникновения турбоямы.
Понравилась статья? Расскажите друзьям: Оцените статью, для нас это очень важно:
Проголосовавших: 2 чел.
Средний рейтинг: 5 из 5.
Как работает двигатель самолета
Впервые самолет с турбореактивным двигателем (ТРД) поднялся в воздух в 1939 году. С тех пор устройство двигателей самолетов совершенствовалось, появились различные виды, но принцип работы у всех них примерно одинаковый. Чтобы понять, почему воздушное судно, имеющий столь большую массу, так легко поднимается в воздух, следует узнать, как работает двигатель самолета. ТРД приводит в движение воздушное судно за счет реактивной тяги. В свою очередь, реактивная тяга является силой отдачи струи газа, которая вылетает из сопла. То есть получается, что турбореактивная установка толкает самолет и всех находящихся в салоне людей с помощью газовой струи. Реактивная струя, вылетая из сопла, отталкивается от воздуха и таким образом, приводит в движение воздушное судно.
Устройство турбовентиляторного двигателя
Конструкция
Устройство двигателя самолета достаточно сложное. Рабочая температура в таких установках достигает 1000 и более градусов. Соответственно, все детали, из которых двигатель состоит, изготавливаются из устойчивых к воздействию высоких температур и возгоранию материалов. Из-за сложности устройства существует целая область науки о ТРД.
ТРД состоит из нескольких основных элементов:
- вентилятор;
- компрессор;
- камера сгорания;
- турбина;
- сопло.
Перед турбиной установлен вентилятор. С его помощью воздух затягивается в установку извне. В таких установках используются вентиляторы с большим количеством лопастей определенной формы. Размер и форма лопастей обеспечивают максимально эффективную и быструю подачу воздуха в турбину. Изготавливаются они из титана. Помимо основной функции (затягивания воздуха), вентилятор решает еще одну важную задачу: с его помощью осуществляется прокачка воздуха между элементами ТРД и его оболочкой. За счет такой прокачки обеспечивается охлаждение системы и предотвращается разрушение камеры сгорания.
Возле вентилятора расположен компрессор высокой мощности. С его помощью воздух поступает в камеру сгорания под высоким давлением. В камере происходит смешивание воздуха с топливом. Образующаяся смесь поджигается. После возгорания происходит нагрев смеси и всех расположенных рядом элементов установки. Камера сгорания чаще всего изготавливается из керамики. Это объясняется тем, что температура внутри камеры достигает 2000 градусов и более. А керамика характеризуется устойчивостью к воздействию высоких температур. После возгорания смесь поступает в турбину.
Вид самолетного двигателя снаружи
Турбина представляет собой устройство, состоящее из большого количества лопаток. На лопатки оказывает давление поток смеси, приводя тем самым турбину в движение. Турбина вследствие такого вращения заставляет вращаться вал, на котором установлен вентилятор. Получается замкнутая система, которая для функционирования двигателя требует только подачи воздуха и наличия топлива.
Далее смесь поступает в сопло. Это завершающий этап 1 цикла работы двигателя. Здесь формируется реактивная струя. Таков принцип работы двигателя самолета. Вентилятор нагнетает холодный воздух в сопло, предотвращая его разрушение от чрезмерно горячей смеси. Поток холодного воздуха не дает манжете сопла расплавиться.
В двигателях воздушных судов могут быть установлены различные сопла. Наиболее совершенными считаются подвижные. Подвижное сопло способно расширяться и сжиматься, а также регулировать угол, задавая правильное направление реактивной струе. Самолеты с такими двигателями характеризуются отличной маневренностью.
Виды двигателей
Двигатели для самолетов бывают различных типов:
- классические;
- турбовинтовые;
- турбовентиляторные;
- прямоточные.
Классические установки работают по принципу, описанному выше. Такие двигатели устанавливают на воздушных судах различной модификации. Турбовинтовые функционируют несколько иначе. В них газовая турбина не имеет механической связи с трансмиссией. Эти установки приводят самолет в движение с помощью реактивной тяги лишь частично. Основную часть энергии горячей смеси данный вид установки использует для привода воздушного винта через редуктор. В такой установке вместо одной присутствует 2 турбины. Одна из них приводит компрессор, а вторая – винт. В отличие от классических турбореактивных, винтовые установки более экономичны. Но они не позволяют самолетам развивать высокие скорости. Их устанавливают на малоскоростных воздушных судах. ТРД позволяют развивать гораздо большую скорость во время полета.
Турбовентиляторные двигатели представляют собой комбинированные установки, сочетающие элементы турбореактивных и турбовинтовых двигателей. Они отличаются от классических большим размером лопастей вентилятора. И вентилятор, и винт функционируют на дозвуковых скоростях. Скорость перемещения воздуха понижается за счет наличия специального обтекателя, в который помещен вентилятор. Такие двигатели более экономично расходуют топливо, чем классические. Кроме того, они характеризуются более высоким КПД. Чаще всего их устанавливают на лайнерах и самолетах большой вместительности.
Размер двигателя самолета относительно человеческого роста
Прямоточные воздушно-реактивные установки не предполагают использование подвижных элементов. Воздух втягивается естественным путем благодаря обтекателю, установленному на входном отверстии. После поступления воздуха двигатель работает аналогично классическому.
Некоторые самолеты летают на турбовинтовых двигателях, устройство которых гораздо проще, чем устройство ТРД. Поэтому у многих возникает вопрос: зачем использовать более сложные установки, если можно ограничиться винтовой? Ответ прост: ТРД превосходят винтовые двигатели по мощности. Они мощнее в десятки раз. Соответственно, ТРД выдает гораздо большую тягу. Благодаря этому обеспечивается возможность поднимать в воздух большие самолеты и осуществлять перелеты на высокой скорости.
Вконтакте
Одноклассники
Google+
Принцип работы турбореактивного двигателя самолёта
Совершая полет в самолете в большинстве случаев люди никогда не задумываются о том, как работает его двигатель. Но на самом деле о работе двигателя и реактивной тяги с помощью, которой работает сам двигатель, знали ее в Античное время. Но применить эти знания на практике смогли не так давно, так как раньше не технологии не позволяли никому достичь его исправной работы. Гонка вооружения между Англией и Германией стала толчком к созданию ТРД (турбореактивного двигателя).
В работе ТРД самолета нет никаких сложностей, принцип его работы может понять почти каждый человек. Но данный двигатель имеет несколько нюансов, их соблюдение контролируется под строгим присмотром руководства. Для того чтобы авиалайнер смог держаться в небе, необходима идеальная работа двигателя. Так как от работы двигателя напрямую зависят жизни пассажиров находящихся на борту авиатранспорта.
Принцип работы реактивного двигателя
За работу двигателя отвечает реактивная тяга. Для создания реактивной тяги необходима определенная жидкость, которая подается из задней части двигателя и по ходу ее продвижения увеличивается ее скорость движения вперед. Работу тяги отлично объясняет один из законов Ньютона, звучит он так «Любое действия вызывает равное противодействие».
Вместо жидкости в ТРД используется горючая смесь (газы и воздух со сгоревшими частичками топлива). Благодаря этой смеси самолет толкает вперед и позволяет ему лететь дальше.
Разработки таких двигателей начались в тридцатых годах. Первыми кто начал разрабатывать двигатели такого типа стали немцы и англичане. Но в гонке вооружений одержали победу ученные из Германии, так как они выпустили самый первый в мире самолет с ТРД под названием «Ласточка», данный самолет впервые взлетел в небеса над Люфтваффом. Спустя некоторое время появился и Английский самолет «Глостерский метеор»
Также сверхзвуковые двигатели принято считать турбореактивными, но они отличаются более совершенными модификациями, в отличие от ТРД.
Устройство двигателя имеет четыре главные детали, а именно:
- Компрессор.
- Камера горения.
- Турбина.
- Выхлоп.
Компрессор
В компрессоре находиться несколько турбин, с помощью которых происходит засасывание и сжатие воздуха. Во время сжатия воздуха, его давление и температура начинает нагнетаться и расти.
Камера горения
После того как воздух проходит турбину и его сжимает до необходимых размеров. Часть сжатого воздуха поступает в камеру горения, где воздух начинает смешиваться с топливом, после чего его поджигают. Благодаря этому увеличивается тепловая энергия воздуха. После смесь выходит из камеры с большой скорости и расширяется.
Турбина
После выхода эта смесь снова попадает в турбину, с помощью высокой энергии газа лопасти в турбине начинают свое вращение. Турбина тесно связанна с компрессором, который находиться в начале двигателя. Благодаря этому турбина начинает свою работу. Остатки воздуха выходят в выхлоп. В момент выхода смеси температура достигает рекордных размеров. Но она продолжает повышать свою температуру с помощью эффекта Дросселирования. После того как температура воздуха доходит до своего пика, она начинает идти на спад и выходит из турбины.
Принцип работы турбореактивного двигателя
В отличие от реактивного двигателя, который пользуется спросом почти у всех самолетов, турбореактивный двигатель больше подходит для пассажирских авиалайнеров. Так как для работы реактивного двигателя необходимо не только топливо, но и окислитель.
Благодаря своему строению окислитель поступает вместе с топливом из бака. А в случаи с ТРД окислитесь, поступает напрямую из атмосферы. А в остальном их работа совершенно идентична и не отличается друг от друга.
У турбореактивного двигателя главной деталью является лопасть турбины, так как от ее исправной работы напрямую зависит мощность двигателя. Благодаря этим лопастям и образуется тяга, которая необходима для поддержания скорости самолета. Если сравнить одну лопасть с автомобильным двигателем, то она сможет обеспечить мощностью целых десять машин.
Лопасти устанавливаются за камерой сгорания, так как там нагнетается самое высокое давления, также температура воздуха в данной части двигателя может доходить до 1400 градусов Цельсия.
В целях улучшения прочности и устойчивости лопасти перед различными факторами их монокристаллизируют, благодаря этому они могут держать высокую температуру и давление. Прежде чем установить такой двигатель на самолет его тестируют на полном тяговом усилителе. Также двигатель должен получить сертификат от Европейского совета по безопасности.
Атомный двигатель
В период холодной войны в мире были попытки создания атомного двигателя, за основу был взят турбореактивный двигатель. Главной задумкой ученых было создание двигателя, основанного не на химической реакции радиоактивных веществ, а на вырабатываемом тепле от ядерного реактора. Он должен был находиться на месте камеры сгорания.
В теории воздух должен был проходить через работающую зону реактора, благодаря этому реактор должен был остужаться, а температура воздуха наоборот возрастать. После чело воздух должен был расширяться и выходить через сопла (выхлоп) на этот момент скорость воздуха должна была превышать скорость полета самолета.
В Советском союзе были попытки проведения испытаний подобного двигателя, также ученные в соединенных штатах Америки, вели разработку данного двигателя, и их работа почти подходила к тестам двигателя на настоящем самолете.
Но по ряду причин разработки этого двигателя было решено закрыть. Так как у двигателя было множество недостатков, а именно:
- Пилоты были подвержены постоянному радиоактивному облучению на протяжении всего полета.
- Вместе с воздухом через сопла выходили и частички радиоактивного элемента в атмосферу.
- В том случае если самолет терпел крушение, был очень большой шанс взрыва радиоактивного реактора, что влекло за собой радиоактивное отравление на довольно большой площади.
как работает, устройство, виды двигателей
Путешествуя на самолетах, вы задумывались когда-нибудь о том, как работает двигатель реактивного самолета? О реактивной тяге, которая приводит его в действие, знали еще в Античные времена. Применить же ее на практике смогли только в начале прошлого века, в результате гонки вооружений между Англией и Германией.
Принцип работы двигателя реактивного самолета довольно прост, но имеет некоторые нюансы, которые строго соблюдаются при их производстве. Чтобы самолет смог надежно держаться в воздухе, они должны работать идеально. Ведь от этого зависят жизни и безопасность всех, кто находится на борту самолета.
Как работает реактивный двигатель?
Его приводит в действие реактивная тяга. Для этого нужна какая-то жидкость, выталкиваемая из задней части системы и придающая ей движение вперед. Здесь работает третий закон Ньютона, который гласит: “Любое действие вызывает равное противодействие”.
У реактивного двигателя вместо жидкости применяется воздух. Он создает силу, обеспечивающую движение.
В нем используются горячие газы и смесь воздуха со сгораемым топливом. Эта смесь выходит из него с высокой скоростью и толкает самолет вперед, давая ему лететь.
Если говорить об устройстве двигателя реактивного самолета, то оно представляет из себя соединение четырех самых важных деталей:
- компрессора;
- камеры горения;
- турбины;
- выхлопа.
Компрессор состоит из нескольких турбин, которые засасывают воздух и сжимают его по мере прохождения через расположенные под углом лопасти. При сжатии температура и давление воздуха повышаются. Часть сжатого воздуха попадает в камеру горения, где смешивается с топливом и поджигается. Это увеличивает тепловую энергию воздуха.
Реактивный двигатель.
Горячая смесь на высокой скорости выходит из камеры и расширяется. Там она проходит через еще одну турбину с лопастями, которые вращаются, благодаря энергии газа.
Турбина соединена с компрессором в передней части двигателя, и таким образом приводит его в движение. Горячий воздух выходит через выхлоп. К этому моменту температура смеси очень высока. И еще увеличивается, благодаря эффекту Дросселирования. После этого воздух выходит из него.
Разработка самолетов с реактивным двигателем началась в 30х годах прошлого века. Англичане и немцы начали разрабатывать подобные модели. В этой гонке победили немецкие ученые. Поэтому первым самолетом с реактивным двигателем стала “Ласточка” в Люфтваффе. “Глостерский метеор” поднялся в воздух немного позднее. О первых самолетах с такими двигателями подробно рассказано в этой статье.
Двигатель сверхзвукового самолета — тоже реактивный, но уже в совершенно другой модификации.
Как работает турбореактивный двигатель?
Реактивные двигатели применяются повсеместно, а турбореактивные устанавливаются больших пассажирских лайнерах. Отличие их в том, что первый несет с собой запас топлива и окислителя, а конструкция обеспечивает их подачу из баков.
Турбореактивный двигатель самолета несет с собой лишь топливо, а окислитель — воздух — нагнетается турбиной из атмосферы. В остальном принцип его работы совпадает с тем же, что и у реактивного.
Одна из самых важных деталей у них — это лопасть турбины. От нее зависит мощность двигателя.
Схема турбореактивного двигателя.
Именно они вырабатывают тяговые усилия, необходимые для ускорения самолета. Каждый из лопастей производит в 10 раз больше энергии, чем самый обычный, автомобильный двигатель. Они устанавливаются позади камеры сгорания, в той части двигателя, где самое высокое давление, а температура доходит до 1400 градусов по Цельсию.
В процессе производства лопастей они проходят через процесс монокристаллизации, что придает им твердости и прочности.
Перед тем, как установить на самолет, каждый двигатель проверяется на полное тяговое усилие. Он должен пройти сертификацию Европейского совета по безопасности и компанией, которая его произвела. Одной из самых крупных фирм по их производству является Роллс-Ройс.
Что такое самолет с атомным двигателем?
Во время Холодной войны были предприняты попытки создания реактивного двигателя не на химической реакции, а на тепле, который бы вырабатывал ядерный реактор. Его ставили вместо камеры сгорания.
Воздух проходит через активную зону реактора, понижая его температуру и повышая свою. Он расширяется и истекает из сопла со скоростью, большей чем скорость полета.
Комбинированный турбреактивно-атомный двигатель.
В СССР проводились его испытания на базе ТУ-95. В США тоже не отставали от ученых в Советском Союзе.
В 60х годах исследования в обеих сторонах постепенно прекратились. Основными тремя проблемами, которые помешали разработке, стали:
- безопасность летчиков во время полета;
- выброс радиоактивных частиц в атмосферу;
- в случае падения самолета, радиоактивный реактор может взорваться, нанеся непоправимый вред всему живому.
Как производят реактивные двигатели для моделей самолетов?
Их производство для моделей самолетов занимает около 6 часов. Сначала вытачивается базовая пластина из алюминия, к которой крепятся все остальные детали. По размеру она совпадает с хоккейной шайбой.
К ней прикрепляют цилиндр, поэтому получается что-то вроде консервной банки. Это будущий двигатель внутреннего сгорания. Далее устанавливается система подачи топлива. Чтобы его закрепить, в основную пластину вкручиваются шурупы, предварительно опущенные в специальный герметик.
Двигатель для модели самолета.
Каналы стартера крепятся с другой стороны камеры, чтобы перенаправлять выбросы газа в турбинное колесо. В отверстие сбоку от камеры сгорания устанавливается спираль накаливания. Она поджигает топливо внутри двигателя.
Потом ставят турбину и центральную ось цилиндра. На нее ставят колесо компрессора, которое нагнетает воздух в камеру сгорания. Его проверяют с помощью компьютера, прежде чем закрепить пусковую установку.
Готовый двигатель еще раз проверяют на мощность. Его звук немногим отличается от звука двигателя самолета. Он, конечно, меньшей силы, но полностью напоминает его, придавая больше схожести модели.
Как работает турбовентиляторный двигатель?
Когда вы садитесь на борт рейса авиакомпании, вы можете не уделять много времени размышлениям о двигателях. Но они единственная причина, по которой 700 000 фунтов алюминия и пассажиры могут лететь по воздуху со скоростью 80% от скорости звука. Так как же они работают? Давайте взглянем.
Основы
Реактивные двигатели, которые также называют газовыми турбинами, работают за счет всасывания воздуха в переднюю часть двигателя с помощью вентилятора. Оттуда двигатель сжимает воздух, смешивает с ним топливо, воспламеняет топливно-воздушную смесь и выбрасывает ее в заднюю часть двигателя, создавая тягу.
Это довольно простое объяснение того, как это работает, поэтому давайте взглянем на каждую секцию реактивного двигателя, чтобы увидеть, что происходит на самом деле.
Части реактивного двигателя
Существует 4 основных типа газотурбинных двигателей, но в этом примере мы будем использовать турбовентиляторный двигатель, который является наиболее распространенным типом газотурбинных двигателей, используемых сегодня на самолетах авиакомпаний.
Вентилятор
Первая часть ТРДД — вентилятор. Это также та часть, которую вы можете увидеть, глядя на переднюю часть самолета.
Вентилятор, который почти всегда состоит из титановых лопастей, всасывает огромных количеств воздуха в двигатель.
Воздух проходит через две части двигателя. Часть воздуха направляется в ядро двигателя, где происходит сгорание. Остальной воздух, называемый «перепускным воздухом», перемещается по внешней стороне сердечника двигателя по воздуховоду. Этот перепускной воздух создает дополнительную тягу, охлаждает двигатель и делает его тише, подавляя выхлопной воздух, выходящий из двигателя. В современных турбовентиляторных двигателях байпасный воздух создает большую часть тяги двигателя.
Компрессор
Компрессор расположен в первой части сердечника двигателя. И это, как вы, наверное, догадались, сжимает воздух .
Компрессор, который называют «компрессором с осевым потоком», использует ряд вращающихся лопастей в форме аэродинамического профиля для ускорения и сжатия воздуха. Это называется осевым потоком, потому что воздух проходит через двигатель в направлении, параллельном валу двигателя (в отличие от центробежного потока).
По мере того, как воздух проходит через компрессор, каждый набор лопастей становится немного меньше, что увеличивает энергию и сжатие воздуха.
Между каждым набором лопаток компрессора находятся неподвижные лопатки в форме аэродинамического профиля, называемые «статорами». Эти статоры (также называемые лопатками) увеличивают давление воздуха, преобразовывая энергию вращения в статическое давление. Статоры также подготавливают воздух для входа в следующий набор вращающихся лопастей. Другими словами, они «расправляют» поток воздуха.
В сочетании пара вращающихся и неподвижных лопастей называется столиком.
Камера сгорания
Возгорание происходит в камере сгорания. Когда воздух выходит из компрессора и попадает в камеру сгорания, он смешивается с топливом и воспламеняется.
Звучит просто, но на самом деле это очень сложный процесс. Это связано с тем, что камера сгорания должна поддерживать стабильное сгорание топливно-воздушной смеси, в то время как воздух движется через камеру сгорания с чрезвычайно высокой скоростью.
Корпус содержит все части камеры сгорания, а внутри него диффузор — первая часть, которая действительно работает.
Диффузор замедляет выход воздуха из компрессора, облегчая воспламенение. Купол и завихритель добавляют воздуху турбулентность, что облегчает его смешивание с топливом. А топливная форсунка, как вы, наверное, догадались, распыляет топливо в воздух, создавая топливно-воздушную смесь, которая может воспламениться.
Отсюда происходит фактическое сгорание гильзы. Вкладыш имеет несколько входных отверстий, позволяющих воздуху поступать в нескольких точках зоны горения.
Последняя основная часть — это воспламенитель, который очень похож на свечи зажигания в вашем автомобиле или самолете с поршневым двигателем.Как только воспламенитель зажигает огонь, он становится самоподдерживающимся, а воспламенитель выключается (хотя его часто используют в качестве резервного в плохую погоду и в условиях обледенения).
Турбина
Как только воздух проходит через камеру сгорания, он проходит через турбину. Турбина представляет собой набор лопаток в форме аэродинамического профиля, которые очень похожи на лопатки в компрессоре. Когда горячий воздух с высокой скоростью проходит над лопатками турбины, они извлекают энергию из воздуха, вращая турбину по кругу и вращая вал двигателя, с которым она связана.
Это тот же вал, к которому подсоединены вентилятор и компрессор, поэтому, вращая турбину, вентилятор и компрессор на передней части двигателя продолжают всасывать больше воздуха, который вскоре смешивается с топливом и сгорает.
Насадка
Последний этап процесса происходит в сопле. Форсунка — это, по сути, выхлопной канал двигателя, через который в спину выходит высокоскоростной воздух.
Это также та часть, где вступает в действие третий закон сэра Исаака Ньютона: на каждое действие существует равная и противоположная реакция.Проще говоря, выталкивая воздух из задней части двигателя на высокой скорости, самолет продвигается вперед.
В некоторых двигателях в выхлопном сопле есть смеситель. Это просто смешивает часть перепускного воздуха, протекающего вокруг двигателя, с горячим, сгоревшим воздухом, делая двигатель тише.
Собираем все вместе
Реактивные двигатели создают невероятную тягу, втягивая воздух, сжимая его, воспламеняя и выбрасывая назад. И все это делается очень экономно.
Итак, в следующий раз, когда вы подниметесь на борт авиалайнера, будь вы пилот впереди или едете сзади, найдите секунду, чтобы поблагодарить инженеров, благодаря которым ваш самолет мог лететь по небу на 80% скорости. звука.
Узнайте, что делает Republic как лидер отрасли здесь .
Станьте лучшим пилотом.
Подпишитесь на рассылку Boldmethod и еженедельно получайте советы и информацию о реальных полетах прямо на свой почтовый ящик.
.
Как работает ветряная турбина
От огромных ветряных электростанций, вырабатывающих электроэнергию, до небольших турбин, питающих один дом, ветряные турбины по всему миру производят чистую электроэнергию для различных нужд.
В США ветряные турбины становятся обычным явлением. С начала века общая мощность ветроэнергетики США увеличилась более чем в 24 раза. В настоящее время в США достаточно ветроэнергетических мощностей для выработки электроэнергии, достаточной для питания более 15 миллионов домов, что помогает проложить путь к экологически чистой энергии будущего.
Что такое ветряная турбина?
Концепция использования энергии ветра для производства механической энергии восходит к тысячелетиям. Еще в 5000 году до нашей эры египтяне использовали энергию ветра для передвижения лодок по реке Нил. Американские колонисты использовали ветряные мельницы для измельчения зерна, перекачивания воды и распиловки древесины на лесопилках. Сегодняшние ветряные турбины — это современный эквивалент ветряной мельницы, преобразующий кинетическую энергию ветра в чистую возобновляемую электроэнергию.
Как работает ветряная турбина?
Большинство ветряных турбин состоит из трех лопастей, установленных на башне из стальных труб.Реже встречаются варианты с двумя лопастями, бетонными или стальными решетчатыми башнями. На высоте 100 футов или более над землей башня позволяет турбине использовать преимущества более высоких скоростей ветра на больших высотах.
Турбины улавливают энергию ветра с помощью лопастей, похожих на пропеллер, которые действуют как крыло самолета. Когда дует ветер, на одной стороне лезвия образуется карман с воздухом низкого давления. Затем воздушный карман низкого давления притягивает к себе лезвие, заставляя ротор вращаться.Это называется лифтом. Сила подъемной силы намного сильнее, чем сила ветра на передней стороне лопасти, что называется сопротивлением. Комбинация подъемной силы и сопротивления заставляет ротор вращаться как пропеллер.
Ряд шестерен увеличивают вращение ротора примерно с 18 оборотов в минуту до примерно 1800 оборотов в минуту — скорость, которая позволяет генератору турбины вырабатывать электричество переменного тока.
Обтекаемый корпус, называемый гондолой, содержит ключевые компоненты турбины — обычно включая шестерни, ротор и генератор — находятся внутри корпуса, называемого гондолой.Некоторые гондолы, расположенные на вершине турбинной башни, достаточно велики, чтобы на них мог приземлиться вертолет.
Другой ключевой компонент — это контроллер турбины, который не позволяет скорости ротора превышать 55 миль в час, чтобы избежать повреждения сильным ветром. Анемометр непрерывно измеряет скорость ветра и передает данные контроллеру. Тормоз, также расположенный в гондоле, останавливает ротор механически, электрически или гидравлически в аварийных ситуациях. Изучите интерактивный рисунок выше, чтобы узнать больше о механике ветряных турбин.
Типы ветряных турбин
Существует два основных типа ветряных турбин: с горизонтальной осью и с вертикальной осью.
Большинство ветряных турбин имеют горизонтальную ось: конструкция в виде пропеллера с лопастями, вращающимися вокруг горизонтальной оси. Турбины с горизонтальной осью работают либо против ветра (ветер поражает лопасти перед башней), либо по ветру (ветер бьет в башню перед лопастями). Турбины против ветра также включают в себя привод рыскания и двигатель — компоненты, которые вращают гондолу, чтобы ротор был обращен к ветру при изменении его направления.
Хотя существует несколько производителей ветряных турбин с вертикальной осью, они не проникли на рынок коммунальных услуг (мощностью 100 кВт и более) в той же степени, что и турбины с горизонтальным доступом. Турбины с вертикальной осью делятся на две основные конструкции:
- Drag-based, или Savonius, турбины обычно имеют ротор с твердыми лопастями, которые вращаются вокруг вертикальной оси.
- Лифтовые турбины, или турбины Дарье, имеют высокий вертикальный аэродинамический профиль (некоторые из них имеют форму взбивания яйца).Windspire — это тип лифтовой турбины, которая проходит независимые испытания в Национальном центре ветроэнергетики Национальной лаборатории возобновляемой энергии.
Применение ветряных турбин
Ветровые турбины используются в самых разных сферах — от использования прибрежных ветровых ресурсов до выработки электроэнергии для одного дома:
- Большие ветряные турбины, которые чаще всего используются коммунальными предприятиями для подачи энергии в сеть, варьируются от 100 киловатт до нескольких мегаватт.Эти промышленные турбины часто объединяются в ветряные электростанции для производства большого количества электроэнергии. Ветряные электростанции могут состоять из нескольких или сотен турбин, обеспечивающих достаточную мощность для десятков тысяч домов.
- Небольшие ветряные турбины мощностью до 100 киловатт обычно устанавливаются рядом с местами, где будет использоваться вырабатываемая электроэнергия, например, возле домов, телекоммуникационных тарелок или водонасосных станций. Небольшие турбины иногда подключаются к дизельным генераторам, батареям и фотоэлектрическим системам.Эти системы называются гибридными ветровыми системами и обычно используются в удаленных автономных местах, где нет подключения к коммунальной сети.
- Морские ветряные турбины используются во многих странах для использования энергии сильных, постоянных ветров, возникающих у береговых линий. Потенциал технических ресурсов ветров над прибрежными водами США достаточен для выработки более 4000 гигаватт электроэнергии, что примерно в четыре раза превышает генерирующую мощность нынешних США.электроэнергетическая система. Хотя не все эти ресурсы будут освоены, это дает большую возможность обеспечить энергией густонаселенные прибрежные города. Чтобы воспользоваться преимуществами огромных морских ветровых ресурсов Америки, министерство инвестирует в три демонстрационных проекта оффшорной ветроэнергетики, разработанных для развертывания морских ветровых систем в федеральных водах и водах штата к 2017 году.
Будущее ветряных турбин
Для обеспечения будущего роста США ветроэнергетика, ветровая программа Министерства энергетики работает с отраслевыми партнерами для повышения надежности и эффективности ветряных турбин, а также для снижения затрат.Исследования программы помогли увеличить средний коэффициент использования мощности (показатель производительности электростанции) с 22 процентов для ветряных турбин, установленных до 1998 года, до более 32 процентов для турбин, установленных в период с 2006 по 2012 годы. от 55 центов за киловатт-час (кВтч) в 1980 году до менее 6 центов за кВтч сегодня в районах с хорошими ветровыми ресурсами.
Ветряные турбины предоставляют уникальную возможность использовать энергию в тех регионах, где население нашей страны нуждается в ней больше всего.Это включает в себя потенциал оффшорного ветра для обеспечения энергией населенных пунктов вблизи береговой линии и способность наземного ветра доставлять электроэнергию в сельские общины с небольшим количеством других местных источников энергии с низким содержанием углерода.
Министерство энергетики продолжает работу по развертыванию энергии ветра в новых районах на суше и на море и обеспечению стабильной и безопасной интеграции этой энергии в электрическую сеть нашей страны.
.Как работают ветряные турбины?
Вы здесь
Ветровые турбины работают по простому принципу: вместо того, чтобы использовать электричество для производства ветра, как вентилятор, ветровые турбины используют ветер для производства электроэнергии.Ветер вращает похожие на пропеллер лопасти турбины вокруг ротора, который вращает генератор, который вырабатывает электричество.
Ветер — это форма солнечной энергии, вызванная комбинацией трех одновременных событий:
- Солнце неравномерно нагревает атмосферу
- Неровности земной поверхности
- Вращение Земли.
Характер и скорость ветрового потока сильно различаются на территории Соединенных Штатов и зависят от водоемов, растительности и особенностей местности. Люди используют этот поток ветра или энергию движения для многих целей: для плавания, запуска воздушного змея и даже для выработки электроэнергии.
Термины «энергия ветра» и «энергия ветра» описывают процесс, с помощью которого ветер используется для выработки механической энергии или электричества. Эту механическую мощность можно использовать для конкретных задач (например, измельчения зерна или перекачивания воды), или генератор может преобразовывать эту механическую мощность в электричество.
Ветряная турбина превращает энергию ветра в электричество, используя аэродинамическую силу от лопастей ротора, которые работают как крыло самолета или лопасти винта вертолета. Когда ветер проходит через лезвие, давление воздуха с одной стороны лезвия уменьшается. Разница в давлении воздуха на двух сторонах лопасти создает подъемную силу и сопротивление. Сила подъема сильнее сопротивления, и это заставляет ротор вращаться. Ротор подключается к генератору либо напрямую (если это турбина с прямым приводом), либо через вал и ряд шестерен (редуктор), которые ускоряют вращение и позволяют использовать генератор меньшего размера.Этот перевод аэродинамической силы во вращение генератора создает электричество.
Типы ветряных турбин
Большинство ветряных турбин делятся на два основных типа:
Деннис Шредер | NREL 25897
Ветровые турбины с горизонтальной осью — это то, что многие люди представляют, когда думают о ветряных турбинах.
Чаще всего они имеют три лопасти и работают «против ветра», при этом турбина поворачивается наверху башни, так что лопасти обращены против ветра.
Ветровые турбины с вертикальной осью бывают нескольких разновидностей, включая модель Дарье в стиле взбивания яиц, названную в честь ее французского изобретателя.
Эти турбины являются всенаправленными, что означает, что для работы их не нужно настраивать так, чтобы они были направлены против ветра.
Ветряные турбины можно строить на суше или на море в больших водоемах, таких как океаны и озера. Министерство энергетики США в настоящее время финансирует проекты по развитию морских ветроэнергетических установок в США.С. вод.
Области применения ветряных турбин
Современные ветряные турбины можно разделить на категории по месту их установки и способу подключения к сети:
Наземные ветряные турбины имеют размеры от 100 киловатт до нескольких мегаватт.
Более крупные ветряные турбины более рентабельны и объединены в ветряные электростанции, которые обеспечивают большую мощность в электросети.
Деннис Шредер | NREL 40484
Морские ветряные турбины обычно массивные и выше Статуи Свободы.
У них нет таких же проблем с транспортировкой, как у наземных ветряных установок, поскольку крупные компоненты можно перевозить на кораблях, а не по дорогам.
Эти турбины способны улавливать мощные океанские ветры и генерировать огромное количество энергии.
Когда ветряные турбины любого размера устанавливаются на стороне потребителя электросчетчика или устанавливаются в месте или рядом с местом, где будет использоваться производимая ими энергия, их называют «распределенным ветром».
Многие турбины, используемые в распределенных приложениях, представляют собой небольшие ветряные турбины. Одиночные небольшие ветряные турбины мощностью менее 100 киловатт обычно используются в жилых, сельскохозяйственных и небольших коммерческих и промышленных целях.
Небольшие турбины могут использоваться в гибридных энергетических системах с другими распределенными энергоресурсами, такими как микросети с питанием от дизельных генераторов, батарей и фотоэлектрических элементов.
Эти системы называются гибридными ветровыми системами и обычно используются в удаленных местах вне сети (где подключение к коммунальной сети недоступно) и становятся все более распространенными в приложениях, подключенных к сети, для обеспечения отказоустойчивости.
Узнайте больше о распределенном ветре из Distributed Wind Animation или прочтите о том, что делает Управление технологий ветровой энергии для поддержки развертывания распределенных ветровых систем для домов, предприятий, ферм и местных ветровых проектов.
В этом видео освещаются основные принципы работы ветряных турбин и показано, как работают различные компоненты для улавливания и преобразования энергии ветра в электричество.См. Текстовую версию. История ветроэнергетики СШАНа протяжении истории использование энергии ветра увеличивалось и уменьшалось, от использования ветряных мельниц в прошлые века до высокотехнологичных ветряных турбин на ветряных фермах и т. Д …
Выучить большеУзнайте больше о ветровой энергии, посетив веб-страницу офиса Wind Energy Technologies Office или просмотрев информацию о финансируемых офисом мероприятиях.
Подпишитесь на информационный бюллетень WETO
Будьте в курсе последних новостей, событий и обновлений ветроэнергетики.
.Как запускают реактивные двигатели на самолетах?
Газотурбинные двигатели бывают разных форм и размеров. Один из типов, обсуждаемых в статье «Как работают газотурбинные двигатели», включает в себя обычный «реактивный» двигатель самолета. Горячие газы, производимые горящим топливом, приводят в движение лопатки точно так же, как ветер вращает ветряную мельницу. Лопатки соединяются с валом, который также вращает компрессор турбины. Другой тип газотурбинного двигателя, популярный в танках и вертолетах, имеет один набор лопаток для привода компрессора, а также отдельный набор лопаток, приводящих в движение выходной вал.В обоих этих типах двигателей вам необходимо заставить вращаться главный вал, чтобы запустить двигатель.
В этом процессе пуска обычно используется электродвигатель для вращения вала главной турбины. Двигатель прикреплен болтами к внешней стороне двигателя и использует вал и шестерни для соединения с главным валом. Электродвигатель вращает главный вал до тех пор, пока через компрессор и камеру сгорания не пройдет достаточно воздуха, чтобы зажечь двигатель. Топливо начинает течь, и воспламенитель, похожий на свечу зажигания, воспламеняет топливо.Затем поток топлива увеличивается, чтобы раскрутить двигатель до его рабочих оборотов. Если вы когда-нибудь были в аэропорту и наблюдали запуск большого реактивного двигателя, вы знаете, что лопасти начинают медленно вращаться. Этим занимается электрический стартер. Затем вы (иногда) слышите хлопок и видите, как из задней части двигателя выходит дым. Затем двигатель раскручивается и начинает развивать тягу.
Объявление
На небольших газотурбинных двигателях (особенно в моделях домашнего производства) другой способ запустить двигатель — просто продуть воздухозаборник с помощью фена или воздуходувки.Этот метод имеет тот же эффект, что и воздух, движущийся через камеру сгорания, но не требует сложности или веса присоединенного стартера.
Помимо стартового вала, большинство больших реактивных двигателей включают еще один выходной вал для привода таких устройств, как электрические генераторы, компрессоры кондиционирования воздуха и т. Д., Необходимых для управления самолетом и поддержания его комфорта. Этот вал может соединяться с главным валом турбины в той же точке, что и стартер, или в другом месте.Некоторые реактивные самолеты имеют отдельную турбину (иногда в хвостовом конусе самолета), которая только генерирует вспомогательную энергию. Более эффективно использовать эту меньшую турбину, когда самолет находится на взлетной полосе.
Вот несколько полезных ссылок:
.