Какая плотность электролита в аккумуляторе: Эксплуатация, зарядка, хранение аккумуляторной батареи

Содержание

Эксплуатация, зарядка, хранение аккумуляторной батареи

23.12.2019

Содержание

1. Техническое отступление
2.Основные характеристики аккумуляторных батарей
2.1. Расход воды
2.2. Долговечность батареи
2.3. Рекомендации по эксплуатации
3. Терминология
4. Маркировка АКБ
5. Выбор и покупка АКБ
6. Установка АКБ
7. Рекомендации по эксплуатации и обслуживанию
7.1. Обслуживание АКБ в процессе эксплуатации
7.2. Продление жизни новой батарее
7.3. Зарядка аккумулятора зарядным устройством
8. Особенности эксплуатации АКБ в зимний период
8.1. Прикуривание от другого автомобиля
9. Особенности эксплуатации АКБ в летний период
10. Вопросы безопасности
11. Хранение аккумуляторной батареи
12. Приложения
12.1. Реанимация аккумулятора
12.2. Ещё несколько способов, основанных на использовании электрического тока

Скрыть содержание

1. Техническое отступление

Назначение автомобильной аккумуляторной батареи понятно каждому мало-мальски сведущему в технических вопросах автолюбителю. С первой ее функцией — обеспечением запуска двигателя — мы сталкиваемся каждый день. Есть и вторая — реже применяемая, но от того не менее значимая — использование в качестве аварийного источника питания при выходе из строя генератора. Кроме того, на современных автомобилях с инжекторным впрыском аккумулятор выполняет роль сглаживателя пульсаций напряжения, выдаваемого генератором. Из этого следует, что следует крайне осторожно относиться к отключению аккумулятора на работающем двигателе. Карбюраторному двигателю ничего не будет, а вот как поведёт себя компьютер, управляющий распределённым впрыском — одному богу известно… Можно загубить компьютер.
Все стартерные батареи, выпускаемые в настоящее время для автомобилей, являются свинцово-кислотными. В основу их работы заложен известный еще с 1858 г., и по сей день остающийся практически неизменным принцип двойной сульфатации.


Как наглядно видно из формулы, при разряде батареи (стрелка вправо) происходит взаимодействие активной массы положительных и отрицательных пластин с электролитом (серной кислотой), в результате чего образуется сульфат свинца, осаждающийся на поверхности отрицательно заряженной пластины и вода. В итоге плотность электролита падает. При зарядке батареи от внешнего источника происходят обратные электрохимические процессы (стрелка влево), что приводит к восстановлению на отрицательных электродах чистого свинца и на положительных — диоксида свинца. Одновременно с этим повышается плотность электролита.
Любая автомобильная батарея представляет из себя корпус — контейнер, разделенный на шесть изолированных ячеек — банок (см. рис.1).


Каждая банка является законченным источником питания напряжением порядка 2.1 В. В банке находится набор положительных и отрицательных пластин, отделенных друг от друга сепараторами. Как известно из школьного курса физики, две разнозаряженные пластины уже сами по себе являются источником постоянного напряжения, параллельное же их соединение увеличивает ток. Последовательное соединение шести банок и дает батарею с напряжением порядка 12.6-12.8 В. Любая из пластин, как положительная, так и отрицательная, есть ни что иное, как свинцовая решетка, заполненная активной массой. Активная масса имеет пористую структуру с тем, чтобы электролит заходил в как можно более глубокие слои и охватывал больший ее объем. Роль активной массы в отрицательных пластинах выполняет свинец, в положительных — диоксид свинца.
Вес залитой АКБ ёмкостью 55 Ач составляет около 16.5 кг. Эта цифра складывается из массы электролита — 5кг (что соответствует 4,5 л), массы свинца и всех его соединений — 10 кг, а также 1 кг, приходящегося на долю бака и сепараторов.

2. Основные характеристики аккумуляторных батарей

2.0. Электродвижущая сила (ЭДС)
Зависимость ЭДС (грубо говоря, напряжение на выводах аккумулятора) от плотности электролита выглядит так:

Е = 6 * (0,84 + р) , где Е — ЭДС аккумулятора , (В) р — приведенная к температуре 5°С плотность электролита , г/мл

2.1. Расход воды
Показатель, имеющий непосредственное отношение к степени обслуживаемости батареи. Определяется в лабораторных условиях. Батарея считается необслуживаемой, если она имеет очень низкий расход воды в эксплуатации. Необслуживаемые батареи не требуют доливки дистиллированной воды в течении года и более при условии исправной работы регулятора напряжения.

На расход воды прямое влияние оказывает процентное содержание сурьмы в свинцовых решетках пластин. Как известно, сурьма добавляется для придания пластинам достаточной механической прочности. Однако у каждой медали есть обратная сторона. Сурьма способствует расщеплению воды на кислород и водород, следствием чего является выкипание воды и снижение уровня электролита. В батареях предыдущего поколения содержание сурьмы доходило до 10%, в современных этот показатель снижен до 1.5 %.
Панацею от этой беды фирмы видят в освоении т.н. гибридной технологии — замене сурьмы в одной из пластин на кальций. Кальций в решетке является веществом нейтральным по отношению к воде, не снижая при этом механической прочности решеток. А потому разложения воды не происходит и уровень электролита остается неизменным.
Преимущества «кальциевых» АКБ — можно устанавливать в местах , не не требующих удобного доступа для обслуживания. Меньше вероятность выхода из строя из-за коррозии решеток электродов. Лучшие стартерные характеристики.
Недостаток «кальциевых» АКБ — при глубоких разрядах происходит образование нерастворимых солей кальция, и емкость АКБ необратимо теряется. Производители АКБ пытаются устранить этот недостаток добавлением в АКБ серебра и др. компонентов, результат пока окончательно не ясен.

2.2. Долговечность батареи


Средний срок службы современных АКБ при условии соблюдения правил эксплуатации — а это недопущение глубоких разрядов и перезарядов, в том числе по вине регулятора напряжения — составляет 4-5 лет.
Наиболее губительными для батарей являются глубокие разряды. Оставленные на ночь включенными световые приборы, либо другие потребители способны разрядить ее до плотности 1.12 — 1.15 г/см3, т.е. практически до воды, что приводит к главной беде аккумуляторов — сульфатации свинцовых пластин. Пластины покрываются белым налетом, который постепенно кристаллизуется, после чего батарею практически невозможно восстановить. Отсюда вытекает главный вывод — необходимо постоянно следить за состоянием батареи, периодически замерять плотность электролита. Особенно актуально это в зимнее время. Следует отметить, что сульфатация в определенных пределах — явление нормальное и присутствует всегда. (Вспомните — на основе теории двойной сульфатации построен принцип работы батарей). Но при малом разряде и последующей зарядке батарея легко восстанавливается до исходного состояния. Это возможно и при глубоком разряде батареи, но только в том случае, если следом сразу, же последует заряд. Если же разряжать батарею длительное время, не давая ей «подпитки», то падение плотности, ниже критического значения неизбежно приводит к образованию кристаллов сульфата свинца, не вступающих в реакцию ни при каких обстоятельствах. А это означает, что начался необратимый процесс сульфатации.
Не менее опасен для батареи и перезаряд. Это происходит при неисправном регуляторе напряжения. При этом электролит начинает «кипеть» — происходит разложение воды на кислород и водород, и понижение уровня электролита. Вот почему необходимо следить за зарядным напряжением. Естественно, это не составляет труда, если на панели приборов присутствует вольтметр. Ну а если его нет? В этом случае также можно довольно просто оценить зарядное напряжение. Для этого запустите и прогрейте двигатель, установив средние обороты и подключите тестер (в режиме вольтметра) между «+» и «массой» аккумуляторной батареи. Нормальный зарядный режим батареи обеспечивается в диапазоне 14±0.5В. Если напряжение меньше — стоит проверить натяжение ремня, надежность контактных соединений цепей системы электроснабжения. Если же это не помогает — неисправность нужно искать в регуляторе напряжения. Впрочем, точно также вина ложится на регулятор, если напряжение превышает 14.5В.
В последнее время широкое распространение получили сепараторы карманного типа — т.н. конвертные сепараторы. Их название говорит за себя — в эти конверты помещают одноименно заряженные пластины. Такая конструкция увеличивает срок службы батареи, так как осыпающаяся в процессе эксплуатации активная масса остается в конверте, тем самым предотвращается замыкание пластин.

2.3. Рекомендации по эксплуатации


Батарея, не эксплуатировавшаяся в течении длительного времени (4-5 мес.) нуждается в подзарядке. Связано это с тем, что батареям свойственно такое явление, как саморазряд. На графиках рис.2,3 показаны характеризующие саморазряд величины для различных батарей. В первом случае — это снижение плотности от времени хранения, во втором — падение напряжения.


Впрочем, зачастую подзарядки требует и находящаяся в эксплуатации батарея. Плотность полностью заряженной батареи составляет 1.27- 1.28 г/см3, напряжение — 12.5 В. О степени разряженности батареи судят по плотности электролита. Чем ниже плотность электролита, тем сильнее батарея разряжена. Уменьшение плотности на 0.01 г/см3 по сравнению с номинальной означает, что батарея разрядилась примерно на 6 — 8%. Используя график (см. рис.4) можно оценить зависимость степени разряженности батареи от плотности. Степень разряженности определяют по той банке, в которой плотность электролита минимальная. Всем известна аксиома, тем не менее, позволим повторить ее еще раз — батарею, разряженную летом более чем на 50%, а зимой более чем на 25%, необходимо снять с автомобиля и зарядить. При этом следует помнить, что пониженная плотность зимой более опасна, т.к. кроме всего прочего может привести к замерзанию электролита. Так, при плотности электролита 1.2 г/см3 температура его замерзания составляет около -20°С.
Также необходимо подзарядить батарею, если плотность в разных банках отличается более чем на 0.02 г/см3. Оптимальной является зарядка батареи током, равным 0.05 от ее ёмкости. Для батареи с ёмкостью 55 Ач эта величина составляет 2.75 А. Чем меньше зарядный ток, тем глубже заряд. Однако не стоит впадать в крайность — при совсем низком токе батарея просто не «закипит», к тому же время зарядки будет несравнимо большим. Наоборот, при очень большом токе батарея «закипит» значительно быстрее, но при этом не успеет зарядиться на все 100%. Признаками окончания зарядки служит бурное выделение газа (т.н. «кипение») и неизменяющаяся на протяжении 1-2 часов плотность электролита.
Для ориентировочной оценки времени, требуемого на зарядку батареи, можно воспользоваться следующим алгоритмом.


Первоначально, используя график (рис.4) необходимо определить степень разряженности батареи, исходя из реальной плотности АКБ, замеренной ареометром. Далее по степени разряженности определяем потерянную ёмкость (или ёмкость, которую необходимо принять батарее).
Затем, выбрав величину зарядного тока, вычисляем ориентировочное время зарядки по формуле:


Тут следует отметить, что не вся энергия идет на повышение ёмкости. КПД процесса составляет 60-80%, остальное тратится на нагрев, а также связанные с этим электрохимические процессы. Потому реальное время увеличивается примерно в полтора раза от расчетного (что и учитывается коэффициентом «1.5» в формуле).

Нужно сказать, что использование данного алгоритма оправдано лишь для облегчения процедуры, но ни в коей мере не избавляет от контроля за ходом зарядки. Процесс заряда, а особенно его окончание Вам необходимо контролировать самому, дабы не прозевать начало бурного кипения.
Другой вариант — использование для этих целей автоматических зарядных устройств, отличающихся тем, что зарядка идет при постоянном напряжении, но автоматически изменяющемся в зависимости от степени заряженности батареи токе. При этом зарядное устройство перестает давать ток, если батарея полностью заряжена. Принцип, используемый в подобных устройствах аналогичен зарядке от генератора на автомобиле.
Для примера определим время зарядки батареи ёмкостью 55 Ач током в 5А, плотность которой составляет 1.25 г/см3. Как видно из графика, при данной плотности батарея разряжена на 25%, что означает потерю ёмкости на величину


Таким образом, примерное время зарядки


Каждодневным способом зарядки батареи является ее заряд от бортовой сети автомобиля (естественно, при условии исправности последней). При данном способе, во первых, невозможен перезаряд, а во-вторых, происходит постоянное перемешивание электролита и наиболее полное его проникновение во внутренние слои активной массы.
Однако было бы ошибочным полагать, что заряд батареи начинается сразу же после пуска двигателя и продолжается все время, пока двигатель в работе. Исследования показывают, что батарея начинает принимать заряд только после прогрева электролита до положительной температуры, что при эксплуатации в зимних условиях происходит примерно через час после начала движения. Именно этим и опасен довольно распространенный, по крайней мере, в нашем автомобильном городе, способ эксплуатации транспортных средств. Холодный запуск зимой с получасовым движением до работы, и затем редкие непродолжительные поездки на протяжении рабочего дня не дают прогреться электролиту и, следовательно, зарядиться Вашей батарее. Тем самым разряженность АКБ увеличивается изо дня в день и в итоге может привести к печальному результату. Из этого следует, что зимой необходимо проверять состояние АКБ и своевременно подзаряжать ее регулярно
Физические процессы, происходящие при пуске двигателя, отличаются от процессов при разряде батареи потребителями. При пуске участвует не весь объем активной массы и электролита, а лишь та ее часть, которая находится на поверхности пластин и соприкасающийся с поверхностью пластин электролит. Поэтому, после неудачной попытки запустить двигатель, следует подождать некоторое время для того, чтобы электролит перемешался, плотность его выровнялась, он проник в поры активной массы. Нормальный запуск двигателя при однократном вращении стартера в течении 10с забирает ёмкость 300А х 10с = 3000 Ас = 0.83 Ач, что составляет около 1.5% от ёмкости аккумулятора.
При медленном же разряде участвуют не только поверхностные слои активной массы, но и глубинные, потому и разряд происходит более глубокий. Однако это не означает, что стартерные режимы не так губительны для батареи — стартером точно также можно разрядить батарею до критической величины.
Каковы же признаки выхода из строя батареи? Батарея не заряжается, плотность низкая и не повышается в процессе заряда. Большой саморазряд — батарея зарядилась, но не держит заряд. Можно попытаться потренировать батарею, однако если произошло осыпание активной массы пластин, либо кристаллизация сульфата свинца, то это уже не исправить.
Вообще, освоить способ оценки степени возможной разрядки батареи от каких-либо действий (в том числе и осознанных) не составит большого труда. Необходимо усвоить несколько истин и запомнить несколько цифр.
Батарея начинает принимать заряд лишь только после прогрева электролита до положительной температуры (как вы понимаете, при температуре воздуха -20°С температура электролита в батарее хранящегося на свежем воздухе автомобиля будет примерно такой же.)
Коэффициент полезного действия процесса зарядки составляет примерно 50%.
Каждый автомобильный генератор характеризуется следующими показателями:
ток отдачи генератора при работе двигателя на холостом ходу.
ток отдачи генератора при работе двигателя на номинальных оборотах.
Для ВАЗовских автомобилей эти цифры имеют следующие значения:

Таблица 1
Модель автомобиля…………………..2101-2106……2108-2109……2110
ток отдачи на холостом ходу…………….16………………24…………..35
ток отдачи на номинальных оборотах 42……………….55…………..80

Как видно из таблицы, на последних моделях автомобилей Волжского автозавода устанавливаются генераторы, имеющие характеристики тока отдачи, в два раза превосходящие по величине характеристики генераторов первых моделей.

И наконец, примерное потребление энергии автомобильными потребителями:

Таблица 2
потребитель……….ток, А (приблизительно)
зажигание……………..2
габариты……………….4
ближний свет…………9
дальний свет………..12
обогрев стекла……10-11
стеклоподьемник…20-30

вентилятор отопителя:
1-я скорость…………5-7
2-я скорость……….10-11
стеклоочистители…3-5
магнитола…………….5
ИТОГО……………….38-48

Таким образом, оставленные включенными габариты за три часа «съедят» 4А х 3ч= 12 Ач ёмкости батареи, что соответствует разряду приблизительно на 20%. Это не страшно для одного раза. Однако повторив это ещё раз, Вы уже рискуете не завести свою машину, особенно, если дело происходит зимой, т.к. разряд составит порядка 40% (тем более, что к тому же зимой батареи, как правило, эксплуатируются заряженными далеко не на 100%).
Аналогично можно прикинуть, что Вы имеете при продолжительной работе двигателя на холостом ходу. Как уже показано выше, ток отдачи генератора автомобиля ВАЗ-2108 на холостом ходу составляет 24А. Вычитаем из этой величины 2А, необходимые для обслуживания системы зажигания. Остается 22А. Используя таблицу 2, нетрудно прикинуть, что можно включать с тем, чтобы хоть немного досталось бы и аккумулятору (при этом помните про КПД зарядки, составляющий 50%).
Для владельцев иномарок с автоматической коробкой передач картина ещё более сложная. Обычно, стоя в пробке или на светофоре, Вы не переключаетесь на нейтраль, а давите ногой на тормоз. Это понижает обороты двигателя от стандартных 800-900 об./мин. до 600-700 об./мин., что, соответственно понизит ток, выдаваемый генератором, а стоп-сигналы добавят ещё пару ампер потребления тока. Да и обогрев заднего стекла у немцев, например, существенно мощнее, чем у отечественных автомобилей.
Следует знать, что зимние условия эксплуатации автомобиля в принципе очень тяжелы для аккумуляторной батареи. Наверняка будут полезны следующие данные. Результаты проводимых в ГДР исследований говорят о том, что при эксплуатации автомобиля в очень тяжелых условиях (испытания по так называемому режиму «город-зима-ночь») аккумулятор получает порядка 1Ач в час

3. Терминология

Аккумуляторная батарея — один из основных элементов электрооборудования автомобиля, поскольку она накапливает и хранит электроэнергию, обеспечивает запуск двигателя в различных климатических условиях, а также питает электроприборы при неработающем двигателе.
Автомобильные свинцово-кислотные 12-вольтовые АКБ состоят из 6-ти последовательно соединенных элементов (банок), объединенных в общий корпус. Каждая банка имеет газоотвод, конструкции которого могут существенно отличаться.
Электролит представляет собой раствор серной кислоты в дистиллированной воде (для средней полосы России плотностью 1.27-1.28 г/см3 при t=+20°С). Кипение электролита — бурное выделение газа при электролитическом разложении воды с выделением кислорода и водорода. Это происходит во время заряда батареи.
Саморазряд — самопроизвольное снижение ёмкости АКБ при бездействии. Скорость саморазряда зависит от материала пластин, химических примесей в электролите, его плотности, от чистоты верхней части корпуса батареи и продолжительности ее эксплуатации.
Напряжение полностью заряженной аккумуляторной батареи без нагрузки (ЭДС — электродвижущая сила) должно находиться в пределах 12.6-12.9 В. Напряжение в бортовой сети автомобиля при работающем двигателе несколько выше, чем на клеммах АКБ, и должно находиться в пределах 14.0-14.2 В (0,2 В от крайних значений). Значение напряжения ниже 13.8 В ведет к недозаряду батареи, а выше 14.4В — к перезаряду, что одинаково пагубно сказывается на ее сроке службы.
Полярность аккумуляторной батареи — термин, определяющий расположение токосъемных выводов на ее корпусе. На зарубежных батареях полярность может быть прямой или обратной, т. е. ориентировка положительного и отрицательного выводов относительно корпуса может быть различной. По российскому стандарту (если смотреть со стороны выводов) отрицательный (-) должен располагаться справа, положительный (+) слева.
Емкость батареи — способность батареи принимать и отдавать энергию — измеряется в ампер-часах (Ач). Для оценки ёмкости батареи принята методика 20-ти часового разряда током 0.05С20 (т.е. током, равным 5% от номинальной ёмкости). Т.е., если ёмкость батареи 55Ач, то разряжая ее током 2.75 А, она полностью разрядится за 20 часов. Аналогично для батарей ёмкостью 60Ач полный 20-ти часовой разряд произойдет при чуть большем токе разряда — 3А.
Данная характеристика определяет возможность питать потребителей в экстремальной ситуации (при отказе генератора). Характеризуется объемом активной массы.
Значение тока холодного старта при -18°С (по DIN) — Величина тока, которую батарея способна отдать при пуске двигателя при температуре -18°С. Наиболее важная характеристика, напрямую сказывающаяся на пуске двигателя. Ведь при -20°С ток, потребляемый стартером, составляет порядка 300А. (Для пуска в летнее время горячего двигателя этот же показатель равен 100-120А.) Значение стартового тока определяется конструкцией батареи, пластин, сепараторов. Сепараторы карманного типа без каких-либо других дополнений увеличивают напряжение батареи на 0.3В, одновременно улучшая стартовые характеристики. Чем ниже внутреннее сопротивление батареи, тем выше стартовый ток, тем надежнее пуск двигателя при низких температурах.
Резервная ёмкость — время, в течении которого батарея сможет обеспечить работу потребителей в аварийном режиме. Величина резервной ёмкости, выраженная в минутах, последнее время все чаще проставляется изготовителями батарей после значения тока холодного старта.
Корпус современных АКБ изготавливается из пластмассы, в большинстве случаев полупрозрачной, позволяющей контролировать уровень электролита.
Необслуживаемые батареи. Сразу следует оговориться, что этот термин не должен пониматься буквально и восприниматься как руководство к бездействию. Это название говорит об улучшенных потребительских свойствах батареи. Необслуживаемые АКБ требуют долива воды не чаще одного раза в год при условии использования их на автомобилях с исправным электрооборудованием и среднегодовым пробегом 15-20 тыс. км. Встречаются конструкции, исключающие всякое вмешательство на всем протяжении срока службы, но они особенно критичны к состоянию автомобильного электрооборудования.
Большинство необслуживаемых батарей выпускаются заводами-изготовителями, залитыми электролитом. Так как эти батареи имеют значительно меньший саморазряд, они могут храниться от 6 месяцев до 1 года без подзаряда. Саморазряд новых необслуживаемых батарей за 12 месяцев может составить до 50% от номинальной ёмкости.

4. Маркировка АКБ

На современные аккумуляторные батареи наносится следующая маркировка:


Некоторые батареи имеют такую маркировку:


Несмотря на то, что после ёмкости стоит значение 280А, цифра, интересующая нас и показывающая ток холодного старта по принятому у нас стандарту DIN равна 255А.
Обозначения основных характеристик на батареях различных производителей отличаются друг от друга. Большинство европейских производителей и значительная их часть в Азии руководствуются промышленным стандартом Германии DIN 43539 часть 2, который оговаривает два основных параметра: ёмкость батареи, измеряемую в ампер-часах (Ач) при +25°С, и ток стартерного разряда в амперах (А) при -18°С.
Батареи американских производителей испытываются по требованию американского стандарта SAE J537g, который включен в международный стандарт BCI и также вводит два основных параметра: резервную ёмкость, измеряемую в минутах при +27°С, и ток холодной прокрутки — в амперах при -18С. Стандарт SAE не предусматривает измерение ёмкости батареи в ампер-часах.
Первый рассматривает способность батареи к длительным разрядам меньшими токами, второй — разряд большими токами, но за меньший отрезок времени.
Пересчет значения тока стартерного разряда по европейскому стандарту DIN в ток холодной прокрутки по американскому стандарту SAE может производиться с помощью экспериментальных коэффициентов. Для батарей ёмкостью до 90Ач используется коэффициент 1.7, т. е. ISAE = 1.7 IDIN. Для батарей ёмкостью от 90 до 200 Ач используется коэффициент 1.6, т. е. ISAE = 1.6 IDIN.
В настоящее время в Европе наряду с немецким стандартом DIN введен новый единый стандарт En — 60095-1/93.
Кроме того, на необслуживаемых батареях проставляется соответствующая надпись. Чаще всего на русском, английском или немецком языке (либо на языке производителя, как например, на испанских батареях «Tudor»).

5. Выбор и покупка АКБ

Убедитесь, что выбираемая батарея соответствует конструктивным особенностям вашего автомобиля (ёмкость, место установки, способ крепления, полярность, форма и размер токосъемных выводов). Специализированные торговые фирмы имеют каталоги всего ассортимента, в которых систематизирована информация о модификациях и технических характеристиках.
Нецелесообразно на автомобиль с устаревшей системой электрооборудования устанавливать батарею, исключающую долив воды. Это приведет к сокращению ее срока службы или отказу.
Емкость батареи не должна существенно отличаться от указанной заводом-изготовителем автомобиля. Несоблюдение этого условия приводит к резкому сокращению службы, как батареи, так и стартера.
Очень неплохо знать рекомендуемую величину пускового тока для Вашего автомобиля. На многих (японских) автомобилях устанавливаются стартёры с редуктором. Это позволяет существенно уменьшить величину пускового тока, а значит существенно продлить жизнь Вашего аккумулятора.
Внимательно изучите текст гарантийного талона. Обратите особое внимание на те разделы, где перечислены: случаи, исключающие гарантийное обслуживание; адреса гарантийных мастерских; условия эксплуатации.
Маркировка аккумулятора должна иметь ссылку на стандарт (DIN, SAE, En или другие). В маркировке по стандарту SAE не указывается значение ёмкости в ампер-часах (Ач). Указание ёмкости в Ач в стандарте SAE – косвенный признак подделки. Наиболее подвержены подделкам дорогие аккумуляторы известных фирм-изготовителей, поэтому приобретать их лучше в торговых фирмах, заслуживающих доверие.
Большинство фирм-изготовителей кодирует дату выпуска АКБ. Современные необслуживаемые батареи допускают достаточно длительное хранение без существенной потери своих потребительских свойств, поэтому дата изготовления менее актуальна. Предпочтительнее приобретать залитый качественным заводским электролитом аккумулятор. Он готов к работе, легко поддается проверке. Не залитый сухозаряженный аккумулятор требует дополнительного времени и затрат на подготовку к эксплуатации.
Не спешите отдать деньги! Вы вправе требовать проверки аккумулятора. Первым делом сдерите с него защитную упаковочную пленку, какой бы красивой она ни была, и убедитесь, что корпус не поврежден – такое случается довольно часто. Затем попросите продавца измерить плотность электролита – она не должна быть ниже номинальной более чем на 0,02 г/см3 и одинаковой во всех банках, что соответствует примерно 80-процентной заряженности батареи. Последнюю проверку следует провести с нагрузочной вилкой – ее вольтметр должен показать 12.5–12.9 В при отключенной нагрузке, а при включенной – не опускаться в течение 10 секунд ниже 11В.
В случае отклонения от этих значений, батарея может оказаться частично или полностью непригодной к эксплуатации.
Если вам отказывают в проверке аккумулятора, не могут подтвердить качество товара сертификатом, гарантийным талоном, то лучше отказаться от покупки.

6. Установка АКБ

Перед установкой батареи обязательно полностью удалите с нее полиэтиленовую пленку. Газоотводные отверстия должны быть открытыми. Обратите внимание на правильность подключения. Клеммы АКБ рекомендуется зачистить и после закрепления смазать Литолом-24. Это делается для предохранения контактов от попадания влаги и окисления места контактов. Особенно это касается силовых проводов с медными (а не свинцовыми) наконечниками.
Очень важно уделить внимание проводам. Клеммы необходимо зачистить не только со стороны аккумулятора, но и с другой стороны. Место, куда крепится массовый провод (-) надо тоже тщательно зачистить от краски, масла и прочей грязи. Контакт затянуть туго. Это же касается клеммы на стартёре. Невнимание к проводам и контактам может очень сильно «выйти боком» зимой на морозе.
Батарея должна стоять на своём месте жёстко. Болтание её в крепёжных элементах недопустимо. Дополнительная вибрация скажется на долговечности батареи. Замыкание и осыпание пластин в банках чаще всего происходят именно из-за вибрации.
Обратите внимание, что на многих автомобилях батарея стоит довольно близко к выпускному коллектору. То есть летом ей будет довольно жарко, а это для батареи очень плохо! На «правильных» машинах предусмотрена термоизоляция АКБ от двигателя.

7. Рекомендации по эксплуатации и обслуживанию

Условия эксплуатации оказывают существенное влияние на срок службы аккумуляторной батареи. Частые запуски двигателя и поездки на короткие расстояния, неисправности электрооборудования (стартер, генератор, реле-регулятор), дополнительные потребители электроэнергии, несвоевременное обслуживание, ненадежное крепление батареи способны сильно сократить срок ее службы.
При продолжительном движении по трассе батарея может перезаряжаться (кипеть) — в городе с малыми пробегами и «пробками» она, как правило, разряжается (см. выше).
Генератор (при холостых оборотах двигателя) не обеспечивает работу большинства штатных потребителей, не говоря о дополнительных. Зимой ситуация усугубляется. К включенным габаритным огням, ближнему свету фар, стоп-сигналам, указателям поворота, аудиоаппаратуре добавляются обогрев заднего стекла и вентилятор отопителя. Ежедневный недозаряд батареи постепенно уменьшает ее ёмкость, что в итоге приводит к невозможности запуска двигателя стартером.
Отказ аккумуляторной батареи может быть вызван и током утечки в электрооборудовании автомобиля. Это происходит, когда при отключении всех потребителей один или часть из них остается включенным в электрическую цепь (неисправны выключатель или реле). Виновником может быть и сигнализация. После глубокого разряда АКБ может не восстановить свою первоначальную номинальную ёмкость. Батарея не сможет нормально работать, если для запуска двигателя требуется продолжительное включение стартера (неисправны системы питания, зажигания).

7.1. Обслуживание АКБ в процессе эксплуатации сводится к проверке и приведению в соответствие с требованиями: уровня и плотности электролита; чистоты и надежности крепления электрических соединений батареи с корпусом автомобиля, параметров электрооборудования, крепления батареи. Необходимо также следить за правильным натяжением ремня генератора, очищать и смазывать выводы и клеммы, содержать батарею в чистоте. Протирайте верхнюю поверхность водным раствором питьевой соды. Доведение плотности электролита до требуемой производится путем заряда батареи от стационарного зарядного устройства.
Значение зарядного тока в амперах (А) не должно превышать 1/10 ёмкости батареи (упрощенно).

7.2. Продление жизни новой батарее
Коротко об этом сказать трудно. В первую очередь, следует залить электролит, точно соответствующий не только климатической зоне, но и сезону эксплуатации. Если батарея будет работать только в теплое время года, то плотность электролита может быть 1.20 г/см3, а если до -15°С — 1.24 г/см3 и т.д. Такая точность, безусловно, снизит скорость сульфатации пластин, следовательно, увеличит долговечность батареи.
На срок службы АКБ значительно влияет средняя степень заряженности, которая зависит от исправности реле-регулятора. Необходимо, чтобы эта величина поддерживалась не ниже 75%.

справка:
Установлено, что отклонение регулируемого напряжения на 10…12% вверх или вниз от оптимального сокращает срок службы батареи в 2…2.5 раза.

Во-первых, отрегулируйте двигатель так, чтобы он легко заводился с пол-оборота. Это предохранит АКБ от глубокого разряда. При пуске двигателя стартером через аккумуляторную батарею проходит ток в несколько сот Ампер, что не способствует ее долговечности. Поэтому, чем легче пуск двигателя, тем лучше для АКБ: она прослужит дольше.

справка:
Сокращение времени работы стартера вдвое при шести-восьми ежедневных пусках повышает срок службы аккумуляторной батареи приблизительно в 1.5 раза.

Во-вторых, отрегулируйте при необходимости реле-регулятор, чтобы напряжение было в пределах 13.8…14.4В. Это одно из важнейших условий. В-третьих, никогда не позволяйте снизиться уровню электролита в банках ниже требуемого.

справка:
Несвоевременная доливка в аккумуляторы дистиллированной воды может снизить срок службы батареи на 30%.

Эти простые советы, продлят жизнь АКБ.

Кроме этого, специалисты советуют при наличии зарядного устройства при любой возможности (например, на ночь) ставить аккумуляторную батарею на подзарядку малым током — около 1…2А. Для этого можно АКБ не снимать с автомобиля. Только эта операция, если ее проделывать регулярно, не реже одного раза в месяц, увеличивает срок службы батареи, по крайней мере, на год.

7.3. Зарядка аккумулятора зарядным устройством
Ну а теперь как заряжать? Зарядные устройства бывают с ручной и автоматической регулировкой (Орион PW-270, Орион PW-320) или автоматические (все остальные зарядные устройства Орион). Перед зарядкой необходимо открыть все газовые каналы: вывернуть пробки, снять крышки банок.
При зарядке важны три параметра: напряжение, ток зарядки и время. Когда аккумулятор частично процентов на 25 разряжен, то начальный ток заряда при включении выпрямителя может резко скакнуть вверх. Отрегулируйте его на зарядный ток около 1/10 ёмкости аккумулятора или меньше (это общепринятое правило заряда кислотных батарей). Т.е., если у Вас батарея имеет маркировку 55Ah — выставляем ток около 5.5А.
Если необходимо зарядить батарею в кратчайшее время, можно выставить и больший ток. В соответствии с законом Вудбриджа который гласит: сила зарядного тока (в амперах) не должна превышать величину заряда (в ампер-часах), недостающего до полной ёмкости акуммулятора. При этом зарядное устройство должно автоматически снижать ток при повышении напряжения или выключаться при достижении порогового напряжения на батарее. В противном случае (если ЗУ этого не делает) необходимо непрерывно контролировать зарядный ток и напряжение в ручную.
Далее в процессе зарядки напряжение будет расти, а ток уменьшаться. Считается, если ток не уменьшается в течение последних 2-3 часов, то аккумулятор заряжен. Важно помнить, что нельзя вести заряд большим током более 25 часов. Электролит сильно нагреется и выкипит, пластины от нагрева может повести и они замкнут друг на друга. Обычно нормальное время полного заряда около 15 часов.
Иногда необходимо выровнять плотность небольшим током. Например, если плотность электролита в разных банках 1.23, 1.25. Включив зарядное устройство, устанавливаем ток зарядки порядка 1-2А. Данное значение у разных АКБ- разное и зависит от многих факторов: конструкции, пассивационного материала пластин, состояния батареи и т.д. Время такой зарядки до двух суток. Особенно это необходимо делать после того, как аккумулятор разряжен в ноль бесплодными попытками завести двигатель. При чём, делать это надо сразу, пока не началась сульфатация пластин.
Батареи, исключающие долив воды, должны заряжаться только устройствами с автоматическим поддержанием зарядного напряжения. Несоблюдение этого условия приведет к снижению их срока службы. Конкретные требования по режиму заряда, эксплуатации и обслуживанию должны быть изложены в инструкции или гарантийном талоне, прилагаемом к батареям.
В настоящее время разные производители обозначают разное напряжение окончания заряда. Как правило, оно составляет от 15 до 16В (для батарей устаревших конструкций, с применением в качестве пассивирующего материала сурьмы — меньше). На самом деле, порог ограничения напряжения автоматического зарядного устройства 15 или 16 вольт (для батареи с прописанными, для полного заряда, 16ю вольтами, например Varta) влияет только на время заряда последних 2-4% емкости.
Для доведения уровня электролита до нормы недопустимо использовать электролит! В аккумуляторную батарею доливают только дистиллированную воду. Не используйте воду сомнительного происхождения. При частом выкипании проверьте электрооборудование автомобиля.
Необходимо знать, что при сильном снижении уровня электролита внутри корпуса аккумулятора может образоваться опасная концентрация газовой смеси. Чтобы исключить вероятность взрыва, нельзя подносить к батарее открытое пламя (даже сигарету) и допускать искрение электроконтактов. Системы газоотвода некоторых современных батарей более взрывобезопасны. В средней полосе России АКБ не требуют корректировки плотности электролита при смене сезонов.
Перед зимней эксплуатацией автомобиля сделайте обслуживание не только аккумуляторной батареи (см. выше), но и систем, влияющих на запуск двигателя. Обязательно залейте моторное масло, соответствующее сезону. Для облегчения запуска двигателя в сильные морозы занесите батарею на несколько часов в теплое помещение.
Перед длительной зимней стоянкой также обслужите батарею, но не храните ее в теплом помещении, а оставьте на автомобиле со снятыми клеммами. Чем ниже температура, тем меньше скорость ее саморазряда.
Недопустимо оставлять на морозе разряженную батарею. Электролит низкой плотности замерзнет, и кристаллы льда приведут ее в негодность. Плотность электролита разряженного аккумулятора может снизиться до 1,09 г/см3, что приведет к его замерзанию уже при температуре -7°С. Для сравнения – электролит плотностью 1.28 г/см3 замерзает при t=-65°С.
Опрокидывание аккумуляторной батареи и слив электролита могут привести к замыканию пластин и выходу ее из строя.
Для борьбы с паразитными токами утечки введите себе привычку вытирать корпус батареи насухо от всякой нечисти. Если совсем в лом, то хотя бы делайте чистый круг вокруг плюсовой клеммы, чтобы разорвать паразитные электрические связи. Ну, а если Вы любите свою машину, то разведите немного соды в воде и протрите всю поверхность корпуса батареи и вытрете ее насухо. Все тряпки, которые прикасались к аккумулятору выбросить немедленно! А заодно проверите крепление батареи, уровень электролита и его плотность. Времени это займёт минут 10-15, а сэкономить может часы и кучу нервов.

8. Особенности эксплуатации АКБ в зимний период

Перво-наперво замерим плотность электролита во всех банках без исключения. Норма 1.27-1.28 г/см3. У Вас далеко не так? Значит, снимаем батарею и ставим на зарядку. И это однозначно! Ни в коем случае не пытаемся повысить плотность электролита добавлением концентрированной кислоты, какая бы низкая не была его плотность. Желаемого же результата — повышения ёмкости батареи при этом не произойдет.
Далее. Обязательно провести ревизию всех силовых проводов, клемм и контактов. Клеммы зачистить мелкой шкуркой. Контакты на АКБ тоже зачистить и затянуть. Можно затем смазать литолом, чтобы к контактам не попадала влага. С другой стороны силовых проводов так же провести ревизию контактов.

8.1. Прикуривание от другого автомобиля
Для российских автовладельцев нормальная ситуация, когда сосед просит «прикурить» его аккумулятор. Для этой нехитрой процедуры помимо автомобиля с заряженным аккумулятором, необходимы ещё и правильные провода. Не забываем, что по этим проводам у нас потечёт около 200 ампер!


На что нужно обратить внимание при покупке:
1. Толщина жилы медного провода. Сняв изоляцию с крокодила (зажима) можно увидеть саму жилу. Чем толще, тем лучше. Не обращайте внимание на толщину кабеля. Главное проводник тока, а не толщина изоляции.
2. Надежность крепления жилы к крокодилу провода прикуривателя. Медная жила д.б. облужена, затем обжата и припаяна. Если эти условия соблюдены, то потерь в месте соединения будет меньше. Все стартовые провода Орион 100% паяются.
3. Изоляция. Лучший вариант — морозоустойчивая резина или силикон. Зимой такие провода остануться эластичными.
4. Длинна проводов. Провода по длинне нужно выбирать не длинее, чем нужно.
5. Крокодилы (зажимы). При покупке обращайте внимание на толщину стали из которой они сделаны и силу пружины, а не габаритные размеры.
Чтобы не навредить сложным электронным системам вашей собственной машины, эта, казалось бы, элементарная процедура требует соблюдения строгой последовательности действий.
1. Соедините красный кабель с клеммой (+) на заряженном аккумуляторе.
2. Соедините другой конец красного кабеля с клеммой (+) на «севшем» аккумуляторе.
3. Соедините черный кабель с клеммой (-) на заряженном аккумуляторе.
4. Соедините другой конец черного кабеля с чистой точкой заземления на блоке двигателя или на шасси, главное — подальше от аккумулятора, карбюратора, топливных шлангов и т.п. В момент подсоединения будьте готовы к небольшой искре.
5. Следите, чтобы оба кабеля не касались движущихся деталей.
6. Попробуйте запустить автомобиль с «севшим» аккумулятором. Если двигатель не заведется, подождите несколько минут и повторите попытку. Если же заведется, дайте ему поработать несколько минут в таком положении. Если не заведется повторите попытку через 2-3 минуты.
7. При отсоединении кабеля следуйте описанной выше процедуре в обратной последовательности.

8.2 Запуск машины при помощи предпускового зарядного устройства Вымпел. Подключаете устройство, выставляете максимальный ток 18А, оживляете акумулятор в течении 10-15 мин. Затем не отключая зарядного устройства пробуете завести. Если не получилось повторяете попытку заново.

9. Особенности эксплуатации АКБ в летний перио

д Не удивляйтесь, если однажды вам будет трудно или вообще не завести машину в жаркую погоду. Теплое время года — такое же испытание, как и холод. Тепло ускоряет химические процессы. Неисправности и дефекты электрической системы автомобиля или аккумулятора незамедлительно скажутся на состоянии батареи. Но, скорее всего, узнаете вы об этом в самый неподходящий момент. Например, ночью во время дождя, когда придется включить освещение, вентиляцию и стеклоочистители. Поэтому не расслабляйтесь. Лето — самый подходящий период для покупки нового аккумулятора.
Летом автомобилист не сразу заметит, что в аккумуляторе плотность электролита и его уровень в банках недостаточные. Но чем выше температура окружающей среды, тем активнее электрохимические процессы. В результате электролиза кислород вступает во взаимодействие с пластинами, а ставший свободным водород испаряется. Таким образом, из электролита исчезает вода. Как только уровень раствора оказывается ниже уровня пластин, начинается сульфатация пластин (сульфат свинца растворяется в электролите, а затем оседает на поверхности пластин уже в виде крупных нерастворимых кристаллов и происходит изоляция пластин от электролита). Емкость батареи уменьшается. Электрохимические реакции останавливаются. Аккумулятор выходит из строя.
Имейте в виду, что во время длительного хранения аккумулятора происходит саморазряд (снижение ёмкости). Оставлять батарею в разряженном состоянии не рекомендуется: в этом случае вода испаряется, и открываются пластины. А дальше все, как описано выше.
Саморазряд увеличивается от высокой температуры, грязи и электролита (воды) на крышке батареи. Еще одна причина возникновения паразитных токов — неодинаковая плотность электролита в разных банках и на разных уровнях. Это может произойти после доливки большого количества воды. Чтобы избежать неприятностей, зарядите аккумулятор или проедьте на машине, чтобы плотность раствора сравнялась. Есть еще один совет: доливайте дистиллированную воду в аккумулятор при работающем двигателе. Это обеспечит ее перемешивание с кислотой.
Ускорение электролиза способствует уплотнению активной массы. Этой “болезнью” страдают отрицательные пластины, активная масса которых во время эксплуатации постепенно уплотняется, а ее пористость уменьшается. Доступ электролита внутрь отрицательных пластин затрудняется, что снижает ёмкость батареи. К тому же уплотнение активной массы может сопровождаться образованием трещин и отслаиванием.
Пластины коробятся при увеличении силы зарядного тока, при коротком замыкании, понижении уровня электролита, частом и продолжительном включении стартера, когда батарея нагружается разрядным током большой силы. Чаще короблению подвержены положительные пластины, при этом в их активной массе образуются трещины, и она (активная масса) начинает выпадать из решеток.
Причиной выпадения активной массы из решеток пластин может стать длительная перезарядка, плохое крепление пластин, вибрация и т.д. Осыпающийся активный слой в конце-концов замыкает пластины, сокращает мощность и срок службы. В современных аккумуляторах пластины помещаются в конверт-сепараторы; осадок выпадает, но короткого замыкания удается избежать.
Летом вентиляционные отверстия забиваются пылью. Чтобы батарея не лопнула и не взорвалась следите за чистотой аккумулятора. Пробки заливных отверстий должны быть плотно закрыты.

Как сохранить свой аккумулятор летом?
Во-первых, следите за уровнем электролита и регулярно доливайте дистиллированную воду. Во-вторых, не оставляйте батарею незаряженной. В-третьих, следите за чистотой корпуса. В-четвертых, следите за состоянием электрической системы автомобиля. Неисправный стартер и генератор совершенно незаметно “подготовят” батарею к зиме и с первыми морозами она откажет.
Если вы планируете заменить аккумулятор, лучше не ждать до осени. В сезон выбор значительно меньше, цены выше, а желающих больше. В любом случае потребуется помощь подготовленного продавца-консультанта. Летом он сможет больше уделить вам времени.

10. Вопросы безопасности

Помните, что опасность возгорания кислорода и водорода, выделяющихся во время зарядки (а также после ее завершения), вполне реальна.
Хотя большинство серьезных производителей оборудуют крышки аккумуляторов ограничителями пламени, призванными предотвратить его попадание внутрь аккумулятора, подобная вероятность по-прежнему сохраняется.
Помните также, что искра возникает не только при отсоединении клеммы. Статического электричества от синтетической одежды может оказаться достаточно, чтобы вызвать взрыв.
Взрыв аккумулятора можно сравнить по мощности с выстрелом из ружья калибра 12мм. Результат представляет собой жуткое зрелище, и происходит это чаще, чем вы можете себе представить. При том, что взрыв, вероятно, не будет смертельным, он может серьезно травмировать вас, особенно лицо, так как осколки пластика разлетаются во все стороны. Поэтому всегда следует быть в защитных очках.
Если вдруг позарез понадобилось отсоединить аккумулятор на машине с работающим мотором (лучше, конечно, не подвергать свой автомобиль таким испытаниям), прежде надо включить как можно больше потребителей электроэнергии: печку, фары, противотуманки, «дворники». Если этого не сделать, то может сгореть регулятор напряжения, а следом откажет электрооборудование и в том числе — системы управления двигателем. А для начала загляните в инструкции: позволяет ли она вообще производить такую операцию. Ведь на автомобилях некоторых марок, напичканных современной аппаратурой, любое отключение аккумулятора выводит из строя сложные электронные системы.

11. Хранение аккумуляторной батареи

1.снимите аккумулятор с машины (оставьте на машине со снятыми клеммами), очистите от грязи, полностью зарядите.
2.при отсутствии возможности подзарядки во время хранения АКБ можно рекомендовать следующий способ. Электролит в аккумуляторе необходимо заменить 5-процентным раствором борной кислоты. Перед заменой электролита АКБ полностью заряжают, а затем сливают электролит в течение 15 минут. Затем ее сразу же промывают дважды дистиллированной водой, выдерживая воду по 20 минут. После промывки наливают раствор борной кислоты, заворачивают пробки с открытыми вентиляционными отверстиями, вытирают батарею и ставят на хранение. Саморазряд аккумуляторов с раствором борной кислоты практически отсутствует.

Справка
Для приготовления 5-процентного раствора борной кислоты необходимо в 1 литре дистиллированной воды, нагретой до 50…60°С, растворить 50г борной кислоты. Раствор заливают в аккумуляторы при температуре 20…30°С.

Хранить батарею надо при температуре не ниже 0°С, поскольку заливаемый 5-процентный раствор борной кислоты может замерзнуть. А для ввода такой батареи в действие из нее выливают раствор борной кислоты в течение 15…20 минут и сразу же заливают сернокислый электролит плотностью 1.38…1.40 г/см3 для нашей зоны. После 40-минутной пропитки пластин электролитом АКБ можно устанавливать на автомобиль, если плотность электролита не уменьшилась ниже 1.24…1.25 г/см3. Если она стала ниже, следует откорректировать плотность отбором слабого раствора и добавлением электролита плотностью 1.40 г/см

12. Приложения

12.1. Реанимация аккумулятора
Реанимация аккумулятора. Старый фирменный аккумулятор может послужить еще, если его правильно восстановить! Итак, начнём. Имеем на руках убитый или почти убитый аккумулятор.
Нам понадобятся некоторые материалы и инструменты:
1) Свежий электролит (номинальной + желательно повышенной плотности)
2) Дистиллированная вода.
3) Измеритель плотности электролита (ареометр). Например ареометр производства НПП «Орион CПб»

4) Зарядное устройство, способное обеспечить малые (0.05-0.4А) токи зарядки.
5) Маленькая клизма (простите, надо!) и пипетка для наливных целей.
6) Нагрузочная вилка. НПП «Орион СПб» производит 4 модели: от простых и дешевых НВ-01, НВ-02, до профессиональных НВ-03, НВ-04.


Для начала определимся с возможными неисправностями:
1) Засульфатированность пластин — ёмкость аккумулятора падает почти до нуля.
2) Разрушение угольных пластин — при зарядке электролит становится черным.
3) Замыкание пластин — электролит в одной из секций аккумулятора выкипает, секция греется. (Тяжелый случай, но иногда небезнадежный)
4) Перемёрзший аккумулятор — распухшие бока, электролит при заряде сразу вскипает (многочисленные замыкания пластин) — тут уж ничем не помочь, аминь, упокой Господь его душу!

Начнем с конца списка. (п.3) При замыкании пластин ни в коем случае не пытайтесь его заряжать! Начинаем промывку дистиллированной водой. Не бойтесь переворачивать и трясти аккумулятор, хуже уже не будет. Промывайте его до тех пор, пока не перестанет вымываться угольная крошка (надеюсь, этот момент наступит, иначе прекратите этот мазохизм). При промывке часто замыкание пластин устраняется, и мы переходим от пункта (3) к пункту (2). После промывки и вытряхивания всякого мусора из недр аккумулятора приступаем к пункту (1), а именно к устранению отложений солей на пластинах аккумулятора. Следуйте инструкциям к присадке. Мой опыт может отличаться от того, что вы прочтёте в инструкции. Далее я делаю так:
1) Заливаем аккумулятор электролитом номинальной плотности (1.28 г/см3).
2) Добавляем присадку, исходя из объёма аккумулятора (см. инструкцию)
3) Даём электролиту выдавить воздух из секций, а присадке — раствориться в течении 48 часов (!), при необходимости доливаем электролит до номинального уровня. Кстати, присадку можно растворить в электролите до заливки в аккумулятор, если, конечно, она хорошо растворяется.
4) Подключаем зарядное устройство (не забудьте снять пробки!). НО МЫ НЕ БУДЕМ ЕГО ЗАРЯЖАТЬ! НЕ СЕЙЧАС! Сначала мы будем гонять его по циклу «зарядка-разрядка», иначе «тренировка», то есть заряжать и разряжать его, пока не восстановится нормальная ёмкость. Выставляем ток зарядки в районе 0.1- 0.2 А и следим за напряжением на клеммах. Не давайте электролиту кипеть или нагреться! Если необходимо, уменьшите зарядный ток, пузырьки газа и перегрев разрушают аккумулятор! Заряжайте, пока напряжение на клеммах аккумулятора не достигнет 2.3 — 2.4В на каждую секцию, т.е. для 12-вольтового аккумулятора — 13.8-14.4 В.
5) Уменьшаем зарядный ток вдвое и продолжаем зарядку. Зарядку аккумулятора прекращаем, если в течении 2 часов плотность электролита и напряжение на клеммах остаются неизменными.
6) Доводим плотность до номинальной доливкой электролита повышенной плотности (1.4) или дистиллированной воды.
7) Разряжаем аккумулятор через лампочку током примерно в 0.5А до падения напряжения на клеммах до 1.7В на элемент. Для 12-вольтового аккумулятора эта величина составит 10.2В, для 6-вольтового 5.1 соответственно. Из имеющихся величин тока разряда и времени разряда вычисляем ёмкость нашего аккумулятора. Если она ниже номинальной (4 ампер-часа), то:
 Повторяем цикл заряда с начала до тех пор, пока ёмкость аккумулятора не приблизится к номинальной.
9) Добавляем в электролит ещё немного присадки и закрываем отверстия аккумулятора. ВСЁ!!! Мы имеем на руках рабочий аккумулятор, который, иногда способен проработать дольше китайского!

Дальше обращаемся с аккумулятором, как положено.

12.2. Ещё несколько способов, основанных на использовании электрического тока.

Способ первый — простой. Электролит заменить дистиллированной водой и зарядить аккумулятор или батарею очень небольшим (примерно 0.01 ёмкости) током. При этом в банках степень сульфатации снижается и образуется электролит, который заменять не нужно. После двух часов зарядки ее прекращают на такое же время. А затем снова повторяют.
Доказано, что после одного-трех таких циклов степень сульфатации резко снижается.

Второй способ — наиболее трудоемкий, но в безвыходном положении его тоже можно применить. Он химический, включает следующие операции: заряд батареи в течение 2…3 часов, слив электролита из банок, двух-трехкратная их промывка дистиллированной водой, заправка 2.5-процентным (25 г на 1 л) раствором питьевой соды и выдержка в течение 2…3 часов, слив раствора, заправка 2…3-процентным раствором повареной соли, заряд батареи в течение 1ч, слив раствора, промывка 4-процентным раствором питьевой соды, полный (из расчета 150-процентной ёмкости) заряд батареи, третья промывка банок, заправка их электролитом, полный (150-процентной ёмкости) заряд батареи.


Как самостоятельно поднять плотность электролита АКБ? — Иксора

Вне зависимости от сезона и погодных условий можно столкнуться с проблемой в работе аккумуляторной батареи автомобиля. При потере аккумулятором заряда, многие водители используют термин «плотность аккумулятора», подразумевая под ним плотность электролита, залитого в сам источник питания. Это показателя плотности электролита зависит работа самого АКБ, его возможность к подзарядке и сохранению энергии.

АКБ может разрядиться по многим причинам. Чаще всего это происходит по невнимательности водителя, оставившего фары или аудиосистему работающими при выключенном зажигании.

Полностью разрядившуюся аккумуляторную батарею часто невозможно зарядить, если проблема является следствием снижения плотности залитого в устройство электролита.

Почему снижается плотность электролита?

Электролит АКБ представляет собой смесь дистиллированной воды, объем которой составляет около 65% от общего объема раствора, и серной кислоты (объем составляет около 35%). Рабочая жидкость является катализатором электрохимического процесса и заставляет работать АКБ. Электролит также обладает определенной плотностью, которая в зависимости от объема заряда батареи может повышаться или снижаться.

Многие автовладельцы для поддержания объема электролита на оптимальном уровне доливают внутрь батареи дистиллированную воду. Подобные действия приводят к изменению плотности раствора. Дело в том, что при заливе дистиллированной воды и последующей подзарядке батареи электролит выкипает, и плотность раствора снижается. Если показатель плотности падает до критического значения, автомобиль уже не получится завести. Для решения проблемы необходимо повысить плотность раствора электролита в аккумуляторной батарее.

Как повысить плотность электролита в АКБ?

Плотность раствора электролита в АКБ возможно повысить своими силами, без обращения в автосервис. Перед началом работ следует провести предварительную подготовку:

  • подготовьте емкости для слива части электролита из АКБ;
  • также нужны перчатки, защитные очки и одежда, которые защитят от попадания на кожу серной кислоты;
  • подготовьте инструменты, которые понадобятся в работе: ареометр, клизма-груша, мерный стакан, воронка;
  • дополнительно потребуются расходные материалы: дистиллированная вода, аккумуляторная кислота или уже готовый электролит.

Для того, чтобы поднять плотность электролита в АКБ, потребуется полностью заменить раствор. Для выполнения процедуры, следуйте нашим инструкциям. Обратите внимание на то, что заменить электролит возможно только в аккумуляторах разборного типа.

  1. Снимите АКБ с автомобиля.
  2. Снимите защиту аккумулятора, открутите пробки с банок.
  3. С помощью клизмы выкачайте старый электролит из аккумулятора через отверстие одной из банок.
  4. Прочистите пластины аккумулятора от остатков электролита с помощью дистиллированной воды. Для этого залейте воду в каждую банку АКБ, протрясите батарею с водой внутри и слейте раствор.
  5. Приступайте к заливу нового электролита. Процедура значительно проще, если вы приобрели уже готовый раствор, его достаточно залить с помощью воронки до отмеченных границ в каждую банку. Если вы покупали отдельно дистиллированную воду и аккумуляторную кислоту, необходимо предварительно подготовить раствор с плотностью 1,27-1,28 гр/см.куб.
  6. Закройте банки и приступите к подзарядке батареи по циклу «зарядка-разрядка» при силе тока не более 0,1 Ампер до момента пока плотность электролита не достигнет рабочих значений. АКБ можно начинать использовать после того, как на концах клемм появится значение в 14 Вольт.

Необходимо с осторожностью подходить к процессу самостоятельной замены электролита в АКБ и соблюдать все меры предосторожности. Раствор электролита вреден не только при попадании на кожу, но и при попадании в дыхательные пути, поэтому проводите процедуру только в хорошо проветриваемых помещениях.

В магазине IXORA вы можете найти АКБ, который подходит именно вашему автомобилю. Квалифицированные менеджеры обязательно помогут сделать правильный выбор, ответят на все ваши вопросы. Обращайтесь, это выгодно и удобно.   

Полезная информация:

Получить профессиональную консультацию при подборе товара можно, позвонив по телефону 8 800 555-43-85 (звонок по России бесплатный). 

Плотность электролита в аккумуляторе — способы повышения плотности электролита

Аккумуляторная батарея – один из основных элементов автомобиля, отвечающих за пуск двигателя. Значение аккумулятора сложно переоценить, ведь без него невозможно завести мотор, а, значит, машина своим ходом передвигаться не сможет. Именно поэтому АКБ требует к себе особого внимания, исключающего возникновение неприятных ситуаций в виде невозможности совершить запланированную поездку. При этом стоит отметить, что для поддержания работоспособности это важного источника питания не требуется предпринимать каких-то сверхусилий, а достаточно выполнять лишь небольшой комплекс профилактических мер.

Свинцовая аккумуляторная батарея представляет собой гальванический элемент, внутри которого химическая энергия в результате протекающих реакций преобразуется в электрическую. Этот процесс невозможен без электролита – раствора кислоты, обеспечивающего движение заряженных частиц между погруженными в него электродами. Как правило, электролит представляет собой водный раствор серной кислоты определенной плотности. Именно такой параметр как плотность электролита оказывает значительное влияние на работоспособность аккумулятора, поэтому периодически его нужно контролировать.

Измерение плотности электролита в аккумуляторе

Измерить плотность залитого в свинцовый аккумулятор электролита не так уж сложно, однако есть определенные нюансы, связанные с особенностями устройства и принципом работы АКБ. Перечислим некоторые важные моменты, которые надо учесть:

  • Осуществить процедуру измерения плотности получится только в случае с так называемым обслуживаемым аккумулятором, который предоставляет доступ к банкам (секциям) с электролитом посредством закрытых крышками заливных отверстий. Как раз через эти отверстия (обычно их число равно шести, как и количество секций) и осуществляется забор состава для замера плотности.
  • В процессе своей работы автомобильная аккумуляторная батарея постоянно заряжается и разряжается. Разряд происходит при прокручивании стартера, а заряд – при уже заведенном двигателе от генератора. В зависимости от степени заряженности меняется и плотность электролита. Значения могут колебаться в пределах 0.15-0.16 г/см3. Важно отметить, что автомобильный генератор не способен полностью зарядить аккумуляторную батарею. При штатной работе на машине потенциал АКБ используется только на 80-90%. Полный заряд может обеспечить только внешнее зарядное устройство, к которому обязательно придется прибегнуть перед осуществлением замера плотности электролита.
  • Плотность электролита зависит от его температуры. Обычно замер производится при температуре +25 °С, в противном случае делаются поправки.

Допустим, все вышеперечисленные условия приняты во внимание, и есть возможность приступить непосредственно к замеру плотности. Для этого понадобится специальный прибор – денсиметр, который состоит из ареометра, резиновой груши и стеклянной трубки с наконечником. Прибор вводится в банку аккумулятора через заливное отверстие, а затем осуществляется засасывание электролита с помощью резиновой груши. Оно происходит до тех пор, пока ареометр не всплывет. Показания считываются после того, как прекратятся колебания ареометра и появится возможность определения точного значения. Отсчет показаний производится по шкале, при этом взгляд должен находиться на уровне поверхности жидкости.

Полученное значение должно входить в диапазон 1.25-1.27 г/см3, если автомобиль эксплуатируется в средней полосе. В холодной климатической зоне (средняя месячная температура января ниже -15 °С) показатель должен находиться в интервале 1.27-1.29 г/см3. Проверять плотность электролита на соответствие этим числам нужно в каждой из шести банок аккумулятора. Показания не должны отличаться более чем на 0.01 г/см3, иначе потребуется их корректировка.

Как мы уже говорили, плотность электролита изменяется в зависимости от температуры. Это значит, что зимой и летом жидкость в одном и том же полностью исправном аккумуляторе будет иметь разную плотность. О том, насколько будут разниться показания, дает представление приведенная ниже таблица.

Температура электролита, °СПоправка к показанию денсиметра, г/см3Температура электролита, °СПоправка к показанию денсиметра, г/см3
-55…-41-0.05+5…+19-0.01
-40…-26-0.04+20…+300
-25…-11-0.03+31…+45+0.01
-10…+4-0.02+46…+60+0.02

Зависимость температуры замерзания электролита от его плотности демонстрирует еще одна таблица. На основе этих данных можно установить оптимальную плотность электролита для конкретных климатических условий. Нижняя граница подобранного интервала должна гарантировать, что электролит не замерзнет даже при самых сильных холодах и обеспечит требуемое для прокручивания стартера усилие. В то же время чрезмерно завышать плотность тоже нельзя, так как на положительных электродах аккумулятора начинают ускоряться коррозионные процессы, приводящие к сульфатации пластин.

Плотность электролита при 25 °С, г/см3Температура замерзания, °СПлотность электролита при 25 °С, г/см3Температура замерзания, °С
1.09-71.22-40
1.10-81.23-42
1.11-91.24-50
1.12-101.25-54
1.13-121.26-58
1.14-141.27-68
1.15-161.28-74
1.16-181.29-68
1.17-201.30-66
1.18-221.31-64
1.19-251.32-57
1.20-281.33-54
1.21-341.40-37

Причины изменения плотности электролита

Зафиксированные в результате измерения плотности значения не всегда соответствуют требуемым показателям. Расхождения могут касаться как отдельных банок аккумулятора, так и всех вместе. Если плотность завышена, то нужно обратить в первую очередь внимание на уровень электролита. Низкий уровень в большинстве случае является последствием электролиза, приводящего к разложению входящей в состав электролита воды на водород и кислород. Этот процесс выражается в появлении на поверхности жидкости пузырьков, что обычно происходит при зарядке аккумулятора. Частое «кипение» может приводить к снижению концентрации воды, и этот вопрос решается ее простым добавлением. Доливать в аккумулятор стоит только дистиллированную воду, контролируя при этом уровень электролита. Подробнее о корректировке плотности электролита поговорим ниже.

Если с повышенной плотностью все ясно, то с пониженной ситуация несколько сложнее. В теории, одной из причин понижения плотности, может быть то, что по какой-то причине в электролите уменьшилась доля серной кислоты. Однако на практике это маловероятно, так как сама по себе она обладает высокой температурой кипения, исключающей испарение даже при интенсивном нагреве, который происходит, например, при зарядке аккумуляторной батареи. Более распространенной причиной снижения плотности электролита является так называемая сульфатация пластин, заключающаяся в образовании на электродах сульфата свинца (PbSO4). На самом деле, это естественный процесс, происходящий при каждом разряде АКБ. Но дело в том, что при нормальном режиме работы после разряда аккумулятора обязательно происходит его заряд (на автомобиле аккумулятор постоянно подзаряжается от генератора). Заряд сопровождается обратным преобразованием сульфата свинца в свинец (на катоде) и двуокись свинца (на аноде) – в те активные вещества, которые составляют основу электродов и непосредственно участвуют в химическом процессе внутри аккумуляторной батареи. Если АКБ находится длительное время в разряженном состоянии, сульфат свинца кристаллизуется, безвозвратно теряя способность участвовать в химических реакциях. Это очень неприятный процесс, в результате которого аккумулятор уже не получится зарядить полностью даже при использовании внешнего зарядного устройства ввиду того, что не вся площадь пластин задействована в работе. Так как аккумулятор не заряжается до конца, то и плотность электролита не восстанавливается до своих исходных значений. По сути, здесь уже идет разговор об устранении нарушений в нормальном функционировании аккумулятора.

Частичную сульфатацию пластин можно устранить с помощью контрольно-тренировочных циклов, заключающихся в заряде и последующем разряде батареи до определенного уровня. Большинство современных зарядных устройств имеют такую функцию, поэтому имеет смысл ей воспользоваться, особенно если аккумулятор по какой-то причине долго находился в разряженном состоянии. Процедура десульфатации весьма длительная и может занять до нескольких дней. Если она не принесла результата, то крайней мерой является увеличение плотности с помощью добавления корректирующего электролита (плотность около 1.40 г/см3). Такой способ можно рассматривать только как временное решение проблемы, потому что причина как таковая не устраняется.

Как поднять плотность электролита

Понизить или повысить плотность электролита в аккумуляторе можно путем откачивания его определенного количества, и долива взамен дистиллированной воды или электролита с повышенной плотностью (корректирующего). Данная процедура требует больших временных затрат, так как цикл откачки-долива может повторяться несколько раз, пока не будет достигнуто требуемое значение. После каждой корректировки необходимо поставить аккумулятор на зарядку (минимум на 30 минут), а затем дать ему постоять (0.5-2 часа). Эти действия необходимы для лучшего перемешивания электролита и выравнивания плотности в банках.

В процессе поднятия (или понижения) плотности электролита не стоит забывать и о контроле его уровня. Он осуществляется стеклянной трубкой с двумя отверстиями по краям. Один край погружается в электролит до тех пор, пока не упрется в предохранительную сетку. Далее верхний конец закрывается пальцем, а сама трубка осторожно поднимается вместе со столбиком жидкости внутри. Высота этого столбика указывает на расстояние от верхней кромки пластин до поверхности залитого электролита. Оно должно составлять 10-15 мм. Если аккумулятор имеет индикатор (тубус) или прозрачный корпус с нанесенными метками минимума и максимума, то контролировать уровень значительно проще.

Не стоит забывать, что все операции с электролитом необходимо выполнять осторожно, используя защитные перчатки и очки.

Как измерить плотность электролита – видео

Инструкция по эксплуатации автомобильных аккумуляторных батарей.

 

Для безопасного и максимально длительного срока службы Вашей аккумуляторной батареи, мы рекомендуем ознакомиться с рядом простых правил по ее эксплуатации:

1. БЕЗОПАСНОСТЬ.
Первое, на что стоит обратить внимание, это безопасность. Категорически запрещается использование батареи вблизи открытых источников огня и замыкать между собой полюсные клеммы аккумулятора. Старайтесь не наклонять батарею больше чем на 45 градусов, во избежание вытекания ее содержимого (электролита). При попадании электролита на открытые участки кожи следует незамедлительно промыть их обильным количеством воды, после чего обезвредить пораженный участок 5% раствором соды и аммиака, при необходимости показать пораженный участок врачу.

2. СНЯТИЕ И УСТАНОВКА АКБ.
Перед снятием или установкой батареи убедитесь, что все потребители электроэнергии выключены. При отключении аккумуляторной батареи, первой отключается отрицательная клемма (-), после чего положительная (+). Подключение аккумулятора производится в обратном порядке, сначала подключается положительная, затем отрицательная клеммы. После установки АКБ (аккумуляторной батареи) необходимо удостовериться, что батарея надежно закреплена на площадке, а высоковольтные провода четко зафиксированы на клеммах.

3. ЭКСПЛУАТАЦИЯ АКБ.
Немаловажными в процессе использования аккумуляторной батареи являются условия, в которых она содержится. Рекомендуется раз в три месяца протирать батарею, особенно ее верхнюю часть, на которой могут быть следы электролита, влажной тряпкой, во избежание возникновения нежелательной электрической связи. Обязательно выкиньте тряпку сразу после протирки. Плюсовые и минусовые клеммы аккумулятора должны быть закрыты специальными коробами или смазаны густой нейтральной смазкой во избежание их окисления и последующей коррозии. Чтобы не разрядить аккумулятор, пуск двигателя автомобиля в условиях минусовых температур рекомендуется производить короткими (до 10 секунд) включениями стартера, с интервалом не менее полминуты. Допускается использование аккумуляторных батарей, если напряжение разомкнутой цепи батареи (без нагрузки) составляет не менее 12,6 Вольт, напряжение под нагрузкой должно быть не ниже 11 Вольт. Напряжение измеряется датчиками автомобиля или нагрузочной вилкой. Плотность электролита во всех аккумуляторах (ячейках АКБ) должна быть не ниже 1,26г/см3. В случае, если произошел глубокий разряд батареи, необходимо как можно скорее произвести ее заряд. В условиях низких температур снижение плотности электролита может привести к замерзанию АКБ, что влечет за собой разрушение пластин и корпуса. Заряд АКБ может производиться двумя способами — при постоянном токе или при постоянном напряжении. При постоянном токе равном 1/10 емкости 12 Вольтовой батареи, АКБ заряжают до тех пор, пока напряжение не достигнет 14,4 Вольт, далее сила зарядного тока снижается вдвое и заряд продолжается до постоянства напряжения и плотности электролита в ячейках в течение двух часов. При этом в конце заряда наблюдается бурное выделение газа, приводящее к кипению электролита. Заряд при постоянстве напряжения производится в течение суток зарядными устройствами, обеспечивающими зарядное напряжение не менее 16 Вольт. Не допускается перезаряд аккумуляторной батареи. Перезаряд АКБ снижает срок службы и приводит к неисправности.

4.СРОК СЛУЖБЫ АКБ

Гарантийные сроки эксплуатации АКБ установлены ГОСТом не менее 18 месяцев. Однако, практически все виды производственных дефектов, если таковые имеются, выявляются в течение первых 6 месяцев регулярной эксплуатации. Величина срока реальной службы АКБ зависит от условий эксплуатации, качества электрооборудования, режима работы автомобиля, условий контроля и ее своевременного обслуживания. Снижает срок жизни АКБ работа в режиме «такси», глубокий разряд или перезаряд АКБ. Максимальный срок надежной безотказной работы АКБ достигается регулярным контролем ее состояния и работы электрооборудования.

5. УТИЛИЗАЦИЯ АКБ.
По истечении своего срока службы, аккумуляторная батарея подлежит утилизации. Стоит помнить, что аккумуляторная батарея относится к 1 классу опасности и ее содержимое, по сути, является ядом. На сегодняшний день, в рамках Правительственной программы по сбору и утилизации отработавших свинцово-кислотных аккумуляторных батарей, на территории Москвы и Московской области, работает ряд лицензированных компаний, которые занимаются приемом АКБ как у юридических, так и у физических лиц. Участие в этой программе, поможет сохранить природу! Стоит отметить, что компании не берут денег за утилизацию аккумулятора, а в некоторых случаях даже выкупают их.

 

 

Плотность электролита в аккумуляторе — как определить


Дата публикации Апр 04, 2013, Рубрики Аккумулятор автомобиля |

Плотность электролита в аккумуляторе, имеющем полную зарядку составляет 1,28-1,30 грамм на квадратный сантиметр. Что такое электролит? Это 30 %-ный раствор серной кислоты в дистиллированной воде, который проводит ток. Соответственно, если замечаете, что аккумулятор, или сокращенно АКБ, вашего автомобиля начал разряжаться за короткое время, первое, что нужно сделать – проверить уровень электролита, его плотность. Мастера рекомендуют проверять данные показатели летом один раз в неделю, зимой – два, от их стабильности зависит срок службы аккумулятора.

Давайте узнаем, как правильно определить плотность электролита в аккумуляторе и уровень. В том случае, если вы добавляли дистиллированную воду, измерения можно проводить по истечению двух часов, когда жидкости перемешаются.

Для проверки уровня следует открутить пробки на заливных отверстиях, делать это нужно очень аккуратно, чтобы не повредить их поверхность. Некоторые специалисты советуют использовать пятикопеечную монету, которая действует результативнее, чем некоторые отвертки. В аккумулятор до упора опускается стеклянная трубка, зажимается пальцами, вынимается, уровень жидкости, находящейся в ней, будет соответствовать измеряемому количеству электролита. После данной процедуры следует приступить к определению плотности электролита в автомобильном аккумуляторе.

Для получения показаний плотности раствора применяется ареометр, он представляет собой колбу с грушей на конце, при помощи которой набирается электролит. Затем следует внимательно посмотреть на положение вставки ореометра относительно отметки, зафиксировать ее показания. В этой процедуре нет ничего сложного. Существует специальная таблица, эквивалентов плотности электролита и зарядки аккумулятора.

Если вы не имеете хотя бы базовых знаний конструкции автомобиля, измерения его показателей, лучше доверьте проверку плотности электролита в аккумуляторе специалистам. Неосторожность или незнание при этой процедуре могут привести к попаданию кислоты на автомобиль, кожу рук, одежду, что доставит определенные неприятности.

Вы узнали основные действия, которые нужно выполнить, чтобы проверить уровень, определить плотность электролита в аккумуляторе. Стоит помнить о том, что эти показатели очень важны, соблюдение допустимых норм даст вашему аккумулятору возможность долгой, исправной работы.

Related posts:

  1. Как проверить емкость аккумулятора
  2. Система охлаждения ВАЗ 2110 (инжектор)
  3. Замена тосола ВАЗ 2107
Еще по теме
  • Нет связанных постов

Плотность электролита в аккумуляторе зимой и летом

Любой водитель иногда сталкивается с проблемой неожиданно севшей АКБ, однако, мало, кто знает, что причиной этого явления чаще всего является недостаточная плотность электролита.

Стоит отметить, что сразу же после приобретения новой батареи плотность субстанции до первой зарядки составляет не менее, чем то, которое установил производитель для конкретной климатической полосы в стране.

Необходимо обращать внимание на этот показатель, поскольку  плотность напрямую зависит от определенной температуры, как и моторное масло.

Так АКБ, плотность электролита которой высока, легко эксплуатируется при самых сильных морозах, что позволяет сохранить нормальный заряд и уверенный запуск мотора.

При этом, если плотность субстанции в аккумуляторе низкая, то применять ее в холодном климате не представится возможным, поскольку это грозит:

  • плохой запуск в условиях морозной зимы;
  • стабильным недозарядом АКБ, что понижает срок ее эксплуатации.

Как правильно замерить плотность электролита

Замер плотности электролита

Стоит понять, что в процессе использования аккумуляторной батареи меняется  плотность и объем электролита, а эти параметры придется контролировать собственноручно. Для того, чтобы замерить плотность электролита аккумулятора следует:

  • измерять ее только на 100% заряженной АКБ;
  • нельзя снимать аккумулятор с авто или выключать зажигание;
  • перед проверкой обязательно корректируется уровень электролита;
  • добавить в электролит воду, чтобы его объем был нормальным;
  • зарядка аккумулятора производится в течение всей ночи, но только небольшим током;
  • после того, как термин зарядки окончился, АКБ следует отключить от зарядного устройства и оставить его для отдыха;
  • после отстоя в шесть часов производят измерение плотности электролита, поскольку этот показатель будет самым точным;
  • проверять плотность субстанции следует не реже, чем одного раза в три месяца, однако, исключительно с замерами выводного напряжения;
  • для того, чтобы измерить плотность, стоит демонтировать, очистить и осмотреть АКБ;
  • после этого взять прибор для измерения уровня электролита и полую трубочку из стекла;
  • измерения проводятся только после установки аккумулятора на ровную поверхность и вывертывания его банок;
  • полая трубка опускается одним концом в баночку, а второй кончик зажимается одним из пальцев, после чего прибор осматривается на уровень электролита (норма – 12 или 15 сантиметров).

Понять в норме ли плотность субстанции поможет только лишь таблица плотности электролита в аккумуляторе при различных температурах и степени зарядки, приведенная ниже.

Степень зарядки                              Темпера тура
Выше 25 градусовНиже 25 градусов
Зарядка на 100%1.210 – 1.2301.270 -1.290
Заряженная на 70%1.170 — 1.1901.230 – 1.250
Полностью разряженная1.050 – 1.0701.110 – 1.130

Мифы о зимней и летней плотности электролита

Профессионалы указывают на то, что плотность электролита в аккумуляторе согласно таблице зимой и летом практически неизменна. Ни в одном автомобильном магазине человеку не продадут АКБ с электролитом для зимнего или летнего периода.

Электролит плотностью в 1.27 или 1.28

В наши дни практически во всех аккумуляторах для всех регионов России применяется электролит плотностью в 1.27 или 1.28 грамм на кубический сантиметр. Самостоятельно корректировку электролита проводить категорически запрещено, поскольку это может вывести из строя даже новую рабочую АКБ. Как правило, повысить плотность электролита в аккумуляторе зимой или летом смогут только специалисты по ремонту данного агрегата и то только при его восстановлении.

Таблица плотности электролита в аккумуляторе позволяет понять в рабочем ли состоянии находится АКБ или же реанимировать ее не получится. Согласно данным таблицы можно понять, что плотность электролита 1.27 не позволит субстанции замерзнуть, пока температура не опустится до шестидесяти градусов, что в условиях российской зимы маловероятно.

В том случае, если сильно повысить плотность электролита летом или зимой, среда станет невероятно агрессивной, а значит, мгновенно выходят из строя пластины АКБ. Категорически запрещено в том случае, если показатели слегка больше или меньше, указанных в таблице, доливать электролит зимой, а дистиллированную воду летом.

Как повысить плотность электролита в домашних условиях

Для того, чтобы нормализировать плотность электролита до данных, указанных в таблице, зачастую достаточно будет просто зарядить аккумуляторную батарею. При этом слишком уж повышенная плотность электролита негативно будет влиять на состояние АКБ.

Перед тем, как повышать уровень плотности электролита до нормального уровня зимой или летом следует проделать простые манипуляции, чтобы повышенная плотность не повысилась еще больше, как это показано на видео:

  • приготовить таблицу значений для определенной АКБ при использовании ее в конкретном российском регионе;
  • взять ареометр и выдавить из груши воздух;
  • погрузить наконечник прибора в банку № 1 и набрать немного субстанции в него;
  • пождать несколько секунд и приступить к оцениванию результата, понимая, что он будет одинаковым летом и в зимнюю пору года.

При этом повышенная плотность будет определяться красным цветом индикатора, нормальная – зеленым. Потом стоит проделать вышеуказанные процедуры со второй банкой аккумуляторной батареи автотранспортного средства, чтобы определить повышенная или нет плотность электролита в ней.

Если же автомобилист все-таки собрался повысить плотность электролита в АКБ, ему придется по старинке разбавлять его дистиллированной водой. Однако в целях соблюдения мер безопасности вода наливается в емкость, куда тонкой струйкой понемногу добавляется кислота. Иначе, может произойти взрыв, поэтому обязательно следует надевать очки и резиновые перчатки.

Таблица плотности электролита

Чтобы исключить повышенную плотность, после доливки смеси аккумуляторную батарею следует подзарядить в течение тридцати минут для перемешивания.

Проблемы с электролитом связаны с тем, что при работе аккумулятора, он нагревается, а дистиллированная вода из него быстро испаряется.

Стоит отметить, что для получения самых точных результатов прибор следует промывать не проточной, а дистиллированной водой сразу же после применения. Неисправный ареометр может привести к неправильным результатам, а манипуляции с ним приведут к поломке аккумулятора.

Когда после всех процедур плотность электролита АКБ не приходит в норму, то его следует поменять в определенном объеме, иначе аккумулятор попросту выйдет из строя окончательно.

Перемешивается ли электролит в аккумуляторе при движении автомобиля? / Хабр

Привет, Хабр! Серная кислота почти вдвое тяжелее воды, и её водные растворы, в том числе аккумуляторный электролит, склонны к расслоению: тяжёлая кислота вытесняет лёгкую воду вверх и опускается вниз. Как это влияет на работу аккумуляторной батареи, и насколько эффективно перемешивает электролит тряска при движении транспортного средства? Проведём эксперимент с видео и показаниями приборов.



▍Перед началом опыта, вспомним известные факты о расслоении электролита:

Основная токообразующая реакция в свинцовом аккумуляторе, — двойная сульфатация по Гладстону-Трайбу, — требует для заряда воды, которая расходуется из электролита с выделением кислоты, а при разряде наоборот, расходуется кислота и выделяется вода.

Обязательными условиями заряда участка активной массы являются наличие в этом участке воды, а также электрический потенциал не ниже необходимого для преодоления термодинамической электродвижущей силы — ЭДС — на этом участке. ЭДС тем выше, чем выше концентрация кислоты.

Следовательно, повышенная концентрация электролита в нижней части банок и глубине намазок пластин АКБ — аккумуляторной батареи — ведёт к тому, что для преодоления термодинамической ЭДС требуется более высокое напряжение на клеммах. При недостаточном напряжении заряд участка активной массы (АМ) с повышенной концентрацией кислоты не произойдёт никогда. Также препятствует заряду и недостаток воды в данном участке АМ.

И заряд, и разряд активных масс ведут к расслоению электролита, так как выделяющаяся при заряде кислота стремится вниз, а образующаяся при разряде вода — вверх. Таким образом, если не предпринять специальных мер, при любой глубине циклирования или просто саморазряде АКБ расслоение электролита прогрессирует.

Современные типы АКБ характеризуются плотными сепараторами, препятствующими оплыванию активных масс и короткому замыканию. Они повышают надёжность, виброустойчивость и срок службы АКБ, но и препятствуют перемешиванию электролита, усугубляя тенденцию к расслоению.

Чем более прогрессирует расслоение электролита, тем большая доля активных масс при штатном зарядном напряжении не заряжается, то есть, остаётся в виде сульфата свинца, склонного переходить в труднорастворимую форму. Это явление называется сульфатацией. Не следует путать с двойной сульфатацией п. 1 — нормальной токообразующей реакцией. Сульфаты имеют меньшую плотность, чем заряженные АМ — губчатый свинец отрицательных пластин и оксид свинца положительных, потому сульфатированные намазки увеличиваются в объеме, что ведёт к разрушению конструкции аккумулятора и коротким замыканиям. П. 5 этому препятствует, но при отсутствии периодического выравнивающего заряда АКБ с расслоением и сульфатацией теряет ёмкость, токоотдачу и концентрацию кислоты в верхних слоях электролита.

Электролит с низкой концентрацией кислоты замерзает при более высокой («менее минусовой») температуре, потому расслоение электролита ведёт к выходу аккумулятора из строя в зимнее время.

По просторам Всемирной Паутины с давних времён гуляет множество мифов

о губительности «кипячения»

, — заряда с перенапряжением и выделением водорода и кислорода, пузырьки которых перемешивают электролит, для автомобильных АКБ. Многие руководствуются этими мифами при заряде АКБ и выборе для этого зарядных устройств — ЗУ.

Отчасти поэтому, во многих моделях ЗУ производители ограничивают напряжение на уровне, не допускающем «кипения» электролита, в других моделях предоставляют пользователю выбор максимальных напряжений заряда путём ступенчатого переключения или плавной регулировки, даже если ЗУ представляет собой не просто источник питания со стабилизацией тока и напряжения (СС/CV), а имеет алгоритмы автоматического управления напряжением и током согласно табличным значениям профиля или на основании измерения характеристик АКБ.

Водород, аэрозоль серной кислоты и сероводород, могущие выделяться при заряде аккумулятора, действительно опасны, потому заряжать следует в проветриваемом помещении, адекватно управлять током, напряжением и временем заряда, изучить и соблюдать технику безопасности.

В сегодняшнем эксперименте посмотрим, насколько перемешают электролит пара современных отечественных ЗУ, и насколько это требуется от ЗУ вообще, применительно к стартерной аккумуляторной батарее. Ведь она монтируется на автомобиле (мотоцикле, снегоходе, катере…), а тот испытывает ускорения и вибрации при движении. Некоторые авторы считают, что поездки перемешают электролит, потому в функции зарядного устройства это не входит. Давайте попробуем, и узнаем.

Подопытным будет аккумулятор

АКОМ +EFB 6СТ-60VL

. Со времени предыдущего стационарного обслуживания он использовался на автомобиле 4 месяца. График работы владельца автомобиля — сутки через трое, каждая поездка занимала 20 минут. Стартер и сигнализация за трое суток простоя в каждом таком цикле расходовали примерно 3 ампер*часа.

Начнём с измерения параметров текущего состояния. И как всегда, в первую очередь вымоем корпус и зачистим клеммы.

Напряжение разомкнутой цепи — НРЦ, оно же ЭДС без нагрузки, по показаниям трёх приборов 12.48, 12.50, 12.52 В.

Плотность электролита по банкам колеблется от 1.22 до 1.23. В крайних банках плотность ниже, в средних выше. Это тенденция, обычная для свинцовых батарей.


Итак, наблюдаем расхождение:

НРЦ соответствует уровню заряженности выше 80%, плотность электролита при котором должна быть 1.24, а по плотности уровень заряженности получается 75%, НРЦ должно быть 12.4 В. Причиной такого несоответствия как раз является расслоение электролита за 4 месяца эксплуатации под капотом. Повышенная концентрация кислоты в нижней части банок создаёт завышенное НРЦ. АКБ в таком состоянии необходим стационарный заряд.

Напряжение под нагрузочной вилкой не падает ниже 10 вольт, аккумулятор способен крутить стартер. Но если почитать инструкцию от производителя, то там чётко и ясно написано: если плотность ниже 1.25, аккумулятор требуется зарядить до плотности 1.28. Также в инструкции сказано, что можно оценить степень заряда по напряжению, и рекомендуется производить стационарный заряд при НРЦ ниже 12.5, но если имеется доступ к электролиту, то лучше проверить его плотность.

Приступаем к заряду зарядным устройством BL1204 на программе 2.

Заряд длился 9 часов. Плотность по банкам составила от 1.23 до 1.24.

По графику напряжения на клеммах, видно, что ЗУ производит основной заряд с подачами и паузами разной продолжительности, а затем три этапа непрерывного дозаряда, после чего последовали тест АКБ и буферный режим 13.65 В. Однако для кальциевой АКБ до 14.8 вольт происходит лишь основной заряд, потому продолжим заряд на программе 4.

Время заряда составило 1 час 16 минут плюс 20 часов в режиме буферного хранения. Плотность поднялась ещё на одну сотую и составила от 1.24 до 1.25. Сделаем ещё один проход на 4-й программе.

Время заряда снова 1 час 16 минут. Плотность поднялась всего на 0.005. Перезапустим программу 4 в третий раз.

Третий проход длился те же 1 час 16 минут. Плотность снова поднялась на 0.005. Отключаем ЗУ от АКБ. После отстоя продолжительностью 18 часов 20 минут НРЦ 13.20 В. При плотности 1.25 это говорит об очень сильном расслоении электролита. Запустим программу 4 ещё раз.

Заряд длился на этот раз около 50 минут. Плотность электролита не поднялась. Попробуем воспользоваться другим ЗУ.

Возьмём Бережок-V, установим 15.9 В — то же максимальное напряжение, что у BL1204.

Ток изменяется от -0.2 до 4.5 ампер. Отрицательное значение тока — не ошибка токовых клещей, а разрядные импульсы в асимметричном (реверсивном) заряде.

Заряд длился 4 часа, за которые ЗУ сделало две длительные паузы, и затем перешло в режим хранения — не поддержание буферного напряжения, как BL1204, а периодический подзаряд.

В пиках напряжение достигает тех же 15.9.

Плотность в 5 банках составила 1.26 или чуть выше, и в одной 1.255. Оставим АКБ на ночь дозаряжаться в режиме хранения.

По прошествии 15 часов, импульсы тока доходят до 5 А, снижаясь менее чем за секунду до 1 А.

Для отбора проб электролита из глубины банок воспользуемся удлинённой пипеткой, гибкий наконечник которой может пройти сбоку от пластин. Короткой пипеткой произведём отбор, как обычно, из верхнего слоя.

Плотность верхнего слоя составила 1.26, нижнего почти 1.31. Это весьма значительное расслоение, обуславливающее высокое напряжение разомкнутой цепи при недозаряженных и сульфатирующихся нижних частях пластин. Ни одно из применённых ЗУ при заряде нашего аккумулятора до 15.9В с расслоением не справилось.


Устранят ли поездки такое расслоение?

Для непосредственной проверки установим АКБ под капот, для чего пришлось удлинить провод массы.

Для лучшего перемешивания прибавим напряжение бортовой сети с 14.3 до 14.8 В, так как это позволяет сделать трёхуровневый регулятор напряжения.

Приборная панель Gamma GF-618 позволяет регистрировать данные поездок, что тоже очень пригодится в нашем эксперименте.

Пробег за трое суток в городском режиме составил 143.7 километра. Большое количество разгонов и торможений должно способствовать перемешиванию электролита.

Израсходовано 12.8 литров бензина.

После таких поездок плотность на глубине составила 1.29.

Плотность сверху 1.27. Предписываемого инструкцией значения 1.28 так и не достигли. Расслоение до сих пор присутствует. Покатаемся ещё трое суток, на этот раз, не только по городу, но и по трассе.

Итого за 6 суток автомобиль двигался восемь с половиной часов.

Общий пробег за это время 377.8 км.

Бензина затрачено 28.8 литра.

Плотность электролита наверху и внизу, наконец, уравнялась, и составила чуть ниже 1.27.

Итак, чтобы устранить расслоение в Ca/Ca EFB аккумуляторе после нескольких перезапусков стационарного заряда до 15.9 вольт, понадобилось почти 378 километров пробега и 29 литров бензина при напряжении бортсети 14.8 В. Сделаем выводы:


Q: Перемешивается ли электролит в современном кальциевом аккумуляторе с высокой плотностью сепараторов и упаковки пластин при движении транспортного средства?

Да

, действительно перемешивается.


Q: Насколько такое перемешивание эффективно?

— Мягко говоря,

не очень.

При более низком напряжении бортовой сети и более коротких поездках расслоение электролита продолжило бы прогрессировать


Q: Остались ли после всех стараний в испытуемом аккумуляторе недозаряд и сульфатация?

Да, остались.

Чтобы считать данную АКБ заряженной, мы должны получить плотность верхних слоёв не менее 1.28.


Q: Проявляют ли EFB аккумуляторы, вместе со склонностью к расслоению электролита, заявленную стойкость к длительному недозаряду (PSoC, partial state of charge, состояние частичной заряженности) и циклированию с глубокими разрядами?

Да,

как показывают другие наши исследования, которые продолжаются, уже выложено несколько видео, и готовятся следующие видео и статьи.


Q: Тем не менее, будут ли ёмкость, токоотдача и устойчивость к замерзанию электролита деградировать если не предпринимать периодических регламентных процедур по полному стационарному заряду?

Будут,

у любого свинцово-кислотного аккумулятора, потому что препятствует замерзанию концентрация кислоты в растворе, полезная ёмкость обеспечивается количеством заряженных (десульфатированных) активных масс, а способность отдавать ток полезной нагрузке и оперативно восполнять затраченную энергию от генератора автомобиля или иного зарядного устройства — действующей площадью активных масс. На ёмкость и токоотдачу влияет доступность воды для заряда и кислоты для разряда, т.е. расслоение электролита напрямую вредит этим ключевым для химического источника тока параметрам.



Теперь давайте всё-таки продолжим заряд данной аккумуляторной батареи. На этот раз начнёт Бережок-V, при том же напряжении окончания заряда 15.9 В.

Заряд продолжался около 4 часов, плюс 4 часа в хранении.

Плотность поднялась с чуть ниже 1.27 до 1.275. Передаём эстафетную палочку BL1204.

Заряд длился около часа, и далее 14 часов в режиме хранения.

Плотность осталась 1.275.

Установим на Бережке-V ограничение напряжения 16.7 вольт и запустим заряд.

По прошествии 4 часов ЗУ автоматически перешло в режим хранения. Плотность и над пластинами, и на глубине чуть выше 1.28. Электролит перемешан, расслоение устранено.

Адекватный стационарный заряд не только перемешивает электролит эффективнее, чем ускорения и вибрации при движении транспортного средства, но и позволяет более полно зарядить аккумуляторную батарею, устранить сульфатацию, поднять эксплуатационные характеристики.


Спустя сутки, имеем следующие показания тестера:

Здоровье

100%

, внутреннее сопротивление

4.81 мОм

, ток холодной прокрутки

574 из 560 А

по стандарту EN. НРЦ 12.80 В соответствует плотности

1.28

. Расслоения нет, АКБ в

полном порядке

, можно ставить под капот.

Статья составлена в сотрудничестве с аккумуляторщиком Виктором VECTOR, осуществившим описанные опыты.


Полностью заряженная батарея — обзор

Состояние заряда

Состояние заряда обычно определяется как фактически доступное количество заряда в данной батарее ( Q ), связанное с максимально доступным количеством заряда, которое может быть получен от этой батареи после 100% полной зарядки ( C ) и обычно выражается в процентах:

[1] SoC = фактически доступное количество заряда (Q) максимально доступное количество заряда (C) × 100 %

Это определение LAB не является ясным и однозначным.Причина этого в том, что оба используемых значения, эталонное значение «максимально доступное количество заряда», так называемая «емкость аккумулятора» и «фактически доступное количество заряда» могут быть определены и соответственно измерены по-разному.

Контрольный тест для Q — это разряд с определенным заданным током до заданного напряжения отсечки при определенной заданной температуре батареи. Эталонный тест на емкость аккумулятора C представляет собой полную зарядку с последующей разрядкой в ​​условиях, аналогичных описанным ранее.В зависимости от скорости разрядного тока, температуры батареи, напряжения отключения и определения «полного заряда» могут быть получены разные значения для Q , C и, следовательно, для SoC.

Для понимания определения SoC «полная зарядка» должна быть определена в первую очередь. Как правило, это определяется процедурой зарядки, приводящей к полностью заряженной батарее. Однако «полный» не является «полным» и сильно зависит от установленной процедуры начисления платы. Вот некоторые часто используемые определения «полностью заряженной батареи»:

Физическая полная означает, что все доступные активные массы находятся в заряженном состоянии.В новых аккумуляторах для зарядки доступны все активные массы. В старых батареях части активных масс могут ослабнуть из-за эрозии, могут быть недоступны для тока заряда из-за коррозионных слоев на электродах или могут быть преобразованы в необратимые сульфаты и, следовательно, больше не доступны для зарядки. Физическое наполнение достигается в тот момент, когда дополнительный зарядный ток используется на 100% для побочных реакций, таких как выделение газов или коррозия.

Номинальная полная мощность достигается при применении процедуры зарядки, предписанной производителем батареи или данным стандартом.Для новых аккумуляторов это обычно почти такое же состояние, как и полное физическое. Например, в старых батареях крупнозернистые кристаллы сульфата свинца образуются во время работы или из-за процессов перекристаллизации. Эти кристаллы часто не могут быть растворены стандартными процедурами зарядки. Следовательно, части активных масс остаются в разряженном состоянии после номинального полного заряда. Для достижения полного физического состояния необходимо применять модифицированные стратегии зарядки, такие как зарядка при повышенных температурах или в течение более длительных периодов времени.Например, международный стандарт (EN 50342–1: 2006) для шестиэлементных залитых батарей стартер-свет-зажигание (SLI) определяет номинальный заряд CCCV-заряда на 25-35 ° C и (16,00 ± 0,01) В с ограничение тока 5 I номинальное на 24 ч. В старых батареях после этой процедуры зарядки может оставаться некоторое количество сульфата свинца. Они могут широко раствориться, если применяется дополнительная зарядка минимум на 40 ° C.

Полная работоспособность определяется как максимально возможная SoC батареи, которая может быть достигнута в полевых условиях в данном приложении.Номинальные условия заряда часто не могут быть применены к батареям, которые используются в реальных приложениях, из-за конструкции системы, ограничений, касающихся максимального напряжения заряда, температуры батареи и доступного времени зарядки. В результате аккумулятор, новый или старый, не может даже достичь номинального состояния полной зарядки. Например, в обычных транспортных средствах напряжение в системе обычно не может превышать примерно 15 В (что ниже 16 В, определенного для номинального заряда), а периоды заряда ограничиваются временем вождения (обычно намного меньше, чем 24 часа сразу), так что даже свежий SLI аккумулятор не может быть полностью заряжен по номиналу.

Как следует из эталонных испытаний для C и Q , батарея определяется как разряженная, когда при ее разрядке с заданным номинальным током при определенной температуре достигается заранее заданное напряжение отсечки. Процедура разряда с указанными параметрами называется стандартным испытанием емкости. Это определение более практично, чем физически полностью разряженная батарея, где все активные массы находятся в разряженном состоянии, по нескольким причинам.Во-первых, ЛАБ нельзя полностью разгрузить физически, не нанеся ей необратимого повреждения. Во-вторых, в большинстве приложений батарея должна обеспечивать определенный уровень напряжения, даже если она «разряжена». В-третьих, полная физическая разрядка будет длиться почти бесконечно долго. Изготовитель или пользователь батареи может определить номинальную скорость разряда, напряжение в конце разряда и температуру. Поэтому необходимо упомянуть параметры для определения емкости с помощью теста емкости.В противном случае результаты несопоставимы.

После четкого определения значений «полная» и «разряженная» батарея, можно ввести различные однозначные определения емкости батареи:

Номинальная емкость или номинальная емкость C N . Номинальная или номинальная емкость — это значение емкости, указанное производителем при номинальных условиях эксплуатации (определяемых температурой, разрядным током и напряжением в конце разрядки, как при стандартном испытании емкости).

Начальная мощность C 0 . Первоначальная емкость — это измеренная емкость новой батареи. Эталонное измерение состоит из номинальной полной зарядки с последующим стандартным испытанием емкости, как определено выше. Для данной лаборатории это значение может быть немного выше или ниже номинальной емкости C N из-за производственных допусков, систематического завышения размеров производителем или отсутствия циклов инициализации, которые могут увеличить емкость в начале срока службы.

Фактическая вместимость C a . Фактическая емкость — это измеренная емкость батареи в ее текущем состоянии. Эталонное измерение такое же, как и для начальной емкости. Следовательно, для новой батареи C a = C 0 . В случае старых батарей C a 0 из-за процессов старения, которые приводят к потере емкости. Однако это не всегда верно во всех случаях.Некоторые LAB показывают увеличение фактической мощности C a в течение нескольких месяцев или даже лет. Это особенно характерно для свинцово-кислотных аккумуляторных батарей с регулируемым клапаном (VRLA).

Доступная емкость C в среднем . Доступная емкость — это емкость данной новой или устаревшей батареи, доступная для данного приложения. Эталонным измерением часто является рабочий полный заряд с последующим разрядом с номинальным током до тех пор, пока не будет достигнуто определяемое приложением напряжение конца разряда при фактической температуре батареи.

Теперь можно определить SoC, но перед этим следует отметить важный момент.

Общее определение SoC в соответствии с уравнением [1] полезно, когда SoC необходимо измерить с помощью эталонных тестов, потому что для обоих значений, Q и C , количество заряда может быть рассчитано во время разряда как ток разряда. умножается на время разряда. Если необходимо настроить определенную SoC (так, чтобы батарея имела определенное количество заряда Q ), невозможно разрядить LAB, пока она не станет пустой, а затем зарядить ее снова и вычислить сохраненный объем заряда путем интеграции заряда Текущий.Причина в том, что из-за более высокого напряжения батареи во время зарядки значительная часть зарядного тока переходит в реакцию выделения газа, и, таким образом, фактически накопленный заряд ниже, чем рассчитанный путем интегрирования зарядного тока. Следовательно, чтобы установить определенную SoC батареи, она должна быть полностью заряжена (до 100% SoC), а затем определенное количество заряда Q d должно быть снято с батареи путем разрядки, так что

[2] SoC = максимально доступное количество заряда (C) — снятое количество заряда (Qd) максимальное доступное количество заряда (C) × 100%

Это фактически немного другое определение SoC, но если C , Q и Q d измеряются при одинаковых условиях разряда (температура, ток разряда, напряжение в конце разряда и тот же срок службы батареи), затем

[3] C = Q + Qd

, и это определение SoC эквивалентно тому, что дано в уравнении [1].

Если упоминается «SoC», обычно имеется в виду фактическая доступная емкость, связанная с номинальной емкостью C N . Поскольку C N часто не является измеренным значением для данной батареи, условие [3] не выполняется. В этом случае с помощью формул [1] или [2] можно получить разные значения для SoC. С этой точки зрения для новой батареи SoC, относящаяся к начальной емкости ( C 0 ), более предпочтительна, поскольку выполняется условие [3].

Например, свежая батарея SLI номинальной емкостью C N = 100 Ач. Батарея может иметь начальную емкость C 0 = 105 Ач. В этом случае, если аккумулятор должен быть настроен на 50% SoC (относится к C N ), то Q d = 50 Ач должно быть разряжено от аккумулятора в соответствии с уравнением [2]. Однако, разрядив аккумулятор в номинальных условиях, можно извлечь из аккумулятора емкость 55 Ач до полного разряда.Это будет означать, что SoC (относящаяся к C N ) согласно определению [1] составляет 55%.

Для устаревших аккумуляторов SoC, связанная с начальной емкостью и использующая определения [1] или [2], не будет согласована. В этом случае следует использовать SoC, относящуюся к фактической емкости (SoC a ). По той же причине в приложении только SoC, связанная с доступной емкостью (SoC av ) с использованием определений [1] и [2], является правильным.

Связь между различными SoC можно пояснить на примере, показанном на рисунке 1.В этом примере дан старый LAB с начальной емкостью C 0 = 100 Ач. Из-за крупных кристаллов сульфата свинца физический полный заряд не может быть получен в течение ограниченного времени процедуры номинального заряда. Таким образом, емкость 5Ач остается незаряженной. При заданных критериях напряжения в конце разряда батарея имеет меньшую емкость из-за старения по сравнению с новой батареей. В этом примере это составляет дополнительную потерю емкости 20 Ач. В результате получается фактическая емкость C a = 75 Ач.В SoC окно между 0% и 100% может быть сопоставлено с окном SoC 0 между 20% и 95%. В некоторых приложениях доступная емкость аккумулятора может составлять всего C av = 65 Ач, поскольку при полной зарядке остается значительное количество активных масс в разряженном состоянии. SoC av может быть сопоставлен с окном SoC 0 между 20% и 85%, или, другими словами, в данном приложении батарея может работать только между 20% и 85% от SoC относительно его начальной емкости.

Рисунок 1. Схематическая визуализация отношений между различными определениями состояния заряда (SoC).

Все приведенные выше определения емкости и SoC всегда принимают номинальную температуру или, по крайней мере, аналогичную температуру как должное. Поскольку температура оказывает значительное влияние на емкость батареи, другие значения этих показателей качества могут быть получены при других температурах.

Еще хуже упомянуть, что может возникнуть еще одна проблема с точным определением SoC.Из-за разной скорости побочных реакций в положительном и отрицательном электродах может случиться так, что SoC двух электродов будет отклоняться. Обычно SoC определяется для аккумулятора в целом, но для некоторых целей важны индивидуальные характеристики электродов. Схожей с этой проблемой является неоднородный SoC ячеек в последовательном соединении. Обычно клетки не имеют точно одинаковую температуру, и поэтому побочные реакции протекают с разной скоростью; следовательно, SoC ячеек отклоняется.

Существенное влияние плотности на динамику неводных электролитов

Abstract

Подвижность и сольватация ионов лития в электролитах имеют решающее значение для производительности и безопасности литий-ионных аккумуляторов. Известно, что растворитель одного типа не может одновременно удовлетворить требования как подвижности, так и сольватации электролитов. Поэтому для оптимизации обоих свойств использовались сложные смеси растворителей. Здесь мы представляем влияние плотности на динамику и сольватацию органических жидких электролитов с помощью обширного молекулярно-динамического моделирования.Наше исследование показало, что небольшое изменение плотности может существенно повлиять на подвижность электролитов, но не влияет на сольватационную структуру иона лития. Оказывается, регулировка плотности электролитов может обеспечить более эффективный способ повышения подвижности, чем регулирование соотношения электролитов в смеси растворителей. Наше исследование показывает, что изменение плотности электролитов в основном влияет на время пребывания растворителей в первой сольватной оболочке иона лития, а не на структурные изменения сольватной оболочки.Наконец, наши результаты предлагают интригующий момент для понимания и разработки электролитов литий-ионных батарей для повышения производительности и безопасности.

Поскольку в последние годы технологии и рынки портативных электронных устройств и электромобилей стремительно развиваются, аккумуляторные батареи, такие как литий-ионные батареи, стали одной из самых активных областей исследований и промышленных рынков 1 , 2 , 3 , 4 , 5 . Среди компонентов батареи электролиты играют центральную роль в производительности и безопасности литий-ионных батарей 1 , 2 , 4 , 5 , 6 , 7 , 8 , 9 , 10 .Они позволяют ионам лития проводить между катодом и анодом аккумуляторов и вносить вклад в образование межфазной границы твердого электролита (SEI), которая является ключевым элементом защиты электродов от разрушения 6 , 7 , 8 , 9 , 10 , 11 , 12 .

Ионная проводимость λ — одно из основных свойств, характеризующих электролиты, которое количественно определяет, насколько подвижны ионы для электрохимических реакций 13 .Факторами, определяющими ионную проводимость, являются количество ионов n ion , величина заряда Q иона , который несут ионы, и подвижность ионов μ ion , то есть 1 . Таким образом, для определенных ионов стратегия увеличения ионной проводимости по существу включает улучшение как коэффициента диффузии, так и количества ионов, участвующих в переносе зарядов 14 . В то время как больший коэффициент диффузии ионов, очевидно, увеличивает ионную проводимость, образование пары катион и анион не вносит вклад в ионную проводимость из-за своей нейтральности заряда.Фактически, образование пар катионов и анионов тесно связано с уменьшением коэффициента диффузии из-за увеличения размера ионных кластеров в дополнение к уменьшению количества ионов, вносящих вклад в ионную проводимость. Следовательно, образование пар в конечном итоге связано с уменьшением ионной проводимости. Чтобы катионы и анионы не образовывали пары и даже кластеры, необходим процесс сольватации катионов растворителями. Обычно ожидается, что растворители в электролитах должны одновременно увеличивать подвижность ионов и формировать надлежащую сольватирующую оболочку катионов.

Молекула с большой диэлектрической проницаемостью может служить хорошим растворителем с точки зрения образования пар ионов, но легко не повысить подвижность ионов из-за ее большой вязкости. Напротив, молекула с небольшой диэлектрической проницаемостью имеет более низкую вязкость для увеличения подвижности, но ее выполнение в процессе сольватации не выполняется. Таким образом, вместо растворителя одного типа современные электролиты, используемые в современных литий-ионных батареях, состоят из нескольких типов растворителей, которые ухудшают оба свойства: подвижность и образование пар ионов 1 , 5 , 15 .Например, этиленкарбонат (EC) имеет большую диэлектрическую проницаемость ( ε ~ 90 при 40 ° C), которая даже выше, чем у воды ( ε ~ 79 при 25 ° C) 1 , 16 . Однако его высокая вязкость ( η ~ 1,9 сП при 40 ° C) в дополнение к высокой температуре плавления ( T м ~ 36,4 ° C) не позволяет использовать его в качестве единственного растворителя. Диметилкарбонат (ДМК) имеет низкую вязкость ( η ~ 0,59 сП при 20 ° C), но небольшую диэлектрическую проницаемость ( ε ~ 3.1 при 25 ° C). Поэтому комбинация циклических и линейных карбонатов, таких как EC и DMC, была предложена в качестве кандидата на эффективные электролиты, удовлетворяющие двум важным свойствам: , 1, , , 17, , , 18, .

В этой работе мы исследуем влияние плотности на динамику электролита, состоящего из соли гексафторфосфата лития (LiPF 6 ) в бинарной смеси растворителей EC и DMC с соотношением EC: DMC = 50%. : 50% (в% об.).Обратите внимание, что для простоты мы будем обозначать соотношение растворителей и электролитов только как отношение ЕС на протяжении всей этой работы. Для сравнения мы также исследуем динамику для случая EC 20%.

Результаты

Наша отправная точка — две системы электролитов с плотностями ρ = 1,3446 г / см 3 для EC 50% и ρ = 1,2677 г / см 3 для EC 20%, а затем мы исследуем динамику для EC 50% в зависимости от ρ . Эти начальные плотности соответствуют суммарным плотностям бинарных смесей EC и DMC с 1 M LiPF 6 , когда две системы имеют одинаковый объем, без учета эффекта смешивания EC и DMC.Как правило, общая плотность смешанной системы не следует простому суммированию: ρ всего ρ простая = ( ρ EC V EC + ρ DMC V DMC ) / ( V EC + V DMC ), но следует учитывать эффект перемешивания: ρ всего = ρ простой + ρ смешанный .Член смешанный образуется в результате взаимодействия между ЭК и DMC, и количественно определить смешанный сложно. Если рассматривать смешивание EC и DMC, общая плотность будет отличаться от плотности без него 19 . Например, экспериментальная плотность объемного электролита для ЕС 50% с 1 M LiPF 6 в условиях окружающей среды, как известно, составляет около ρ = 1,30 г / см 3 20 , 21 .Далее, мы рассматриваем еще пять плотностей: ρ = 1,3219, 1,3028, 1,2852, 1,2709, 1,2568 г / см 3 для системы EC 50%, чтобы исследовать, как плотность может влиять на динамические свойства электролитов. Обратите внимание, что это отличается от многих исследований влияния соли на динамику электролитов, поскольку в нашем исследовании начальная концентрация соли фиксирована, но объем системы изменен.

Dynamics

Чтобы изучить, как на подвижность электролитов влияет плотность ρ , сначала рассмотрим константу диффузии D , используя соотношение Эйнштейна, которое характеризуется среднеквадратическим смещением (MSD), определяемым как 22 , 23

, где d — размерность системы и представляет собой среднее по ансамблю.В, мы вычисляем D каждого компонента электролита как функцию ρ для ЕС 50%. Для всех компонентов D очень чувствителен к ρ по сравнению с другими жидкими системами 22 . Когда ρ уменьшается на Δ ρ = 0,0878 г / см 3 от ρ = 1,3446 г / см 3 до 1,2568 г / см 3 , D ион Li + показывает увеличивается в 5,140 и 2,672 раза при Тл = 300 К и 400 К соответственно.Мы также наблюдаем аналогичное увеличение D для других компонентов: 4,554 и 2,715 для PF 6 иона, 4,007 и 2,661 для EC и 3,959 и 2,853 для DMC при T = 300 K и 400 K соответственно. Это означает, что небольшое изменение плотности может сильно повлиять на коэффициент диффузии электролитов. По мере увеличения T влияние ρ на D ослабевает.

Коэффициент диффузии электролита.

Показаны константы диффузии D каждого компонента электролита, ( a ) a Li + иона, ( b ) a PF 6 иона, ( c ) EC и ( d ) DMC, как функция плотности при температурах T = 300 K и 400 K при соотношении смеси растворителей EC 50%.Для сравнения мы также приводим константу диффузии D каждого компонента электролита для отношения смеси растворителей EC 20% при плотности ρ = 1,2677 г / см 3 . Результаты показывают, что D демонстрирует существенную зависимость ρ при фиксированном соотношении растворителей в смеси. Как для катиона, так и для аниона D для ЕС 20% показывает сравнимую величину с D при ρ = 1,3219 г / см 3 ЕС 50% при обеих температурах T = 300 K и 400 K .

Интересно, что ρ имеет сильную чувствительность D . Например, для жидкого ацетонитрила экспериментальное исследование показало, что уменьшение ρ примерно на Δ ρ = 0,1 г / см 3 желательно для увеличения D в два раза при T = 298 К 24 . Для воды показано, что уменьшение ρ примерно на Δ ρ = 0,2 г / см 3 желательно для увеличения D в два раза при T = 300 K 22 .Для органических жидких электролитов наши результаты показывают пятикратное увеличение D , когда ρ уменьшается менее чем на 0,1 г / см 3 при T = 300 K. Удивительно, что D быстро меняется с относительно небольшая модификация ρ . Кроме того, D для EC 20% при ρ = 1,2677 г / см 3 показывает сравнимую величину D для EC 50% при ρ = 1,3219 г / см 3 . Таким образом, наши результаты показывают, что для улучшения D корректировка ρ может быть лучшей стратегией, чем уменьшение доли ЕС.Последний, как известно, является традиционным методом, принятым для увеличения коэффициента диффузии (или уменьшения вязкости) электролитов. В наших результатах небольшое изменение ρ , такое как Δ ρ с ρ = 1,3446 г / см 3 до 1,3219 г / см 3 показывает большее увеличение D для Li + , чем изменение доли ЭК с 50% до 20%. Эта ситуация аналогична для других компонентов и более высокой температуры. Обратите внимание, что небольшое изменение плотности на самом деле требует большого изменения давления.В нашем случае давления находятся в диапазоне от менее 1 МПа до нескольких сотен МПа в соответствии с ρ . Для жидкого ацетонитрила тот же диапазон давлений был экспериментально исследован, и скорость изменения D в нашем случае намного больше, чем жидкого ацетонитрила 24 .

Чтобы увидеть, как ρ влияет на активационный барьер для диффузии, мы теперь исследуем температурную зависимость D для всех компонентов электролита для трех различных плотностей 19 , как показано на рис.На графике Аррениуса D хорошо вписывается в форму Аррениуса, D = D 0 exp (- E a / k B T ) , где D 0 — предварительный фактор, а k B — постоянная Больцмана. Мы обнаружили, что абсолютная величина наклона подобранной линии уменьшается при уменьшении ρ . В, мы вычисляем энергию активации E a для диффузии из температурной зависимости Аррениуса D 21 , 25 .Наши результаты показывают, что E a при ρ = 1,3446 г / см 3 значительно больше, чем E a при ρ = 1,2568 г / см 3 . Отношение γ для E a при ρ = 1,3446 г / см от 3 до E a при ρ = 1,2568 г / см 3 дает примерно γ = 1,34 для иона Li + , 1.33 для иона PF 6 , 1,34 для EC и 1,37 для DMC соответственно. Кажется, что E a увеличивается с той же скоростью для всех компонентов электролита, как и ρ . Наши результаты показывают, что уменьшение ρ приводит к значительному уменьшению E a для диффузии. Обратите внимание, что величины E и для всех компонентов показывают Li + > PF 6 > EC> DMC, и это объясняет, почему DMC является самым быстрым компонентом, а ион Li + самый медленный 13 .

Температурная зависимость констант диффузии.

На графике Аррениуса показаны константы диффузии D каждого компонента электролита, ( a ) a Li + иона, ( b ) a PF 6 иона, ( c ) EC и ( d ) DMC, для EC 50% при трех плотностях: = 1,2568, 1,3028 и 1,3446 г / см 3 . Все данные хорошо вписываются в форму Аррениуса,. Результаты показывают, что наклон аппроксимации увеличивается по мере увеличения .Сплошные линии — ориентиры для глаз. ( e ) Энергии активации E a для диффузии иона Li + , иона PF 6 , EC и DMC в зависимости от плотности ρ для EC 50% , который рассчитывается по наклону графика Аррениуса. Ясно, что это показывает, что E a для всех компонентов электролита уменьшается по мере уменьшения ρ .

При описании самодиффузии Цванциг интерпретировал диффузию как пересечение энергетического барьера от одного локального минимума энергии до одного из других локальных минимумов энергии в энергетическом ландшафте во всем фазовом пространстве 26 .Энергетический ландшафт системы создается в каждый момент обновленными координатами и импульсами систем. С точки зрения энергетического ландшафта, уменьшение ρ может уменьшить энергетический барьер между локальными минимумами энергии, так что диффузия может быть усилена. По мере увеличения T эффект ρ будет уменьшаться, поскольку тепловая энергия становится достаточно большой для пересечения барьера. Наши результаты хорошо согласуются с интерпретацией Цванцига диффузии.

В дополнение к D , мы вычисляем ионную проводимость λ , определяемую как 13 , 17 , 27 , 28

, где z — заряд иона в единице элементарный заряд e и представляет собой среднее по ансамблю. Суммирование ведется по всем ионам системы. Как показано на фиг. λ для ЕС 50% существенно увеличивается при уменьшении ρ . При понижении ρ до ρ = 1.2568 г / см 3 от 1,3446 г / см 3 , λ увеличивается почти в пять раз, что является той же величиной, что и в D . В сочетании с результатами D интересно, что λ также демонстрирует сильную чувствительность на ρ . Мы также обнаружили, что когда ρ становится 1,3028 г / см, 3 , λ для EC 50% показывает величину, аналогичную величине для EC 20%. Известно, что из-за конкуренции между подвижностью и спариванием ионов оптимальная доля растворителя ЭК для получения максимума в λ находится между 20% и 30% 1 .Наши результаты показывают, что существует альтернативный способ увеличения λ без изменения соотношения растворителей в смеси электролитов. А именно, регулировка ρ обеспечивает более драматические эффекты на D и λ , чем изменение соотношения растворителей в смеси электролитов. Предположительно, быстрое увеличение D при уменьшении ρ приводит к неожиданной чувствительности λ на ρ .

Ионная проводимость.

На графике как функция плотности ρ показана ионная проводимость λ при температуре T = 300 K для отношения смеси растворителей EC 50%. Для сравнения мы также приводим λ для EC 20%. Подобно постоянной диффузии D, λ показывает существенную зависимость ρ. λ для EC 20% аналогично λ при ρ = 1,3219 г / см 3 для EC 50%.

Теперь остается вопрос, какие свойства могут быть связаны с чувствительностью D и λ на ρ .

Структура сольватации

Затем мы исследуем влияние плотности на структуру сольватации иона Li + . Мы вычисляем (кумулятивное) координационное число n ( r ), определяемое как 11 , 27 , 29 , 30 , 31 , 32 , 33

где g ( r ) — функция радиального распределения (RDF). В, мы демонстрируем n ( r ) как функцию расстояния r от иона Li + для EC 50% и EC 20%.Как показано на фиг.1, сольватационная структура иона Li + сильно отличается в зависимости от соотношения растворителей EC и DMC 8 , 29 , 30 , 34 . Здесь следует отметить, что графики n ( r ) для всех исследованных нами плотностей EC 50% практически перекрываются друг с другом, что позволяет предположить, что на сольватную структуру иона Li + изменение не влияет. из ρ . In, сольватационное число N c в первой сольватной оболочке, определяемое как значение n ( r ) на первом плато in, остается постоянным при изменении ρ .Количество каждого компонента в первой сольватной оболочке также одинаково для всех исследованных нами плотностей. Небольшое изменение ρ не вызывает реорганизации сольватной структуры иона Li + для данного соотношения растворителей в электролитах.

Сольватационная структура иона Li + .

( a ) Кумулятивные координационные числа n ( r ) иона PF 6 , EC и DMC как функция расстояния r от иона Li + при температуре T = 300 K для соотношений смеси растворителей EC 50% при плотности ρ = 1.3446 г / см 3 и ЭК 20% при плотности ρ = 1,2677 г / см 3 . Сплошные и пунктирные линии обозначают случаи ЕС 50% и ЕС 20% соответственно. Обратите внимание, что мы вычисляем n ( r ) из положений атома P для иона PF 6 и карбонильного атома кислорода O как для EC, так и для DMC. ( b ) Зависимость сольватационного числа N c в первой сольватной оболочке иона Li + от плотности ρ при температуре T = 300 K.Закрашенные и полые символы обозначают случаи EC 50% и EC 20% соответственно. Затем мы представляем функцию плотности вероятности P ( n ) иона Li + , которая представляет плотность вероятности для иона Li + иметь n соседей в первой сольватной оболочке для каждого соседа. из ( c ) общее количество, ( d ) a PF 6 ion, ( e ) EC и ( f ) DMC.

Затем мы изучаем функцию плотности вероятности P ( n ) для иона Li + , имеющего n соседей в первой сольватной оболочке.Он описывает, сколько ионов Li + имеют n соседей в сольватной оболочке. Поскольку n ( r ) и N c являются значениями, усредненными по общему количеству ионов Li + , подробное описание распределения состава в сольватной оболочке полезно для лучшего понимания структура сольватации. В, мы демонстрируем P ( n ) для соседей из общего числа, PF 6 — ион , EC и DMC, соответственно.Следует отметить, что P ( n ) показывает такое же распределение для всех плотностей EC 50%, тогда как он показывает большую разницу в отношении изменения доли EC. Как для EC 50%, так и для EC 20%, большинство ионов Li + имеют всего 6 соседей в сольватной оболочке. В то время как один или два аниона расположены в первой сольватной оболочке для EC 20%, ионы Li + без анионов в оболочке становятся большинством для EC 50%. Процент ионов Li + является наибольшим при наличии одного или двух ЭК для ЭК 20%, но четырех или пяти ЭК для ЭК 50%.Для DMC P ( n ) показывает максимум на двух DMC для EC 20%, тогда как популяция ионов Li + с одним DMC составляет большинство для EC 50%. Наши результаты показывают, что сольватационная структура иона Li + сильно зависит от соотношения растворителей в смеси, но не зависит от изменения ρ . Таким образом, существенное увеличение D и λ при уменьшении ρ не сопровождается изменением сольватационной структуры.Это означает, что можно увеличить подвижность электролитов, регулируя ρ без нарушения сольватационной структуры иона Li + .

Динамика сольватации

Теперь исследуем динамические свойства в первой сольватной оболочке иона Li + . Распределение времени пребывания (RTD) R ( t ) описывает долговечность первой сольватной оболочки иона Li + . Мы определяем время пребывания как время, за которое объект впервые покидает первую сольватную оболочку иона Li + .Обратите внимание, что из результатов n ( r ) в, мы используем определение первой сольватационной оболочки иона Li + в виде круга с центром ионом Li + с радиусом 3,0 нм для карбонильный кислород EC и DMC. В, мы представляем RTD EC и DMC при T = 300 K для различных плотностей EC 50%. Это ясно показывает, что RTD затухает быстрее при уменьшении ρ для обоих растворителей. Это означает, что растворители в первой сольватной оболочке легче заменить другими при более низких ρ .Поскольку сольватационная структура не зависит от небольшого изменения ρ , мы предполагаем, что тот же самый тип растворителя заменит существовавший ранее. RTD для EC 50% с плотностями ниже ρ = 1,3446 г / см 3 распадается быстрее, чем один для EC 20% как для EC, так и для DMC, что позволяет предположить, что долговечность сольватационной оболочки снижается при низких ρ в ЕС 50%, чем в ЕС 20%.

Время пребывания в сольватационной оболочке Li + .

Распределение времени пребывания R ( t ) ( a ) EC и ( b ) DMC в первой сольватной оболочке иона Li + при температуре T = 300 K .Сплошные линии обозначают случаи ЕС 50% для различных плотностей, а пунктирная линия представляет случай ЕС 20% при плотности = 1,2677 г / см 3 . Далее показаны характерные времена пребывания τ R ( c ) EC и ( d ) DMC в зависимости от плотности ρ при температурах T = 300 K и 400 K. Для сравнения , мы также представляем τ R для EC 20%.

Поведение RTD можно понять по характерному времени пребывания τ R , определяемому 35 как

При T = 300 K характерное время пребывания при ρ = 1.3446 г / см 3 для ЕС 50% составляют примерно 44,7 пс и 38,4 пс для ЕС и DMC, соответственно, и уменьшаются до 21,5 пс и 17,5 пс при уменьшении плотности до = 1,2568 г / см 3 , как показано в . При T = 400 K, τ R уменьшается с 15,0 пс и 13,2 пс до 9,7 пс и 8,2 пс для EC и DMC соответственно. Для обеих температур τ R показывает значительную зависимость от ρ , указывая на то, что чувствительность D к ρ тесно связана с продолжительностью сольватационной оболочки в дополнение к энергии активации E . a для распространения.

Поскольку RTD описывает быструю кинетику динамики сольватации 35 , теперь мы исследуем медленную кинетику длительности сольватационной оболочки иона Li + . Чтобы охарактеризовать динамику сольватации в долгосрочном масштабе, мы определяем функцию корреляции резиденций (RCF) C ( t ) 17 , 35 как

, где h ( t ) равно единице, когда объект находится внутри первой сольватационной оболочки иона Li + , и в противном случае ч ( t ) равно нулю.В то время как RTD представляет собой непрерывное время пребывания, в течение которого растворитель в сольватной оболочке постоянно остается нетронутым, RCF описывает прерывистое время пребывания с точки зрения того, что растворитель в сольватной оболочке остается неизменным только в момент времени t , при условии, что он был неповрежденным. в момент времени t = 0. В, мы представляем RCF EC и DMC при T = 300 K для различных плотностей EC 50%. RCF показывает поведение, аналогичное RTD, в отношении ρ .Это просто показывает, что RCF спадает быстрее при меньших ρ .

Время корреляции нахождения в сольватной оболочке Li + .

Функции корреляции резиденций C ( t ) ( a ) EC и ( b ) DMC в первой сольватной оболочке иона Li + при температуре T = 300 K Сплошные линии обозначают случаи ЕС 50% для различных плотностей, а линия с кружками представляет случай ЕС 20% при плотности = 1.2677 г / см 3 . Далее показаны характерные времена корреляции τ C ( c ) EC и ( d ) DMC в зависимости от плотности ρ при температурах T = 300 K и T = 400 К для ЕС 50%. Для сравнения мы также приводим τ C для EC 20%.

Теперь мы определяем время корреляции τ C как время, необходимое для распада C ( t ) в раз e 35 .При T = 300 K время корреляции нахождения EC колеблется от 3 до 10 нс, а для DMC оно находится в половинном значении τ C EC. При T = 300 K время корреляции пребывания EC уменьшается с τ C = 9,3 нс до 3,0 нс при уменьшении плотности с ρ = 1,3446 г / см 3 до 1,2568 г / см 3 . При повышении температуры до T = 400 K, τ C становится меньше 1 нс во всем исследованном нами диапазоне плотностей.Для DMC поведение τ C по отношению к ρ такое же, как и для EC, даже несмотря на то, что τ C DMC меньше τ C ЕС для обеих температур. Уменьшение τ C при уменьшении ρ означает, что разрушение и преобразование сольватной оболочки иона Li + происходит чаще при уменьшении ρ .Поскольку медленная кинетика динамики сольватации тесно связана с динамикой диффузии 35 , это указывает на то, что чувствительность D на ρ связана с долговечностью сольватной оболочки.

Обсуждение

Повышение подвижности электролитов имеет решающее значение для работоспособности аккумулятора. Обычным способом увеличения подвижности при данной температуре было увеличение доли линейных карбонатов в бинарных растворителях электролитов 17 .Однако увеличение количества линейных растворителей ограничивается образованием пар ионов из солей, вызывая снижение ионной проводимости. Поэтому было очень интересно найти оптимальное соотношение смесей растворителей, обеспечивающее максимальную ионную проводимость. В этом аспекте наши результаты показывают, что плотность электролитов может оказывать сильное влияние на динамику электролитов. Даже влияние плотности может иногда приводить к более впечатляющим результатам, чем соотношение растворителей в смеси.

Наше исследование фундаментальных свойств объемных электролитов показывает, что органические жидкие электролиты, состоящие из ЭК и ДМК, обладают большей чувствительностью диффузионной динамики к плотности, чем другие жидкости 22 , 24 , 36 .Хотя небольшое изменение плотности значительно изменяет энергию активации диффузии, оно не вызывает реорганизацию сольватационной структуры иона Li + . Скорее, уменьшение плотности вызывает более быструю динамику сольватации как в краткосрочном, так и в долгосрочном масштабе. Это указывает на то, что разрушение и преобразование сольватной оболочки иона Li + происходит быстро при уменьшении плотности. Уменьшение плотности, то есть увеличение молярного объема, дает больше возможностей для диффузии и больше шансов прервать сольватную оболочку растворителями вне оболочки.Связывание растворителей с катионом обычно является одной из основных причин, по которой система становится вязкой 37 , 38 , 39 . Таким образом, частое преобразование сольватной оболочки будет способствовать увеличению коэффициента диффузии. Это объясняет чувствительность коэффициента диффузии к плотности.

Несмотря на то, что плотность может значительно повлиять на мобильность системы, мы хотели бы отметить, что она не приводит к прямому улучшению производительности батареи. Например, число переноса, доля общего тока, переносимого данной ионной разновидностью, является одним из основных свойств, характеризующих эффективность электролитов 40 , 41 .В этом случае число переноса не увеличивается быстро при уменьшении плотности, поскольку константы диффузии как катионов, так и анионов растут с одинаковой скоростью. Наши результаты, однако, указывают на тот факт, что плотность может играть роль в повышении мобильности. Наконец, наше фундаментальное исследование объемных электролитов предложит интригующий момент для понимания и проектирования электролитов литий-ионных батарей.

Методы

Мы провели обширное молекулярно-динамическое моделирование неводных электролитов литий-ионных аккумуляторов, состоящих из раствора 1 M соли LiPF 6 в бинарной смеси растворителей EC и DMC.Мы провели все моделирование с помощью пакета моделирования MD, LAMMPS 42 . Мы реализовали силовое поле OPLS / AA для описания молекулярного взаимодействия растворителей. Мы рассчитали дальнодействующие взаимодействия, используя алгоритм частицы-частицы (PPPM). Моделирование выполняется в ансамбле NVT , где N, V ​​ и T — количество молекул, объем и температура соответственно. Линейный размер симулятора составляет от L = 5.От 2672 нм до 5,3872 нм в зависимости от плотности. Во время моделирования мы поддерживали постоянную температуру с помощью термостата Нозе-Гувера. Мы применяли периодические граничные условия во всех трех направлениях окна моделирования. Мы использовали 1 фс в качестве временного шага моделирования.

Мы исследовали соотношение смеси растворителей EC: DMC = 50%: 50% и 20%: 80% (в об.%). Если две системы имеют одинаковый объем и одна не учитывает эффект смешения двух систем, конечные плотности двух смесей растворителей на основе индивидуальных плотностей EC и DMC 1 , 5 равны ρ = 1.3446 г / см 3 и 1,2677 г / см 3 (включая соль LiPF 6 ) для ЕС 50% и ЕС 20% соответственно. Поскольку смешанная плотность бинарных растворителей, используемых в экспериментах, оказывается ниже, чем указанная выше плотность 21 , мы выбрали еще пять случаев более низких плотностей ρ = 1,2568, 1,2709, 1,2852, 1,3028 и 1,3219 г / см 3 для EC 50%, чтобы исследовать, как плотность влияет на динамику системы, и сравнить с результатами для смеси растворителей EC 20%.

Произошла ошибка при настройке пользовательского файла cookie

Этот сайт использует файлы cookie для повышения производительности. Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.


Настройка вашего браузера для приема файлов cookie

Существует множество причин, по которым cookie не может быть установлен правильно. Ниже приведены наиболее частые причины:

  • В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки своего браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
  • Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались. Чтобы принять файлы cookie с этого сайта, нажмите кнопку «Назад» и примите файлы cookie.
  • Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
  • Дата на вашем компьютере в прошлом. Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie. Чтобы исправить это, установите правильное время и дату на своем компьютере.
  • Вы установили приложение, которое отслеживает или блокирует установку файлов cookie. Вы должны отключить приложение при входе в систему или проконсультироваться с системным администратором.

Почему этому сайту требуются файлы cookie?

Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу. Чтобы предоставить доступ без файлов cookie потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.


Что сохраняется в файле cookie?

Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.

Как правило, в cookie-файлах может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта. Например, сайт не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать.

Полутвердые электроды из щелочных металлов, обеспечивающие высокую критическую плотность тока в батареях с твердым электролитом

  • 1.

    Howell, D., Cunningham, B. Duong, T. & Faguy, P. Обзор передовой программы исследований и разработок DOE Vehicle Technologies Office (Управление автомобильных технологий, 2016).

  • 2.

    Harlow, J. E. et al. Широкий спектр результатов испытаний отличного химического состава литий-ионных элементов, которые можно использовать в качестве эталонов для новых технологий аккумуляторов. J. Electrochem. Soc. 166 , A3031 – A3044 (2019).

    Google Scholar

  • 3.

    Биллс, А., Шрипад, С., Фредерикс, У. Л., Синг, М. и Вишванатан, В. Показатели производительности, необходимые для аккумуляторных батарей нового поколения для электрификации коммерческих самолетов. ACS Energy Lett. 5 , 663–668 (2020).

    Google Scholar

  • 4.

    Альбертус, П., Babinec, S., Litzelman, S. & Newman, A. Состояние и проблемы, связанные с использованием литий-металлического электрода для высокоэнергетических и недорогих аккумуляторных батарей. Nat. Энергетика 3 , 16–21 (2018).

    Google Scholar

  • 5.

    Аурбах Д., Зиниград Э., Коэн Ю. и Теллер Х. Краткий обзор механизмов разрушения анодов из металлического лития и литированного графита в растворах жидких электролитов. Твердотельный ион. 148 , 405–416 (2002).

    Google Scholar

  • 6.

    Liu, Z. et al. Межфазное исследование межфазной границы твердого электролита на металлическом литиевом аноде: значение для роста дендритов лития. J. Electrochem. Soc. 163 , A592 – A598 (2016).

    Google Scholar

  • 7.

    Manthiram, A., Yu, X. & Wang, S. Химия литиевых батарей обеспечивается твердотельными электролитами. Nat. Rev. Mater. 2 , 16103 (2017).

    Google Scholar

  • 8.

    Керман, К., Лунц, А., Вишванатан, В., Чан, Ю.-М. И Чен, З. Практические проблемы, препятствующие разработке твердотельных ионно-литиевых батарей. J. Electrochem. Soc. 164 , A1731 – A1744 (2017).

    Google Scholar

  • 9.

    Janek, J. & Zeier, W.G. Хорошее будущее для развития аккумуляторов. Nat. Энергетика 1 , 16141 (2016).

    Google Scholar

  • 10.

    Тангадураи, В., Нараянан, С. и Пинзару, Д. Твердотельные быстрые ионно-литиевые проводники типа граната для литиевых батарей: критический обзор. Chem. Soc. Ред. 43 , 4714–4727 (2014).

    Google Scholar

  • 11.

    Liu, D. et al.Последние достижения в области твердых электролитов на основе сульфидов для литий-ионных аккумуляторов. Mater. Sci. Англ. В 213 , 169–176 (2016).

    Google Scholar

  • 12.

    McGrogan, F. et al. Податливое, но хрупкое механическое поведение Li 2 S – P 2 S 5 литий-ионный проводящий твердый электролит. Adv. Energy Mater. 7 , 1602011 (2017).

    Google Scholar

  • 13.

    Wolfenstine, J. et al. Предварительное исследование вязкости разрушения Li 7 La 3 Zr 2 O 12 и его сравнение с другими твердыми литий-ионными проводниками. Mater. Lett. 96 , 117–120 (2013).

    Google Scholar

  • 14.

    Монро, К. и Ньюман, Дж. Влияние упругой деформации на кинетику осаждения на границах раздела литий / полимер. J. Electrochem.Soc. 152 , A396 – A404 (2005).

    Google Scholar

  • 15.

    Porz, L. et al. Механизм проникновения металлического лития через неорганические твердые электролиты. Adv. Energy Mater. 7 , 1701003 (2017).

    Google Scholar

  • 16.

    Swamy, T. et al. Проникновение металлического лития, вызванное электроосаждением через твердые электролиты: пример в монокристалле граната Li 6 La 3 ZrTaO 12 . J. Electrochem. Soc. 165 , A3648 – A3655 (2018).

    Google Scholar

  • 17.

    Aguesse, F. et al. Исследование роста дендритов во время полного цикла ячейки гранатового электролита в прямом контакте с металлическим Li. ACS Appl. Матер. Интерфейсы 9 , 3808–3816 (2017).

    Google Scholar

  • 18.

    Шарафи А., Мейер Х.М., Нанда, Дж., Вольфенстайн, Дж. И Сакамото, Дж. Характеристика границы раздела Li-Li 7 La 3 Zr 2 O 12 Стабильность и кинетика границы раздела фаз как функция температуры и плотности тока. J. Power Sources 302 , 135–139 (2016).

    Google Scholar

  • 19.

    Ren, Y., Shen, Y., Lin, Y., H., Nan, C. W. Прямое наблюдение литиевых дендритов внутри литий-ионного твердого электролита гранатового типа. Электрохим. Commun. 57 , 27–30 (2015).

    Google Scholar

  • 20.

    Nagao, M. et al. СЭМ-исследование in situ механизма осаждения и растворения лития в твердотельном элементе объемного типа с твердым электролитом Li 2 S – P 2 S 5 . Phys. Chem. Chem. Phys. 15 , 18600–18606 (2013).

    Google Scholar

  • 21.

    Тейлор, Н. Дж. И др. Демонстрация высоких плотностей тока и длительной цикличности в гранате Li 7 La 3 Zr 2 O 12 твердый электролит. J. Источники энергии 396 , 314–318 (2018).

    Google Scholar

  • 22.

    Jolly, D. S. et al. Граница раздела натрий / Na β ″ оксид алюминия: влияние давления на пустоты. ACS Appl. Матер. Интерфейсы 12 , 678–685 (2020).

    Google Scholar

  • 23.

    Bay, M.-C. и другие. Натриевое покрытие из керамики на основе Na-β ″ -оксида алюминия при комнатной температуре, открывающее путь для быстрой зарядки полностью твердотельных аккумуляторов. Adv. Energy Mater. 10 , 19 (2019).

    Google Scholar

  • 24.

    Kasemchainan, J. et al. Критический ток зачистки приводит к образованию дендритов на покрытии ячеек с твердым электролитом с литиевым анодом. Nat. Матер. 18 , 1105–1111 (2019).

    Google Scholar

  • 25.

    Гриффит А. А. Явления разрыва и течения в твердых телах. Фил. Пер. Рой. Soc. 221A , 163–198 (1920).

    МАТЕМАТИЧЕСКИЙ Google Scholar

  • 26.

    Inglis, C.E. Напряжения в пластине из-за наличия трещин и острых зазубрин. Пер. Рой.Inst. Нав. Archit. 55 , 219–241 (1913).

    Google Scholar

  • 27.

    Орован Э. Разрушение и прочность твердых тел. Rep. Prog. Phys. 12 , 185–232 (1949).

    Google Scholar

  • 28.

    Виркар А. В. и Вишванатан Л. Проникновение натрия в проводники с быстрыми ионами. J. Am. Ceram. Soc. 62 , 528–529 (1979).

    Google Scholar

  • 29.

    Виркар А.В. О некоторых аспектах разрушения твердого электролита на основе β ″ -оксида алюминия. J. Mater. Sci. 16 , 1142–1150 (1981).

    Google Scholar

  • 30.

    Финчер, К. Д., Охеда, Д., Чжан, Ю., Фарр, Г. М. и Фарр, М. Механические свойства металлического лития: от нано до объемных масштабов. Acta Mater. 186 , 215–222 (2019).

    Google Scholar

  • 31.

    LePage, W. S. et al. Механика лития: роль скорости деформации и температуры и последствия для литий-металлических батарей. J. Electrochem. Soc. 166 , A89 – A97 (2019).

    Google Scholar

  • 32.

    Xu, C., Ahmad, Z., Aryanfar, A., Viswanathan, V. & Greer, J. R. Повышенная прочность и температурная зависимость механических свойств Li в малых масштабах и ее значение для металлических анодов Li. Proc. Natl Acad. Sci. США 114 , 57–61 (2017).

    Google Scholar

  • 33.

    Вакс В.Г., Кравчук С.П., Зароченцев Е.В., Сафронов В.П. Температурная зависимость упругих постоянных в щелочных металлах. J. Phys. F 8 , 725–742 (1978).

    Google Scholar

  • 34.

    Халл Д. и Розенберг Х. М. Деформация лития, натрия и калия при низких температурах: эксперименты на растяжение и сопротивление. Philos. Mag. 4 , 303–315 (1959).

    Google Scholar

  • 35.

    Andrade, E. Nd-C. & Доббс, Э. Р. Вязкости жидкого лития, рубидия и цезия. Proc. R. Soc. Лондон. А 211 , 12–30 (1952).

    Google Scholar

  • 36.

    Гросс, А. В. Вязкости жидких натрия и калия, от их точек плавления до критических точек. Наука 147 , 1438–1411 (1965).

    Google Scholar

  • 37.

    Финчер, К. Д., Чжан, Ю., Фарр, Г. М., Фарр, М. Упругие и пластические характеристики металлического натрия. ACS Appl. Energy Mater. 3 , 1759–1767 (2020).

    Google Scholar

  • 38.

    Табор Д. Твердость металлов (Oxford Univ. Press, 2000).

  • 39.

    Бейтс, Дж. Б., Дадни, Н. Дж., Нойдекер, Б., Уеда, А. и Эванс, К. Д. Тонкопленочные литиевые и литий-ионные батареи. Твердотельный ион. 135 , 33–45 (2000).

    Google Scholar

  • 40.

    Baclig, A.C. et al. Высоковольтная проточная жидкометаллическая батарея, работающая при комнатной температуре, благодаря стабильности Na – K | K – β ″ -оксида алюминия. Джоуль 2 , 1287–1296 (2018).

    Google Scholar

  • 41.

    Liu, C., Shamie, J. S., Shaw, L. L. и Sprenkle, V. L. Расплавленная натрий-ванадиевая батарея при температуре окружающей среды с проточным водным католитом. ACS Appl. Матер. Интерфейсы 8 , 1545–1552 (2015).

    Google Scholar

  • 42.

    Guo, X. et al. Самовосстанавливающийся жидкометаллический анод комнатной температуры для щелочно-ионных батарей. Adv. Функц. Матер. 28 , 1804649 (2018).

    Google Scholar

  • 43.

    Sharafi, A. et al. Поверхностно-химический механизм сверхнизкого межфазного сопротивления в твердотельном электролите Li 7 La 3 Zr 2 O 12 . Chem. Матер. 29 , 7961–7968 (2017).

    Google Scholar

  • 44.

    Анстис, Г. Р., Чантикул, П., Лоун, Б. Р. и Маршалл, Д. Б. Критическая оценка методов вдавливания для измерения вязкости разрушения: I, прямые измерения трещин. J. Am. Ceram. Soc. 64 , 533–538 (1981).

    Google Scholar

  • 45.

    Эванс, А.Г. и Чарльз, Э.А. Определение вязкости разрушения путем вдавливания. J. Am. Ceram. Soc. 59 , 371–372 (1976).

    Google Scholar

  • 46.

    Кауфман Л. Устойчивость решетки металлов — I. Титан и цирконий. Acta Metall. 7 , 575–587 (1959).

    Google Scholar

  • 47.

    Динсдейл, А. Т. Данные SGTE для чистых элементов. Calphad 15 , 317–425 (1991).

    Google Scholar

  • 48.

    Редлих О. и Кистер С. Т. Алгебраическое представление термодинамических свойств и классификация решений. Ind. Eng. Chem. 20 , 345–348 (1948).

    Google Scholar

  • 49.

    Лукас, Х., Фрайс, С.Г. и Сундман. B. Вычислительная термодинамика: метод CALPHAD (Cambridge Univ. Press, 2007).

  • 50.

    Чжан С. Дж. Термодинамическое исследование влияния примесей щелочных металлов на обработку сплавов Al и Mg. Кандидатская диссертация (Государственный университет Пенсильвании, 2006).

  • 51.

    Баллаффи, Р., Аллен, С. М. и Картер, В.С. Кинетика материалов (Wiley, 2005).

  • Новый аккумуляторный электролит может расширить линейку электромобилей

    Марк Шварц

    Новый электролит на основе лития, изобретенный учеными Стэнфордского университета, может проложить путь для следующего поколения электромобилей с батарейным питанием.

    В исследовании, опубликованном 22 июня в журнале Nature Energy , исследователи из Стэнфорда демонстрируют, как их новая конструкция электролита повышает производительность литий-металлических батарей — многообещающей технологии для питания электромобилей, ноутбуков и других устройств.


    Слева — обычный (прозрачный) электролит, а справа — новый электролит Стэнфордского образца
    . (Изображение предоставлено: Чжиао Юй)

    «Большинство электромобилей работают на литий-ионных батареях, которые быстро приближаются к своему теоретическому пределу по плотности энергии», — сказал соавтор исследования И Цуй, профессор материаловедения и инженерии, а также фотоники в Национальной ускорительной лаборатории SLAC. «Наше исследование было сосредоточено на литий-металлических батареях, которые легче, чем литий-ионные, и потенциально могут обеспечивать больше энергии на единицу веса и объема.”

    Литий-ионный против металлического лития

    Литий-ионные батареи

    , используемые во всем, от смартфонов до электромобилей, имеют два электрода — положительно заряженный катод, содержащий литий, и отрицательно заряженный анод, обычно сделанный из графита. Раствор электролита позволяет ионам лития перемещаться между анодом и катодом, когда батарея используется и когда она заряжается.

    Литий-металлический аккумулятор может содержать примерно в два раза больше электроэнергии на килограмм, чем современные литий-ионные аккумуляторы.Литий-металлические батареи делают это путем замены графитового анода металлическим литием, который может хранить значительно больше энергии.

    «Литий-металлические батареи очень перспективны для электромобилей, где вес и объем имеют большое значение», — сказал соавтор исследования Женан Бао, K.K. Ли Профессор инженерной школы. «Но во время работы анод из металлического лития вступает в реакцию с жидким электролитом. Это вызывает рост микроструктур лития, называемых дендритами, на поверхности анода, что может привести к возгоранию батареи и ее выходу из строя.”

    Исследователи потратили десятилетия, пытаясь решить проблему дендритов.

    «Электролит был ахиллесовой пятой литий-металлических батарей», — сказал соавтор книги Чжао Ю, аспирант по химии. «В нашем исследовании мы используем органическую химию для рационального проектирования и создания новых стабильных электролитов для этих батарей».

    Электролит новый

    Для исследования Ю и его коллеги выяснили, могут ли они решить проблемы стабильности с помощью обычного, коммерчески доступного жидкого электролита.

    «Мы предположили, что добавление атомов фтора к молекуле электролита сделает жидкость более стабильной», — сказал Ю. «Фтор — широко используемый элемент в электролитах для литиевых батарей. Мы использовали его способность притягивать электроны, чтобы создать новую молекулу, которая позволяет аноду из металлического лития хорошо работать в электролите ».

    В результате получилось новое синтетическое соединение, сокращенно FDMB, которое можно легко производить в больших объемах.

    «Конструкции электролитов становятся очень экзотичными», — сказал Бао.«Некоторые из них оказались многообещающими, но их производство очень дорогое. Молекула FDMB, которую придумал Чжиао, легко производить в больших количествах и довольно дешево ».

    «Невероятная производительность»

    Команда Стэнфорда провела испытания нового электролита в литий-металлической батарее.

    Результаты были впечатляющими. Экспериментальная батарея сохранила 90 процентов своего первоначального заряда после 420 циклов зарядки и разрядки. В лабораториях типичные литий-металлические батареи перестают работать примерно через 30 циклов.


    Докторанты и ведущие авторы Хансен Ван (слева) и Чжиао Ю (справа) тестируют
    экспериментальную ячейку в своей лаборатории. (Изображение предоставлено Hongxia Wang.)

    Исследователи также измерили, насколько эффективно ионы лития переносятся между анодом и катодом во время зарядки и разрядки, это свойство известно как «кулоновская эффективность».

    «Если вы зарядите 1000 ионов лития, сколько вы получите обратно после разрядки?» — сказал Цуй. «В идеале вы хотите 1000 из 1000 для 100-процентного кулоновского КПД.Чтобы быть коммерчески жизнеспособным, элемент батареи должен иметь кулоновский КПД не менее 99,9%. В нашем исследовании мы получили 99,52 процента в половинных ячейках и 99,98 процентов в полных ячейках; невероятная производительность ».

    Батарея безанодная

    Для потенциального использования в бытовой электронике команда Стэнфордского университета также провела испытания электролита FDMB в безанодных литий-металлических ячейках — коммерчески доступных батареях с катодами, которые поставляют литий на анод.

    «Идея состоит в том, чтобы использовать литий только на катодной стороне, чтобы уменьшить вес», — сказал соавтор исследования Хансен Ван, аспирант в области материаловедения и инженерии.«Безанодная батарея проработала 100 циклов, прежде чем ее емкость упала до 80 процентов — не так хорошо, как эквивалентная литий-ионная батарея, которая может выдерживать от 500 до 1000 циклов, но все же одна из самых эффективных безанодных ячеек».

    «Эти результаты показывают многообещающие результаты для широкого диапазона устройств», — добавил Бао. «Легкие безанодные батареи станут привлекательным элементом для дронов и другой бытовой электроники».

    Аккумулятор 500

    Министерство энергетики США (DOE) финансирует большой исследовательский консорциум под названием Battery500, чтобы сделать литий-металлические батареи жизнеспособными, что позволит производителям автомобилей создавать более легкие электромобили, способные преодолевать гораздо большие расстояния между зарядками.Это исследование было частично поддержано грантом консорциума, в который входят Стэнфорд и SLAC.

    За счет улучшения анодов, электролитов и других компонентов Battery500 стремится почти в три раза увеличить количество электроэнергии, которое может выдавать литий-металлическая батарея, с примерно 180 ватт-часов на килограмм, когда программа стартовала в 2016 году, до 500 ватт-часов на килограмм. Более высокое отношение энергии к весу, или «удельная энергия», является ключом к решению опасения по поводу запаса хода, которое часто испытывают потенциальные покупатели электромобилей.

    «Безанодная батарея в нашей лаборатории показала около 325 ватт-часов на килограмм удельной энергии, что является приличным числом», — сказал Цуй. «Нашим следующим шагом могла бы стать совместная работа с другими исследователями Battery500 над созданием ячеек, которые приблизятся к цели консорциума — 500 ватт-часов на килограмм».


    Испытание на воспламеняемость обычного карбонатного электролита (слева) и нового электролита FDMB (справа) разработано
    в Стэнфорде. Обычный карбонатный электролит воспламеняется сразу после контакта с пламенем, но электролит
    FDMB может выдерживать прямое пламя в течение как минимум трех секунд.(Кредит Чжиао Ю)

    Помимо более длительного срока службы и лучшей стабильности, электролит FDMB также гораздо менее воспламеняем, чем обычные электролиты, как исследователи продемонстрировали во встроенном видео.

    «Наше исследование в основном обеспечивает принцип конструкции, который люди могут применять для создания более качественных электролитов», — добавил Бао. «Мы только что показали один пример, но есть много других возможностей».

    Среди других соавторов Стэнфордского университета Цзянь Цинь , доцент кафедры химического машиностроения; докторанты Сянь Конг, Кеченг Ван, Вэньсяо Хуанг, Снехашис Чоудхури и Чибуезе Аманчукву; аспиранты Уильям Хуанг, Ючи Цао, Дэвид Маканич, Ю Чжэн и Саманта Хунг; и студенты Ютинг Ма и Эдер Ломели.Синьчан Ван из Университета Сямэнь также является соавтором. Чжэнань Бао и И Цуй — старшие научные сотрудники Стэнфордского Precourt Institute for Energy . Цуй также является ведущим исследователем в Стэнфордском институте материаловедения и энергетики , совместной исследовательской программе SLAC / Стэнфорд.

    Эта работа также была поддержана программой исследования материалов для аккумуляторов Департамента автомобильных технологий Министерства энергетики США. Двое из соавторов поддерживаются Программой стипендий для аспирантов Национального научного фонда и стипендией Центра TomKat в области устойчивой энергетики в Стэнфорде.Средство, используемое в Стэнфорде, поддерживается Национальным научным фондом.

    Какова плотность энергии у литий-ионной батареи?

    Что такое плотность энергии батареи?

    Плотность энергии — это мера того, сколько энергии содержится в батарее по отношению к ее весу. Это измерение обычно выражается в ватт-часах на килограмм (Втч / кг). Ватт-час — это единица измерения электрической энергии, которая эквивалентна потреблению одного ватта за один час.

    Плотность мощности — это мера того, насколько быстро может быть доставлена ​​энергия, а не количество доступной накопленной энергии. Плотность энергии часто путают с плотностью мощности, поэтому важно понимать разницу между ними.

    Зачем вам нужен аккумулятор с высокой плотностью энергии?

    Чтобы лучше понять литий-ионные батареи, вы должны понять, почему высокая плотность энергии является желательной характеристикой батареи.

    Аккумулятор с высокой плотностью энергии имеет большее время работы от аккумулятора по сравнению с размером аккумулятора.В качестве альтернативы аккумулятор с высокой плотностью энергии может выдавать такое же количество энергии, но занимает меньшую площадь по сравнению с аккумулятором с более низкой плотностью энергии. Это значительно расширяет возможности аккумуляторных приложений.

    При заводских или складских настройках аккумуляторные батареи для вилочных погрузчиков могут весить тысячи фунтов. Легкий аккумулятор для вилочных погрузчиков дает некоторые преимущества с точки зрения безопасности и удобства обращения.

    Если плотность энергии батареи слишком высока, это может представлять угрозу безопасности.Когда в ячейку упаковано больше активного материала, увеличивается риск теплового события.

    Какой тип аккумуляторной батареи имеет самую высокую плотность энергии?

    Существует несколько различных типов аккумуляторных батарей с различной плотностью энергии, отражающей их внутренний химический состав.

    • Плотность энергии свинцово-кислотных аккумуляторов составляет 30-50 Втч / кг
    • Плотность энергии никель-кадмиевых батарей составляет 45-80 Втч / кг
    • Плотность энергии никель-металлогидридных батарей составляет 60-120 Втч / кг
    • Плотность энергии литий-ионного аккумулятора составляет от 50 до 260 Втч / кг

    Типы литий-ионных аккумуляторов и их удельная энергия

    Литий-ионные батареи

    часто объединяют в группу батарей, каждая из которых содержит литий, но их химический состав может сильно различаться и, как следствие, разной производительности.

    Большинство типов литий-ионных аккумуляторов имеют аналогичную конструкцию катода с алюминиевой подложкой, угольного или графитового анода с медной подложкой, сепаратора и электролита из литиевой соли в органическом растворителе.

    Производители экспериментировали с материалами, из которых изготовлены катод и анод. Они также изменили состав электролита. Эти различия являются причиной того, что литий-ионные батареи различаются по уровню плотности энергии.

    Теперь мы рассмотрим самые популярные химические составы литий-ионных аккумуляторов, а также их соответствующие плотности энергии, варианты использования, преимущества и недостатки.

    Industry Titans: Литий-титанатные (LTO) батареи

    Аккумулятор LTO — один из старейших типов литий-ионных аккумуляторов, у него плотность энергии на нижней стороне, как у литий-ионных аккумуляторов, около 50-80 Втч / кг.

    В этих батареях титанат лития используется в аноде вместо углерода, что позволяет электронам входить и выходить из анода быстрее, чем в других типах литий-ионных батарей.

    Такая конструкция позволяет батареям LTO заряжаться намного быстрее и безопасно выдерживать большие токи, но низкая плотность энергии делает их плохо подходящими для погрузочно-разгрузочного оборудования.

    Они, как правило, более дорогие и обычно используются для электромобилей, автомобильных аудиоприложений и мобильных медицинских устройств.

    Высокая энергия, высокий риск: литий-кобальтовые батареи (LCO)

    Литий-кобальтооксидные батареи

    имеют высокую плотность энергии 150-200 Втч / кг. Их катод состоит из оксида кобальта с типичным углеродным анодом со слоистой структурой, которая перемещает ионы лития от анода к катоду и обратно.

    Эти типы аккумуляторов популярны благодаря своей высокой плотности энергии и обычно используются в сотовых телефонах, ноутбуках и, в последнее время, в электромобилях.

    Кобальт — очень энергоемкий материал, но может быть дорогим. Поскольку спрос на электромобили возрастает, этот ресурс быстро истощается. Фактически, вскоре мир может столкнуться с нехваткой кобальта.

    Кобальт также очень летуч. Литий-кобальтовые батареи не выдерживают больших токов из-за риска перегрева, что представляет собой значительный риск для безопасности.Батареи LCO имеют более низкую термическую стабильность, что означает, что они очень чувствительны к более высоким рабочим температурам и перезарядке.

    Производительность по цене: литий-никель-марганец-кобальт-оксидные батареи (NMC)

    Литий-никель-марганцево-кобальтооксидные батареи

    также обладают высокой плотностью энергии 150–220 Втч / кг. Они используют кобальт в катоде так же, как батареи LCO, но они также содержат никель и марганец для повышения стабильности.

    Аккумуляторы

    NMC сегодня используются в большинстве производимых электромобилей, но также используются в медицинских устройствах и электровелосипедах.

    Секрет успеха этой батареи заключается в ее хорошо сбалансированном химическом составе; никель, как известно, энергоемкий, но нестабильный, как и кобальт, в то время как марганец более стабилен, но также имеет более низкую плотность энергии. Конкретное соотношение различных элементов варьируется в зависимости от производителя, но добавление никеля обычно предназначено для уменьшения количества дорогостоящего кобальта.

    Батареи

    NMC могут выдерживать большие токи заряда и больший диапазон температур, чем батареи LCO.Однако, поскольку батарея по-прежнему содержит кобальт, стоимость повышается из-за дефицита на рынке.

    Доступное, безопасное и надежное: литий-железо-фосфатные батареи (LFP)

    Аккумуляторы

    LFP обладают высокой плотностью энергии 90–160 Втч / кг. Хотя это меньше, чем у некоторых кобальтовых батарей, он все же остается одним из самых высоких среди всех типов батарей.

    В батареях

    LFP используется фосфат железа для катода и графитовый электрод в сочетании с металлической подложкой для анода.

    Литий-фосфат железа или LiFePO4 — это природный минерал, недорогой, нетоксичный и обладающий хорошей термической стабильностью и высокой плотностью энергии.

    Аккумуляторы

    LFP идеально подходят для тяжелого оборудования и промышленных сред, поскольку они способны выдерживать большие нагрузки и широкий диапазон температур. Они появились как новый вариант для вилочных погрузчиков и другого тяжелого электрического оборудования, которое требует высокого уровня надежности и исторически использует свинцово-кислотные батареи.

    Литий-ионная батарея Тип

    Плотность энергии ( Вт ч / кг)

    Плюсы

    Минусы

    Титанат лития (LTO)

    50-80

    Долговечность, стабильность

    Низкая плотность энергии, дороже

    Литий-кобальтовый оксид (LCO)

    150-200

    Высокая плотность энергии

    Неустойчивый и дорогой

    Литий, никель, марганец, кобальт, оксид (NMC)

    150-220

    Высокая плотность энергии

    Безопаснее, чем LCO, но все же относительно нестабильно и дорого

    Литий-фосфат железа (LFP)

    90–160

    Средняя-высокая плотность энергии

    Стабильная, долговечная и более высокая удельная энергия

    Все типы литий-ионных аккумуляторов уникальны.Крайне важно понимать, какой химический состав литий-ионных аккумуляторов лучше всего подходит для вашего приложения.

    Если вы ищете лучший аккумулятор для погрузочно-разгрузочного оборудования, литий-железо-фосфатный аккумулятор, вероятно, станет лучшим выбором. Все LiFT-блоки Flux Power построены исключительно с использованием ячеек LFP, потому что они предлагают лучший баланс между безопасностью и производительностью.

    Твердотельный аккумулятор обещает высокую плотность энергии

    Новый тип батареи, в которой твердотельный электролит сочетается с полностью кремниевым анодом для обеспечения превосходной плотности энергии, был разработан исследователями из Калифорнийского университета в Сан-Диего.

    Команда заявила, что первоначальные испытания продемонстрировали, что батарея безопасна и долговечна, и полагают, что она перспективна для таких приложений, как сетевое хранилище или электромобили.

    Кремниевые аноды обычно имеют плотность энергии примерно в 10 раз больше, чем графитовые аноды, наиболее часто используемые в литий-ионных батареях. Но аноды также расширяются и сжимаются по мере того, как батарея заряжается, разряжается и быстро разлагается жидкими электролитами.

    До сих пор эти факторы не позволяли использовать полностью кремниевые аноды в коммерческих литий-ионных батареях, несмотря на их соблазнительную плотность энергии.

    «С этой конфигурацией батареи мы открываем новую территорию для твердотельных батарей, использующих аноды из сплава, такого как кремний», — сказал Даррен Х.С. Тан, ведущий автор статьи.

    В твердотельных батареях следующего поколения с высокой плотностью энергии в качестве анода всегда использовался металлический литий.

    Но это накладывает ограничения на скорость заряда аккумулятора и необходимость повышения температуры (обычно 60 градусов Цельсия или выше) во время зарядки.Кремниевый анод преодолевает эти ограничения, обеспечивая более высокую скорость заряда при комнатной температуре, сохраняя при этом высокую плотность энергии.

    Команда продемонстрировала полный аккумулятор лабораторного масштаба, который обеспечивает 500 циклов зарядки и разрядки с сохранением 80% емкости при комнатной температуре.

    Заменив жидкий электролит твердым электролитом и одновременно удалив углерод и связующие с кремниевого анода, исследователи избежали ряда проблем, которые возникают, когда аноды пропитываются органическим жидким электролитом во время работы батареи.

    Команда также значительно уменьшила межфазный контакт, который часто вызывает нежелательные побочные реакции, с твердым электролитом, избегая постоянной потери емкости, которая обычно происходит с электролитами на жидкой основе.

    «Использование твердотельных кремний позволяет преодолеть многие ограничения обычных батарей. Это открывает для нас захватывающие возможности удовлетворить рыночный спрос на более высокую объемную энергию, более низкие затраты и более безопасные батареи, особенно для хранения энергии в сети », — добавил Тан.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *