отличия по конструкции и принципу работы
Всем известно, что основное предназначение электродвигателей – это преобразование электрической энергии в энергию механическую. Это обнаружил аж в 1821 году Майкл Фарадей, который проводил опыты с магнитами и магнитным полем. С тех пор прошло много времени, а электрические моторы заняли свое основное место в промышленности и быту. Без них сегодня никуда. В настоящее время производители электродвигателей предлагают большое количество моделей, различающихся по конструкции и принципу действия. Это двигатели постоянного и переменного тока, синхронные и асинхронные. Нас сегодня интересует именно синхронный и асинхронный двигатель – отличия.
Чтобы разобраться в отличиях, необходимо рассмотреть конструктивные особенности каждого типа моторов и понять принцип их работы.
Асинхронный электродвигатель
Дополнением конструкции является крыльчатка, с помощью которой охлаждается двигатель. Устанавливается крыльчатка на вал (ротор) электрического мотора. Сам ротор держится и вращается в подшипниках, установленных в двух крышках корпуса. Обратите внимание, что именно подшипники и являются самым уязвимым местом агрегата. Именно они чаще всего выходят из строя. Правда, заменить их не очень сложно.
Принцип работы
По какому принципу работает асинхронный двигатель? Внутри корпуса мотора, где расположены обмотки статора, возникает магнитное поле, которое действует на ротор, заставляя его вращаться под действием возникшей электродвижущей силы. Но вращение ротора может быть только в том случае, если скорость вращения магнитного поля будет быстрее вращения самого вала двигателя. Если скорости будут одинаковыми, то электродвижущая сила не появится.
Но в любом случае этого произойти не может, потому что здесь несколько причин, сдерживающих скорость вращения ротора.
- Трение в подшипниках.
- Нагрузка на сам вал.
Но самое главное, что магнитные полюса в асинхронном двигателе постоянно меняются, что влияет на смену направлений тока в статоре электродвигателя. То есть, в определенное время ток начинает вращаться «на нас», а в следующий промежуток «от нас». Именно поэтому такие двигатели называются асинхронными, у них просто нет стабильного направления тока.
Что касается скорости вращения ротора, то тут необходимо сделать одно замечание. Этот показатель будет зависеть от того, сколько полюсов одномоментно подключено к питанию. К примеру, максимальная скорость вращения вала будет при двух подключенных полюсах. Чтобы снизить данный показатель, необходимо добавить еще два полюса, то есть, увеличить их вдвое.
И еще один недостаток. Асинхронные двигатели при работе обладают разной скоростью вращения вала. К примеру, на холостом ходу это может быть одна величина, при нагрузке она резко снижается. По сути, получается так, что изменение частоты тока влияет на скорость вала. Другого способа изменить скорость вращения не существует.
Синхронный электродвигатель
Итак, синхронный электродвигатель – это мотор с постоянной скоростью вращения ротора, плюс возможность регулировать эту скорость. Устройство синхронного мотора достаточно сложное. Чтобы в нем разобраться, необходимо рассмотреть фотографию ниже.
Здесь четко показано, что обмотки двигателя располагаются на якоре или роторе агрегата. Концы обмоток выведены и закреплены на токосъемное кольцо, а, точнее, к его секторам. Сам же ток подается на это же кольцо только через графитовые щетки, которые подключены к питающей сети.
Внимание! Концы обмоток подключаются таким образом, что при работе мотора через щетки электрический ток попадал всегда только на одну пару.
У двигателя этой модели больше уязвимых мест, чем у асинхронной.
- Снашиваются графитные щетки.
- Плохой контакт между токосъемным кольцом и щетками за счет ослабления пружины, которая прижимает последние к кольцу (коллектору).
- Изнашиваются подшипники.
- Образование грязевого налета на поверхности токосъемного кольца.
Теперь переходим к другой позиции – принцип работы синхронного электродвигателя. Вращающийся момент внутри мотора образуется за счет взаимодействия магнитного поля, которое образуется в обмотках возбуждения, и тока, проходящего по якорю агрегата. Но тут есть один момент – изменяющееся направление тока (переменного) будет менять и направление вращения магнитного поля двигателя. Правда, смена вращения будет меняться и в корпусе аппарата, и на якоре одновременно. Вот почему вращение ротора мотора всегда происходит с одинаковой скоростью.
Именно поэтому изменить эту величину можно лишь тем, если изменить напряжение подаваемой на щетки электроэнергии. Вспомните пылесосы, где всасываемую мощность изменяют переключателем, который просто соединен с реостатом. А мощность пылесоса зависит от скорости вращения вала крыльчатки, то есть вала электродвигателя. Чем больше скорость, тем больше мощность всасывания.
Но синхронные электродвигатели в промышленности своего основного места не нашли. Здесь в основном используются асинхронные модели.
Какой лучше
Итак, в статье были разобраны устройство и принцип действия двух видов электродвигателей. Говорить о том, что какой-то из них лучше, нельзя. Но отметим, что асинхронные модели проще в конструктивном аспекте. Они надежнее в эксплуатации. Если их не перегружать, то срок службы может быть очень длительным. К сожалению, синхронные виды этим похвастаться не могут. Графитовые щетки быстро изнашиваются, им требуется замена. Но если не уследить, и графит сотрется полностью, то металлические держатели щеток начнут истирать токосъемное кольцо. А его выход из строя – это не только полный выход из строя двигателя, это большое количество искр (трение металла о металл) и возможность появления более серьезных неприятностей.
Разница асинхронного и синхронного двигателя
Электродвигатели можно разделить на две основные категории – синхронные и асинхронные (индукционные) двигатели. Эти два вида довольно сильно отличаются друг от друга. Разница уже видна в самих названиях. Отличить агрегаты можно по выбитому на шильдике количеству оборотов (если там не указан тип мотора), у ассинхронного мотора неокруглённое число (например, 950 об/мин), у синхронного округлённое (1000 об/мин).
Есть и другие важные различия, в этой статье мы рассмотрим наиболее показательные из них: конструктивные, рабочие и ценовые.
Различия в работе и стоимости
Любой двигатель состоит из двух элементов: неподвижного и вращающегося. Статор имеет осевые прорези — пазы, на дно которых укладываются токонесущие медные или алюминиевые проводки. У электродвигателя на валу крепится ротор с обмоткой возбуждения.
Принципиальным отличием между синхронными и асинхронными двигателями являются роторы, точнее, их исполнение.
У синхронных моделей при малых мощностях они представляют собой постоянные магниты.
Переменное напряжение подаётся на обмотку статора, ротор подключается к постоянному источнику питания. Проходящий по обмотке возбуждения постоянный ток наводит магнитное поле статора. Крутящий момент создаётся из-за угла запаздывания между полями. Ротор имеет такую же скорость, как и магнитное поле статора.
Агрегаты используются на практике и как генераторы и как двигатели.
Асинхронные модели – это достаточно недорогие двигатели, которые применяются часто и всюду. Они проще в конструктивном плане, несмотря на то, что неподвижные части в принципе у всех моторов похожи.
По обмотке статора пропускается переменный электроток, который взаимодействует с роторной обмоткой. Два поля вращаются с одинаковой скоростью в одном направлении, но не могут быть равными, иначе бы не создавалась индуцированная ЭДС и, тем более крутящийся момент. Это становится причиной возникновения индуцированного тока в обмотке роторе, направление которого согласно правилу Ленца таково, что он склонен противостоять причине своего производства, т. е. скорости скольжения.
Скорость вращения ротора не совпадает со скоростью магнитного поля, она всегда меньше. Таким образом, ротор пытается догнать скорость вращающегося магнитного поля и уменьшить относительную скорость.
Основные достоинства и недостатки
- Асинхронные агрегаты не требуют какого-либо дополнительного источника питания. Синхронным необходим дополнительный источник постоянного тока для подачи напряжения на обмотки.
- Синхронники обладают относительно невысокой чувствительностью к перепадам сетевого напряжения и стабильностью вращения вне зависимости от нагрузки.
- Индукционные двигатели не требуют наличия контактных колец, за исключением двигателей с фазным ротором, которые их имеют для плавного пуска или регулирования скорости. В синхронных двигателях больше уязвимых мест, так как используются контактные кольца со щетками. Следовательно, детали быстрее изнашиваются и контакт между ними ослабевает.
- Синхронники нуждаются во вспомогательных пусковых механизмах, так как не обладают функцией самопуска. Для индукционных электродвигателей, имеющих собственные пусковые моменты, такой механизм не требуется.
Какой агрегат лучше
В заключение нужно отметить, что говорить, якобы один мотор лучше другого, нельзя. Однако, асинхронные модели надежнее в эксплуатации, отличаются простотой конструкции. Если агрегаты не перегружать, то их длительным сроком службы пользователь может остаться довольным.
Достоинством синхронной модели является то, что можно легко установить высокий коэффициент мощности. Поэтому модель является гораздо более эффективной, но по цене она будет соответственно дороже. Машины применяются в системах с требуемой мощностью 100 кВт и более.
Чем асинхронные электродвигатели отличаются от синхронных
Самые распространённые электродвигатели — трёхфазные машины переменного тока. Они есть двух видов — асинхронные и синхронные. В этой статье рассказывается в чём сходство и различие между машинами обоих типов и область их применения.Принцип действия и устройство электромашин разных типов
Асинхронные и синхронные электродвигатели похожи по конструкции, но есть и отличия.
Устройство и принцип действия асинхронных электродвигателей
Это самые распространённые машины переменного тока. Такие электродвигатели состоят из трёх основных частей:
- Корпус с подшипниковыми щитами и лапами или фланцем.
- В корпусе находятся магнитопровод из железных пластин с обмотками. Этот магнитопровод носит название статор.
- Вал с подшипниками и магнитпроводом. Эта конструкция называется ротор. В электродвигателях с короткозамкнутым ротором в магнитопроводе находятся соединённые между собой алюминиевые стержни, эта конструкция носит название «беличья клетка». В машинах с фазным ротором вместо стержней намотаны обмотки.
В пазах статора со сдвигом 120° намотаны три обмотки. При подключении к трёхфазной сети в статоре наводится вращающееся магнитное поле. Скорость вращения называется «синхронная скорость».
Справка! В однофазных электродвигателях вращающееся поле создаётся дополнительной обмоткой или конструктивными особенностями статора.
Это поле наводит ЭДС в роторе, возникающий при этом ток создаёт своё поле, взаимодействующее с полем статора и приводящее его в движение. Скорость вращения ротора меньше синхронной скорости. Эта разница называется скольжение.
Рассчитывается скольжение по формуле S=(n1-n2)/n1*100%, где: · n1 — синхронная скорость; · n2 — скорость вращения ротора.
Номинальная величи
на скольжения в обычных электромоторах 1-8%. При увеличении нагрузки на валу двигателя скольжение и вращающий момент растут до критической величины, при достижении которой двигатель останавливается.
В электродвигателях с фазным ротором вместо беличьей клетки в пазах ротора намотаны три обмотки. Через токосъёмные кольца и щётки они подключаются к добавочным сопротивлениям. Эти сопротивления ограничивают ток и магнитное поле в роторе. Это увеличивает скольжение и уменьшает скорость двигателя.
Такие аппараты используются при тяжёлом пуске и в устройствах с регулировкой скорости, например, в мостовых кранах.
Принцип действия синхронных электродвигателей
Эти двигатели устроены сложнее и дороже асинхронных машин. Их достоинство в постоянной скорости вращения, не меняющейся при нагрузке.
Статор синхронной машины не отличается от асинхронной. Отличие в роторе. В отличие от асинхронного двигателя, вращение осуществляется за счёт взаимодействия вращающегося магнитного поля статора и постоянного поля ротора. Для его создания в роторе находятся электромагниты. Напряжение к катушкам подводится при помощи токосъёмных колец и графитных щёток.
Справка! В роторе синхронных машин малой мощности вместо электромагнитов установлены постоянные или просто магнитопровод имеет явновыраженные полюса. Скольжение, как в асинхронных машинах, отсутствует, и частота вращения определяется только частотой питающего напряжения.
Запуск электродвигателей
Асинхронные электрические машины мощностью до 30-50кВт запускаются прямой подачей электроэнергии. С двигателями большой мощности и синхронными машинами дело обстоит сложнее.
Пуск асинхронных двигателей большой мощности
Для запуска таких машин используются разные способы:
- Включение добавочных сопротивлений в цепь статора. Они ограничивают пусковой ток, а после разгона закорачиваются пускателем.
- В аппаратах, предназначенных для работы в сети с фазным напряжением 660 вольт обмотки в сети 380 вольт соединены треугольником. На время пуска они переключаются в звезду.
- В электромашинах с фазным ротором для запуска в цепь ротора включаются добавочные сопротивления. После разгона они закорачиваются.
- При наличии регулировки скорости, переключением обмоток или изменением частоты, двигатель включается на минимальные обороты. После начала вращения, обороты увеличиваются.
Пуск синхронных электромашин
В отличие от асинхронных машин, пуск которых производится взаимодействием поля статора и обмоток или беличьей клетки ротора, синхронную машину необходимо предварительно разогнать до скорости, близкой к синхронной.
- С помощью дополнительного асинхронного двигателя. Так запускаются машины с постоянными магнитами в роторе. При достижении скорости, близкой к синхронной, асинхронхронник отключается и подаётся напряжение в статор синхронного двигателя.
- Асинхронный пуск. В роторе, кроме электромагнита, находится «беличья клетка». С её помощью аппарат разгоняется, после чего в обмотку подаётся постоянное напряжение, и двигатель начинает работать в качестве синхронного.
- Обмотки ротора закорачиваются напрямую или через добавочное сопротивление. После разгона в них подаётся постоянное напряжение.
- При помощи ТПЧ (тиристорного преобразователя частоты) частота питающего напряжения и скорость вращения плавно поднимается до номинальной. Этот способ применяется в механизмах с регулировкой скорости.
Особенности и применение разных видов электродвигателей
У каждого типа двигателей есть достоинства и недостатки по сравнению с другими. Это определяет область их применения. Применение разных типов электромашин зависит от их особенностей конструкции и принципа действия.
Достоинства и использование асинхронных электродвигателей
Такие машины имеют достоинства перед синхронными аппаратами:
- простота конструкции и низкая цена; аппараты с фазным ротором позволяют регулировать скорость вращения и осуществлять плавный пуск без использования преобразователей частоты;
- большое разнообразие мощностей — от нескольких ватт до десятков киловатт.
Кроме достоинств есть недостатки:
- падение скорости вращения при росте нагрузки;
- более низкий КПД и большие габариты, чем у синхронных аппаратов той же мощности;
- кроме активной, такие аппараты потребляют реактивную (индуктивную) мощность, что ведёт к необходимости устанавливать компенсаторы или дополнительно оплачивать реактивную электроэнергию.
Используются такие машины практически везде, где необходимо приведение в движение механизма и есть трёхфазное напряжение 380 вольт.
Применение синхронных машин
- Регулировка путём изменения тока возбуждения cos φ. Это позволяет уменьшить ток потребления, габариты и сечение подводящего кабеля, а также увеличить КПД. Кроме того, такие аппараты используются в качестве компенсаторов реактивной мощности.
- Менее чувствительны к колебаниям напряжения и обладают большей перегрузочной способностью, особенно к ударным нагрузкам. Способность к превышению мощности повышается путём перевозбуждения обмоток ротора. Благодаря этому такие двигатели используются в экскаваторах, гильотинных ножницах и других подобных механизмах.
- Частота вращения не меняется при изменения нагрузки. Поэтому синхронные машины применяются в прецизионных станках в металлургии, машиностроении и деревообатывающей промышленности.
Существуют различные виды электродвигателей, и очень часто возникает вопрос, в чем же отличия между синхронным и асинхронным двигателем. В асинхронном обмотки, расположенные в статоре, создают вращающееся магнитное поле, взаимодействующее с токами, образующимися в роторе, благодаря чему он приходит во вращающееся состояние. Поэтому, в настоящее время, наиболее популярным считается простой и надежный асинхронный электродвигатель, имеющий короткозамкнутый ротор. Асинхронный двигательВ его пазах расположены токопроводящие стержни из алюминия или меди, соединенные своими концами с кольцами из такого же материала, которые производят короткое замыкание этих стержней. Поэтому, ротор и называется короткозамкнутым. Вихревые токи, взаимодействующие с полем, вызывают вращение ротора со скоростью, меньшей, чем скорость вращения самого поля. Таким образом, весь двигатель получил название асинхронного. Это движение получило название относительного скольжения, поскольку скорости ротора и магнитного поля неравны и магнитное поле не пересекается с токопроводящими стержнями ротора. Поэтому, они не создают вращающийся момент. Принципиальным отличием обоих видов двигателей является исполнение ротора. В синхронном он представляет собой постоянный магнит относительно небольшой мощности или такой же электромагнит. Вращающийся магнит, создающий магнитное поле статора, приводит в движение магнитный ротор. Скорость движения статора и ротора, в этом случае, одинаковая. Поэтому, данный двигатель получил название синхронного. Особенности синхронного двигателяСинхронный двигатель отличается возможностью значительного опережения током напряжения по фазе. Повышая коэффициент мощности по типу конденсаторных батарей. Асинхронные электродвигатели отличаются простотой конструкции и надежностью в эксплуатации. Единственный недостаток этих агрегатов заключается в достаточной трудности регулировки частоты их вращения. Трехфазные асинхронные двигатели могут быть легко реверсированы, то есть вращение двигателя может измениться на противоположное направление. Для этого, достаточно изменить место расположения двух линейных проводов или фаз, которые замыкаются на обмотку статора. В отличие от синхронного, это простой и дешевый двигатель, применяющийся повсеместно. Синхронный и асинхронный двигатель имеет еще и такое важное отличие, как постоянная частота вращения у первого при различных нагрузках. Поэтому их применяют в приводах машин, требующих постоянных скоростей, например, в компрессорах, насосах или вентиляторах, поскольку они очень легки в управлении. Классификация электродвигателей |
Синхронный или асинхронный. Как выбрать двигатель?
- Подробности
- Опубликовано 08.11.2018 12:14
История электромоторов составляет более 170 лет, однако наибольшее их развитие можно наблюдать за последние десять или около того лет. Появление электронных систем управления, позволяющих регулировать скорость и крутящий момент, и, следовательно, различные типы преобразователей частоты и системы плавного пуска произвели революцию на рынке для использования таких электроприводов.
В настоящее время электродвигатели используются не только для управления различными типами машин, но и в современных системах автоматизации. Двигатель, взаимодействующий с преобразователем частоты или сервоприводами используется в конвейерах, системах позиционирования, а также в приложениях, включая многоосевые приложения, которые требуют точных, быстрых и синхронизированных перемещений.
ПРИВОДНАЯ ТЕХНИКА В АВТОМАТИЗАЦИИ
Приводная техника, используемая в широко понятных системах автоматизации, охватывает довольно большую группу устройств.
Существуют не только двигатели постоянного тока, синхронные двигатели переменного тока, асинхронные двигатели, частотные преобразователи, но также сервоприводы, моторедукторы и другие механические элементы, которые позволяют регулировать скорость и крутящий момент двигателя.
Наиболее часто используемыми в автоматизации являются двигатели и низковольтные приводы мощностью от 1 киловатта до не более нескольких десятков, а иногда и нескольких сотен. Двигатели с системами рекуперации энергии становятся все более популярными в мире. Это связано не только с необходимостью использования высокопроизводительных устройств, но и с правилами регулирования потребления и энергии, которые становятся все более жесткими во многих странах.
Небольшие двигатели переменного тока, предлагаемые Украинскими поставщиками, являются синхронными и асинхронными двигателями. Универсальные двигатели, которые могут работать как с постоянной, так и с переменной мощностью постоянного тока, гораздо менее популярны среди украинских потребителей. Как уже упоминалось, наиболее продаваемыми являются двигатели мощностью от 1 Вт до 5 кВт, а также устройства мощностью от 5 Вт до 10 кВт.
Стоит отметить, что в Украине наиболее популярными сейчас являются асинхронные двигатели, которые могут быть легко использованы во всех видах систем привода, где не требуется точное управление двигателем. Асинхронные электродвигатели купить украина от мировых лидеров SIEMENS, ABB, FESTO, Phoenix Contact можно на сайте /simat.com.ua/
В случае сервоприводов пользователи обращают внимание на динамику привода и точность движения. Также важны такие параметры, как эффективность двигателя, что существенно влияет на общую стоимость поддержания системы автоматизации в данной компании.
Современные электродвигатели характеризуются простой конфигурацией и простотой эксплуатации. Инженеры делают упор на повышение их эффективности и улучшение рабочих параметров, а также на их автоматическую адаптацию к изменяющимся условиям нагрузки.
Проэкологическое строительство двигателя и низкое потребление энергии также становятся все более и более важными. Электродвигатели систематически подвергаются миниатюризации. К сожалению, после уменьшения размеров двигателей, нет снижения мощности, но увеличивается их грузоподъемность.
Принимая во внимание контроль, наблюдается тенденция к цифровизации электродвигателей. Существует все больше доступных протоколов и коммуникационных технологий, которые основаны главным образом на промышленном Ethernet.
— Асинхронные двигатели используются для привода приводов, но у них есть конкретные области применения.
Асинхронные двигатели используются в приложениях с меньшим технологическим зацеплением, но там, где момент инерции привода значителен. Такие применения представляют собой плоские роликовые конвейеры или, насосы, вентиляторы, лифты, — говорит Конрад Флорчик, инженер-программист SEW-EURODRIVE Polska.
— Синхронные серводвигатели в основном для специальных задач. Низкий момент инерции — высокая динамика плюс эффективный и эффективный контроль — эти параметры позволяют использовать эти двигатели, как манипуляторы или конечные механизмы машин.
АСИНХРОННЫЕ ДВИГАТЕЛИ
Асинхронные двигатели являются наиболее часто используемыми типами электродвигателей в промышленности и автоматизации. По оценкам, более половины электроэнергии, производимой на электростанциях, потребляется асинхронными двигателями. Их преимущества включают, прежде всего, простоту конструкции, простоту в эксплуатации и низкую цену покупки и обслуживания. Асинхронные двигатели имеют хорошие параметры движения, и их характеристики могут быть сформированы путем изменения питания и сопротивления обмоток машины, что достигается путем подключения соответствующих внешних элементов. Электронные, полупроводниковые системы управления позволяют осуществлять плавный пуск и торможение асинхронных двигателей.
Также легко настроить мощность и скорость этого типа двигателя. К сожалению, асинхронные двигатели также имеют недостатки. Самой большой из них является необходимость обеспечения индуктивной реактивной мощности, которая влияет на увеличение потерь мощности в линиях электропередачи и заметные падения напряжения, видимые особенно во время запуска.
Асинхронные двигатели, с точки зрения источника питания, могут быть разделены на одно, двух и трехфазные, наиболее популярными в отрасли являются последние. В небольших двигателях используется двух- или однофазное питание.
СИНХРОННЫЕ МОТОРЫ
Основными задачами электродвигателя являются преобразование электричества в механическую энергию. Как и в большинстве электрических машин, возможен обратный процесс в двигателе (так называемый принцип обратимости работы), т. е. Преобразование механической энергии в электричество. Однако это свойство редко используется в промышленной практике.
Сегодняшние электродвигатели могут быть разделены по-разному. Самое простое разделение связано с типом питания, то есть на двигатели постоянного и переменного тока. .
Однако, с точки зрения систем привода, наиболее важным является разделение двигателей по их конструкции и принципу работы. В случае машин переменного тока имеются три основные группы двигателей: синхронные машины, асинхронные и машины переменного тока.
Наиболее многочисленной группой двигателей, представленных в системах промышленной автоматизации, являются синхронные и асинхронные двигатели с переменного тока. Синхронные электродвигатели отличаются от асинхронных двигателей конструкцией ротора, который дополнительно оснащен электромагнитами или постоянными магнитами.
Синхронный двигатель представляет собой электрическую машину, питаемую переменным током, в котором ротор в устойчивом состоянии вращается с той же угловой скоростью, что и магнитное поле, которое его активирует. Важно отметить, что скорость синхронного двигателя всегда постоянна и не зависит от нагрузки и напряжения питания.
Источник:
https://simat.com.ua
- < Назад
- Вперёд >
Практические основы синхронных двигателей, которые должен знать каждый инженер-электрик — Новости
строительство
Как и асинхронный двигатель, синхронный двигатель состоит из статора и ротора, разделенных воздушным зазором . Он отличается от асинхронного двигателя тем, что поток в воздушном зазоре не обусловлен компонентом тока статора.
Пара древних компрессоров для кондиционирования воздуха с углекислым газом, оснащенная двумя антивибрационными синхронными двигателями с открытой рамой мощностью 150 лошадиных сил. Этот тип системы кондиционирования относится к 1930-м годам. (фото кредит: Jeffs4653 через Flickr)
Он создается магнитами или током катушки поля, обеспечиваемым внешним источником постоянного тока, питающим обмотку, размещенную в роторе.
Давайте рассмотрим темы, которые мы обсудим.
- статор
- ротор
- С постоянными магнитами
- С раневой катушкой
- Рабочие характеристики
- Другие типы синхронных двигателей
- Линейные двигатели
- Практическая реализация (ВИДЕО)
- Синхронные асинхронные двигатели
- Шаговые двигатели
- Практическая реализация (ВИДЕО)
- Линейные двигатели
статор
Статор состоит из корпуса и магнитной цепи, обычно включающих слои кремниевой стали, и трехфазной катушки, аналогичной асинхронному двигателю, снабженному трехфазным переменным током для создания вращающегося поля.
РИСУНОК 1 — Магнитный скелет (верхняя половина) и структурные части (нижняя половина) десятиполюсного (720 об / мин при 60 циклах) синхронного двигателя.
Вернуться к содержанию ↑
ротор
Ротор несет магниты поля или катушки, через которые протекает постоянный ток, и которые создают расположенные северные и южные полюса. В отличие от асинхронных машин ротор вращается без скольжения со скоростью вращающегося поля.
Поэтому существуют два разных типа синхронных двигателей: магнитные двигатели и двигатели с ротационным ротором.
С постоянными магнитами
Чем отличается синхронный двигатель от асинхронного?
Ротор синхронного двигателя строго «следует» за бегущим магнитным полем! Здесь определение «строго следует», подразумевает, что ротор вращается синхронно с фазой вращающего магнитного поля. То есть он не просто «вращается с той же частотой», но и ориентирован в этом вращающем его магнитном поле, синфазно! А вот асинхронный двигатель не имеет постоянной ориентации во вращающем его магнитном поле и никакой синхронности, по отношению к этому полю, у него нет. Более того, частота его вращения не равна частоте вращающего магнитного поля. По аналогии. Вы сидите в центре карусели на стуле, привинченном к полу карусели. В этом случае, вы вращаетесь СИНХРОННО с каруселью и, относительно полу карусели, всегда смотрите на одну и ту же сторону карусели. Напротив, если вы сидите на стуле, который установлен на поплавках в ванне, в центре карусели, то вы, тоже, вращаетесь вместе с каруселью, но …уже АСИНХРОННО! И, относительно пола карусели, тоже как бы немного вращаетесь. Соответственно, при асинхронном вращении, вы не смотрите в одну и ту же сторону карусели, а как бы постоянно «проскальзываете» против вращения. Вот! , в асинхронных двигателях еще есть термин «коэффициент проскальзывания (или, скольжения) ротора, в зависимости от нагрузки»!
У синхронного угольные щётки . у асинхронного с фазным ротором то же могут бить щётки . но они скользят по сплошному кольцу для включения в цепь ротора сопротивлений и уменьшения мощности.
Синхронный и асинхронный двигатели называются так по принципу действия: у первого скорость вращения ротора равна скорости вращения магнитного поля статора, у 2го скорость вращения ротора всегда меньше скорости вращения поля на величину так называемого скольжения. Поэтому если Вы посмотрите на любой асинхронник, то увидите, что его скорость вращения всегда не круглое число например не 1500 об/мин, а 1440 об/мин (а скорость вращения поля как раз 1500). Скорость вращения асинхронника зависит от нагрузки, синхронник же обладает абсолютно жесткой механической характеристикой. Асинхронник — самый распространенный электродвигатель, синхронники редкие (а на мощности от 10кВт до 100 кВт серийно не изготавливаются вообще) . Синхронные двигатели бывают самых разных исполнений (как со щетками так и без щеток) , но все они нуждаются в отдельном источнике постоянного магнитного поля возбуждения (это может решатся путем обмотки возбуждения запитанной от независимого источника энергии, путем установления постоянных магнитов, обмотки возбуждения, питающейся от самого генератора и т. д.)
Различие в синхронности магнитного поля статора и вращающегося ротора. У асинхронных двигателей скорость вращения ротора отстает от скорости вращения вектора магнитного поля статора на величину, наз. «скольжение». У синхронного двигателя эти скорости равны. У него на роторе есть однофазная обмотка, с постоянным током, магн. поле которой взаимодействует с магн. полем статора и создает вращающий момент. У асинхронного двигателя на роторе замкнутая обмотка, ток в которой создается вращающимся полем статора. Для того, чтобы синхронный двигатель работал сначала его ротор надо раскрутить до скорости магнитного поля статора.
Каждый год одни и те же вопросы… в Википедии написано хорошо. А вот тут <a rel=»nofollow» href=»http://td-elmash.ru/» target=»_blank»>http://td-elmash.ru/</a> можно отечественные двигатели любых назначений. Сбоку по назначению идет. а вообще позвоните по телефону на сайте и вам все расскажут)