Ротативный двигатель – Ротативный двигатель — это… Что такое Ротативный двигатель?

Ротативный двигатель. Чумазый вояка…

Сегодня поговорим о двигателе, эра расцвета которого пришлась на тот период времени, когда авиация еще не вышла из состояния «летающих этажерок», но когда эти самые этажерки уже чувствовали себя в воздухе достаточно уверенно.

Истребитель Sopwith Camel F.1 с двигателем Clerget 9B.

Основные принципы самолето- и двигателестроения быстро принимали устойчивые очертания. Появлялось все больше моделей двигателей для аэропланов, а вместе с ними как новые победы, так и новые проблемы в двигателестроении. Конструкторы и инженеры стремились (как это, вобщем-то, происходит и сейчас 🙂 ) максимально облегчить двигатели и при этом сохранить или даже увеличить их тяговую эффективность.

На этой волне и появился ротативный двигатель для тогдашних аэропланов. Почему именно для аэропланов? Да потому что сам по себе этот тип двигателя был разработан даже значительно раньше первого полета братьев Райт.

Однако обо всем по порядку. Что из себя представляет ротативный двигатель…. На английском rotary engine (что, кстати, на мой взгляд странно, потому что этим же словом обозначается роторный двигатель (двигатель Ванкеля)). Это двигатель внутреннего сгорания, в котором цилиндры с поршнями ( их нечетное количество) расположены радиально в виде звезды, обычно четырехтактный.

Рабочее топливо — бензин, воспламенение происходит от свечей зажигания.

По внешнему виду он очень похож на появившийся практически одновременно с ним и хорошо нам сегодня известный радиальный (звездообразный) поршневой двигатель. Но это только в неработающем состоянии. При запуске ротативный двигатель на неосведомленного о нем человека производит сильное впечатление.

Ротативный двигатель. Чумазый вояка…

Работа ротативного двигателя.

Происходит это потому, что уж очень необычно, на первый взгляд, выглядит его работа. Ведь вместе с винтом вращается и весь блок цилиндров, то есть, по сути дела весь двигатель. А вал, на котором происходит это вращение закреплен неподвижно. Однако в механическом плане ничего необычного тут нет. Просто дело привычки 🙂 .

Топливо-воздушная смесь из-за вращения цилиндров не может быть подведена к ним обычным порядком, поэтому попадает туда из картера, куда подводится через полый неподвижный вал от карбюратора (или устройства его заменяющего).

Впервые в истории патент на ротативный двигатель получил французский изобретатель Félix Millet в 1888 году. Тогда этот двигатель поставили на мотоцикл и показали его на всемирной парижской выставке в 1889 году.

Ротативный двигатель. Чумазый вояка…

Ротативный двигатель Félix Millet на мотоцикле.

Позже двигатели Félix Millet ставились на автомобили, один из которых принял участие в первой в мире автомобильной гонке Paris–Bordeaux–Paris в 1895 году, а с 1900 года эти двигатели ставили на автомобили французской фирмы Darracq.

В дальнейшем инженеры-изобретатели стали обращать внимание на ротативный двигатель уже с точки зрения применения его в авиации.

Первым в этом плане был бывший ньюйоркский часовщик Stephen Balzer, создавший свой ротативный двигатель в 1890 году и ставший автором (совместно с инженером Charles M. Manly) первого в истории двигателя, разработанного конкретно для аэроплана, известного под названием Manly-Balzer engine.

Практически одновременно с ним работал американский инженер Adams Farwell, строивший автомобили с ротативными двигателями с 1901 года.

Ротативный двигатель. Чумазый вояка…

Открытый картер двигателя Le Rhône 9J.

По некоторым сведениям принципы конструкции его двигателей были взяты за основу производителями знаменитых впоследствии двигателей «Гном».

Что же так привлекало инженеров в ротативном двигателе? Что в нем такого полезного для авиации?

Есть две основные особенности, которые и являются его главными положительными качествами. Первая — это самый малый (по тому времени) вес по сравнению с двигателями той же мощности. Дело в том, что частоты вращения тогдашних двигателей были невысокие и для получения необходимой мощности (в среднем тогда порядка 100 л.с. (75 кВт)) циклы воспламенения топливовоздушной смеси давали о себе знать весьма ощутимыми толчками.

Чтобы этого избежать двигатели снабжались массивными маховиками, что, естественно, влекло за собой утяжеление конструкции. Но для ротативного двигателя маховик был не нужен, потому, что вращался сам двигатель, имеющий достаточную массу для стабилизации хода.

Такие двигатели отличались плавностью и равномерностью хода. Зажигание производилось последовательно в каждом цилиндре через один по кругу.

Второй особенностью было хорошее охлаждение. Металлургическая промышленность в те времена была не настолько развита, как сейчас и качество сплавов (в плане термостойкости) было не слишком высоким. Поэтому требовалось хорошее охлаждение.

Скорости полета самолетов были не высокие, поэтому простое охлаждение набегающим потоком стационарного движка было недостаточным. А ротативный двигатель здесь находился в более выгодном положении, потому что сам вращался с достаточной для эффективного охлаждения скоростью и цилиндры хорошо обдувались воздухом. При этом они могли быть как гладкими, так и оребренными. Охлаждение было достаточно эффективным даже при работе двигателя на земле.

Теперь отвлечемся на пару полезных роликов о работе ротативного двигателя. Первый – это моделирование его работы на компьютере. Во втором показана работа “внутренностей” двигателя Le Rhône.

Расцвет ротативных двигателей пришелся на первую мировую войну. В то время авиация уже достаточно серьезно участвовала в боевых действиях и воздушные бои не были редкостью. Самолеты и двигатели для них производились всеми крупными участниками войны.

Из двигателестроительных одной из самых известных была французская фирма Société des Moteurs Gnome, в свое время занимавшаяся производством двигателей внутреннего сгорания для промышленного производства. В 1900 году она купила лицензию на производство маленького одноцилиндрового стационарного двигателя (мощность 4 л.с.) Gnom у немецой фирмы Motorenfabrik Oberursel. Это движок продавался во Франции под французским наименованием Gnome и при этом настолько успешно, что наименование это было использовано в названии фирмы.

Ротативный двигатель. Чумазый вояка…

Ротативный двигатель Gnome 7 Omega.

В дальнейшем на базе Гнома был разработан ротативный двигатель Gnome Omega, имевший немалое количество модификаций и устанавливавшийся на самые различные самолеты. Известны так же другие массово производившиеся двигатели этой фирмы. Например, Gnome 7 Lambda – семицилиндровый, мощностью 80 л.с. и его продолжение Gnome 14 Lambda-Lambda (160 л.с.), двухрядный ротативный двигатель с 14-ю цилиндрами.

Ротативный двигатель. Чумазый вояка…

Двигатель Gnome Monosoupape.

Широко известен двигатель Gnome Monosoupape (один клапан), начавший выпускаться в 1913 году и считавшийся одним из лучших двигателей в начальный период войны. Этот «лучший двигатель» 🙂 имел всего один клапан, использовавшийся и для выхлопа и для забора воздуха. Для поступления топлива в цилиндр из картера, в юбке цилиндра был сделан ряд специальных отверстий. Двигатель был бескарбюраторный и из-за упрощенной системы управления был легче и потреблял, к тому же меньше масла.

Ротативный двигатель. Чумазый вояка…

Подвод топлива в цилиндр Gnome Monosoupape. Crank Case — картер, Ports — подводящие отверстия.

Управления у него не было практически никакого. Был только топливный кран, подававший бензин через специальную форсунку (или распылитель) в полый неподвижный вал и далее в картер. Этим краном можно было пытаться обогащать или обеднять топливо-воздушную смесь в очень узком диапазоне, от чего было мало толку.

Пытались использовать с целью управления изменение фаз газораспределения, но быстро от этого отказались, потому что начали гореть клапана. В итоге движок постоянно работал на максимальных оборотах (как, впрочем и все ротативные двигатели 🙂 ) и управлялся только отключением зажигания (об этом чуть ниже 🙂 ).

Другой известной французской фирмой, производившей ротативный двигатели была фирма Société des Moteurs Le Rhône, начавшая свою работу с 1910 года. Одними из самых известных ее двигателей были Le Rhône 9C (мощность 80 л.с.) и Le Rhône 9J (110 л.с.). Характерной их особенностью было наличие специальных трубопроводов от картера к цилиндрам для подвода топливо-воздушной смеси (немного похоже на входные коллектора современных ДВС).

Ротативный двигатель. Чумазый вояка…

Двигатель Le Rhone 9C.

Ротативный двигатель. Чумазый вояка…

Ротативный двигатель Le Rhone 9J.

Le Rhône и Gnome первоначально соперничали, но потом объединились и с 1915 года уже работали совместно под названием Société des Moteurs Gnome et Rhône. Двигатель 9J был, вобщем-то, уже их совместным продуктом.

Интересно, что вышеупомянутая германская фирма Motorenfabrik Oberursel в 1913 году закупила лицензии на производство теперь уже французских ротативных двигателей Gnome (хотя и была родоначальницей этого брэнда, можно сказать 🙂 ) и чуть позже двигателей Le Rhône. Их она выпускала под своими наименованиями: Gnome, как U-серия и Le Rhône, как UR-серия ( от немецкого слова Umlaufmotor, обозначающего ротативный двигатель).

Например, двигатель Oberursel U.0 был аналогом французского Gnome 7 Lambda и устанавливался первоначально на самолет Fokker E.I., а двигатель Oberursel U.III – это копия двухрядного Gnome 14 Lambda-Lambda.

Ротативный двигатель. Чумазый вояка…

Истребитель Fokker E.I с двигателем Oberursel U.0 .

Ротативный двигатель. Чумазый вояка…

Германский двухрядный Oberursel U.III, копия Gnome 14 Lambda-Lambda.

Вообще фирма Motorenfabrik Oberursel всю войну в довольно большом количестве производила двигатели-клоны французских моделей, которые потом ставились на самолеты, являвшиеся противниками французов и их союзников в воздушных боях. Вот такие фокусы жизни 🙂 …

Среди других известных двигателестроительных фирм значится также французская фирма Société Clerget-Blin et Cie ( интересное для русского уха слово Blin в названии означает фамилию одного из учредителей, промышленника Эжена Блина 🙂 ) со своим известным движком Clerget 9B.

Ротативный двигатель. Чумазый вояка…

Двигатель Clerget 9B.

Ротативный двигатель. Чумазый вояка…

Двигатель Clerget 9B на истребителе Sopwith 1½ Strutter.

Ротативный двигатель. Чумазый вояка…

Истребитель Sopwith 1 1/2 Strutter с двигателем Clerget 9B.

Многие двигатели производились в Великобритании по лицензиям. На этих же заводах выпускали английские двигатели разработки Walter Owen Bentley (того самого Бентли) Bentley BR.1 (заменившие Clerget 9B на истребителях Sopwith Camel) и Bentley BR.2 для истребителей Sopwith 7F.1 Snipe.

На двигателях Bentley в конструкции поршней впервые были применены алюминиевые сплавы. До этого на всех движках цилиндры были чугунные.

Ротативный двигатель. Чумазый вояка…

Ротативный двигатель Bentley BR1.

Ротативный двигатель. Чумазый вояка…

Ротативный двигатель Bentley BR2.

Ротативный двигатель. Чумазый вояка…

Истребитель Sopwith 7F.1 Snipe с двигателем Bentley BR.2

Теперь вспомним о других особенностях ротативного двигателя, которые, так сказать, плюсов ему не прибавляют 🙂 (чаще всего как раз наоборот).

Немного об управлении. Современный (стационарный, конечно 🙂 ) поршневой двигатель, неважно рядный он или звездообразный, управляется относительно легко. Карбюратор (либо инжектор) формирует нужный состав топливо-воздушной смеси и с помощью дроссельной заслонки пилот может регулировать подачу ее в цилиндры и, тем самым, менять обороты двигателя. Для этого по сути дела существует ручка (или педаль, как хотите 🙂 ) газа.

У ротативного двигателя все не так просто 🙂 . Несмотря на разницу конструкций, большинство ротативных двигателей имели на цилиндрах управляемые впускные клапана, через которые и поступала топливо-воздушная смесь. Но вращение цилиндров не позволяло применять обычный карбюратор, который бы поддерживал оптимальное соотношение воздух-топливо за дроссельной заслонкой. Состав смеси, поступающей в цилиндры нужно было корректировать для достижения оптимального соотношения и устойчивой работы двигателя.

Для этого обычно существовал дополнительный воздушный клапан (“bloctube”) . Пилот устанавливал рычаг газа в нужное положение (чаще всего полностью открывая дроссель) и потом рычагом регулировки подачи воздуха добивался устойчивой работы двигателя на максимальных оборотах, производя так называемую тонкую регулировку. На таких оборотах обычно и проходил полет.

Из-за большой инерционности двигателя (масса цилиндров все же немаленькая 🙂 ), такая регулировка часто делалась «методом тыка», то есть определить нужную величину регулировки можно было только на практике, и эта практика была необходима для уверенного управления. Все зависело от конструкции двигателя и опыта пилота.

Весь полет проходил на максимальной частоте вращения движка и если ее по какой-либо причине надо было снизить, например для посадки, то действия по управлению должны были быть обратного направления. То есть пилоту нужно было прикрыть дроссель и потом опять регулировать подачу воздуха в двигатель.

Но такое «управление» было, как вы понимаете, достаточно громоздким и требующим времени, которое в полете не всегда есть, особенно на посадке. Поэтому гораздо чаще применялся метод отключения зажигания. Чаще всего это делалось через специальное устройство, позволяющее отключать зажигание полностью или в отдельных цилиндрах. То есть цилиндры без зажигания переставали работать и двигатель в целом терял мощность, что и нужно было пилоту.

Этот метод управления широко применялся на практике, но тянул за собой и кучу проблем. Топливо, вместе, кстати, с маслом, несмотря на отключение зажигания, продолжало поступать в двигатель и, несгорев, благополучно его покидало и затем скапливалось под капотом. Так как движок очень горячий, то опасность серьезного пожара налицо. Тогдашние «легкие этажерки» горели очень легко и быстро 🙂 .

Ротативный двигатель. Чумазый вояка…

Пример защитных капотов на двигателе (защита от масла двигатель Gnome 7 Lambda ) на самолете Sopwith Tabloid.

Поэтому капоты для двигателей имели внизу вырез примерно на одну треть периметра или на худой конец серьезные дренажные отводы, чтобы вся эта гадость могла быть удалена набегающим потоком. Чаще всего, конечно, она размазывалась по фюзеляжу.

Кроме того свечи в неработающих цилиндрах могли оказаться залитыми и замасленными и повторный запуск поэтому был не гарантирован.

К 1918 году французская двигателестроительная фирма Société Clerget-Blin et Cie (ротативные двигатели Clerget 9B), исходя из очевидной опасности использования способа снижения мощности путем отключения зажигания, в руководстве по эксплуатации своих двигателей рекомендовала следующий метод управления.

При необходимости снижения мощности двигателя пилот перекрывает подачу топлива закрытием дросселя (ручкой газа). При этом зажигание не отключается, и свечи продолжают «искрить» (предохраняя себя от замасливания). Винт вращается в результате эффекта авторотации, и при необходимости запуска топливный клапан просто открывается в то же положение, что и до закрытия. Двигатель запускается…

Однако, по отзывам пилотов, которые в наши дни летают на восстановленных или точных копиях самолетов того времени, все-таки самый удобный режим снижения мощности – это отключение зажигания, несмотря на всю «грязь», которую при этом извергают ротативные двигатели 🙂 .

Самолеты с такими движками вообще особой чистотой не отличались. Про топливо в отключенных цилиндрах я уже сказал, но ведь было еще и масло. Дело в том, что из-за вращающегося блока цилиндров, возможность откачки топлива из картера была весьма проблематична, поэтому организовать полноценную систему смазки было нельзя.

Ротативный двигатель. Чумазый вояка…

Схема топливо- и маслопитания ротативного двигателя Gnome 7 Omega.

Но без смазки никакой механизм работать не будет, поэтому она, конечно, существовала, но в о-о-очень упрощенном виде. Масло подавалось прямо в цилиндры, в топливо-воздушную смесь.На большинстве двигателей для этого существовал небольшой насос, подававший масло через полый (неподвижный, как уже известно 🙂 ) вал по специальным каналам.

В качестве смазывающего масла использовалось касторовое, самое лучшее по тем временам масло ( природное растительное) для этих целей. Оно, кроме того не смешивалось с топливом, что улучшало условия смазки. Да и сгорало в цилиндрах оно только частично.

Ротативный двигатель. Чумазый вояка…

Пример замасливания (темные пятна) двигателя Gnome 7 Omega полусгоревшим касторовым маслом.

А удалялось оно оттуда после выполнения своих функций вместе с отработанным газами через выпускной клапан. И расход его при этом был очень даже немаленький. Средний движок, мощностью около 100 л.с. (≈75 кВт, 5-7 цилиндров) за час работы расходовал более двух галлонов (английских) масла. То есть около 10 литров вылетало «на ветер».

Ну что тут скажешь… Бедные механики 🙂 . Масло, сгоревшее и не совсем, топливная смесь, оставшаяся после дросселирования движка, сажа… все это оседало на самолете, и все это нужно было отмывать. Причем масло это отмывалось очень плохо. Из-за этого на старых снимках самолеты частенько «щеголяют» грязными пятнами на крыле и фюзеляже.

Но и летчики – люди мужественные 🙂 . Ведь из движка выходила касторка. А это, как известно, очень хорошее слабительное (в аптеках раньше продавалась, не знаю, как сейчас). Конечно, двигатель был закрыт капотом, и снизу, как я уже говорил, был вырез для удаления всей грязи. Но ведь кабина открытая и воздушный поток – штука не всегда управляемая. Если чистая касторка попадала на лицо и потом внутрь… Последствия предугадать…. наверное было не сложно 🙂 …

Следующая особенность ротативных двигателей, которую я бы тоже не назвал положительной была связана с управляемостью аэропланов, на которых стояли такие движки. Немалая масса вращающегося блока представляла собой по сути дела большой гироскоп, поэтому гироскопический эффект был неизбежен 🙂 .

Пока самолет летел прямолинейно, его влияние не было сильно заметно, но стоило начать совершать какие-либо полетные эволюции, как сразу проявлялась гироскопическая прецессия. Из-за этого и вкупе с большим крутящим моментом массивного блока цилиндров при выбранном правом вращении винта самолет очень неохотно поворачивал влево и при этом задирал нос, но зато быстро делал правые развороты с большой тенденцией к опусканию носа.

Такой эффект с одной стороны очень мешал (особенно молодым и неопытным пилотам), а с другой был полезен при проведении воздушных боев , в так называемых «собачьих свалках» (dogfights). Это, конечно, для опытных летчиков, которые могли с толком использовать эту особенность.

Очень характерен в этом плане был известный самолет Sopwith Camel F.1 Королевских ВВС, считавшийся лучшим истребителем Первой Мировой. На нем стоял ротативный двигатель Clerget 9B ( как примечание добавлю, что в последствии также ставился и английский Bentley BR.1(150 л.с.)). Мощный (130 л.с.), но достаточно капризный двигатель, чувствительный к составу топлива и к маслу. Мог запросто отказать на взлете. Но именно благодаря ему и особенностям компоновки фюзеляжа (рассредоточению полезного оборудования) Camel был очень маневренен.

Ротативный двигатель. Чумазый вояка…

Истребитель Sopwith Camel F.1 с двигателем Clerget 9B .

Ротативный двигатель. Чумазый вояка…

Истребитель Sopwith Camel F.1 (реплика).

Маневренность эта, правда, доходила до крайности. В управлении истребитель был необычайно строг и вообще имел кое-какие неприятные особенности. Например, большое желание войти в штопор на малой скорости 🙂 . Он абсолютно не подходил для обучения молодых пилотов. По некоторой статистике за время войны в боевых действиях на этом аэроплане погибло 415 пилотов, а в летных происшествиях – 385. Цифры красноречивые…

Однако опытные пилоты, хорошо его освоившие, могли извлечь большую пользу из его особенностей и делали это. Интересно, что из-за нежелания Camel-а быстро разворачиваться влево, многие пилоты предпочитали делать это, так сказать, «через правое плечо» 🙂 . Поворот вправо на 270º получался значительно быстрее, чем влево на 90º .

Основным и достойным противником для Sopwith Camel F.1 был немецкий триплан Fokker Dr.I с двигателем Oberursel UR.II (полный аналог французского Le Rhône 9J). На таком воевал Барон Ма́нфред А́льбрехт фон Рихтго́фен (Manfred Albrecht Freiherr von Richthofen), знаменитый «Красный барон».

Ротативный двигатель. Чумазый вояка…

Триплан Fokker Dr.I

Ротативный двигатель. Чумазый вояка…

Германский двигатель Oberursel-UR-2. Копия Le Rhône 9J.

Ротативный двигатель. Чумазый вояка…

Истребитель-триплан Fokker Dr.I (современная реплика, правда двигатель у нее не ротативный).

Ротативный двигатель. Чумазый вояка…

Fokker DR1, современная реплика с настоящим ротативным двигателем.

Ротативный двигатель. Чумазый вояка…

Триплан Fokker Dr.I незадолго до гибели «Красного Барона».

За время войны ротативные двигатели достигли своего полного расцвета. При имеющихся запросах армии, несмотря на свои недостатки они очень хорошо подходили для решения, так сказать, триединой задачи «мощность – вес – надежность». Особенно, что касается легких истребителей. Ведь именно на них в подавляющем большинстве такие движки стояли.

Более крупные и тяжелые самолеты продолжали летать, используя традиционные рядные движки.

Однако авиация развивалась бурными темпами. Требовалась все большая мощность двигателей. Для стационарных рядных это достигалось путем увеличения максимального количества оборотов. Возможности совершенствования в этом направлении были. Улучшались системы зажигания и газораспределения, принципы образования топливовоздушной смеси. Применялись все более совершенные материалы.

Это позволило к концу Первой Мировой войны поднять максимальную величину оборотов стационарного двигателя с 1200 до 2000 об/мин.

Однако, для ротационного двигателя этот было невозможно. Организовать правильное смесеобразование было нельзя. Все приходилось делать «на глазок», поэтому расход топлива (как и масла) был, мягко говоря, немаленьким 🙂 (в том числе, кстати, из-за постоянной работы на больших оборотах).

Какие-либо внешние регулировочные работы на двигателе, пока он находится в запущенном состоянии само собой были невозможны.

Повысить частоту вращения тоже не получалось, потому что сопротивление воздуха быстро вращающемуся блоку цилиндров было достаточно большим. Более того, при увеличении скорости вращения, сопротивление росло еще быстрее. Ведь, как известно, скоростной напор пропорционален квадрату скорости ( ρV2/2, где ρ – плотность воздуха, V – скорость потока). То есть если скорость просто растет, то сопротивление растет в квадрате (примерно 🙂 ).

При попытках на некоторых моделях двигателей начала войны поднять обороты с 1200 об/мин до 1400 об/мин сопротивление поднималось на 38%. То есть получалось, что возросшая мощность двигателя больше тратилась на преодоление сопротивления, чем на создание полезной тяги воздушного винта.

Немецкой фирмой Siemens AG была сделана попытка обойти эту проблему с другой стороны. Был выполнен 11-цилиндровый двигатель так называемой биротативной схемы (наименование Siemens-Halske Sh.III ). В нем блок цилиндров вращался в одну сторону с частотой 900 об/мин., а вал (ранее неподвижный) в другую с той же частотой. Суммарная относительная частота составила 1800 об/мин. Это позволило достичь мощности в 170 л.с.

Ротативный двигатель. Чумазый вояка…

Биротативный двигатель Siemens-Halske Sh.III .

Ротативный двигатель. Чумазый вояка…

Истребитель Siemens-Schuckert D.IV .

Ротативный двигатель. Чумазый вояка…

Истребитель Siemens-Schuckert D.IV в берлинском музее.

Этот двигатель имел меньшее сопротивление воздуху при вращении и меньший крутящий момент, мешающий управлению. Устанавливался на истребителе Siemens-Schuckert D.IV , который по мнению многих специалистов стал одним из лучших маневренных истребителей времен войны. Однако производиться начал поздно и сделан был в небольшом количестве экземпляров.

Существующее положение Siemens-Halske Sh.III не поправил и не смог опять поднять ротативные двигатели на должную высоту.

Недостатков у них, как видите, хватало. Ко всему прочему могу еще добавить, что движки эти были достаточно дороги. Ведь из-за большой быстро вращающейся массы все детали двигателя должны были быть хорошо отбалансированы и четко подогнаны. Плюс сами материалы были недешевы. Это приводило к тому, что, например, двигатель Monosoupape по ценам 1916 года стоил порядка 4000$ (что в переводе на курс года 2000-го составляет примерно 65000$). Это при том, что в движке-то, вобщем-то, по нынешним понятиям 🙂 , ничего особенного-то нет.

Ко всему прочему моторесурс всех таких двигателей был невысок (вплоть до 10-ти часов между ремонтами) и менять их приходилось часто, несмотря на высокую стоимость.

Все эти недостатки копились и в конце концов чаша оказалась переполнена. Ротативный двигатель широко использовался и совершенствовался (по мере возможности) вплоть до конца войны. Самолеты с такими движками некоторое время использовались во время гражданской войны в России и иностранной интервенции. Но в целом их популярность быстро пошла на спад.

Совершенствование науки и производства привели к тому, что на сцену уверенно вышел последователь ротативного двигателя – радиальный или звездообразный двигатель с воздушным охлаждением, который не сходит с нее и по сей день, работая, между прочим, в содружестве с рядным поршневым авиационным двигателем с жидкостным охлаждением.

Ротативный двигатель, оставив яркий след в истории авиации, занимает теперь почетное место в музеях и на исторических выставках.

На этом заканчиваю 🙂 . В заключение как всегда кое-какое интересное видео. Первый ролик – запуск восстановленного двигателя Гном 1918 года выпуска. Далее три ролика о работе двигателя и полетах восстановленного Sopwith Camel F.1, а также Fokker Dr.I (на заднем плане 🙂 ). Интересного вам просмотра и до встречи…

P.S. Один из моих читателей (Александр) совершенно справедливо указал мне на то, что в ролике, где вместе с Сопвичем летает современная реплика германского триплана, движок у этого триплана не ротативный. Абсолютно верно. Я, увлекшись Сопвичем, не обратил на это внимание 🙂 . Прошу прощения у читателей и помещаю ролик (и фото), где в полете современная реплика Фоккера с настоящим ротативным движком. Самолет здесь классно показан 🙂 …

Ротативный двигатель. Чумазый вояка :-)…

Привет, друзья!

Истребитель Sopwith Camel F.1 с двигателем Clerget 9B.

Сегодня поговорим о двигателе, эра расцвета которого пришлась на тот период времени, когда авиация еще не вышла из состояния «летающих этажерок», но когда эти самые этажерки уже чувствовали себя в воздухе достаточно уверенно.

Основные принципы самолето- и двигателестроения быстро принимали устойчивые очертания. Появлялось все больше моделей двигателей для аэропланов, а вместе с ними как новые победы, так и новые проблемы в двигателестроении. Конструкторы и инженеры стремились (как это, вобщем-то, происходит и сейчас :-)) максимально облегчить двигатели и при этом сохранить или даже увеличить их тяговую эффективность.

На этой волне и появился ротативный двигатель для тогдашних аэропланов. Почему именно для аэропланов? Да потому что сам по себе этот тип двигателя был разработан даже значительно раньше первого полета братьев Райт.

Однако обо всем по порядку. Что из себя представляет ротативный двигатель…. На английском rotary engine (что, кстати, на мой взгляд странно, потому что этим же словом обозначается роторный двигатель (двигатель Ванкеля)). Это двигатель внутреннего сгорания, в котором цилиндры с поршнями ( их нечетное количество) расположены радиально в виде звезды, обычно четырехтактный.

Рабочее топливо — бензин, воспламенение происходит от свечей зажигания.

По внешнему виду он очень похож на появившийся практически одновременно с ним и хорошо нам сегодня известный радиальный (звездообразный) поршневой двигатель. Но это только в неработающем состоянии. При запуске ротативный двигатель на неосведомленного о нем человека производит сильное впечатление.

Работа ротативного двигателя.

Происходит это потому, что уж очень необычно, на первый взгляд, выглядит его работа. Ведь вместе с винтом вращается и весь блок цилиндров, то есть, по сути дела весь двигатель. А вал, на котором происходит это вращение закреплен неподвижно. Однако в механическом плане ничего необычного тут нет. Просто дело привычки :-).

Топливо-воздушная смесь из-за вращения цилиндров не может быть подведена к ним обычным порядком, поэтому попадает туда из картера, куда подводится через полый неподвижный вал от карбюратора (или устройства его заменяющего).

Впервые в истории патент на ротативный двигатель получил французский изобретатель Félix Millet в 1888 году. Тогда этот двигатель поставили на мотоцикл и показали его на всемирной парижской выставке в 1889 году.

Ротативный двигатель Félix Millet на мотоцикле.

Позже двигатели Félix Millet ставились на автомобили, один из которых принял участие в первой в мире автомобильной гонке Paris–Bordeaux–Paris в 1895 году, а с 1900 года эти двигатели ставили на автомобили французской фирмы Darracq.

В дальнейшем инженеры-изобретатели стали обращать внимание на ротативный двигатель уже с точки зрения применения его в авиации.

Первым в этом плане был бывший ньюйоркский часовщик Stephen Balzer, создавший свой ротативный двигатель в 1890 году и ставший автором (совместно с инженером Charles M. Manly) первого в истории двигателя, разработанного конкретно для аэроплана, известного под названием Manly-Balzer engine.

Практически одновременно с ним работал американский инженер  Adams Farwell, строивший автомобили с ротативными двигателями с 1901 года.

Открытый картер двигателя Le Rhône 9J.

По некоторым сведениям принципы конструкции его двигателей были взяты за основу производителями знаменитых впоследствии двигателей «Гном».

Что же так привлекало инженеров в ротативном двигателе? Что в нем такого полезного для авиации?

Есть две основные особенности, которые и являются его главными положительными качествами. Первая — это самый малый (по тому времени) вес по сравнению с двигателями той же мощности. Дело в том, что частоты вращения тогдашних двигателей были невысокие и для получения необходимой мощности (в среднем тогда порядка 100 л.с. (75 кВт)) циклы воспламенения топливовоздушной смеси давали о себе знать весьма ощутимыми толчками.

Чтобы этого избежать двигатели снабжались массивными маховиками, что, естественно, влекло за собой утяжеление конструкции. Но для ротативного двигателя маховик был не нужен, потому, что вращался сам двигатель, имеющий достаточную массу для стабилизации хода.

Такие двигатели отличались плавностью и равномерностью хода. Зажигание производилось последовательно в каждом цилиндре через один по кругу.

Второй особенностью было хорошее охлаждение. Металлургическая промышленность в те времена была не настолько развита, как сейчас и качество сплавов (в плане термостойкости) было не слишком высоким. Поэтому требовалось хорошее охлаждение.

Скорости полета самолетов были не высокие, поэтому простое охлаждение набегающим потоком стационарного движка было недостаточным. А ротативный двигатель здесь находился в более выгодном положении, потому что сам вращался с достаточной для эффективного охлаждения скоростью и цилиндры хорошо обдувались воздухом. При этом они могли быть как гладкими, так и оребренными. Охлаждение было достаточно эффективным даже при работе двигателя на земле.

Теперь отвлечемся на пару полезных роликов о работе ротативного двигателя. Первый — это моделирование его работы на компьютере. Во втором показана работа «внутренностей» двигателя Le Rhône.

Расцвет ротативных двигателей пришелся на первую мировую войну. В то время авиация уже достаточно серьезно участвовала в боевых действиях и воздушные бои не были редкостью. Самолеты и двигатели для них производились всеми крупными участниками войны.

Из двигателестроительных одной из самых известных была французская фирма Société des Moteurs Gnome, в свое время занимавшаяся производством двигателей внутреннего сгорания для промышленного производства. В 1900 году она купила лицензию на производство маленького одноцилиндрового стационарного двигателя (мощность 4 л.с.) Gnom у немецой фирмы Motorenfabrik Oberursel. Это движок продавался во Франции под французским наименованием Gnome и при этом настолько успешно, что наименование это было использовано в названии фирмы.

Ротативный двигатель Gnome 7 Omega.

В дальнейшем на базе Гнома был разработан ротативный двигатель Gnome Omega, имевший немалое количество модификаций и устанавливавшийся на самые различные самолеты. Известны так же другие массово производившиеся двигатели этой фирмы. Например, Gnome 7 Lambda – семицилиндровый, мощностью 80 л.с. и его продолжение Gnome 14 Lambda-Lambda (160 л.с.), двухрядный ротативный двигатель с 14-ю цилиндрами.

Двигатель Gnome Monosoupape.

Широко известен двигатель Gnome Monosoupape (один клапан), начавший выпускаться в 1913 году и считавшийся одним из лучших двигателей в начальный период войны. Этот «лучший двигатель» 🙂 имел всего один клапан, использовавшийся и для выхлопа и для забора воздуха. Для поступления топлива в цилиндр из картера, в юбке цилиндра был сделан ряд специальных отверстий. Двигатель был безкарбюраторный и из-за упрощенной системы управления был легче и потреблял, к тому же меньше масла.

Подвод топлива в цилиндр Gnome Monosoupape. Crank Case — картер, Ports — подводящие отверстия.

Управления у него не было практически никакого. Был только топливный кран, подававший бензин через специальную форсунку (или распылитель) в полый неподвижный вал и далее в картер. Этим краном можно было пытаться обогащать или обеднять топливо-воздушную смесь в очень узком диапазоне, от чего было мало толку.

Пытались использовать с целью управления изменение фаз газораспределения, но быстро от этого отказались, потому что начали гореть клапана. В итоге движок постоянно работал на максимальных оборотах (как, впрочем и все ротативные двигатели :-)) и управлялся только отключением зажигания (об этом чуть ниже :-)).

Другой известной французской фирмой, производившей ротативный двигатели была фирма Société des Moteurs Le Rhône, начавшая свою работу с 1910 года. Одними из самых известных ее двигателей были Le Rhône 9C (мощность 80 л.с.) и Le Rhône 9J (110 л.с.). Характерной их особенностью было наличие специальных трубопроводов от картера к цилиндрам для подвода топливо-воздушной смеси (немного похоже на входные коллектора современных ДВС).

Двигатель Le Rhone 9C.

Ротативный двигатель Le Rhone 9J.

Le Rhône и Gnome первоначально соперничали, но потом объединились и с 1915 года уже работали совместно под названием Société des Moteurs Gnome et Rhône. Двигатель 9J был, вобщем-то, уже их совместным продуктом.

Интересно, что вышеупомянутая германская фирма Motorenfabrik Oberursel в 1913 году закупила лицензии на производство теперь уже французских ротативных двигателей Gnome (хотя и была родоначальницей этого брэнда, можно сказать :-)) и чуть позже двигателей Le Rhône. Их она выпускала под своими наименованиями: Gnome, как U-серия и Le Rhône, как UR-серия ( от немецкого слова Umlaufmotor, обозначающего ротативный двигатель).

Например, двигатель Oberursel U.0 был аналогом французского Gnome 7 Lambda и устанавливался первоначально на самолет Fokker E.I., а двигатель Oberursel U.III – это копия двухрядного Gnome 14 Lambda-Lambda.

Истребитель Fokker E.I с двигателем Oberursel U.0 .

Германский двухрядный Oberursel U.III, копия Gnome 14 Lambda-Lambda.

Вообще фирма Motorenfabrik Oberursel всю войну в довольно большом количестве производила двигатели-клоны французских моделей, которые потом ставились на самолеты, являвшиеся противниками французов и их союзников в воздушных боях. Вот такие фокусы жизни :-)…

Среди других известных двигателестроительных фирм значится также французская фирма Société Clerget-Blin et Cie ( интересное для русского уха слово Blin в названии означает фамилию одного из учредителей, промышленника Эжена Блина :-)) со своим известным движком Clerget 9B.

Двигатель Clerget 9B.

Двигатель Clerget 9B на истребителе Sopwith 1½ Strutter.

Истребитель Sopwith 1 1/2 Strutter с двигателем Clerget 9B.

Многие двигатели производились в Великобритании по лицензиям. На этих же заводах выпускали английские двигатели разработки Walter Owen Bentley (того самого Бентли) Bentley BR.1 (заменившие Clerget 9B на истребителях Sopwith Camel) и Bentley BR.2 для истребителей Sopwith 7F.1 Snipe.

На двигателях Bentley в конструкции поршней впервые были применены алюминиевые сплавы. До этого на всех движках цилиндры были чугунные.

Ротативный двигатель Bentley BR1.

Ротативный двигатель Bentley BR2.

Истребитель Sopwith 7F.1 Snipe с двигателем Bentley BR.2 .

Теперь вспомним о других особенностях ротативного двигателя, которые, так сказать, плюсов ему не прибавляют 🙂 (чаще всего как раз наоборот).

Немного об управлении. Современный (стационарный, конечно :-)) поршневой двигатель, неважно рядный он или звездообразный, управляется относительно легко. Карбюратор (либо инжектор) формирует нужный состав топливо-воздушной смеси и с помощью дроссельной заслонки пилот может регулироват подачу ее в цилиндры и, тем самым, менять обороты двигателя. Для этого по сути дела существует ручка (или педаль, как хотите :-)) газа.

У ротативного двигателя все не так просто :-). Несмотря на разницу конструкций, большинство ротативных двигателей имели на цилиндрах управляемые впускные клапана, через которые и поступала топливо-воздушная смесь. Но вращение цилиндров не позволяло применять обычный карбюратор, который бы поддерживал оптимальное соотношение воздух-топливо за дроссельной заслонкой. Состав смеси, поступающей в цилиндры нужно было корректировать для достижения оптимального соотношения и устойчивой работы двигателя.

Для этого обычно существовал дополнительный воздушный клапан («bloctube») . Пилот устанавливал рычаг газа в нужное положение (чаще всего полностью открывая дроссель) и потом рычагом регулировки подачи воздуха добивался устойчивой работы двигателя на максимальных оборотах, производя так называемую тонкую регулировку. На таких оборотах обычно и проходил полет.

Из-за большой инерционности двигателя (масса цилиндров все же немаленькая :-)), такая регулировка часто делалась «методом тыка», то есть определить нужную величину регулировки можно было только на практике, и эта практика была необходима для уверенного управления. Все зависело от конструкции двигателя и опыта пилота.

Весь полет проходил на максимальной частоте вращения движка и если ее по какой-либо причине надо было снизить, например для посадки, то действия по управлению должны были быть обратного направления. То есть пилоту нужно было прикрыть дроссель и потом опять регулировать подачу воздуха в двигатель.

Но такое «управление» было, как вы понимаете, достаточно громоздким и требующим времени, которое в полете не всегда есть, особенно на посадке. Поэтому гораздо чаще применялся метод отключения зажигания. Чаще всего это делалось через специальное устройство, позволяющее отключать зажигание полностью или в отдельных цилиндрах. То есть цилиндры без зажигания переставали работать и двигатель в целом терял мощность, что и нужно было пилоту.

Этот метод управления широко применялся на практике, но тянул за собой и кучу проблем. Топливо, вместе, кстати, с маслом, несмотря на отключение зажигания, продолжало поступать в двигатель и, несгорев, благополучно его покидало и затем скапливалось под капотом. Так как движок очень горячий, то опасность серьезного пожара налицо. Тогдашние «легкие этажерки» горели очень легко и быстро :-).

Пример защитных капотов на двигателе (защита от масла двигатель Gnome 7 Lambda ) на самолете Sopwith Tabloid.

Поэтому капоты для двигателей имели внизу вырез примерно на одну треть периметра или на худой конец серьезные дренажные отводы, чтобы вся эта гадость могла быть удалена набегающим потоком. Чаще всего, конечно, она размазывалась по фюзеляжу.

Кроме того свечи в неработающих цилиндрах могли оказаться залитыми и замасленными и повторный запуск поэтому был не гарантирован.

К 1918 году французская двигателестроительная фирма Société Clerget-Blin et Cie (ротативные двигатели Clerget 9B), исходя из очевидной опасности использования способа снижения мощности путем отключения зажигания, в руководстве по эксплуатации своих двигателей рекомендовала следующий метод управления.

При необходимости снижения мощности двигателя пилот перекрывает подачу топлива закрытием дросселя (ручкой газа). При этом зажигание не отключается, и свечи продолжают «искрить» (предохраняя себя от замасливания). Винт вращается в результате эффекта авторотации, и при необходимости запуска топливный клапан просто открывается в то же положение, что и до закрытия. Двигатель запускается…

Однако, по отзывам пилотов, которые в наши дни летают на восстановленных или точных копиях самолетов того времени, все-таки самый удобный режим снижения мощности – это отключение зажигания, несмотря на всю «грязь», которую при этом извергают ротативные двигатели :-).

Самолеты с такими движками вообще особой чистотой не отличались. Про топливо в отключенных цилиндрах я уже сказал, но ведь было еще и масло. Дело в том, что из-за вращающегося блока цилиндров, возможность откачки топлива из картера была весьма проблематична, поэтому организовать полноценную систему смазки было нельзя.

Схема топливо- и маслопитания ротативного двигателя Gnome 7 Omega.

Но без смазки никакой механизм работать не будет, поэтому она, конечно, существовала, но в о-о-очень упрощенном виде. Масло подавалось прямо в цилиндры, в топливо-воздушную смесь.На большинстве двигателей для этого существовал небольшой насос, подававший масло через полый (неподвижный, как уже известно :-)) вал по специальным каналам.

В качестве смазывающего масла использовалось касторовое, самое лучшее по тем временам масло ( природное растительное) для этих целей. Оно, кроме того не смешивалось с топливом, что улучшало условия смазки. Да и сгорало в цилиндрах оно только частично.

Пример замасливания (темные пятна) двигателя Gnome 7 Omega полусгоревшим касторовым маслом.

А удалялось оно оттуда после выполнения своих функций вместе с отработанным газами через выпускной клапан. И расход его при этом был очень даже немаленький. Средний движок, мощностью около 100 л.с. (≈75 кВт, 5-7 цилиндров) за час работы расходовал более двух галлонов (английских) масла. То есть около 10 литров вылетало «на ветер».

Ну что тут скажешь… Бедные механики :-). Масло, сгоревшее и несовсем, топливная смесь, оставшаяся после дросселирования движка, сажа… все это оседало на самолете, и все это нужно было отмывать. Причем масло это отмывалось очень плохо. Из-за этого на старых снимках самолеты частенько «щеголяют» грязными пятнами на крыле и фюзеляже.

Но и летчики – люди мужественные :-). Ведь из движка выходила касторка. А это, как известно, очень хорошее слабительное (в аптеках раньше продавалась, не знаю, как сейчас). Конечно, двигатель был закрыт капотом, и снизу, как я уже говорил, был вырез для удаления всей грязи. Но ведь кабина открытая и воздушный поток – штука не всегда управляемая. Если чистая касторка попадала на лицо и потом внутрь… Последствия предугадать…. наверное было не сложно :-)…

Следующая особенность ротативных двигателей, которую я бы тоже не назвал положительной была связана с управляемостью аэропланов, на которых стояли такие движки. Немалая масса вращающегося блока представляла собой по сути дела большой гироскоп, поэтому гироскопический эффект был неизбежен :-).

Пока самолет летел прямолинейно, его влияние не было сильно заметно, но стоило начать совершать какие-либо полетные эволюции, как сразу проявлялась гироскопическая прецессия. Из-за этого и вкупе с большим крутящим моментом массивного блока цилиндров при выбранном правом вращении винта самолет очень неохотно поворачивал влево и при этом задирал нос, но зато быстро делал правые развороты с большой тенденцией к опусканию носа.

Такой эффект с одной стороны очень мешал (особенно молодым и неопытным пилотам), а с другой был полезен при проведении воздушных боев , в так называемых «собачьих свалках» (dogfights). Это, конечно, для опытных летчиков, которые могли с толком использовать эту особенность.

Очень характерен в этом плане был известный самолет Sopwith Camel F.1 Королевских ВВС, считавшийся лучшим истребителем Первой Мировой. На нем стоял ротативный двигатель Clerget 9B ( как примечание добавлю, что в последствии также ставился и английский Bentley BR.1(150 л.с.)). Мощный (130 л.с.), но достаточно капризный двигатель, чувствительный к составу топлива и к маслу. Мог запросто отказать на взлете. Но именно благодаря ему и особенностям компоновки фюзеляжа (рассредоточению полезного оборудования) Camel был очень маневренен.

Истребитель Sopwith Camel F.1 с двигателем Clerget 9B .

Истребитель Sopwith Camel F.1 (реплика).

Маневренность эта, правда, доходила до крайности. В управлении истребитель был необычайно строг и вообще имел кое-какие неприятные особенности. Например, большое желание войти в штопор на малой скорости :-). Он абсолютно не подходил для обучения молодых пилотов. По некоторой статистике за время войны в боевых действиях на этом аэроплане погибло 415 пилотов, а в летных происшествиях – 385. Цифры красноречивые…

Однако опытные пилоты, хорошо его освоившие, могли извлечь большую пользу из его особенностей и делали это. Интересно, что из-за нежелания Camel-а быстро разворачиваться влево, многие пилоты предпочитали делать это, так сказать, «через правое плечо» :-). Поворот вправо на 270º получался значительно быстрее, чем влево на 90º .

Основным и достойным противником для Sopwith Camel F.1 был немецкий триплан Fokker Dr.I с двигателем Oberursel UR.II (полный аналог французского Le Rhône 9J). На таком воевал Барон Ма́нфред А́льбрехт фон Рихтго́фен (Manfred Albrecht Freiherr von Richthofen), знаменитый «Красный барон».

Триплан Fokker Dr.I

Германский двигатель Oberursel-UR-2. Копия Le Rhône 9J.

Истребитель-триплан Fokker Dr.I (современная реплика, правда двигатель у нее не ротативный).

Fokker DR1, современная реплика с настоящим ротативным двигателем.

Триплан Fokker Dr.I незадолго до гибели «Красного Барона».

За время войны ротативные двигатели достигли своего полного расцвета. При имеющихся запросах армии, несмотря на свои недостатки они очень хорошо подходили для решения, так сказать, триединой задачи «мощность – вес – надежность». Особенно, что касается легких истребителей. Ведь именно на них в подавляющем большинстве такие движки стояли.

Более крупные и тяжелые самолеты продолжали летать, используя традиционные рядные движки.

Однако авиация развивалась бурными темпами. Требовалась все большая мощность двигателей. Для стационарных рядных это достигалось путем увеличения максимального количества оборотов. Возможности совершенствования в этом направлении были. Улучшались системы зажигания и газораспределения, принципы образования топливовоздушной смеси. Применялись все более совершенные материалы.

Это позволило к концу Первой Мировой войны поднять максимальную величину оборотов стационарного двигателя с 1200 до 2000 об/мин.

Однако, для ротационного двигателя этот было невозможно. Организовать правильное смесеобразование было нельзя. Все приходилось делать «на глазок», поэтому расход топлива (как и масла) был, мягко говоря, немаленьким 🙂 (в том числе, кстати, из-за постоянной работы на больших оборотах).

Какие-либо внешние регулировочные работы на двигателе, пока он находится в запущенном состоянии само собой были невозможны.

Повысить частоту вращения тоже не получалось, потому что сопротивление воздуха быстро вращающемуся блоку цилиндров было достаточно большим. Более того, при увеличении скорости вращения, сопротивление росло еще быстрее. Ведь, как известно, скоростной напор пропорционален квадрату скорости ( ρV2/2, где ρ – плотность воздуха, V – скорость потока). То есть если скорость просто растет, то сопротивление растет в квадрате (примерно :-)).

При попытках на некоторых моделях двигателей начала войны поднять обороты с 1200 об/мин до 1400 об/мин сопротивление поднималось на 38%. То есть получалось, что возросшая мощность двигателя больше тратилась на преодоление сопротивления, чем на создание полезной тяги воздушного винта.

Немецкой фирмой Siemens AG была сделана попытка обойти эту проблему с другой стороны. Был выполнен 11-цилиндровый двигатель так называемой биротативной схемы (наименование Siemens-Halske Sh.III ). В нем блок цилиндров вращался в одну сторону с частотой 900 об/мин., а вал (ранее неподвижный) в другую с той же частотой. Суммарная относительная частота составила 1800 об/мин. Это позволило достичь мощности в 170 л.с.

Биротативный двигатель Siemens-Halske Sh.III .

Истребитель Siemens-Schuckert D.IV .

Истребитель Siemens-Schuckert D.IV в берлинском музее.

Этот двигатель имел меньшее сопротивление воздуху при вращении и меньший крутящий момент, мешающий управлению. Устанавливался на истребителе Siemens-Schuckert D.IV , который по мнению многих специалистов стал одним из лучших маневренных истребителей времен войны. Однако производиться начал поздно и сделан был в небольшом количестве экземпляров.

Существующее положение Siemens-Halske Sh.III не поправил и не смог опять поднять ротативные двигатели на должную высоту.

Недостатков у них, как видите, хватало. Ко всему прочему могу еще добавить, что движки эти были достаточно дороги. Ведь из-за большой быстро вращающейся массы все детали двигателя должны были быть хорошо отбалансированы и четко подогнаны. Плюс сами материалы были недешевы. Это приводило к тому, что, например, двигатель Monosoupape по ценам 1916 года стоил порядка 4000$ (что в переводе на курс года 2000-го составляет примерно 65000$). Это при том, что в движке-то, вобщем-то, по нынешним понятиям :-), ничего особенного-то нет.

Ко всему прочему моторесурс всех таких двигателей был невысок (вплоть до 10-ти часов между ремонтами) и менять их приходилось часто, несмотря на высокую стоимость.

Все эти недостатки копились и в конце концов чаша оказалась переполнена. Ротативный двигатель широко использовался и совершенствовался (по мере возможности) вплоть до конца войны. Самолеты с такими движками некоторое время использовались во время гражданской войны в России и иностранной интервенции. Но в целом их популярность быстро пошла на спад.

Совершенствование науки и производства привели к тому, что на сцену уверенно вышел последователь ротативного двигателя – радиальный или звездообразный двигатель с воздушным охлаждением, который не сходит с нее и по сей день, работая, между прочим, в содружестве с рядным поршневым авиационным двигателем с жидкостным охлаждением.

Ротативный двигатель, оставив яркий след в истории авиации, занимает теперь почетное место в музеях и на исторических выставках.

На этом заканчиваю :-). В заключение как всегда кое-какое интересное видео. Первый ролик — запуск восстановленного двигателя Гном 1918 года выпуска. Далее три ролика о работе двигателя и полетах восстановленного Sopwith Camel F.1, а также Fokker Dr.I  (на заднем плане :-)). Интересного вам просмотра и до встречи…

P.S. Один из моих читателей (Александр) совершенно справедливо указал мне на то, что в ролике, где вместе с Сопвичем летает современная реплика германского триплана, движок у этого триплана не ротативный. Абсолютно верно. Я, увлекшись Сопвичем, не обратил на это внимание :-). Прошу прощения у читателей и помещаю ролик (и фото), где в полете современная реплика Фоккера с настоящим ротативным движком. Самолет здесь классно показан :-)…

Фотографии кликабельны.

No related posts.

Ротативный двигатель — это… Что такое Ротативный двигатель?

  • М-2 (двигатель) — У этого термина существуют и другие значения, см. M2. М 2 Производитель: ГАЗ №2 Годы производства: 1919 1927 Тип: 9 цилиндровый звездообразный ротативный четырёхтактный Технические характеристики Объём: 15,07 л Ход поршня: 170 мм Количество… …   Википедия

  • Nieuport N.11 — [1915] Лётно технические характеристики • Двигатель • Авиационное артиллерийское оружие • Авиационные средства поражения • Классификаторы • Факты • Использование в иностранных ВВС • Модификации • Галерея …   Военная энциклопедия

  • Конфигурация двигателя — Три типа двигателей: а  однорядный двигатель, b  V образный двигатель, с  VR двигатель Конфигурация двигателя внутреннего сгорания  это инженерный термин, обозначающий расположение главных компонентов поршневого двигателя… …   Википедия

  • Caudron G.3 — [1914] Лётно технические характеристики • Двигатель • Авиационное артиллерийское оружие • Авиационные средства поражения • Классификаторы • Факты • Использование в иностранных ВВС • Модификации • Галерея …   Военная энциклопедия

  • Sopwith Camel — У этого термина существуют и другие значения, см. Sopwith. Sopwith 2F.1 Camel …   Википедия

  • Корню, Поль — Поль Корню Paul Cornu …   Википедия

  • Nieuport N.24bis — [1917] Лётно технические характеристики • Двигатель • Авиационное артиллерийское оружие • Авиационные средства поражения • Классификаторы • Факты • Использование в иностранных ВВС • Модификации • Галерея …   Военная энциклопедия

  • Sopwith 7F.1 «Snipe» — Sopwith 7F.1 «Snipe» [1918] Лётно технические характеристики • Двигатель • Авиационное артиллерийское оружие • Авиационные средства поражения • Классификаторы • Факты • Использование в иностранных ВВС • Модификации • Галерея …   Военная энциклопедия

  • Morane-Saulnier P «Parasol» — Morane Saulnier P «Parasol» [1916] Лётно технические характеристики • Двигатель • Авиационное артиллерийское оружие • Авиационные средства поражения • Классификаторы • Факты • Использование в иностранных ВВС • Модификации • Галерея …   Военная энциклопедия

  • Нестеров, Пётр Николаевич — В Википедии есть статьи о других людях с такой фамилией, см. Нестеров. Пётр Николаевич Нестеров …   Википедия

  • Ротативный двигатель — Энциклопедия журнала «За рулем»

    Этот двигатель английской фирмы «Селвуд» из Саутгемптона значительно отличается от других двигателей ротативного типа.

    Продольный разрез двигателя
    1 — впуск топлива;
    2 — стационарный вал;
    3 — ротор;
    4 — выход отработавших газов;
    5 — поршень в одном из своих конечных положений;
    6 — демонтирующаяся головка цилиндров;
    7 — ведомый вал;
    8 — впускное отверстие;
    9 — уплотнение.
    Продольный разрез двигателя показан на рисунке. Расположенный с левой стороны стационарный вал имеет уступ и в той части, которая входит в центральную камеру, соответственно меньший диаметр. На этом валу сидит наклонная кольцевая деталь (помечена густой штриховкой), имеющая двойной шариковый подшипник, на котором вращается шестилучевая крестовина; последняя связана при помощи шаровых шарниров с шестью дуговыми поршнями. Все это в сборе вращается в плоскости, наклоненной относительно вертикальной оси примерно на десять градусов. Покоящийся на двух конических роликовых подшипниках картер блока цилиндров может при этом вращаться вокруг стационарного вала; расположенный с правой стороны двигателя выходной вал жестко связан с блоком цилиндров.
    Такое устройство позволяет отдельным цилиндрам вращаться по круговой дуге, благодаря чему весь двигатель при рабочем объеме цилиндров 700 см3 представляет собой очень компактную конструкцию с соответственно небольшим весом.
    Как видно из рисунка, верхний поршень находится на правом конце своего цилиндра (тоже выполненного дугообразным), в то время как нижний поршень расположен на противоположном конце соответствующего цилиндра. Если повернуть этот узел на пол-оборота, то получается точно такая же картина, однако положение верхнего и нижнего поршней относительно их цилиндров изменится. Благодаря наклонному расположению кольцевой детали и крестовины, верхний поршень описывает при полуобороте от верхнего правого к нижнему левому концу цилиндра половину круговой дуги, в то время как нижний поршень совершает противоположное движение. Поскольку блок цилиндров вращается на своей жесткой оси, а узел крестовина-поршень несколько наклонен, то имеет место некоторое возвратно-поступательное движение поршня относительно соответствующего ему цилиндра.
    Топливо-воздушная смесь попадает в двигатель под давлением и воспламеняется попеременно у противонаправленных концов каждого отдельного цилиндра. В общей сложности имеются двенадцать камер сгорания, причем сгорание происходит соответственно в двух диаметрально расположенных камерах.
    Для получения наиболее простой в механическом отношении конструкции, при постройке первого опытного образца двигателя был избран двухтактный цикл работы, хотя возможно осуществить также и четырехтактный процесс.
    Общая конструктивная концепция нового двигателя исключает использование нижней части поршня для сжатия топлива. Приводимая клиноременной передачей воздуходувка тянет воздух через горизонтальный карбюратор и направляет топливо-воздушную смесь сквозь стационарный вал, через центральную камеру двигателя радиально к впускным каналам, расположенным во внутренних стенках цилиндров. Топливо-воздушная смесь осуществляет одновременно смазку обоих главных подшипников (коническо-роликовых), двойных шариковых подшипников крестовины, а также шарниров, которые в данном случае выполняют задачу поршневых пальцев. Выталкивание сгоревших газов осуществляется через имеющееся с наружной стороны цилиндров выходные отверстия, причем закрывание либо открывание этих каналов осуществляется возвратно-поступательно движущимися поршнями.
    Воспламенение топливо-воздушной смеси осуществляется двенадцатью, расположенными снаружи по обеим сторонам картера двигателя, запальными свечами. Их внешние отводы отделены маленьким воздушным зазором от стационарного электрода, работающего в качестве распределителя. Момент зажигания регулирует прерыватель, приводной вал которого, имеющий шесть кулачков, вращается с таким же числом оборотов, что и двигатель. На каждые шесть свечей имеется собственная катушка; они расположены по обе стороны двигателя. Выполненный из ковкой стали блок цилиндров состоит из двух половин, которые соединены друг с другом по периферии болтами. Все детали двигателя могут быть изготовлены на обычных серийных станках. Рабочий объем цилиндров двигателя равен 700 см3, диаметр цилиндра 44,75 мм. ход поршня 38,10 мм. Вес опытного образца, который в дальнейшем может быть снижен, составляет 27 кг. Для облегчения монтажа поршни (они выполнены из специального сплава и весят всего по 230 г), состоят из трех частей. Для устранения вращательного движения поршневые кольца удерживаются в пазах. Запуск двигателя осуществляется с помощью ременного шкива.
    Произведенные испытания опытного образца показали, что без нагрузки мотор равномерно работает на различных режимах оборотов. Были произведены также испытания двигателя под нагрузкой, однако, полученные с помощью тормоза результаты замера мощности не публикуются. В качестве одного из важнейших преимуществ конструкции следует назвать значительно меньший износ поршней и других деталей.
    Отсутствие кривошипного механизма, маховика, всей системы смазки, системы охлаждения с радиатором и водяной помпой, а также трамблера говорит о больших возможностях, заложенных в конструкции.

    Двигатель «Селвуд»
    1 — стационарный вал;
    2 — кольцевой кожух над соединением двух половин блока цилиндров;
    3 — электрод высокого напряжения;
    4 — выходной (ведомый) вал;
    5 — двухрядный шариковый подшипник;
    6 — крестовина;
    7 — электрод высокого напряжения.

    Вентильный реактивный электродвигатель — Википедия

    Сечение ВРД с 8 статорными и 6 роторными полюсами Сечение ВРД с 6 статорными и 4 роторными полюсами

    Вентильный реактивный электродвигатель (ВРД) — это бесколлекторная синхронная машина, на обмотки статора которой подаются импульсы напряжения управляемой частоты, создающие вращающееся магнитное поле. Вращающий момент возникает за счет стремления ротора к положению, при котором магнитный поток статора проходит по оси ротора, изготовленного из магнитомягкого материала, с наименьшим магнитным сопротивлением[1].

    Вентильные реактивные электродвигатели/генераторы имеют следующие достоинства:

    Простая конструкция

    Ротор и статор выполнены в виде пакетов листового магнитомягкого материала. На роторе ВРД отсутствуют обмотки и постоянные магниты. Фазные обмотки находятся только на статоре. Для уменьшения трудоёмкости катушки обмотки статора могут изготавливаться отдельно, а затем надеваться на полюсы статора.

    Высокая ремонтопригодность

    Простота обмотки якоря повышает ремонтопригодность ВРД/ВРГ, т.к. для ремонта достаточно сменить вышедшую из строя катушку.

    Отсутствие механического коммутатора

    Управление электромеханическим преобразователем электропривода/генератора осуществляется с помощью высокоэффективных силовых полупроводниковых элементов — IGBT или MOSFET (HEXFET) транзисторов, надёжность которых существенно превышает надёжность любых механических деталей, например: коллекторов, щёток, подшипников.

    Отсутствие постоянных магнитов

    ВРД/ВРГ не содержит постоянных магнитов ни на роторе, ни на статоре, при этом он успешно конкурирует по характеристикам с вентильными электрическими двигателями с постоянными магнитами (ВЭДПМ). В среднем, при одинаковых электрических и весогабаритных характеристиках ВРД/ВРГ имеет в 4 раза меньшую стоимость, значительно большую надёжность, более широкий диапазон частот вращения, более широкий диапазон рабочих температур. Конструктивно, по сравнению с ВЭДПМ, ВРД/ВРГ не имеет ограничения по мощности (практически, мощность ВЭДПМ ограничивается пределом около 20-40 кВТ). ВЭДПМ требуют защиты от металлической пыли, боятся перегрева и сильных электромагнитных полей, в случае короткого замыкания обмотки превращаются в самовозгорающуюся систему. Вентильные реактивные электродвигатели/генераторы свободны от всех этих недостатков.

    Малое количество меди

    На изготовление ВРД/ВРГ требуется в среднем в 2-3 раза меньше меди, чем для коллекторного электродвигателя такой же мощности, и в 1,3 раза меньше меди, чем для асинхронного электродвигателя.

    Tепловыделение происходит в основном только на статоре, при этом легко обеспечивается герметичная конструкция, воздушное или водяное охлаждение

    В рабочем режиме не требуется охлаждение ротора. Для охлаждения ВРД/ВРГ достаточно использовать наружную поверхность статора.

    Высокие массогабаритные характеристики

    В большинстве случаев ВРД/ВРГ может быть выполнен с полым ротором. Толщина спинки ротора при этом должна быть не менее половины ширины полюса. Подбором количества полюсов статора и ротора могут быть оптимизированы массогабаритные характеристики электродвигателя/генератора, его мощность при заданном моменте и диапазоне частоты вращения.

    Низкая трудоёмкость

    Простота конструкции ВРД/ВРГ снижает трудоёмкость его изготовления. В сущности, его можно изготовить даже на не специализирующемся в области электромашиностроения промышленном предприятии. Для серийного производства ВРД/ВРГ требуется обычное механическое оборудование — штампы для изготовления шихтованных сердечников статора и ротора, токарные и фрезерные станки для обработки валов и корпусных деталей. Трудоёмкие и сложные в технологическом отношении операции, например изготовление коллектора и щёток коллекторного электродвигателя или заливка клетки ротора асинхронного двигателя, здесь отсутствуют. По предварительным оценкам трудоёмкость изготовления ЭМП вентильного реактивного электродвигателя составляет на 70% меньше трудоёмкости изготовления коллекторного и на 40% меньше трудоёмкости изготовления асинхронного электродвигателя.

    Гибкость компоновки

    Простота обмотки якоря и отсутствие обмотки и магнитов на роторе обеспечивает ВРД/ВРГ высокую гибкость компоновки. Конструкция электродвигателя/генератора может быть плоской, вытянутой, обращённой, секторной, линейной. Для выпуска целого типоряда электродвигателей/генераторов с различной мощностью можно использовать один и тот же комплект штампов для вырубки ротора и статора, поскольку для увеличения мощности достаточно увеличить соответственно длину набора ротора и статора. Не составляет труда изготовление машины с расположением статора как снаружи ротора, так и наоборот, а также встраивание электроники в корпус машины. Изменение коэффициента электромагнитной редукции позволяет создавать машины для облегчённых и, напротив, тяжёлых условий работы, включая моментные двигатели. Для привода некоторых рабочих машин выгоднее иметь линейные электродвигатели с возвратно-поступательным перемещением зубцового штока (аналога ротора). В ряде случаев может быть использована давно известная, но неэффективная в случае асинхронного электродвигателя конструкция дугостаторной машины, статор которой охватывает доступную для размещения дугу окружности ротора, в качестве которого может использоваться вал с зубчатым колесом.

    Высокая надёжность

    Простота конструкции обеспечивает ВРД/ВРГ более высокую безотказность, чем безотказность других типов электрических машин. Конструктивная и электрическая независимость фазных обмоток обеспечивает работоспособность ВРД даже в случае полного замыкания полюсной катушки одной из фаз. ВРГ остаётся работоспособным даже после выхода из строя одной или двух фаз.

    Широкий диапазон частот вращения (от единиц до сотен тысяч об/мин)

    Электромагнитная редукция позволяет создавать малогабаритные “моментные” электродвигатели для приводов роботов, манипуляторов и других низкооборотных механизмов или низкооборотные высокоэффективные генераторы для ветровых или волновых электростанций. В то же время частота вращения быстроходных ВРД/ВРГ может превышать 100000 об/мин.

    Высокий КПД в широком диапазоне частот вращения

    Практически достижимый КПД вентильного реактивного электродвигателя/генератора мощностью 1 КВт может доходить до 90 % в диапазоне 5-10-кратной перестройки частоты вращения. КПД более мощных электрических машин может достигать 95-98 %.

    ВРД часто путают с синхронным реактивным электродвигателем (СРД), обмотки якоря которого питаются синусоидально изменяющимися напряжениями без обратной связи по положению ротора. СРД имеет низкий КПД, который не превышает 50 % для маломощных электродвигателей и до 70 % для мощных электрических машин.

    Импульсный характер питания ЭМП обеспечивает удобную стыковку с современной цифровой электроникой

    Поскольку ВРД/ВРГ питается (возбуждается) однополярными импульсами, для управления ЭМП требуется простой электронный коммутатор. Управляя скважностью импульсов силовых транзисторов электронного коммутатора можно плавно изменять форму импульсов тока фазных обмоток электродвигателя или генератора.

    Электронное управление электрическими и механическими характеристиками, режимом работы

    Естественная механическая характеристика ВРД/ВРГ определяется реактивным принципом действия электрической машины и близка к гиперболической форме. Основное свойство такой характеристики — постоянство мощности на валу машины — оказывается чрезвычайно полезным для электроприводов с ограниченной мощностью источника, так как при этом легко реализуется условие его неперегружаемости. Применение замкнутой системы управления с обратными связями по скорости и нагрузке позволяет получить механические характеристики любой заданной формы, включая абсолютно жёсткие (астатические), и не ведёт к какому либо усложнению системы управления, так как её процессор обладает большой избыточностью по числу входов и выходов, быстродействию и памяти. Фактически поле доступных механических характеристик непрерывным образом покрывает все четыре квадранта плоскости момент-скорость в пределах области ограничений конкретного электропривода.

    Низкая стоимость электромеханического преобразователя

    Стоимость ВРД оказывается самой низкой из всех известных конструкций электрических машин. Дорогостоящим в рассматриваемой системе электропривода можно считать электронный преобразователь, который является обязательным элементом всех современных регулируемых электроприводов. Однако, цены на изделия силовой электроники по мере развития масштабов производства имеют устойчивую тенденцию к снижению. Исключение из состава ВРД/ВРГ коммутационных аппаратов, для изготовления которых необходима непрерывно дорожающая медь, также способствует уменьшению стоимости.

    Наконец, экономическая эффективность ВРД повышается также в результате существенно меньшего расхода электроэнергии, обусловленного высоким КПД электродвигателя и применением наиболее экономичных стратегий управления в динамических режимах работы.

    Вентильные реактивные электродвигатели/генераторы имеют следующие недостатки[2]:

    низкий коэффициент мощности

    Он обусловлен значительной величиной намагничивающей составляющей тока статора.

    низкий КПД при небольших мощностях

    В реактивных двигателях мощностью в несколько десятков Вт КПД составляет 30-40%, а в двигателях мощностью до 10 Вт — не превышает 10%.

    по габаритам реактивные двигатели больше синхронных и асинхронных двигателей

    Это объясняется низким КПД, малым cos⁡(φ){\displaystyle \cos(\varphi )} и небольшой величиной реактивного момента.

    • Герасимов В. Г., Кузнецов Э. В., Николаева О. В. Электротехника и электроника. Кн. 2. Электромагнитные устройства и электрические машины. — М.: Энергоатомиздат, 1997. — 288 с. — ISBN 5-283-05005-X.
    • Кацман М. М., Юферов Ф. М. Электрические машины автоматических систем. — М.: Высшая школа, 1979. — 261 с.

     (недоступная ссылка)

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *