Стабилизатор напряжения с обратной связью: Стабилизатор напряжения | РадиоГазета — принципиальные схемы для радиолюбителей и меломанов – 9.8.3. Стабилизатор с обратной связью

Содержание

Стабилизатор напряжения | РадиоГазета — принципиальные схемы для радиолюбителей и меломанов

ssАвтор: Andy Nehan

Когда речь заходит о стабилизаторах напряжения, сразу вспоминаются трехвыводные стабилизаторы типа LM317/337 или 78ХХ и 79ХХ. Все они работают при небольших напряжениях (до 40 Вольт), имеют всего три вывода и, как следствие, простые схемы включения.

Забегая вперёд, приведу цитату из конца этой статьи:

«Если вы обычно слушаете усилители со стабилизаторами на LM317 и им подобным, то прослушивание усилителя со стабилизатором без обратной связи поначалу может вызвать у вас шок!

Для меня это было сравнимо с тем, когда я первый раз попробовал сырую рыбу.

Просто забудьте про ваши предрассудки!»

Для слежения за выходным напряжением  микросхемы LM317/LM337 и аналогичные используют обратную связь.

параметрический стабилизатор напряжения

Другой тип стабилизаторов обычно называют параллельными и часто говорят, что они не имеют обратной связи, а стабилизация напряжения происходит путем шунтирования нагрузки (из рисунка видно, что это не так и обратная связь присутствует и в этом типе стабилизаторов).

параллельный стабилизатор напряжения

У обоих типов стабилизаторов есть ряд общих черт. Оба используют усилитель сигнала ошибки

. При этом все усилители имеют конечный коэффициент усиления и ограниченную полосу пропускания. В идеале, надо использовать усилитель сигнала ошибки с постоянным усилением и фазовым сдвигом в полосе от постоянного тока и далее во всем звуковом диапазоне.

Смысл этого в том, что характеристики усилителя сигнала ошибки и цепи обратной связи определяют выходное сопротивление стабилизатора таким образом, что:

1. чем выше коэффициент усиления, тем ниже выходное сопротивление стабилизатора

2. выходное сопротивление обычно монотонно растёт с ростом частоты. Зависит от АЧХ усилителя ошибки и на практике рост может начинаться с частот 100Гц-10кГц.

На рисунке показан типичный выходной импеданс стабилизатора на микросхеме LM317:

Выходное сопротивление стабилизатора LM317

Целью моей работы было создание стабилизатора со стабильным выходным сопротивлением во всем диапазоне звуковых частот, высоким уровнем подавления пульсаций и низким уровнем шумов.

Исходя из этих требований, рассмотрим весь тракт от выпрямления до стабилизации напряжения.

Выпрямление переменного напряжения

Сегодня требования к качеству напряжения сети довольно мягки. Прибавьте к этому огромное количество потребителей с импульсными блоками питания (компьютеры, телевизоры, принтеры, DVD-проигрыватели и т.п.) и нелинейные характеристики понижающих трансформаторов. В результате форма питающего напряжения далека от синуса. В первую очередь наблюдается уплощение вершин полуволн.

На рисунке  показаны результаты измерений напряжения на выходе Ш-образного трансформатора:

спектры сетевого напряжения

Увеличение по клику

Я был удивлен, честно скажу — ожидал худшего.

Примечание главного редактора «РадиоГазеты»

: имейте ввиду, что автор живёт в Великобритании!!! В российской электросети  картина будет далеко не такая радужная.

Я использую Ш-образные трансформаторы, потому что их звук мне больше по душе. Они не так быстродействующие, как торы, но я считаю, что они дают лучшую детализацию и проработку сцены в звучании.

На предыдущем рисунке показан и спектр выходного напряжения мостового выпрямителя.

Ужасно! Даже хуже, чем на входе трансформатора.
Теперь появились гармоники частотой 2 кГц, с уровнем около 60 дБ относительно  к 50 Гц пульсациям напряжения.

Чистый вход

Я хотел получить чистое входное напряжение по максимуму очистив его от гармоник и исключив все переходные процессы. Дело в том, что все стабилизаторы имеют некоторую ёмкость между входом и выходом. Плюс

помехи могут проникнуть на выход стабилизатора через цепи обратной связи или общий провод. Потому на входе стабилизатора нам требуется иметь максимально чистый сигнал.

Звучит немного утопически? Как получить «чистое» напряжение на входе стабилизатора?
RC или LC-фильтры могут значительно снизить гармоники в выпрямленном напряжении.
А какой сигнал считать достаточно чистым?

Довольно популярны в ламповых усилителях выпрямители на кенотронах, которые в силу своих конструктивных особенностей являются несимметричными, однако же ничего…звучат эти усилители! 🙂

Чтобы получить минимальный уровень гармоник в выпрямленном напряжении я экспериментировал с одно и двухзвенными RC-фильтрами, установленными после первого фильтрующего конденсатора.

Как и ожидалось, добавление одного звена даёт наибольший прирост в качестве звучания усилителя.
Второе звено также даёт заметный вклад. Дальнейшее увеличение количества звеньев на звук существенно не влияет, а вот на массо-габаритные показатели очень.

RC-фильтр

Спектр сигнала после фильтра


Результаты измерений:

спектры сетевого напряжения

Как видно, существенно уменьшают не только верхние гармоники, но и основные пульсации также существенно затухают. Что и требовалось. К сожалению, моё оборудование не позволяет точно измерить уровень фона в присутствии сигнала. Кроме основой гармоники уровень других гармоник составил ниже 10 мВ.

Дополнительное звено в фильтре может снизить ещё на 20дБ уровень всех гармоник выше 200Гц. Но они и так уже на уровне шума стабилизатора.

Упрощенное моделирование стабилизатора на мощном FET-транзисторе показало уровень подавления низкочастотных составляющих на уровне 100дБ и 40 дБ для гармоник 100 кГц и выше.

Такие впечатляющие цифры вряд ли будут достигнуты на практике из-за паразитных ёмкостей монтажа, наводок со стороны сети и прочих негативных факторов.

Поэтому я решил считать нормальными результаты: подавление 60дБ на нижних частотах и 20дБ на высоких. Получается, что пульсации частотой 50Гц и амплитудой 100 мВ будут ослаблены до уровня 0,1мВ. Подавление ВЧ-гармоник не столь важно, так как они очень хорошо ослабляются RC-фильтрами.

Слабые сигналы

Основываясь на моем опыте, я считаю, что все неосновные (шумы, помехи, гармоники) сигналы питающей сети должны быть подавлены с достаточной степенью. Особенно это относится к высокочастотным составляющим, так как с увеличением частоты из-за паразитных емкостей между входом и выходом стабилизатора, а также ограниченной полосы пропускания усилителя сигнала ошибки, способность стабилизатора их подавлять заметно ухудшается.

Как легко заметить, резистор (или может быть индуктивность) в фильтре включены в оба провода: положительный и общий. Часто резистор (или дроссель) добавляют только в один (положительный) проводник фильтра. На результатах измерений это не сказывается.

Но это ошибка!!! Я уверен, что из-за распределенной индуктивности трансформатора помеха на одном выводе вторичной обмотки может быть больше, чем на другом. (К сожалению, моё измерительное оборудование не позволяет это проверить) Симметричная схема фильтра наиболее эффективно справится с такой помехой.

Если говорить о замене резисторов в фильтре на индуктивности, то я никогда не был доволен LC-фильтрами. На мой взгляд они замедляют атаку и снижают динамику усилителя. Это вовсе не означает, правильно посчитанный и изготовленный дроссель будет звучать плохо. Но за последние 5 лет мне не попалось таких изделий, хорошо сочетающихся с моими конструкциями.

К аналогичному результату (снижению динамики) приводит увеличение номинала резисторов фильтра. Для маломощной нагрузки я использую резисторы на 22 Ом. Для более мощной нагрузки значения резисторов следует уменьшить.

«СВЯЗЬ ВПЕРЁД»

Я разработал топологию стабилизатора без обратной связи. Считаю, что именно она отвечает моим требованиям, а после тестовых прослушиваний я заменил в своих конструкциях типовые стабилизаторы с обратной связью, несмотря на их высокие параметры.

В моей топологии сначала получается стабильное образцовое напряжение, которое через буфер подается на накапливающее устройство (конденсатор). Буфер обеспечивает постоянство выходного сопротивления стабилизатора, а конденсатор мгновенную подачу энергии усилителю при резких колебаниях тока нагрузки.

Обе топологии я смоделировал для проверки своих рассуждений.

Оказалось, что топология с обратной связью имеет чуть больший коэффициент стабилизации и ниже выходное сопротивление, которое повышается с ростом частоты.

Однако, по результатам прослушивания я отдал предпочтение топологии без обратной связи.

Базовая конфигурация

Главная задача стабилизатора — обеспечить постоянство выходного напряжения и подавление пульсаций.
Конструкция стабилизатора основана на простейшей схеме, но каждый её элемент я выбирал так, чтобы он идеально выполнял свою функцию:
стабилизаторДля максимального подавления входных шумов сопротивление резистора R должно быть максимально, а в внутреннее сопротивление источника опорного напряжения Vref как можно ниже. Да и работать формирователь опорного напряжения будет лучше, если его питать от высокоомного источника. Таким требованиям отвечает источник стабильного тока (ГСТ).

Для высоковольтного стабилизатора я использовал ГСТ на двух транзисторах, что обеспечивает большую стабильность тока при колебаниях питающего напряжения.

Для низковольтных стабилизаторов можно использовать аналогичную схему или просто одиночный диод.

Для высоковольтных стабилизаторов я выбрал значение тока ГСТ около 5мА. Для низковольтных стабилизаторов можно выбрать значение поменьше.

Микросхеме TL431 для нормальной работы требуется минимум 2 мА.

Важное замечание: ГСТ на двух транзисторах может иногда возбуждаться, если использовать высокочастотные транзисторы. Поэтому я выбрал транзисторы  MJ340/350 которые, как показывает мой опыт, работают стабильно.

Стабилитроны довольно шумные и кроме того имеют плохой температурный коэффициент. Выходное напряжение при их использовании будет меняться в зависимости от температуры окружающей среды, а если в вашем усилителе активная вентиляция, то тем более. Кроме того, стабильность их внутреннего сопротивления тоже оставляет желать лучшего.

Вместо них я использовал TL431 в качестве источника опорного напряжения, так как их шумовые характеристики весьма достойны, они имеют низкое выходное сопротивление и довольно широкий диапазон выходных напряжений, которое устанавливается с помощью простого делителя.

Стабилизатор напряжения для цепей накала.

Буферным элементом стабилизатора может быть как биполярный так и полевой транзистор.  На практике я использовал полевые транзисторы, с высокой крутизной, номинальной мощностью и высоким рабочим напряжением.  Надежность была превосходной!

Теплоотвод для буферного транзистора требуется как для низковольтного, так и в случае высоковольтного стабилизатора.

Конденсатор в цепи TL431 Дополнительно снижает уровень шума.

низковольтный стабилизатор напряжения

увеличение по клику

Недостатком схемы можно считать необходимость подстройки выходного напряжения при замене ламп, так как из-за конструктивных особенностей потребление по цепям накала у разных ламп отличается.

Но настоящего аудиофила это не остановит!

Высоковольтный стабилизатор напряжения

Так как максимальное выходное напряжение микросхемы TL431 составляет всего 30В, то для получения больших значений выходного напряжения стабилизатора используется полевой транзистор, включенный как умножитель. Его коэффициент усиления равен отношению суммы резисторов 330кОм и 270 кОм к резистору в 33кОм. При указанных номиналах усиление равно 15, т.е. максимальное выходное напряжение схемы составляет порядка 450В.

Высоковольтный стабилизатор напряженияИсточник тока на транзисторах MJE350 питает источник образцового напряжения током в 5мА, значение которого устанавливается резистором 150R.
В остальном работа схемы аналогична предыдущей.

Следует обратить внимание на качество конденсаторов. Они должны быть низкоимпедансными и быстрыми. К примеру, плёночные конденсаторы фирмы WIMA типа FKP1 отвечают всем этим требованиям.

Кстати, так как схема не обеспечивает плавную подачу анодного напряжения (или задержку включения) до прогрева ламп, для решения это проблемы можно использовать модуль, описанный здесь.

Стабилизатор напряжения отрицательной полярности

Понятно, что для отрицательной полярности напряжения схема должна претерпеть изменения, так как для микросхемы TL431 нет комплементарного аналога.

Тем не менее, я так же использовал TL431, но в связке с составным транзистором (Дарлингтон):

Стабилизатор отрицательного напряжения

Этот стабилизатор обычно используется для питания вспомогательных цепей, к примеру, катодных источников стабильного тока. Потому образцовые параметры здесь не нужны и усложнять схему я не стал.

Буфер

После рассмотрения стабилизаторов цепей накала и высоковольтного стабилизатора, я предлагаю вашему вниманию схему простого высоковольтного буфера:

Буфер питания

Его функция в обеспечении постоянного выходного сопротивления и подавление пульсация и помех по питанию. Если его подключить после обычного стабилизатора, то все негативные факторы от обратной связи в источнике питания можно существенно снизить.

Выходное сопротивление такого буфера обратно пропорционально крутизне транзистора и получается достаточно низким. Оно также постоянно в звуковом диапазоне частот.

Большую роль для качества звучания играет выбор конденсаторов!!!

Кстати, я обнаружил, что параллельное соединение конденсаторов не добавляет качества звучания. К примеру, один конденсатор на 20 мкФ звучит лучше, чем параллельное соединение двух конденсаторов на 10 мкФ того же производителя.

Конструкция.

Конструкция таких стабилизаторов особенностей не имеет. При ограничениях в размерах вы можете использовать двухсторонний монтаж. В этом случае одна сторона платы должны быть заземлена. В моих опытах заземление одной стороны платы давало значительный прирост в качестве звучания!

Подобные стабилизаторы я эксплуатирую в своих конструкциях уже около пяти лет и они не доставляют мне проблем ни с качеством звучания, ни с надёжностью.

Прослушивание.

Если вы обычно слушаете усилители со стабилизаторами на LM317 и им подобным, то прослушивание усилителя со стабилизатором без обратной связи поначалу может вызвать у вас шок!

Первое, что вас удивит — кажущаяся потеря динамики. Я считаю, что LM317 добавляет «лишней скорости звуку», искажая тем самым истинное звучание фонограммы. Закрытое прослушивание показало, что стабилизаторы без ОС удаляют  из звука весь мусор, который привносит LM317.

Потратьте немного времени на привыкание к новому звуку. На это уйдет не больше часа. Но я уверен, что вы будете восхищенны конечным результатом.

Для меня это было сравнимо с тем, когда я первый раз попробовал сырую рыбу.

Просто забудьте про ваши предрассудки!

Теперь немного сравнительных тестов. Я сравнивал стабилизатор на LM317, на лампах и стабилизатор без обратной связи.

1. LM317 как стабилизатор цепей накала и LM317 с двухзвенным фильтром помех. Последний вариант дает более детальный звук.

2. LM371 как стабилизатор цепей накала против безоосного стабилизатора. Второй вариант дает большую динамику и повышает детальность в верхнем диапазоне, что приводит к расширению стереобазы.

3. Выпрямитель на кенотроне и стабилизатор на лампах против безоосного стабилизатора анодного напряжения. Второй вариант даёт в звучании большую динамику и детальность. Ламповый стабилизатор дал более «жирный» звук.

Для получения максимального эффекта необходимо использовать для питания каждой лампы отдельный стабилизатор. Это несколько удорожает, усложняет и утяжеляет конструкцию. Но, поверьте мне, оно того стоит!

Кроме этого я провел много сравнительных прослушиваний для конденсаторов. В результате я остановился на пленочных конденсаторах фирмы WIMA. Я услышал четкие различия в звучании между плёночными и электролитическими конденсаторами. Пленочные гораздо предпочтительнее.

В своей системе я могу на слух отличить какие используются конденсаторы — пленочные или электролитические даже в цепях накала ламп.

Если вы хотите получить достойный результат, будьте готовы использовать качественные материалы!

Статья подготовлена по материалам журнала AudoiXpress.

Удачного творчества!

Замечание от главного редактора «РАДИОГАЗЕТЫ»: мнение редакции может частично или полностью не совпадать с мнением авторов статей.

Так как приходят вопросы по реализации описанных схем на доступных элементах, для примера привожу схему собранную и опробованную в работе.

стабилизатор напряжения

Здесь интегральный источник тока J310 заменён на более доступную микросхему LM317L, включенную по схеме стабилизатора тока. Можно использовать и источники тока на полевых транзисторах.

Резистор R3 задаёт выходное напряжение (подбирается). Качество стабилизации этой схемы сильно зависит от параметров транзистора Т1. Сюда надо выбрать транзистор с максимальной крутизной и минимальным сопротивлением открытого канала. Отлично показал себя  CEP50N06. Из более доступных стоит попробовать IRFZ44.

Важно иметь в виду, что управляющее напряжение на транзисторе порядка 3,5-4В и для нормальной работы источника тока необходимо напряжение около 3,5В. Поэтому разница между входным и выходным напряжениями такого стабилизатора должна быть не менее 8В! Это несколько снижает КПД этой схемы и при больших токах нагрузки требует использования радиаторов приличных размеров. Настоящего аудиофила такие трудности не остановят 🙂

Похожие статьи:


9.8.3. Стабилизатор с обратной связью

ГЛАВА 9. НЕЛИНЕЙНЫЕ ЦЕПИ ПЕРЕМЕННОГО ТОКА

9.8. Феррорезонансные стабилизаторы напряжения

Рис.9.35

Рис. 9.36

Выходная вольт-амперная характеристика U2 (I ) аналогична представленной на рис. 9.28. Входное напряжение U1 складывается из выходного и напряжения на линейной индуктивной катушке:

U1 =U2 +UL1 .

Использование индуктивных катушек с взаимной индуктивностью улучшает качество стабилизации. Схема замещения стабилизатора представлена на рис. 9.37.

Принцип стабилизации поясняет рис. 9.38, на котором представлены входная и выходная вольт-амперные характеристики.

 Теоретические основы электротехники. Учеб. пособие

-266-

ГЛАВА 9. НЕЛИНЕЙНЫЕ ЦЕПИ ПЕРЕМЕННОГО ТОКА

9.8. Феррорезонансные стабилизаторы напряжения

Рис.9.37

Рис. 9.38

Зависимость U12 (I ) аналогична представленной на рис. 9.28. Входное

напряжение U1 =U12 +UL1 . Выходное напряжение U2 =U12 −UM . Очевидно, что в такой схеме можно добиться очень высокой степени стабилизации.

 Теоретические основы электротехники. Учеб. пособие

-267-

Компенсационные стабилизаторы напряжения. | HomeElectronics

Доброго всем времени суток! Сегодняшний мой пост продолжает рассказ о линейных стабилизаторах напряжения. Расскажу вам о компенсационных стабилизаторах напряжения (или сокращённо КСН).

Компенсационный стабилизатор напряжения, по сути, является устройством, в котором автоматически происходит регулирование выходной величины, то есть он поддерживает напряжение на нагрузке в заданных пределах при изменении входного напряжения и выходного тока. По сравнению с параметрическими компенсационные стабилизаторы отличаются большими выходными токами, меньшими выходными сопротивлениями, большими коэффициентами стабилизации.

Для сборки радиоэлектронного устройства можно преобрески DIY KIT набор по ссылке.

Компенсационные стабилизаторы бывают двух типов: параллельными и последовательными. Структурные схемы компенсационных стабилизаторов показаны ниже.


Последовательный КСН.Функциональная схемаПоследовательный КСН.Функциональная схема
Компенсационный стабилизатор напряжения последовательного типа 
Параллельный КСН.Функциональная схемаПараллельный КСН.Функциональная схема
Компенсационный стабилизатор напряжения параллельного типа

Основными элементами всех компенсационных стабилизаторов напряжения являются регулирующий элемент Р; источник опорного (эталонного) напряжения И; элемент сравнения ЭС; усилитель постоянного тока У.

Компенсационный стабилизатор последовательного типа

В стабилизаторах последовательного типа регулирующий элемент включён последовательно с источником входного напряжения U0 и нагрузкой RH. Если по некоторым причинам напряжение на выходе U1 отклонилось от своего номинального значения, то разность опорного и выходного напряжений изменяется. Это напряжение усиливается и воздействует на регулирующий элемент. При этом сопротивление регулирующего элемента автоматически меняется и напряжение U0 распределится между Р и RH таким образом, чтобы компенсировать произошедшие изменения напряжения на нагрузке.

Регулирующий элемент в компенсационных стабилизаторах напряжения выполняется, как правило, на транзисторах. Выбирая которые исходят из значений коэффициента передачи тока h21e, напряжения насыщения между коллектором и эмиттером UКЭнас.

Схемы элементов сравнения и усилители постоянного тока очень часто совмещают и выполняются на обычных усилителях, дифференциальных усилителях или операционных усилителях.

Рассмотрим схему компенсационного стабилизатора напряжения последовательного типа.


Компенсационный стабилизатор напряжения с последовательно включенным транзисторомКомпенсационный стабилизатор напряжения с последовательно включенным транзистором
Схема простого компенсационного стабилизатора напряжения последовательного типа

В этой схеме транзистор VT1 выполняет функции регулирующего элемента, транзистор VT2 является одновременно сравнивающим и усилительным элементом, а стабилитрон VD1 используется в качестве источника опорного напряжения. Напряжение между базой и эмиттером транзистора VT2 равно разности напряжений UОП и UРЕГ. Если по какой-либо причине напряжение на нагрузке возрастает, то увеличивается напряжение UРЕГ, которое приложено в прямом направлении к эмиттерному переходу транзистора VT2. Вследствие этого возрастут эмиттерный и коллекторный токи данного транзистора. Проходя по сопротивлению R1, коллекторный ток транзистора VT2 создаст на нем падение напряжения, которое по своей полярности является обратным для эмиттерного перехода транзистора VT1. Эмиттерный и коллекторные токи этого транзистора уменьшатся, что приведёт к восстановлению номинального напряжения на нагрузке. Точно так же можно проследить изменения токов при уменьшении напряжения на нагрузке.

Ступенчатую регулировку выходного напряжения можно осуществить, используя опорное напряжение, снимаемое с цепочки последовательно включённых стабилитронов. Плавная регулировка обычно производится с помощью делителя напряжения R3, R4, R5, включённого в выходную цепь стабилизатора.

Если пренебречь падением напряжения на эмиттерном переходе транзистора VT2, то выходное напряжение стабилизатора


Компенсационный стабилизатор напряжения с последовательно включенным транзисторомКомпенсационный стабилизатор напряжения с последовательно включенным транзистором

где R4’ и R4’’ соответственно верхняя и нижняя по схеме часть резистора R4.

Улучшение параметров стабилизатора

Схему простого компенсационного стабилизатора напряжения можно улучшить, заменив резистор R1, который осуществляет питание транзистора VT2, на схему стабилизатора тока. Такой способ питания позволяет существенно повысить стабильность работы усилителя постоянного тока.

В тех случаях, когда требуется высокая температурная стабильность Компенсационного стабилизатора напряжения и малый временной дрейф (особенно при низких выходных напряжениях), применяют схемы дифференциальных усилителей. Для повышения качества выходного напряжения в усилителях постоянного тока стабилизатора применяются операционные усилители, которые обладают большим коэффициентом усиления и малым температурным уходом. Питание операционного усилителя может осуществляться непосредственно от выходного напряжения стабилизатора.


Стабилизатор токаСтабилизатор тока
Схема стабилизатора тока. Подключение выводов: 1 – к коллектору VT1, вывод 2 – к коллектору VT. 
Дифференциальный усилительДифференциальный усилитель
Схема дифференциального усилителя. Подключение выводов: 1 – к эмиттеру VT1, 2 – к базе VT1, 3 – к катоду стабилитрона VD1, 4 – к аноду стабилитрона VD1, 5 – к делителю напряжения.

Расчёт последовательного стабилизатора

Пример расчёта простого компенсационного стабилизатора напряжения последовательного типа

Начальные условия: входное напряжение U0 = 24 В, нестабильность входного напряжения ΔU0 = ± 2 В, максимальный ток нагрузки IНmax = 1,5 А, коэффициент стабилизации КСТ ≥ 103. Предусмотреть плавную регулировку выходного напряжения в пределах от UНmin = 12 В до UНmax = 16 В.

1. Определим максимальное напряжение коллектор – эмиттер регулирующего транзистора VT1:

Дифференциальный усилительДифференциальный усилитель

2. Определим максимальную мощность, рассеиваемую на транзисторе VT1:

Дифференциальный усилительДифференциальный усилитель

3. По данным расчёта выбираем транзистор VT1, который удовлетворяет условиям:

Дифференциальный усилительДифференциальный усилитель

Этим условиям удовлетворяет транзистор типа П216В с параметрами: UCEmax = 35 В, IC max = 7,5 А, PC max = 24 Вт, h21e = 30.

4. Для создания опорного напряжения UОП выберем стабилитрон типа Д814А с параметрами UСТ = 8 В, IСТ = 20 мА, rDIF = 6 Ом.

5. Определим максимальное напряжение коллектор – эмиттер усилительного транзистора VT2:

Дифференциальный усилительДифференциальный усилитель

6. Исходя из условия UCE2max < UCE max выбираем в качестве усилительного элемента транзистор типа П416 с h21e = 90 … 250.

7. Полагая, что IK2 ≈ IЕ2 = 10 мА < IC max, найдём сопротивление резистора R2:


Дифференциальный усилительДифференциальный усилитель

8. Учитывая, что IR1 = IC(VT2) + IB(VT1), IB(VT1) = IHmax / (1 + h21e(VT1)) = 1,5/(1 + 30) ≈ 48 mA, определим сопротивление R1:

Дифференциальный усилительДифференциальный усилитель

9. Определим сопротивления резисторов R3, R4, R5. Условимся считать, что если движок потенциометра R4 стоит в крайнем верхнем положении, то выходное напряжение стабилизатора имеет заданное по условию минимальное значение UНmin. В крайнем нижнем положении движка выходное напряжение максимально. Тогда можно записать уравнения

Дифференциальный усилительДифференциальный усилитель

Полагая

Дифференциальный усилительДифференциальный усилитель

получим

Дифференциальный усилительДифференциальный усилитель

Компенсационный стабилизатор параллельного типа

В схеме параллельного стабилизатора при отклонении напряжения на выходе от номинального выделяется сигнал рассогласования, равный разности опорного и выходного напряжений. Далее он усиливается и воздействуя на регулирующий элемент, включённый параллельно нагрузке. Ток регулирующего элемента IP изменяется, на сопротивлении резистора R1 изменяется падение напряжения, а на напряжение на выходе U1 = U0 – IBXR1 = const остаётся стабильным.

Типовая схема компенсационного стабилизатора напряжения параллельного типа приведена ниже. В качестве гасящего устройства в этих стабилизаторах применяются резисторы (R1 на схеме) или при высоких требованиях с стабильности выходного напряжения стабилизатора применяется стабилизатор тока описанный выше, имеющий большое внутреннее сопротивление.


Компенсационный стабилизатор напряжения с параллельно подключённым транзисторомКомпенсационный стабилизатор напряжения с параллельно подключённым транзистором
Схема простого компенсационного стабилизатора напряжения параллельного типа

В основном расчёт элементов компенсационного стабилизатора параллельного типа производится аналогично стабилизатору последовательного типа.

Стабилизаторы параллельного типа имеют невысокий КПД и применяются сравнительно редко, в случае стабилизации повышенных напряжений и токов, а также при переменных нагрузках в отличие от стабилизаторов последовательного типа. Их недостатком является то, что при возможном резком увеличении тока нагрузки (например, при коротком замыкании на выходе) к регулирующему элементу будет прикладываться повышенное напряжение, величина которого может превысить допустимое значение. Это обстоятельство необходимо учитывать при эксплуатации стабилизатора.

Теория это хорошо, но без практического применения это просто слова.Здесь можно всё сделать своими руками.

Схема стабилизатора напряжения — простой расчёт

Чаще всего радиотехнические устройства для своего функционирования нуждаются в стабильном напряжении, не зависящем от изменений сетевого питания и от тока нагрузки. Для решения этих задач используются компенсационные и параметрические устройства стабилизации.

Параметрический стабилизатор

Его принцип работы заключается в свойствах полупроводниковых приборов. Вольтамперная характеристика полупроводника – стабилитрона показана на графике.

Во время включения стабилитрона свойства подобны характеристике простого диода на основе кремния. Если стабилитрон включить в обратном направлении, то электрический ток сначала будет расти медленно, но при достижении некоторой величины напряжения наступает пробой. Это режим, когда малый прирост напряжения создает большой ток стабилитрона. Пробойное напряжение называют напряжением стабилизации. Во избежание выхода из строя стабилитрона, течение тока ограничивают сопротивлением. При колебании тока стабилитрона от наименьшего до наибольшего значения, напряжение не изменяется.

На схеме показан делитель напряжения, который состоит из балластного сопротивления и стабилитрона. К нему параллельно подключена нагрузка. Во время изменения величины питания меняется и ток резистора. Стабилитрон берет изменения на себя: меняется ток, а напряжение остается постоянным. При изменении резистора нагрузки ток изменится, а напряжение останется постоянным.

Компенсационный стабилизатор

Прибор, рассмотренный ранее очень простой по конструкции, но дает возможность подключать питание прибора с током, который не превышает наибольшего тока стабилитрона. Вследствие этого используют приборы, стабилизирующие напряжение, и получившие название компенсационных. Они состоят из двух видов: параллельные и последовательные.

Называется прибор по методу подключения элементу регулировки. Обычно используются компенсационные стабилизаторы, относящиеся к последовательному виду. Его схема:

Элементом регулировки выступает транзистор, соединенный последовательно с нагрузкой. Напряжение выхода равняется разности значения стабилитрона и эмиттера, которое составляет несколько долей вольта, поэтому считается, что выходное напряжение равно стабилизирующему напряжению.

Рассмотренные приборы обоих типов имеют недостатки: невозможно получить точную величину напряжения выхода и производить регулировку во время работы. Если нужно создать возможность регулирования, то стабилизатор компенсационного вида изготавливают по схеме:

В этом приборе регулировка осуществляется транзистором. Основное напряжение выдает стабилитрон. Если напряжение выхода повышается, база транзистора получается отрицательной в отличие от эмиттера, транзистор откроется на большую величину и ток возрастет. Вследствие этого, напряжение отрицательного значения на коллекторе станет ниже, так же как и на транзисторе. Второй транзистор закроется, его сопротивление повысится, напряжение выводов повысится. Это приводит к снижению напряжения выхода и возвращению к бывшему значению.

При снижении напряжения выхода проходят подобные процессы. Отрегулировать точное напряжение выхода можно резистором настройки.

Стабилизаторы на микросхемах

Такие устройства в интегральном варианте имею повышенные характеристики параметров и свойств, которые отличаются от подобных приборов на полупроводниках. Также они обладают повышенной надежностью, небольшими габаритами и весом, а также небольшой стоимостью.

Последовательный стабилизатор

  • 1 – источник напряжения;
  • 2 – Элемент регулировки;
  • 3 – усилитель;
  • 4 – источник основного напряжения;
  • 5 – определитель напряжения выхода;
  • 6 – сопротивление нагрузки.

Элемент регулировки выступает в качестве изменяемого сопротивления, подключенного по последовательной схеме с нагрузкой. При колебании напряжения меняется сопротивление элемента регулировки так, что происходит компенсация таких колебаний. Воздействие на элемент регулировки производится по обратной связи, которая содержит элемент управления, источник основного напряжения и измеритель напряжения. Этот измеритель является потенциометром, с которого приходит часть напряжения выхода.

Обратная связь регулирует напряжение выхода, использующееся для нагрузки, напряжение выхода потенциометра становится равным основному напряжению. Колебания напряжения от основного создает некоторое падение напряжения на регулировке. Вследствие этого, измеряющим элементом в определенных границах можно осуществлять регулировку напряжения выхода. Если стабилизатор планируется изготовить на определенную величину напряжения, то измеряющий элемент создается внутри микросхемы с компенсацией температуры. При наличии большого интервала напряжения выхода, измеряющий элемент выполняется за микросхемой.

Параллельный стабилизатор

  • 1 – источник напряжения;
  • 2 –элемент регулирующий;
  • 3 – усилитель;
  • 4 – источник основного напряжения;
  • 5 – измерительный элемент;
  • 6 – сопротивление нагрузки.

Если сравнить схемы стабилизаторов, то прибор последовательного вида имеет повышенный КПД при неполной загрузке. Прибор параллельного вида расходует неизменную мощность от источника и выдает ее на элемент регулировки и нагрузку. Стабилизаторы параллельные рекомендуется использовать при неизменных нагрузках при полной загруженности. Стабилизатор параллельный не создает опасности при КЗ, последовательный вид при холостом ходе. При неизменной нагрузке оба прибора создают высокий КПД.

Стабилизатор на микросхеме с 3-мя выводами

Инновационные варианты схем стабилизаторов последовательного вида выполнены на 3-выводной микросхеме. Вследствие того, что есть всего лишь три вывода, их проще использовать в практическом применении, так как они вытесняют остальные виды стабилизаторов в интервале 0,1-3 ампера.

  1. U вх – необработанное напряжение входа;
  2. U вых –напряжение выхода.

Можно не использовать емкости С1 и С2, однако они позволяют оптимизировать свойства стабилизатора. Емкость С1 применяется для создание стабильности системы, емкость С2 нужна по той причине, что внезапное повышение нагрузки нельзя отследить стабилизатором. В таком случае поддержка тока осуществляется емкостью С2. Практически часто применяются микросхемы серии 7900 от компании Моторола, которые стабилизируют положительную величину напряжения, а 7900 – величину со знаком минус.

Микросхема имеет вид:

Для увеличения надежности и создания охлаждения стабилизатор монтируют на радиатор.

Стабилизаторы на транзисторах

На 1-м рисунке схема на транзисторе 2SC1061.

На выходе прибора получают 12 вольт, на напряжение выхода зависит прямо от напряжения стабилитрона. Наибольший допустимый ток 1 ампер.

При применении транзистора 2N 3055 наибольший допускаемый ток выхода можно повысить до 2 ампер. На 2-м рисунке схема стабилизатора на транзисторе 2N 3055, напряжение выхода, как и на рисунке 1 зависит от напряжения стабилитрона.

  • 6 В — напряжение выхода, R1=330, VD=6,6 вольт
  • 7,5 В — напряжение выхода, R1=270, VD = 8,2 вольт
  • 9 В — напряжение выхода, R1=180, Vd=10

На 3-м рисунке – адаптер для автомобиля – аккумуляторное напряжение в автомобиле равно 12 В. Для создания напряжения меньшего значения применяют такую схему.

Стабилизатор напряжения на ОУ | HomeElectronics

Всем доброго времени суток! В прошлой статье я рассматривал RC генераторы синусоидальных (гармонических) колебаний на ОУ. В данной статье я рассмотрю стабилизаторы напряжения, в основе которых лежат операционные усилители. Основное преимущество ОУ при использовании их в стабилизаторах напряжения является то, что ОУ обладает большим коэффициентом усиления (несколько десятков тысяч). Поэтому они позволяют получить нестабильность выходного напряжения порядка 0,001 %.

Для сборки радиоэлектронного устройства можно преобрески DIY KIT набор по ссылке.

Основная схема компенсационного стабилизатора напряжения

Большинство современной силовой электроники представлено импульсными источниками питания, которые обладают высоким КПД и небольшими габаритными размерами. Однако линейные стабилизаторы напряжения также находят своё применение, прежде всего в устройствах небольшой мощности, а также в схемах, где не желательны импульсные помехи.

Как известно линейные источники питания разделяются на последовательные и параллельные в зависимости от схемы подсоединения регулирующего элемента относительно выхода. Наибольшее распространение получили последовательные стабилизаторы, так как могут обеспечить КПД и стабилизацию больше чем параллельные, из основных достоинств которых является возможность перегрузки по току и способность выдерживать короткое замыкание.

Кроме схемы подключения регулирующего элемента, стабилизаторы напряжения классифицируются по способу регулирования выходного напряжения: параметрические и компенсационные. Работа параметрических стабилизаторов основана на нелинейных свойствах регулирующих элементах, то есть при значительном изменении тока протекающего через него падение напряжения на регулирующем элементе мало изменяется. Такие стабилизаторы применяются в схемах небольшой мощности до нескольких ватт. Наибольшее распространение получили схемы последовательных стабилизаторов компенсационного типа, структурная схема, которого представлена ниже

 Структурная схема компенсационного стабилизатора последовательного типа Структурная схема компенсационного стабилизатора последовательного типа
Структурная схема компенсационного стабилизатора последовательного типа.

В одной из статей я рассказывал о компенсационных стабилизаторах напряжения, выполненных на транзисторах, поэтому напомню принцип его работы. Схема состоит из чётырёх основных частей: источник образцового напряжения И, элемента сравнения ЭС, усилительного элемента У и регулирующего элемента Р. Элемент сравнения сравнивает выходное напряжение U1 с напряжение вырабатываемым источником образцового напряжения и выдаёт ошибку сравнения на усилительный элемент, где происходит усиление ошибки сравнения и вырабатывается управляющий сигнал для регулирующего элемента.

Довольно часто в простых схемах происходит объединение элемента сравнения и усилителя (а иногда и регулирующего элемента в слаботочных схемах) в одно устройство. В современных схемах функции элемента сравнения и усилителя выполняют на ОУ.

Схема стабилизатора напряжения на ОУ

Для построения стабилизатора напряжения используется масштабирующий усилитель на ОУ в неивертирующем включении. Схема такого стабилизатора напряжения показана ниже

Схема стабилизатора напряжения на ОУСхема стабилизатора напряжения на ОУ
Схема стабилизатора напряжения на ОУ.

Схема состоит из ОУ DA1, резисторов обратной связи R1 и R2 и источника опорного напряжения UОП. Выходное напряжение будет определяться известной формулой для неинвертирующего усилителя

09062016010906201601

Таким образом, качество стабилизатора напряжения будет определяться качеством источника опорного напряжения, так как ОУ даже с очень хорошими параметрами и высоким коэффициентом усиления не может обеспечить стабильность выходного напряжения.

Существует несколько видов источников опорного напряжения: стабилитрон, источник опорного напряжения со стабилизатором тока и интегральные стабилизаторы напряжения. Рассмотрим их по отдельности.

Использование стабилитрона в качестве источника опорного напряжения

Стабилитрон широко используется практически во всех стабилизаторах напряжения, так как имеет нелинейную вольт-амперную характеристику, что позволяет при широком изменении тока нагрузки практически оставаться стабильным выходному напряжению. Схема стабилизатора напряжения с использованием стабилитрона в качестве источника опорного напряжения показана ниже

использование стабилитрона в качестве источника опорного напряженияиспользование стабилитрона в качестве источника опорного напряжения
Схема, иллюстрирующая использование стабилитрона в качестве источника опорного напряжения.

На данной схеме опорное напряжение задаётся параметрическим стабилизатором напряжения R1VD1, что даёт удовлетворительные результаты в большинстве практических случаях. При этом величина опорного напряжения соответствует величине напряжения стабилизации стабилитрона VD1, а разность между входным напряжением стабилизатора и опорным рассеивается на резисторе R1. Номиналы элементов параметрического стабилизатора выбираются из следующих соотношений

09062016020906201602

где UCT – напряжение стабилизации стабилитрона,

IСТ – номинальный ток стабилизации стабилитрона.

Схема с использование стабилитрона в качестве источника опорного напряжения обеспечивает умеренный уровень стабилизации, составляющий доли процента (обычно 0,1…0,05%), значительно лучшие показатели обеспечиваются, если вместо гасящего резистора R1 применить стабилизатор тока.

Использование стабилизатора тока в источнике опорного напряжения

Достаточно часто стабилизаторы напряжения используются в схемах, где входящие нестабилизированное напряжение может изменяться в пределах нескольких вольт, а иногда и выше. Данное условие приводит к тому, что в схеме параметрического стабилизатора R1VD1, показанного на рисунке выше, приводит к изменению тока проходящего через стабилитрон, тем самым изменяя его напряжение стабилизации в пределах долей вольта. Для недопущения таких изменений в схему источника опорного напряжения вводят стабилизатор тока. Схема стабилизатора напряжения на ОУ со стабилизатором тока в цепи опорного напряжения приведена ниже

Стабилизатор напряжения на ОУ со стабилизатором токаСтабилизатор напряжения на ОУ со стабилизатором тока
Стабилизатор напряжения на ОУ со стабилизатором тока в цепи опорного напряжения.

В данной схеме вместо гасящего резистора параметрического стабилизатора введён стабилизатор тока R1VD1VT1R2, что позволяет свести колебания тока стабилизации стабилитрона VD2 к нескольким процентам, при колебании входящего нестабилизированного напряжения в пределах десятков процентов. В итоге коэффициент стабилизации источника опорного напряжения достигнет нескольких сотен, в то время как стабилизации обычного параметрического стабилизатора напряжения едва достигает нескольких десятков.

Ещё одним применение данной схемы является регулируемый источник опорного напряжения. Для этого достаточно заменить стабилитрон VD2 переменным резистором, что позволяет при постоянном токе, задаваемым стабилизатором тока, изменяя сопротивление переменного резистора в широких пределах регулировать опорное напряжение, тем самым регулирую выходное напряжение стабилизатора тока.

 Регулируемый стабилизатор напряжения на ОУ Регулируемый стабилизатор напряжения на ОУ
Регулируемый стабилизатор напряжения на ОУ.

Однако данная схема не может обеспечить такой же стабильности, как схемы на стабилитронах описанные выше, поэтому она применяется крайне редко.

Наибольшую стабильность позволяют получить схемы, где в качестве источников опорного напряжения применяются интегральные стабилизаторы напряжения.

Использование интегральных стабилизаторов напряжения в качестве источников опорного напряжения

Интегральные стабилизаторы напряжения, выпускаемые промышленностью в настоящее время, имеет широкую номенклатуру изделий, и характеризуются высокими техническими параметрами. Так, например, широко применяемая микросхема стабилизатора напряжений серии КР142ЕН выпускаются на различные стабилизируемые напряжения от 5 до 30 В, имеют коэффициент нестабильности по напряжения не менее 0,1 %/В, а коэффициент сглаживания пульсаций не менее 30 дБ. Поэтому они наилучшим образом подходят в качестве источников опорного напряжения в мощных линейных стабилизаторах напряжения. Схема использования их в качестве опорных источников напряжения показана ниже

Использование интегральных стабилизаторов напряжения в качестве источника опорного напряженияИспользование интегральных стабилизаторов напряжения в качестве источника опорного напряжения
Использование интегральных стабилизаторов напряжения в качестве источника опорного напряжения.

Согласно технической документации микросхемы типа КР142ЕНхх на вход и выход необходимо включить конденсаторы: С1 ≥ 2,2 мкФ, С2 ≥ 1 мкФ.

При использовании интегральных стабилизаторов достаточно просто реализовать регулируемый стабилизатор напряжения, для этого достаточно поставить на выходе источника опорного напряжения переменный резистор, со среднего отвода которого снимать напряжение на операционный усилитель

Регулируемый стабилизатор напряжения с интегральным стабилизатором в качестве опорного напряженияРегулируемый стабилизатор напряжения с интегральным стабилизатором в качестве опорного напряжения
Регулируемый стабилизатор напряжения с интегральным стабилизатором в качестве опорного напряжения.

Вышеописанные схемы стабилизаторов напряжения на ОУ позволяют получить очень хорошие показатели стабильности выходного напряжения. Однако ОУ не могут обеспечить достаточно большой выходной ток (обычно несколько десятков мА), поэтому выходная мощность ограничена долями ваттами, в зависимости от выходного напряжения.

Для того чтобы такие стабилизаторы отдавали больше мощности необходимо на его выходе включить каскад усилителя мощности в виде транзистора.

Увеличение выходной мощности стабилизатора напряжения

Для того чтобы такие стабилизаторы отдавали больше мощности необходимо на его выходе включить каскад усилителя мощности в виде транзистора или нескольких параллельно-последовательных транзисторов, который иногда называют бустером выходного тока. Простейшая схема стабилизатора напряжения на ОУ с бустерным каскадом показана ниже

Стабилизатор напряжения на ОУ с выходным бустерным каскадомСтабилизатор напряжения на ОУ с выходным бустерным каскадом
Стабилизатор напряжения на ОУ с выходным бустерным каскадом.

В схеме стабилизатора напряжения для увеличения выходной мощности включён бустерный каскад на транзисторе VT1. Для ограничения максимального выходного тока ОУ введён резистор R2, который может быть определён по следующему выражению

09062016030906201603

где UКЭнас – напряжение насыщения коллектор-эмиттер бустерного транзистора,

IВЫХ.МАХ – предельный выходной ток ОУ.

Иногда возникает ситуация когда усиления одного транзистора не хватает для требуемой выходной мощности, поэтому применяют составные транзисторы по схеме Дарлингтона или Шиклаи для увеличения коэффициента усиления по току.

Схемы с одним бустерным транзистором или транзистором Дарлингтона обычно используют для получения выходных токов стабилизатора до нескольких ампер. При необходимости выходного тока большего значения выходной транзистор составляют из нескольких параллельных для увеличения отдаваемой мощности.

Теория это хорошо, но без практического применения это просто слова.Здесь можно всё сделать своими руками.

Стабилизаторы напряжения на транзисторах: схема на стабилитроне

Радиоэлектронные устройства для нормальной работы требуют питания стабилизированным напряжением. Подходы к стабилизации различаются в зависимости от предъявляемых требований, потребляемой мощности нагрузки.

Стабилизатор переменного напряжения

Стабилизатор переменного напряжения

Принцип работы стабилизатора

Принцип работы заключается в поддержании выходного напряжения в заданных узких пределах, независимо от тока нагрузки и величины входа.

По принципам построения стабилизирующие устройства делятся на следующие группы:

  • Параметрические;
  • Компенсационные;
  • Импульсные.

Параметрические стабилизаторы основаны на использовании вольт-амперной характеристики стабилизирующего элемента, где выбирается участок с малым дифференциальным сопротивлением (при изменении тока на значительную величину напряжение на элементе остается постоянным).

Вольт-амперная характеристика стабилитрона

Вольт-амперная характеристика стабилитрона

Более сложные компенсационные конструкции используют обратную связь, величина которой пропорциональна разнице выходного напряжения и эталонного.

К сведению. Импульсные устройства основаны на принципе накопления энергии в реактивном элементе – емкости или индуктивности.

Простой параметрический стабилизатор напряжения

Простейшая конструкция содержит всего два элемента:

  • Стабилизирующий диод – стабилитрон;
  • Токоограничительный резистор.

Такая схема стабилизатора имеет ограниченное применение, поскольку работает в ограниченном диапазоне сопротивления нагрузки – ток через стабилитрон должен быть больше нагрузки как минимум в 3-10 раз.

Параметрическая схема

Параметрическая схема

Стабилизатор напряжения с применением транзистора

Если дополнить конструкцию со стабилитроном эмиттерным повторителем, получится параметрический стабилизатор на транзисторе и стабилитроне с лучшими параметрами в отношении тока нагрузки.

В данной схеме напряжение на нагрузке определяется разностью между падением на стабилитроне и переходе база-эмиттер. Стабилизация происходит потому, что разность потенциалов перехода база-эмиттер слабо зависит от тока эмиттера.

Включение усилительного элемента позволяет увеличить ток нагрузки в Вst раз, где Вst – статический коэффициент передачи. Используя составной элемент (схема Дарлингтона), можно еще больше увеличить допустимый ток нагрузки до нескольких ампер.

Схема Дарлингтона

Схема Дарлингтона

Схема параметрического стабилизатора напряжения на транзисторе обладает недостатками. Некоторая нестабильность напряжения на переходе база-эмиттер ухудшает коэффициент стабилизации конструкции в целом. Снижение мощности нагрузки ниже определенного минимума вызывает повышение выходного напряжения (для кремниевых компонентов на 0.6 Вольт, поскольку ток базы становится равным нулю).

Принципы расчета характеристик

Для простейшего расчета характеристик требуются следующие данные:

  • Напряжение питания;
  • Ток нагрузки;
  • Выходное напряжение.

Порядок расчета:

  1. Исходя из выходных параметров, определяется тип стабилизирующего элемента;
  2. Выбирается ключевой элемент по критериям:
  • Коэффициент стабилизации Вst≥Iн/Iст;
  • Допустимое напряжение коллектор-эмиттер больше максимального входного;
  • Максимальный ток коллектора должен быть больше нагрузки.

Компенсационные стабилизаторы

В компенсационных стабилизаторах производится сравнение эталонного (опорного) потенциала с выходным. Разница через контур отрицательной обратной связи поступает на базу ключевого транзистора, управляя величиной его открытия.

Точность стабилизации зависит от точности формирования опорного напряжения. Так как устройство сравнения потребляет малый ток, то опорный потенциал можно сформировать при помощи параметрического стабилизатора на стабилитроне и резисторе.

Компенсационная схема

Компенсационная схема

Еще больше повысить эксплуатационные характеристики можно, используя источник тока вместо токоограничительного резистора. В качестве такого источника наиболее удобно применять полевой транзистор. Компенсационные устройства обладают хорошими характеристиками, поэтому большинство производителей элементной базы выпускает готовые модули, позволяющие создавать конструкции с минимумом элементов.

Импульсные стабилизаторы

Использование простых конструкций на транзисторах имеет недостаток – на ключевом элементе выделяется большая мощность рассеивания, которая тем больше, чем больше разница между входным и выходным параметром.

Главное отличие импульсных устройств – в том, что транзисторы работают в ключевом режиме, управляя накоплением и отдачей энергии реактивными элементами. Энергия, запасенная дросселем или конденсатором, позволяет не только стабилизировать напряжение, но и повышать его или инвертировать полярность.

Собранные на дискретных элементах импульсные преобразователи сложны в конструировании и регулировке. Сейчас выпускаются схемы, выполненные в виде интегральных микросхем, которым требуется импульсный ключ только для увеличения мощности. Устройства практически не требуют регулировки и обладают высокой надежностью.

Микросхема импульсных устройств

Микросхема импульсных устройств

Схема на составном транзисторе

Параметрический стабилизатор напряжения на транзисторе ограничивает ток нагрузки не только за счет допустимого тока ключевого элемента. Задолго до наступления момента предельного режима стабилизация ухудшается, поскольку ограничивается статическим коэффициентом передачи ключевого транзистора.

Увеличить ток нагрузки можно, применяя составные элементы, включенные по схеме Дарлингтона. В таком включении общий коэффициент передачи равняется произведениям коэффициентов обоих транзисторов. Мощные усилительные транзисторы Дарлингтона часто выпускаются в едином корпусе, не требуя дополнительных соединений.

Схема на двух транзисторах

Используя два транзистора, можно собрать схему компенсационного стабилизатора, в котором один из триодов является ключевым, а второй служит для управления обратной связью. Такая конструкция легко позволяет регулировать величину выхода. Правильный стабилизатор также должен предусматривать защиту от перегрузки.

Схема на транзисторе и стабилитроне

Подключение ключевого элемента к простейшему устройству на стабилитроне позволяет с минимальными затруднениями увеличить ток нагрузки. Применение полевого транзистора вместо биполярного позволяет уменьшить рассеиваемую мощность, снизить падение на полупроводниковых переходах, увеличивая таким образом КПД конструкции.

Важно! При использовании полевых транзисторов рука и инструмент должны быть заземлены.

Какой выбрать стабилизатор напряжения, зависит от предъявляемых требований по значению тока нагрузки, коэффициенту стабилизации, габаритам конструкции.

Во многом это зависит от личных предпочтений. Компенсационные и параметрические устройства просты для понимания, легко собираются и настраиваются. Импульсные устройства более сложные технически. Хотя существует множество готовых интегральных микросхем импульсных стабилизаторов, отсутствие четкого понимания их работы может затруднить поиск неисправностей. Выбранная с некоторым запасом по току конструкция может простоять под нагрузкой неограниченное время.

Видео

микросхема, импульсный, интегральный и простой

Содержание статьи:

Стабилизаторы напряжения предотвращают поломки оборудования и бытовой техники от колебания нагрузки. Устройство совместимо с однофазной и трехфазной сетью, подходит для квартиры и частного дома. Схема стабилизатора напряжения может понадобиться при самостоятельном подключении прибора или обустройстве электросети.

Принцип работы стабилизаторов

Различные типы стабилизаторов напряжения

Принцип функционирования зависит от типа оборудования. Для выделения общих моментов целесообразно рассмотреть конструкцию. Прибор состоит из таких элементов:

  • Система управления. Позволяет отслеживать вольтаж на выходе, доводя его до стабильного показателя 220 В. Оборудование работает с погрешностью 10-15 %.
  • Автоматический трансформатор. Имеется у релейных, симисторных, сервомоторных модификаций. Повышает или понижает номинал напряжения.
  • Инвертор. Механизмом из генератора, трансформатора и транзисторов оснащаются инверторные модели. Элементы через первичную обмотку могут пропускать либо выключать ток, формируя напряжение на выходе.
  • Защитный блок, источник вторичного питания. Имеются у моделей, рассчитанных на 220 Вольт.

Функция байпаса или транзита позволяет стабилизаторам подавать напряжение на выход до момента пресечения установленного предела.

Принцип действия релейных моделей

Релейный аппарат регулирует вольтаж посредством замыкания контактов реле. Контроль параметров осуществляется с помощью микросхемы, элементы которой сравнивают сетевое напряжение с опорным. Если показатели не совпадают, от микросхем стабилизаторов напряжения поступают сигналы на понижение или повышение обмотки.

При дешевизне и компактности релейное оборудование медленно реагирует на скачки напряжения, может кратковременно выключаться, не выдерживает перегрузки.

Погрешность устройств – 5-10 %.

Как работают сервоприводные приборы

Основные узлы сервоприводного аппарата – серводвигатель и автоматический трансформатор. Если напряжение отклонилось от нормы, поступает сигнал на переключение трансформаторных от контроллера к мотору. Сравнение показателей опорного и входного вольтажа осуществляет плата управления.

Сервоприводные стабилизаторы могут регулировать нагрузку трехфазной и однофазной сети. Они отличаются стойкостью, надежностью, исправным функционированием при перегрузке.

Точность приборов – 1 %.

Принцип работы инверторных устройств

Инверторный стабилизатор регулирует напряжение по системе двойного преобразования:

  1. Переменный ток на входе выравнивается, пропускается через конденсаторный фильтр пульсации.
  2. Выпрямленный ток подается к инвертору, трансформируется в переменный и поступает на нагрузку.

Выходное напряжение остается стабильным.

Приборы с инверторами отличаются быстротой реакции, КПД от 90%, бесперебойной и бесшумной работой в диапазоне 115-300 Вольт.

Диапазон регулирования аппарата снижается, если нагрузка увеличивается.

Особенности расчета характеристик

Чтобы установить параметрический аппарат, понадобится вычислить мощность, вольтаж на входе, ток базы транзисторов. К примеру, максимальное напряжение на выходе равняется 14 В, минимальное на выходе – 1,5 В, а максимальный ток – 1 А. Зная параметры, производится расчет:

  1. Входное напряжение. Используется формула Uвх=Uвых+3. Цифра – коэффициент падения напряжения на участке перехода от коллектора к эмиттеру.
  2. Максимальная мощность, которую рассеивает транзистор. Для подбора в пользу большей величины понадобится справочник. Применяются такие формулы: Pmax = 1.3 (Uвх-Uвых) Imax = 1.3 (17-14) = 3,9 Вт; Pmax = 1.3 (Uвх-Uвых1) Imax = 1.3 (17-1.5) = 20,15 Вт.
  3. Ток транзисторной базы. Расчеты производятся по формуле: Iб max = Imax/h31Э min. Последний показатель равен 25, поэтому 1/25 = 0,04 А.
  4. Параметры балластного тиристора. Применяется формула Rб = (Uвх-Uст)/(Iб max+Iст min )= (17-14)/(0,00133+0,005) = 474 Ом. Iст min – ток стабилизации; Uст – напряжение стабилизации, которое выдает стабилитрон.

Цифры и расчеты предоставлены для резисторов с сопротивлением 1 Ом.

Схема для компенсационного стабилизатора

Компенсационные схемы объясняют подключение с обратной связью. Сами устройства имеют точное напряжение на выходе без привязки к току нагрузки.

Последовательная схема

Компенсационный стабилизатор напряжения последовательного типа

По обозначениям из справочника можно идентифицировать:

  • регулирующий узел – Р;
  • источник эталонного номинала напряжения – И;
  • сравниваемые показатели – ЭС;
  • усилитель постоянных токов – У.

Для вычисления напряжения на выходе понадобится знать особенности работы устройства. Один транзистор будет регулировать, а второй – стабилизировать. Стабилитрон является источником опорного. Разность мощностей – напряжение на участке между эмиттером и базой.

При подаче коллекторного тока на резистор напряжение падает, имеет обратную полярность для эмиттерного узла. В результате происходит падение коллекторного и эмиттерного токов. Чтобы регулировка была плавной, для линии стабилизатора используется делитель. Ступенчатое регулирование достигается при помощи напряжения опоры стабилитрона.

Параллельная схема

Компенсационный стабилизатор напряжения параллельного типа

Если напряжение отклонилось от номинала, возникает импульс рассогласования. Это разница между показателями выхода и опоры. Поскольку узел регулировки расположен параллельно нагрузке, он усиливает сигнал. Происходит изменение тока на элементе-регуляторе, падение напряжения резистора и сохранение постоянного номинала на выходе.

Схема параметрического стабилизатора

Схема, объясняющая процесс стабилизации опорного напряжения, будет основной для параметрических моделей. Делитель напряжения прибора представляет собой балластный резистор и стабилитрон с параллельным сопротивлением нагрузки. При колебании номинала напряжения питания и токовой нагрузки стабилизируется напряжение.

Если данный показатель возрастает на входе, увеличивается ток, проходящий через стабилитрон и резистор. Благодаря вольт-амперным показателям номинал стабилитрона почти не меняется, как и напряжение сопротивления нагрузки. Все колебания касаются только резистора.

Специфика импульсного устройства

Простой импульсный стабилизатор напряжения

Импульсный аппарат отличается высоким КПД даже в условиях большого диапазона напряжения. Схема устройства включает ключ, энергетический накопитель и цепь управления. Элемент регулировки подключается в режиме импульса. Принцип действия прибора:

  1. От второго коллектора через второй конденсатор к базе подается положительное напряжение обратной связи.
  2. Коллектор №2 открывается после насыщения током от резистора №2.
  3. На переходе от коллектора к эмиттеру насыщение меньше, и он остается открытым.
  4. Усилитель подключается на коллектор №3 через стабилитрон №2.
  5. Подсоединение базы осуществляется к делителю.
  6. Первый стабилитрон управляет открытием/закрытием второго коллектора по сигналу от третьего.

Когда второй стабилитрон открыт, энергия накапливается в дросселе, поступая поле закрытия на нагрузку.

Стабилизаторы на микросхемах

Линейный делитель отличается подачей нестабильного напряжения на вход и снятием стабильного с плеча делителя. Выравнивание осуществляет делительное плечо, поддерживающее постоянное сопротивление. Устройства отличаются простотой конструкции, отсутствием помех в работе. Микросхемы соединяются последовательно или параллельно.

Последовательные стабилизаторы

Последовательный стабилизатор на биополярном транзисторе

Последовательные устройства характеризуются включением элемента регулировки параллельно с нагрузкой. Существует две модификации:

  • С биполярным транзистором. Не имеет авторегулируемого контура, стабильность напряжения зависит от величины тока и температурных показателей. В качестве токового усилителя используется эмиттерный повторитель или транзистор составного типа.
  • С контуром авторегулировки. Компенсационный прибор работает по принципу выравнивания выходного и опорного номинала. Часть напряжения на выходе снимается с резистивного делителя, а потом сравнивается при помощи стабилитрона. Контуром регулирования является петля обратной связи со сдвигом по фазе 180 градусов. Стабилизация тока производится резистором или источником питания.

Самые популярные последовательные стабилизаторы – интегральные.

Специфика параллельного стабилизатора

Простой мощный параллельный стабилизатор на транзисторах

Параллельный прибор отличается включением элемента регулировки параллельно подаваемой нагрузке. Стабилитрон используется полупроводникового или газоразрядного типа. Схема востребована для регулирования сложных устройств.

Снижение нестабильного показателя напряжения на входе осуществляется при помощи резистора. Допускается использовать двухполярный автомат с высокими показателями дифференциального сопротивления на отдельном участке.

Особенности приборов с тремя выводами

Стабилизаторы для переменного напряжения отличаются небольшими габаритами, выпускаются в пластиковом или металлическом корпусе. Они оснащаются каналами для входа, заземления и вывода. Конденсаторы прибора для уменьшения пульсаций запаиваются с двух сторон.

Напряжение на выходе составляет около 5 В, на входе – около 10 В, мощность рассеивания – 15 Вт.

Трехвыводные модификации позволяют получить вольтаж нестандартного номинала, необходимое для запитки макетов, маломощных АКБ, при починке или модернизации аппаратуры.

Алгоритм самостоятельной сборки аппарата

Для самостоятельного изготовления целесообразно использовать схему симистора – эффективного прибора. Он выравнивает номинал подаваемого тока при напряжении от 130 до 270 В. Сделать прибор можно на основе печатной платы из фольгированного текстолита. Сборка устройства осуществляется так:

  1. Подготовка магнитопровода и нескольких кабелей.
  2. Создание обмотки из провода диаметром 0,064 мм – понадобится 8669 витков.
  3. Остальные проводники диаметром 0,185 мм нужны для оставшихся обмоток. Количество витков каждой – 522.
  4. Последовательное соединение трансформаторов на 12 В.
  5. Организация 7-ми отводов. Первые 3 изготавливаются из провода диаметром 3 мм, другие – из шин с сечением 18 мм2. Так самодельный аппарат не будет нагреваться.
  6. Установка контроллерной микросхемы на платиновый теплоотвод.
  7. Монтаж симисторов и светодиодов.

Для устройства понадобится прочный корпус, прикрепленный к жесткому каркасу. Самый простой вариант – полимерные или алюминиевые пластины.

Схема подключения стабилизатора

Схема подключения стабилизатора напряжения

Ввод стабилизатора в частный дом выполняется при помощи трехжильного ВВГнг-кабеля, трехпозиционного выключателя и провода ПУГВ. Установка производится до счетчика, в отдельном или распределительном щитке:

  1. Открыть контакты, подняв лицевую крышку.
  2. Пропустить на выход и вход кабель. Фазу входа затянуть на клемме Lin, нулевой (синий) проводник – на клемме Nin, землю – на винтовой зажим с соответствующим обозначением.
  3. При отсутствии земли закрутить эту жилу под винт на корпусе прибора.
  4. Вернуть стабилизированное напряжение в общий щиток. Фаза подводится на выход Lout, ноль – к Nout, земля – к заземлению на входе.
  5. Протестировать схему в режиме без нагрузки.

Для теста отключаются все автоматы, кроме вводного и направленного на стабилизатор.

Стабилизатор, подключенный между сетью и нагрузкой, подходит для частного или дачного дома, квартиры, производства. Прибор защищает оборудование от выхода из строя, устраняет влияние на электролинию перегрузки и коротких замыканий.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *