Стабилизатор постоянного тока: Простейший стабилизатор постоянного тока – Схемы стабилизаторов тока для светодиодов на транзисторах и микросхемах

Содержание

Стабилизаторы тока

Содержание:
  1. Общее устройство и принцип работы
  2. Диодный стабилизатор тока
  3. Схемы стабилизаторов тока на КРЕН
  4. Стабилизатор тока на двух транзисторах
  5. Регулируемый стабилизатор постоянного тока
  6. Мощный импульсный стабилизатор тока
  7. Видео: Сделай сам стабилизатор на LM2576

В каждой электрической сети периодически возникают помехи, отрицательно влияющие на стандартные параметры тока и напряжения. Данная проблема успешно решается с помощью различных устройств, среди которых очень популярны и эффективны стабилизаторы тока. Они имеют различные технические характеристики, что делает возможным их использование совместно с любыми бытовыми электроприборами и оборудованием. Особые требования предъявляются к измерительному оборудованию, требующему стабильного напряжения.

Общее устройство и принцип работы стабилизаторов тока

Знание основных принципов работы стабилизаторов тока способствует наиболее эффективному использованию этих устройств. Электрические сети буквально насыщены различными помехами, негативно влияющими на работу бытовых приборов и электрооборудования. Для преодоления отрицательных воздействий используется схема простого стабилизатора напряжения и тока.

В каждом стабилизаторе имеется основной элемент – трансформатор, обеспечивающий работу всей системы. Самая простая схема включает в свой состав выпрямительный мост, соединенный с различными типами конденсаторов и резисторов. Их основными параметрами считаются индивидуальная емкость и предельное сопротивление.

Сам стабилизатор тока работает по очень простой схеме. Когда ток поступает на трансформатор, его предельная частота изменяется. На входе она будет совпадать с частотой электрической сети и составит 50 Гц. После того как будут выполнены все преобразования тока, предельная частота на выходе снизится до 30 Гц. В схеме преобразования участвуют высоковольтные выпрямители, с помощью которых определяется полярность напряжения. Конденсаторы непосредственно участвуют в стабилизации тока, а резисторы снижают помехи.

Диодный стабилизатор тока

Во многих конструкциях светильников имеются диодные стабилизаторы, более известные как стабилизаторы тока для светодиодов. Как и все типы диодов, светодиоды обладают нелинейной вольтамперной характеристикой. То есть, при изменяющемся напряжении на светодиоде, происходит непропорциональное изменение тока.

С ростом напряжения вначале наблюдается очень медленное возрастание тока, в результате, свечение светодиода отсутствует. Затем, когда напряжение достигает порогового значения, начинается излучение света и очень быстрое возрастание тока. Дальнейший рост напряжения приводит к катастрофическому увеличению тока и перегоранию светодиода. Значение порогового напряжения отражается в технических характеристиках светодиодных источников света.

Светодиоды с высокой мощностью требуют установки теплоотвода, поскольку их работа сопровождается выделением большого количества тепла. Кроме того, для них требуется и достаточно мощный стабилизатор тока. Правильная работа светодиодов также обеспечивается стабилизирующими устройствами. Это связано с сильным разбросом порогового напряжения даже у однотипных источников света. Если два таких светодиода подключить параллельно к одному источнику напряжения, по ним будет проходить ток разной величины. Разница может быть настолько существенной, что один из светодиодов сразу же сгорит.

Таким образом, не рекомендуется включение светодиодных источников света без стабилизаторов. Данные устройства устанавливают ток заданного значения без учета напряжения, приложенного к схеме. К наиболее современным приборам относится двухвыводной стабилизатор для светодиодов, применяющийся для создания недорогих решений по управлению светодиодами. В его состав входит полевой транзистор, обвязочные детали и другие радиоэлементы.

Схемы стабилизаторов тока на КРЕН

Данная схема стабильно работает с использованием таких элементов, как КР142ЕН12 или LM317. Они являются регулируемыми стабилизаторами напряжения, работающими с током до 1,5А и входным напряжением до 40В. В нормальном тепловом режиме эти устройства способны рассеивать мощность до 10Вт. Эти микросхемы обладают низким собственным потреблением, составляющим примерно 8мА. Данный показатель остается неизменным даже при изменяющемся токе, проходящем через КРЕН и измененном входном напряжении.

Элемент LM317 способен удерживать на основном резисторе постоянное напряжение, регулируемое в определенных пределах с помощью подстроечного резистора. Основной резистор с неизменным сопротивлением обеспечивает стабильность проходящего через него тока, поэтому он известен еще, как токозадающий резистор.

Стабилизатор на КРЕН отличается простотой и может использоваться в качестве электронной нагрузки, зарядки аккумуляторов и в других областях.

Стабилизатор тока на двух транзисторах

Благодаря своему простому исполнению, в электронных схемах очень часто используются стабилизаторы на двух транзисторах. Их основным недостатком считается не вполне стабильный ток в нагрузках при изменяющемся напряжении. Если же не требуется высоких токовых характеристик, то данное стабилизирующее устройство вполне сгодится для решения многих несложных задач.

Кроме двух транзисторов в схеме стабилизатора присутствует токозадающий резистор. Когда на одном из транзисторов (VT2) увеличивается ток, возрастает напряжение на токозадающем резисторе. Под действием этого напряжения (0,5-0,6В) начинает открываться другой транзистор (VT1). При открытии этого транзистора, другой транзистор – VT2 начинает закрываться. Соответственно, уменьшается и количество тока, протекающего через него.

В качестве VT2 используется биполярный транзистор, однако в случае необходимости возможно создать регулируемый стабилизатор тока на полевом транзисторе MOSFET, используемом в качестве стабилитрона. Его выбор осуществляется исходя из напряжения 8-15 вольт. Данный элемент используется при слишком высоком напряжении источника питания, под действием которого затвор в полевом транзисторе может быть пробит. Более мощные стабилитроны MOSFET рассчитаны на более высокое напряжение – 20 вольт и более. Открытие таких стабилитронов происходит при минимальном значении напряжения на затворе 2 вольта. Соответственно, происходит и увеличение напряжения, обеспечивающего нормальную работу схемы стабилизатора тока.

Регулируемый стабилизатор постоянного тока

Иногда возникает необходимость в стабилизаторах тока с возможностью регулировок в широком диапазоне. В некоторых схемах может использоваться токозадающий резистор с пониженными характеристиками. В этом случае необходимо применять усилитель ошибки, основой которого служит операционный усилитель.

С помощью одного токозадающего резистора происходит усиление напряжения в другом резисторе. Это состояние называется усиленным напряжением ошибки. С помощью опорного усилителя сравниваются параметры опорного напряжения и напряжения ошибки, после чего выполняется регулировка состояния полевого транзистора.

Для такой схемы требуется отдельное питание, которое подается к отдельному разъему. Питающее напряжение должно обеспечивать нормальную работу всех компонентов схемы и не превышать уровня, достаточного для пробоя полевого транзистора. Правильная настройка схемы требует установки ползунка переменного резистора в самое верхнее положение. С помощью подстроечного резистора выставляется максимальное значение тока. Таким образом, переменный резистор позволяет выполнять регулировку тока от нуля до максимального значения, установленного в процессе настройки.

Мощный импульсный стабилизатор тока

Широкий диапазон питающих токов и нагрузок не всегда является основным требованием к стабилизаторам. В некоторых случаях решающее значение отводится высокому коэффициенту полезного действия прибора. Эту задачу успешно решает микросхема импульсного стабилизатора тока, заменяющая компенсационные стабилизаторы. Приборы этого типа позволяют создавать высокое напряжение на нагрузке даже при наличии невысокого входного напряжения.

Кроме того, существует повышающий стабилизатор тока импульсного типа. Они используются вместе с нагрузками, питающее напряжение которых превышает входное напряжение стабилизирующего устройства. В качестве делителей выходного напряжения используются два резистора, задействованные в микросхеме, с помощью которой входное и выходное напряжение поочередно уменьшается или увеличивается.

Стабилизатор на LM2576

СТАБИЛИЗАТОР ПОСТОЯННОГО ТОКА

   Когда собирается первый блок питания, схема берётся самая простая – чтобы всё получилось наверняка. Когда удастся его запустить и получить аж целых 12 регулируемых вольт и току под пол ампера радиолюбитель проникается смыслом фразы «И будет тебе счастье!». Только счастье это длиться не очень долго и вскоре становиться совершенно очевидным, что в БП обязательно должна быть возможность регулирования силы тока на выходе. Доработкой уже имеющегося блока питания это достижимо, но несколько хлопотно – уж лучше собрать ещё один, более «продвинутый». Есть интересный вариант. К маломощному блоку питания можно изготовить приставку для регулировки тока в интервале от 20 mA и до максимума того, что он способен дать, вот по этой схеме:

Схема стабилизатора постоянного тока

Схема стабилизатора постоянного тока

   Такое устройство собрал почти год назад.

Приставка для БП - стабилизатор тока

   Токовый стабилизатор действительно нужная вещица. Например, поможет зарядить любой аккумулятор, рассчитанный на напряжение до 9 вольт включительно, причём замечу, зарядить качественно. Вот только измерительной головки у неё явно не хватает. Решаюсь на модернизацию и разбираю на составные части свою самоделку, где, пожалуй, самый значительный компонент это переменный резистор ППБ-15Е с максимальным сопротивлением 33 Ома.

 БП - стабилизатор тока

   Новый корпус сориентирован исключительно под размеры индикатора от магнитофона, который и будет выполнять функции миллиамперметра.

разборка индикатора от магнитофона

   Для этого у него «рисуется» новая шкала (выбрал ток полного отклонения стрелки в 150 mA, а можно сделать и по максимуму).

ток полного отклонения стрелки в 150 mA

      Затем на стрелочный прибор ставиться шунт. 

СТАБИЛИЗАТОР ПОСТОЯННОГО ТОКА самодельный

   Шунт сделал из нихромовой нагревательной спирали диаметром 0,5 мм. Транзистор КТ818 обязательно поставить на радиатор охлаждения.

В стабилизаторе транзистор поставить на радиатор

   Соединение (сочленение) приставки с блоком питания производиться при помощи, интегрированной в корпус импровизированной вилки, штыри которой взяты от обычной сетевой вилки, на одном из концов которых нарезана резьба М4, посредством которой и двух гаек каждый из них прикручен к корпусу.

СТАБИЛИЗАТОР ПОСТОЯННОГО ТОКА

   Итоговое изображение того, что получилось. Однозначно вышло более совершенное творение. Светодиод выполняет не только функцию индикации, но отчасти и освещения шкалы стабилизатора тока. С пожеланием успеха, Babay.

Схема стабилизатора тока

Содержание:
  1. Общее устройство и принцип работы
  2. Релейные стабилизаторы тока
  3. Симисторный стабилизатор
  4. Стабилизатор тока высокой частоты
  5. Широтно-импульсные устройства
  6. Резонансный стабилизатор тока
  7. Стабилизатор переменного тока
  8. Стабилизирующие устройства для светодиода
  9. Регулируемый стабилизатор тока
  10. Стабилизаторы постоянного тока
  11. Простой стабилизатор тока из двух транзисторов

В действующих электрических сетях постоянно присутствуют различные помехи, оказывающие негативное влияние на работу приборов и оборудования. Эффективно справиться с этой проблемой помогает схема стабилизатора тока. Стабилизирующие устройства различаются между собой по техническим характеристикам и зависят от источников питания. Если в домашних условиях стабилизация тока не является первоочередной задачей, то при использовании измерительного оборудования токовые показатели обязательно должны быть стабильными. Особой точностью отличаются устройства на полевом транзисторе. Отсутствие помех позволяет получать наиболее достоверные результаты после проведения измерений.

Общее устройство и принцип работы

Основным элементом каждого стабилизатора является трансформатор. Наиболее простая схема состоит из выпрямительного моста, соединенного с конденсаторами и резисторами. В каждой схеме применяются элементы различных типов, с индивидуальной емкостью и предельным сопротивлением.

Принцип работы стабилизатора довольно простой. При попадании тока на трансформатор, происходит изменение его предельной частоты. На входе этот параметр совпадает с частотой сети и составляет 50 Гц. После выполнения преобразования тока, значение предельной частоты на выходе будет уже 30 Гц. В процессе работы высоковольтных выпрямителей, происходит определение полярности напряжения. Стабилизация тока выполняется за счет работы конденсаторов, а снижение помех происходит с помощью резисторов. В конце концов, на выходе вновь образуется постоянное напряжение, поступающее в трансформатор с частотой, не превышающей 30 Гц.

Типы стабилизаторов тока

В соответствии с предназначением, разработано большое количество различных типов стабилизирующих устройств.

Релейные стабилизаторы тока. Их схема состоит из типовых элементов, в том числе и компенсационных конденсаторов. В этом случае установка мостовых выпрямителей производится в начале цепи. Следует учитывать и такой фактор, как наличие в стабилизаторе двух пар транзисторов. Установка первой пары выполняется перед конденсатором. За счет этого поднимается предельная частота.

В стабилизаторе такого типа значение выходного напряжения будет составлять порядка 5 ампер. Поддержка определенного уровня номинального сопротивления производится с помощью резисторов. В простых моделях используются двухканальные элементы. Они отличаются продолжительным процессом преобразования, однако у них небольшой коэффициент рассеивания.

Симисторный стабилизатор LM317. Данная модель широко используется в различных областях. Ее основным элементом служит симистор, с помощью которого в устройстве значительно возрастает предельное напряжение. Этот показатель на выходе имеет значение около 12 В. Система способна выдерживать внешнее сопротивление до 3 Ом. Повышение коэффициента сглаживания осуществляется с использованием многоканальных конденсаторов. Транзисторы открытого типа применяются только в высоковольтных устройствах.

Контроль над изменением положения осуществляется за счет изменяющегося выходного номинального тока. Стабилизатор тока LM317 может выдержать дифференциальное сопротивление в размере до 5 Ом. В случае использования измерительных приборов — это значение должно быть не менее 6 Ом. Мощный трансформатор обеспечивает режим неразрывного тока дросселя. В обычной схеме он устанавливается сразу за выпрямителем. В приемниках на 12 вольт применяется балластный тип резисторов, за счет которых снижаются колебания в цепи.

Стабилизатор тока высокой частоты. Его основным элементом является транзистор КК20, характеризующийся ускоренным процессом преобразования. Этому способствует смена полярности на выходе. Конденсаторы, задающие частоту, попарно устанавливаются в схеме. Импульсный фронт в этом случае не должен быть более 2 мкс, в противном случае это приведет к существенным динамическим потерям.

В некоторых схемах для насыщения резисторов используются мощные усилители в количестве, не меньше трех. Чтобы уменьшить тепловые потери, применяются емкостные конденсаторы. Значение скоростных характеристик ключевого транзистора полностью зависит от параметров делителя.

Широтно-импульсные стабилизаторы. У стабилизаторов этого типа довольно значительная индуктивность дросселя, за счет быстрой смены делителя. В данной схеме используются двухканальные резисторы, пропускающие ток в разных направлениях, а также емкостные конденсаторы. Все эти элементы позволяют поддерживать на выходе значение предельного сопротивления в пределах 4 Ом. Максимальная нагрузка, выдерживаемая такими стабилизаторами, составляет 3 А. Данные модели редко используются в измерительных приборах. Предельное рассеивание источников питания в этом случае должно быть не выше 5 вольт, что позволяет поддерживать нормативное значение коэффициента рассеивания.

В стабилизаторах тока этого типа ключевые транзисторы обладают не очень высокими скоростными характеристиками. Причина заключается в низкой способности резисторов выполнять блокировку тока, поступающего от выпрямителя. В результате, помехи с высокой амплитудой вызывают существенные тепловые потери. Нейтрализация свойств трансформатора снижается и приводит к спадам импульсов. Преобразование тока осуществляется лишь за счет работы балластного резистора, установленного непосредственно за выпрямительным мостом. Широтно-импульсный стабилизатор очень редко использует полупроводниковые диоды, поскольку фронт импульсов в цепи составляет не более 1 мкс.

Резонансный стабилизатор тока. Состоит из конденсаторов малой емкости и резисторов с разными сопротивлениями. Неотъемлемой частью таких усилителей являются трансформаторы. Увеличение коэффициента полезного действия прибора достигается за счет использования большого количества предохранителей. Это приводит к росту динамических характеристик резисторов. Монтаж низкочастотных транзисторов осуществляется непосредственно за выпрямителями. При условии хорошей проводимости тока, работа конденсаторов становится возможной при различных частотах.

Стабилизатор переменного тока. Как правило используется в источниках питания, напряжением до 15 вольт и является их неотъемлемой составной частью. Максимальное значение внешнего сопротивления, воспринимаемого устройствами, составляет 4 Ом. Среднее входящее напряжение переменного тока будет в пределах 13 В. В этом случае контроль над уровнем коэффициента сглаживания осуществляется с помощью конденсаторов открытого типа. Схема построения резисторов оказывает непосредственное влияние на уровень пульсации, создаваемый на выходе.

Максимальный линейный ток для таких стабилизаторов составляет 5 ампер. Соответственно, дифференциальное сопротивление будет иметь значение в 5 Ом. Величина максимально допустимой мощности рассеивания составляет в среднем 2 Вт. Это свидетельствует о серьезных проблемах стабилизаторов переменного тока с фронтом импульсов. Понижение их колебаний возможно только с помощью мостовых выпрямителей. Предохранители позволяют значительно снизить тепловые потери.

Стабилизирующие устройства для светодиода. В данном случае стабилизаторы не должны иметь слишком большую мощность. Главной задачей стабилизатора тока является максимальное снижение порога рассеивания. Для изготовления такого стабилизатора своими руками используются две основные схемы. Первый вариант выполняется с использованием преобразователей. Это позволяет добиться на всех этапах предельной частоты не более 4 Гц, значительно увеличивая тем самым производительность устройства.

Во втором случае применяются усиливающие элементы. Основной задачей является нейтрализация переменного тока. Уменьшить динамические потери возможно с помощью высоковольтных транзисторов. Излишнее насыщение элементов преодолевается конденсаторами открытого типа. Быстродействие трансформаторов обеспечивается ключевыми резисторами. Их расположение в схеме стандартное – непосредственно за выпрямительным мостом.

Регулируемый стабилизатор тока. Востребован в основном в области промышленного производства. Регулируемый стабилизатор дает возможность выполнять настройку приборов и оборудования за счет изменения тока и напряжения. Многие модели могут управляться дистанционно с помощью специальных контроллеров, смонтированных внутри стабилизатора. Для таких устройств значение предельного напряжения переменного тока составляет примерно 12 В. В этом случае уровень стабилизации должен быть не менее 14 Вт. Пороговое напряжение находится в прямой зависимости с частотностью прибора.

Чтобы изменить коэффициент сглаживания, в регулируемом стабилизаторе установлены емкостные конденсаторы. Данные устройства отличаются хорошей производительностью: максимальный ток 4 А, дифференциальное сопротивление – 6 Ом. Обеспечение неразрывного режима дросселя осуществляется трансформаторами ключевого типа. Подача напряжения на первичную обмотку производится через катод, ток на выходе блокируется в зависимости от типа конденсаторов. Предохранители, чаще всего, не участвуют в стабилизации процесса.

Стабилизаторы постоянного тока. В основу их работы заложен принцип двойного интегрирования. За этот процесс отвечают специальные преобразователи. Динамические характеристики стабилизаторов увеличиваются с помощью двухканальных транзисторов. Существенная емкость конденсаторов позволяет свести к минимуму тепловые потери. Показатели выпрямления определяются путем точных расчетов. Выходное напряжение постоянного тока в 12А соответствует максимальному предельному значению в 5 вольт, при частоте устройства 30 Гц.

Стабилизатор тока на двух транзисторах

Стабилизаторы напряжения и тока: классификация и основные параметры

Зачастую сглаживающих фильтров недостаточно для надёжного энергоснабжения телекоммуникационных и мобильных систем. Чтобы минимизировать влияние отрицательных факторов таких как колебания напряжений или частоты сети, применяются устройства под названием стабилизатор.

Для начала рассмотрим что же такое стабилизатор – это прибор, который предназначен для автоматического поддержания напряжения или тока на нагрузке с определённой точностью и уменьшения влияния дестабилизирующих факторов.

Выделим следующие дестабилизирующие факторы, которые отрицательно влияют на изменение напряжения или тока на нагрузке:

  1. колебания напряжения питания;
  2. частота тока питающей сети;
  3. температура окружающей среды;
  4. изменение потребляемой мощности на нагрузке.

На рисунке 1 представлена структурная схема работы устройства. На вход поступает дестабилизированное напряжение, с выхода получаем стабилизированное.

Рисунок 1 — структурная схема работы стабилизатора

Главным предназначением стабилизатора является ослабление выше перечисленных факторов.

Классификация

Стабилизирующие устройства можно разделить в зависимости от вида напряжения или тока протекающего через него на стабилизаторы переменного и постоянного тока или напряжения. И также их можно подразделить по типу: параметрические и компенсационные.

Параметрические стабилизаторы строятся на основе таких нелинейных элементов, как транзисторы, стабилитроны и стабисторы и т. п. Это обусловлено тем, что благодаря их характеристикам (вольт-амперных, ампер-вольтовых, ом-градусных, вебер-амперных, вольт-секундных и др.) ток или напряжения могут быть стабилизированы на определённом уровне. Более подробно будут рассмотрены в следующих статьях.

Компенсационные стабилизаторы – это устройство, которое выполнено в виде системы автоматического регулирования, или другим словом содержит цепь отрицательной обратной связи. За счёт изменения параметров регулирующего элемента посредством воздействия на него сигнала обратной связи и происходит стабилизация напряжения. Схема и принцип действия более подробно будут рассмотрены в следующих статьях.

Стабилизация тока или напряжения происходит при помощи регулирующего элемента (РЭ), который, в свою очередь, может быть расположен относительно нагрузки последовательно или параллельно. Следовательно стабилизаторы можно подразделить на схемы с последовательным включением регулирующего элемента и на схемы с параллельным включением регулирующего элемента. Пример схем с вариантом включения РЭ представлен на рисунке 2.

Рисунок 2 — Последовательное и параллельное включение регулирующего элемента

При последовательном соединении регулирующего элемента с нагрузкой, регулирование напряжения на выходе происходит за счёт изменения сопротивления в регулирующем элементе. Выходное напряжение при таком соединении будет равно Uвых=Uвх+ΔUрэ.

При параллельном соединении регулирующего элемента с нагрузкой, регулировка напряжения на выходе достигается за счёт изменения тока, протекающего через регулирующий элемент. В свою очередь, стабилизация напряжения на выходе осуществляется за счёт изменения напряжения на балластном резисторе Rб. Ток на балластном резисторе можно найти исходя из первого закона Кирхгофа: сумма сходящихся токов в одном узле равна нулю. Следовательно ток на Rб  будет равен Iб=Iрэ+Iн. Главное преимущество параллельного соединения заключается в устойчивости к перегрузкам по току и выдерживание короткого замыкания в цепи нагрузки.

Для определения какой следует применить стабилизатор стоит исходить из требований, предъявляемых к качеству питающих напряжений.

Основные параметры

Основные параметры, по которым оцениваются рассматриваемые устройства следующие: качественные, массогабаритные и энергетические. По данным параметрам можно судить о массе и удельном объёме устройства.

Качественные параметры стабилизаторов постоянного напряжения:

Коэффициент стабилизации по входному напряжению – это отношение номинального и относительного изменения напряжения на входе и выходе устройства при неизменном токе нагрузки.

где Uвх, Uвых – номинальное значение напряжения на входе и на выходе;

ΔUвх, ΔUвых – относительно изменение напряжения на входе и на выходе.

Внутреннее сопротивление стабилизатора – это отношение изменения выходного напряжения к изменению тока нагрузки при неизменном входном напряжении.

Качество стабилизации – это отношение изменения напряжения на выходе к номинальному значению на выходе. Измеряется в процентах.

Коэффициент сглаживания пульсаций – это отношение амплитуд пульсаций и номинальных напряжения на входе и выходе устройства.

Температурный коэффициент – это отношения изменения напряжения на выходе устройства от изменения температуры окружающей среды при неизменном входном напряжении и тока нагрузки.

Качественные параметры стабилизаторов постоянного тока:

Коэффициент стабилизации тока по входному напряжению – это отношение номинальных и относительных изменений напряжения на входе и тока на выходе устройства при неизменном сопротивлении нагрузки.

Где Uвх, Iн – номинальное значение входного напряжения и тока нагрузки;

ΔUвх, Δ Iн – относительно изменение входного напряжения и тока нагрузки.

Коэффициент стабилизации при изменении сопротивления нагрузки – это отношение номинального значения сопротивления и тока нагрузки к их изменению, при постоянном входном напряжении.

Где Rн, ΔRн – номинальное сопротивление нагрузки и его изменение;

ri – внутреннее сопротивление

Коэффициент пульсаций по току – это отношение амплитуды пульсаций тока к номинальному значению тока на выходе устройства.

Где Iн~ — амплитуда пульсаций тока в нагрузке

Качество стабилизации – это отношение изменения тока на выходе к номинальному значению на выходе. Измеряется в процентах.

Температурный коэффициент – это отношения изменения тока на выходе устройства от изменения температуры окружающей среды.

Массогабаритные параметры характеризуются следующими параметрами: удельный объём Pвых/Vст, Вт/дм3, и удельная массам устройства Pвых/Gст, Вт/кг, где Vст это объём, а Gст это масса устройства.

К энергетическим параметрам можно отнести нижеперечисленное.

Коэффициент полезного действия – это отношение активной мощности, на выходе к потребляемой мощности от сети.

Не стоит забывать про мощность, которая рассеивается на регулирующем элементе, это тоже немаловажный параметр.

Резюмируя всё выше написанное, нами была рассмотрена основная информация о видах и характеристиках стабилизаторов. Для более глубокого изучения воспользуйтесь соответствующей литературой. Для более надёжного закрепления материала в будущем ниже будут размещены вопросы и задачи для самопроверки.

Стабилизатор тока на полевом транзисторе

Содержание:
  1. Работа стабилизаторов тока
  2. Устройство и работа полевого транзистора
  3. Полевые транзисторы в стабилизаторах тока
  4. Видео

Современного человека в быту и на производстве окружает большое количество электротехнических приборов и оборудования. Для устойчивой, стабильной работы всей этой техники требуется бесперебойная подача электроэнергии. Однако из-за скачков сетевого напряжения, приборы довольно часто выходят из строя. Во избежание подобных ситуаций, применяются специальные устройства, в том числе и стабилизатор тока на полевом транзисторе. Его использование гарантирует нормальную работу электротехники, предотвращает аварии и поломки.

Работа стабилизаторов тока

Качественное питание всех электротехнических устройств можно гарантированно обеспечить лишь, используя стабилизатор тока. С его помощью компенсируются скачки и перепады в сети, увеличивается срок эксплуатации приборов и оборудования.

Основной функцией стабилизатора является автоматическая поддержка тока потребителя с точно заданными параметрами. Кроме скачков тока, удается компенсировать изменяющуюся мощность нагрузки и температуру окружающей среды. Например, с увеличением мощности, потребляемой оборудованием, произойдет соответствующее изменение потребляемого тока. В результате, произойдет падение напряжения на сопротивлении проводки и источника тока. То есть, с увеличением внутреннего сопротивления, будут более заметны изменения напряжения при увеличении токовой нагрузки.

В состав компенсационного стабилизатора тока с автоматической регулировкой входит цепь отрицательной обратной связи. Изменение соответствующих параметров регулирующего элемента позволяет достичь необходимой стабилизации. На элемент оказывает воздействие импульс обратной связи. Данное явление известно, как функция выходного тока. В зависимости от регулировок, стабилизаторы разделяются на непрерывные, импульсные и смешанные.

Среди множества стабилизаторов очень популярны стабилизаторы тока на полевых транзисторах. Подключение транзистора в данной схеме осуществляется последовательно сопротивлению нагрузки. Это приводит к незначительным изменениям тока нагрузки, в то время, как входное напряжение подвержено существенным изменениям.

Устройство и работа полевого транзистора

Управление полевыми транзисторами осуществляется посредством электрического поля, отсюда и появилось их название. В свою очередь электрическое поле создается под действием напряжения. Таким образом, все полевые транзисторы относятся к полупроводниковым приборам, управляемым напряжением.

Канал этих устройств открывается только с помощью напряжения. При этом, ток не протекает через входные электроды. Исключение составляет лишь незначительный ток утечки. Отсюда следует, что какие-либо затраты мощности на управление отсутствуют. Однако на практике не всегда используется статический режим, в процессе переключения транзисторов задействована некоторая частота.

В конструкцию полевого транзистора входит внутренняя переходная емкость, через которую протекает некоторое количество тока во время переключения. Поэтому для управления затрачивается незначительное количество мощности.

В состав полевого транзистора входит три электрода. Каждый из них имеет собственное название: исток, сток и затвор. На английском языке эти наименования соответственно будут выглядеть, как source, drain и gate. Канал можно сравнить с трубой, по которой движется водяной поток, соответствующий заряженным частицам. Вход потока происходит через исток. Выход заряженного потока происходит через сток. Для закрытия или открытия потока существует затвор, выполняющий функцию крана. Течение заряженных частиц возможно лишь при условии напряжения, прилагаемого между стоком и истоком. При отсутствии напряжения тока в канале также не будет.

Таким образом, чем больше значение подаваемого напряжения, тем сильнее открывается кран. Это приводит к увеличению тока в канале на участке сток-исток и уменьшению сопротивления канала. В источниках питания применяется ключевой режим работы полевых транзисторов, позволяющий полностью закрывать или открывать канал.

Полевые транзисторы в стабилизаторах тока

Стабилизаторы тока предназначены для поддержания параметров тока на определенном уровне. Благодаря этим свойствам, данные приборы успешно используются во многих электронных схемах. Чтобы понять принцип действия, следует рассмотреть некоторые теоретические вопросы.

Известно, что в идеальном источнике тока присутствует ЭДС, стремящаяся к бесконечности и бесконечно большое внутреннее сопротивление. За счет этого удается получить ток с требуемыми параметрами, независимо от сопротивления нагрузки.

Идеальный источник способен создавать ток, остающийся на одном уровне, несмотря на изменяющееся сопротивление нагрузки в диапазоне от короткого замыкания до бесконечности. Для поддержания значения тока на неизменном уровне, величина ЭДС должна изменяться, начиная от величины больше нуля и до бесконечности. Основным свойством источника, позволяющим получать стабильное значение тока, является изменение сопротивления нагрузки и ЭДС таким образом, чтобы значение тока оставалось на одном и том же уровне.

Но, на практике поддержка источником требуемого уровня тока происходит в ограниченном диапазоне напряжения, возникающего на нагрузке. Реальные источники тока используются вместе с источниками напряжения. К таким источникам относится обычная сеть на 220 вольт, а также аккумуляторы, блоки питания, генераторы, солнечные батареи, поставляющие потребителям электрическую энергию. С каждым из них может быть последовательно включен стабилизатор тока на полевом транзисторе, выход которого выполняет функцию источника тока.

Простейшая конструкция стабилизатора состоит из двухвыводного компонента, с помощью которого происходит ограничение протекающего через него тока, до необходимых параметров, устанавливаемых изготовителем. Своим внешним видом он напоминает диод малой мощности, поэтому данные приборы известны как диодные стабилизаторы тока.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *