устройство, принцип работы, виды, характеристики
Среди владельцев частных домов, дач и квартир все чаще и чаще в обиходе используется светодиодная лампа. Это самые новые виды осветительных приборов, которые привнесли принципиально новые варианты эксплуатации электрооборудования. Они относятся к категории энергосберегающих лампочек, но помимо этого обладают и другими весомыми преимуществами. Далее мы более детально разберемся в устройстве и принципах работы светодиодных ламп.
Устройство и принцип работы
Чтобы разобраться в принципиальных отличиях светодиодной лампы, как электрического оборудования, в сравнении с другими приборами, следует детально рассмотреть ее конструктивные особенности и назначение каждого из элементов.
Рис. 1. Конструкция светодиодной лампыКонструктивно led лампочка состоит из:
- Светодиодов – в старых моделях присутствовал только один кристалл, излучавший свет, однако эта технология имела ряд сложностей, поэтому современные модели включают несколько единиц или целую матрицу.
- Колбы или рассеивателя — может изготавливаться из стекла или полимера. Предназначен для боле плавного перераспределения светового потока от точечных источников в окружающее пространство.
- Стабилизатора тока или драйвера – предназначен для преобразования поступающей на контакты диодной лампочки электрической величины, не зависимо от уровня напряжения и мощности, в строго установленную величину электротока.
- Цоколя – предназначен для соединения светодиодных ламп с электрической сетью. Чаще всего используются стандартные цоколя E и G, реже бывают другие конструкции.
Дополнительно лампа содержит полимерный или металлический корпус. Однако в led светильниках может быть встроенная матрица, и она монтируется в светодиодный прожектор напрямую.
Принцип действия светодиодной лампы заключается в такой последовательности передачи электрической энергии:
- При помещении электролампы в патрон и подаче на нее переменного напряжения сети светодиодный источник получает питание.
- Как видите на рисунке 2, переменное напряжение сети в светодиодной лампе изначально поступает на выпрямительный мост, где преобразуется в выпрямленное. Конденсатор, установленный после моста дополнительно сглаживает пульсации.
- Выпрямленное напряжение переходит далее от выпрямительного устройства на микроконтроллер, контролирующий величину вырабатываемого электротока.
- Затем питание поступает на импульсный трансформатор, который и выдает электрическое напряжение непосредственно к источнику освещения.
- При достижении нужного уровня электротока происходит свечение светодиодов.
В данном примере приведен принцип действия и конструкция светодиодной лампы с гальванической развязкой. Это более дорогой, но и более надежный способ предохранить человека от поражения электротоком. На практике случаются и более дешевые светодиодные лампы, их продукция использует более дешевые платы драйвера или способы преобразования, которые не обеспечивают должного уровня безопасности и продолжительности эксплуатации.
Виды
На сегодняшний день производители светодиодных ламп предоставляют потребителям довольно широкий выбор разнообразных моделей, призванных удовлетворить потребности даже самых требовательных покупателей. Поэтому выделяют несколько параметров, по которым и различают виды светодиодных ламп:
- тип цоколя;
- форма колбы и самой лампы;
- напряжение питания;
- тип светодиодов и способ их размещения;
- световое излучение – мощность и теплота.
У светодиодных ламп часто встречается цоколь для патронов E27 – стандартный вариант, используемый в люстрах для освещения помещения и т.д. Также часто встречаются модели E14 с диаметром цоколя 14мм, их еще называют миньонами. В некоторых вариантах встречаются штырьковые цоколи G13, G5, GU10, MR – это варианты под современные софиты и специализированные плафоны в люстрах.
Рис. 3. Типы цоколейЗначительно реже встречаются светодиодные лампочки с цоколем B или H, как специализированные варианты для узкопрофильного оборудования.
Если рассматривать вопрос о форме, то можно выделить такие виды:
- грушеобразная – классический вариант, может использовать как матовый рассеиватель, так и прозрачную колбу, в некоторых моделях совмещается полупрозрачный и непрозрачный корпус;
- грибовидная – используется в точечных светильниках, так как поверхность, излучающая световой поток сравнивается с корпусом софита;
- кукуруза – длинная модель с цилиндрическим расположением светодоидов, прекрасно подходит для горизонтального расположения в плафонах, прожекторах уличного освещения и т.д.;
- свеча – декоративная светодиодная лампа, устанавливаемая в настольные лампы, ночники или подсветки.
Как частные варианты вы можете встретить и другие формы, однако здесь мы рассмотрели наиболее популярные из них.
Рис. 4. Форма светодиодных лампПо напряжению питания светодиодные лампы подразделяются на те, которые подключаются к бытовой сети 220В, и те, которым требуется низкое напряжение постоянного тока – 24В, 12В.
В зависимости от типа светодиодов, выделяют лампочки с монокристаллическими панелями, где обеспечивается точечное освещение за счет единственного кристалла. Но такие варианты сегодня редко встречаются, чаще используются 8 – 10 и более небольших кристаллов, которые могут отличаться габаритами для разных моделей. Особенно хорошо их видно на светодиодных лентах или лампах с прозрачным стеклом. Но некоторые энергосберегающие технологии используют светодиодные нити в газовой смеси.
Яркость свечения определяется мощностью светодиодной лампы, чем выше мощность, тем более ярко она будет светить. Для бытовых помещений подойдут модели от 3 до 10Вт, производственным потребуется уже около 20Вт, в уличные светильники устанавливают от 30 до 100Вт. Температуру свечения можно выбрать любую, в зависимости от поставленных задач – от теплой до холодной.
Преимущества и недостатки
Как мы уже отмечали ранее, такой тип осветительных приборов стал популярным за счет значительных преимуществ перед их ближайшими конкурентами. К преимуществам светодиодных ламп относят:
- Продолжительный срок эксплуатации – от 10 до 100 тысяч часов, в сравнении с лампочкой накаливания, которая может обеспечить только 1 тысячу часов.
- Куда более эффективная светоотдача – от 90 до 120Лм/Вт, лампы накаливания могут похвастаться лишь 5 – 8Лм/Вт, а люминесцентные светильники 25 – 50Лм/Вт.
- Обладает широкой гаммой цветовых температур, что делает их использование комфортным для любых помещений и нужд, а RGB светодиодные ленты могут выдавать несколько вариантов цвета свечения.
- Не боятся разгерметизации и нарушения целостности колбы, в отличии от устройств с нитью накаливания, галогенных ламп и других газосодержащих, будет с тем же успехом светить даже без наружного рассеивателя.
- Широкий диапазон рабочих температур – светодиодные аналоги не теряют своих характеристик в промежутке от – 60 до + 60°С.
- Устойчивы к незначительным отклонениям рабочего напряжения от номинального значения.
- Не выделяют вредных веществ, в отличии от люминесцентных ламп, которые содержат ртуть.
К недостаткам светодиодных ламп следует отнести их относительно высокую себестоимость, но она с лихвой окупается рабочими параметрами и сроком эксплуатации. Также существуют ситуации, когда лампочки накаливания нельзя или нецелесообразно менять на светодиодные модели.
Технические характеристики
Перед выбором конкретного осветительного устройства необходимо определиться с его основными параметрами. Из всего многообразия, которое вам следует учитывать, мы выделим:
- Мощность – определяет, сколько электрической энергии будет потребляться из сети при работе прибора. Показатель мощности важен как в части расчета за потребленную электроэнергию, так и в части количества получаемого света.
- Спектр излучения – теплый в пределах 2700 – 3300 К, дневной от 3500 до 6000К, холодный – от 6000К. Этот параметр указывается на упаковке светодиодной лампы.
- Коэффициент цветопередачи – на изделии маркируется буквами CRI или Ra. Показатель 100 является максимальным – это уровень естественного дневного света, чуть хуже – от 100 до 90 для рабочих зон, лабораторий и т.д. В пределах 90 – 80 обычные жилые помещения, менее 80 подойдут для коридоров, подвалов и некоторых складов.
- Угол рассеивания и тип потока
- Уровень светоотдачи – определяет эффективность каждого ватта переработанной электроэнергии по отношению к выработанному световому потоку.
Область применения
Если еще десять – двадцать лет тому назад светодиодные лампы были настоящей диковинкой, то сегодня они стали полноправными фаворитами рынка. Их можно встретить в самых различных сферах человеческой деятельности:
- В освещении открытых территорий, площадок, парков;
- Для освещения бытовых и производственных помещений;
- Создания декоративной подсветки и украшения, как помещений, так и элементов ландшафта;
- В пожароопасных зонах и особо влажных помещениях;
- В автомобилях и механизации транспортных средств;
- Для работы устройств сигнализации, телемеханики и управления.
Но и этот список не является окончательным, за счет развития и совершенствования технологий, светодиодные лампы продолжают расширять область применения.
Светодиод. Устройство, строение и принцип работы. Светодиодные лампы
Светодиод (также используется сокращение СИД — светоизлучающий диод; латинский эквивалент – LED: light-emitting diode) — это полупроводниковый прибор с электронно-дырочным р-n переходом, который продуцирует оптическое излучение, когда через него проходит электрический ток.
Принцип работы светодиода.
В основе работы Led светодиода лежит p-n-переход, так называемый электронно-дырочный переход. Работа светодиода построена на взаимодействии двух полупроводников p-типа и n-типа. P – positive, то есть положительный тип, или дырочный. N – negative, то есть отрицательный тип, или электронный. В результате пропускания электрического тока в месте соприкосновения двух полупроводников происходит переход от одного типа проводимости к другому.
Когда через полупроводники проходит электрический ток, отрицательный заряд электронов соединяются с ионами положительно заряженных дырок. В этот момент выделяется энергия, и мы видим излучение света.
Устройство светодиода.
Светодиоды имеют самые разные формы. Но самая распространенная конструкция светодиода — традиционный 5-миллиметровый корпус. У такого корпуса сверху расположена линза, а внизу рефлектор. Внутри корпуса располагается кристалл, который излучает свет при прохождении электрического тока.
Схема светодиода незамысловата: он имеет два вывода — анод и катод. На катоде как раз и расположен алюминиевый параболический рефлектор (отражатель). Он внешне выглядит, как чашеобразное углубление, на дно которого помещен кристалл. Полупроводниковый монокристалл – это основной элемент лед светодиода, в котором и происходит p-n-переход. Как правило, монокристалл имеет форму кубика размером 0,3×0,3×0,25 мм.
Кристалл соединен с анодом при помощи перемычки из золотой проволоки. Оптически прозрачный полимерный корпус являющийся одновременно фокусирующей линзой вместе с рефлектором определяют угол излучения светодиода и направленность пучка света.
Виды светодиодов, спектр и цвета.
Современные светодиоды бывают всех цветов радуги: красные, оранжевые, желтые, зеленые, синие, белые.
Свечение, которое излучает светодиод при подключении его к электрическому току, зависит не от цветовой окраски корпуса. Он зависит от материала, который используется при производстве полупроводника. Так, например, примеси алюминия, индия, гелия, фосфора вызывают свечение от красного до желтого цвета. Азот, галлий, индий придают излучаемому свету цвета от зеленого до голубого. Чтобы добиться белого свечения в кристалл добавляют люминофор, используемый для производства люминесцентных ламп.
Яркость и мощность светодиода.
Обычно светодиоды рассчитаны на силу тока в 20 мА. Производятся также, например, четырехъкристальные диоды, которые рассчитаны на 80 мА , так как в одном корпусе светодиода содержаться четыре полупроводниковых кристалла, каждый из которых потребляет 20 мА.
Логично предположить, что яркость светодиода зависит от его мощности. Чем больше мощность, тем больше яркость. Но есть ограничения для силы тока, определенные сопротивлением полупроводникового материала. Иначе может произойти электрический пробой, и лед диод может сгореть.
Светодиодные светильники нельзя подключать в электрическую сеть напрямую. Например, для подключения светодиодной ленты используются специальные устройства-трансформаторы. Правильно подобрать трансформатор вам поможет наш электрик в Королеве или наш мастер электрик в Юбилейном. Если вы живете в других городах Подмосковья, то для подключения светодиодной ленты вы можете, например, вызвать электрика в Мытищи или заказать услуги электрика в Щелково.
Основные характеристики светодиодов.
- Продолжительный ресурс работы: в зависимости от производителя и параметров от 30 000 до 100 000 часов. Для сравнения, срок службы электрических ламп накаливания составляет 1000 часов.
- Энергосберегающие технологии – для работы диода необходимо около 10% энергии, требуемой для обычной лампочки накаливания.
- Надежность и механическая прочность. Если изучить, почему перегорают электрические лампы накаливания, то можно увидеть, что одной из причин является простая вибрация. Для диода вибрация не страшна.
- Разнообразная цветовая гамма, а также выбор направления светового излучения.
- Лед светодиоды производятся из экологически чистых материалов, не содержат ртуть.
К сожалению, сегодня полки магазинов зачастую наводнены низкокачественными китайскими светодиодными лампами. И потому не всегда они являются настолько долговечными и надежными, как это заявлено производителями и номинальной технологией. Поэтому при покупке светодиодных ламп следует внимательно изучить их характеристики и отзывы. Выбирайте только качественные светодиодные светильники, и тогда они будут вас радовать долгие годы.
Если материал этой статьи был для вас интересен и полезен, поделитесь им со своими знакомыми в социальных сетях. Возможно, кому-то эта информация очень пригодится. C уважением, электрик Королёв.
Что такое светодиод (устройство, параметры, маркировка)
Светодиод (led) – это полупроводниковый элемент, в котором при прохождении электрического тока создается видимое глазу оптическое излучение. В настоящее время такие устройства используются практически в любом приборе: телефоны, бытовая техника, автомобили, светильники и многие другие. Led-элементы потребляют гораздо меньше энергии, что важно для энергосбережения.
Разные типы светодиодов.
История создания светодиода.
Она насчитывает всего чуть больше ста лет. Первое упоминание о свечении диода относится к 1907 году. Английский физик Генри Раунд заметил разноцветное излучение при течении электричества через соединения карбид кремния-металл. Такое явление получило название электролюминесценция.
Спустя почти двадцать лет в 1923 году российский ученый Олег Лосев проводил подобные эксперименты в Нижнем Новгороде. Физик обнаружил свечение на месте контакта карбида кремния и стальной проволоки. Лосев опубликовал результаты своих исследований, и обосновал, что электролюминесценция наблюдается именно на границе соприкосновения разнородных материалов. Теоретическую базу под открытие подвести не смогли, и дальнейшего развития оно не получило. Хотя Лосев предсказал использование электролюминесценции для создания маломощных и миниатюрных источников света. Физик даже придумал конструкцию светового реле, но дальше исследования не продолжились.
В 1961 году, еще через сорок лет, американские изобретатели Д. Р. Байард и Г. Питтман придумали технологию выпуска светодиодов из арсенида галлия. В 1962 году они получили патент, и начался промышленный выпуск. Однако, их led-элемент испускал инфракрасное излучение, то есть был не видим человеческому глазу.
Но в том же 1962 году американский физик Ник Холоньяк изобрел красный светодиод. В 1971 году его соотечественник Жак Панков придумал синий. А в 1972 Джордж Крафорд открыл желтый led.
Впрочем, до семидесятых годов XX века светоизлучающие диоды оставались очень дорогими. Фирма «Монсанто» первой в мире удалось организовать массовое производство led в качестве индикатора.
В семидесятых годах группе советских ученых под начальством Ж. Алферова удалось синтезировать неизвестные до этого полупроводниковые вещества. Их начали получать на предприятиях и в лабораториях. А на основе этих соединений запустили серийное изготовление светодиодов.
В 1983 году Citizen Electronics придумала и внедрила на своих предприятиях светодиоды плоской конструкции (SMD).
В девяностые годы японские ученые И. Акасаки, Х. Амано и С. Накамура придумали, как значительно удешевить производство синих led. Технологию успешно опробовала фирма Nichia с 1993 года. А с 1996 года они начали изготовление белых led-элементов, чей свет получается из сочетания красного, синего и зеленого. В дальнейшем на базе открытия японских ученых стали стремительно развиваться новые методы производства световой техники: лампочек, дисплеев с подсветкой и других приборов.
В 2003 Citizen Electronics придумали новейшую технологию производства СОВ (Chip-On-Board). Она заключается в монтаже полупроводникового элемента на подложку при помощи специального непроводящего клея.
Очевидно, что история светоизлучающих диодов только набирает обороты, а технологии становятся все более совершенными.
Для создания разных цветов потребовалось много времени.
Принцип работы.
Кристалл состоит из полупроводниковых материалов, которые расположены слоями. Свечение появляется после протекания электричества между границами их соприкосновения. В одном полупроводнике (n) преобладают электроны (отрицательные частицы), а в другом (p) – ионы – дырки (положительные частицы). Полупроводниковые соединения способны пропускать электричество только от p -слоя к n -слою, т.е. в одну сторону.
Схема появления излучения.
Под воздействием электричества электроны из n-слоя и дырки из р-слоя начинают двигаться к р-n-переходу. Происходит рекомбинация дырки и электрона – между р-n-границей протекает ток. Электроны переходят на низший энергетический уровень, с высоких орбиталей на более низкие. Освобождается энергия, которая излучается в виде фотонов.
Описанный процесс протекает во всех полупроводниковых диодах. Но длина волны фотона не всегда находится в заметном человеческому глазу спектре. Для появления видимости необходимо движение элементарных частиц в определенном интервале: от 400 до 700 нм. Это достигается подбором определенных химических веществ. У каждого есть особая длина волны и цвет излучения.
Самые удачные материалы получаются из соединений типа AIIIBV и AIIBVI где II, III, V и VI – валентности элементов. Например, уже упоминавшийся арсенид галлия, фосфат индия или селенид цинка и теллурид кадмия. Подобные соединения называют прямозонными. Возможно получение разнообразных по свечению светодиодов: от ультрафиолетовых до инфракрасных.
К другой группе относятся непрямозонные полупроводники. Это карбид кремния, сам кремний, германий и другие. Диоды из них свет светят очень неярко. Впрочем, научные работы по использованию таких веществ продолжаются. Основные поиски решения ведутся в области технологий квантовых точек и фотонных кристаллов.
Кроме света при p-n-переходе освобождается еще и тепло. Для его отвода необходим теплоотвод (часто в этой роли выступает корпус изделия) или радиатор.
Виды и характеристики светодиодов.
Светоизлучающие диоды различают по конструкции корпуса:
- DIP – маломощные индикаторные цилиндрические элементы. Востребованы для подсветок экранов, индикации, световых гирлянд.
- «Пиранья» – четырехконтактный DIP. Они крепче держатся на своем месте и меньше греются. Востребованы в автомобильной промышленности для подсветок.
- SMD – внешне выглядит, как параллелепипед. За счет своей надежности и универсальности востребованы во многих отраслях светотехнической промышленности.
- PCB Star светодиоды. Разновидность SMD.
- СОВ – плоский SMD. Новейший тип.
Независимо от исполнения корпуса выделяют светодиоды:
- Двухцветные. Они излучают одновременно два цвета. Обладают тремя контактами, один из которых общий.
- Полноцветные RGB (красный-зеленый-синий). Изготавливаются из трех полупроводниковых кристаллов под общей линзой, обладают четырьмя электродами. По одному выводу для каждого полупроводникового элемента и один общий вывод. В SMD у прибора будет шесть выводов.
Пропорциональное смешение цветов дает всевозможные оттенки света. Например, при включении на 100% красного и зеленого получится желтый.
- Адресные светодиоды − разновидность полноцветных. Отличаются от обычных RGB тем, что включаются по собственному индивидуальному коду. Востребован в лентах, где на адресном светодиоде можно задать неповторяющийся цветовой оттенок. При этом led-диод обладает собственным адресом, на который поступают команды от специального управляющего драйвера. Управление цветами происходит через микрочипы, которые встраиваются рядом с адресными светодиодами.
- Сверхмощные (сверхяркие) светодиоды – элементы мощностью выше 1 Вт с силой тока от 300 мА. (Мощность обычных светодиодов измеряется чаще всего в милливаттах). Такие устройства светят очень ярким светом. Используются в фонариках, фарах, прожекторах и т.п.
Также led-элементы подразделяются на:
- Индикаторные – маломощные.
- Осветительные – приборы большой мощности.
- Инфракрасные – излучают невидимый человеческому глазу инфракрасный спектр.
Инфракрасные диоды. Благодаря специально подобранным материалам проводников они испускают невидимые глазу инфракрасные лучи. Они безвредны для живых существ, но заметны для электронных систем регистрации. Востребованы во многих технических устройствах и станках во всевозможных отраслях промышленности.
Индикаторные led-диоды. Выступают в роли индикаторов для техники, подсветок дисплеев и т.п. Их делят по типу используемых полупроводников на:
- двойные – светят зеленым и оранжевым;
- тройные – светят желтым и оранжевым;
- тройные – светят красным и желто-зеленым.
Независимо от вида светодиоды характеризуются некоторыми параметрами.
Цвет излучения. Обусловлен химическим составом полупроводников. Некоторые вещества и соответствующие им цвета обозначены в таблице.
Яркость. Она пропорциональна силе тока, текущей сквозь элемент. Среди led-диоды, которые светят белым светом, выделяют яркие (20-25 милликандел) и сверхяркие (свыше 20 тысяч милликандел).
Сила тока. Светодиоды весьма чувствительны к силе тока. При превышении ее значения выше номинального led может перегореть. Поэтому не рекомендуется превышать максимальный прямой ток элемента. Точные значения для конкретного светодиода приводятся в техническом описании.
Падение напряжения. Характеризует допустимую разницу между величинами входного и выходящего напряжения. У значения напряжения для светодиодов есть максимальное значение, превышение которого приведет к поломке led. Значения указываются в техническом описании.
Полярность. Поскольку ток в светодиоде течет только от p -слоя к n -слою, для предотвращения поломок стоит полярность. Обычно ее определяют по внешнему виду, маркировке или особым пометкам на корпусе. (Подробнее смотрите в статье «определение полярности»). Также узнать полярность можно из технической документации.
Угол рассеивания света. Определяется формой линзы, конструкцией кристалла и от используемых для изготовления кристалла веществ. Может меняться от 15 до 180 градусов.
Устройство светодиода.
Led-диод состоит из полупроводникового кристалла, который закреплен на подложке, корпуса с контактами и оптической системы.
Устройства индикаторных (DIP), плоских (SMD) и СОВ элементов различаются снаружи.
Конструктивное устройство DIP.
DIР-светодиод в разрезе.
В основании прибора монтируются контакты. Кристалл (один или несколько) закреплен на катоде. К кристаллу присоединяется проволока. Она соединяет полупроводники с анодом. Это необходимо для группировки двух проводников с различными типами проводимости. Сверху led-элемент герметично покрывается линзой. Корпус устройства изготавливается в виде цилиндра из эпоксидной смолы, край которого обрезан со стороны катода. Монтаж led-элемента происходит путем пайки длинных выводов.
Конструктивное устройство SMD.
SMD-светодиод в разрезе.
Корпус изготавливается параллелепипедом. Его основа – теплоотвод от кристалла. На нее монтируется полупроводниковый элемент. Контактный провод соединяет его с анодом. Контакты выполняются плоскими. Сверху элемент герметично накрывается линзой.
Конструктивное устройство СОВ.
COB-технология – новейшее направление в производстве.
Такие светоизлучающие диоды имеют в основании теплопроводящую подложку (обычно алюминиевую). На нее непроводящим клеем закрепляют полупроводниковые кристаллы, которые объединены по последовательно-параллельной схеме. Сверху все покрывается люминофором.
Такой тип led легко монтируется, выдает хороший световой поток и не искажает цвета. Востребованы в производстве небольших, ярких прожекторов и декоративной подсветки. В отличие от DIP и SMD способны работать при повышенных температурах. Но из-за своего устройства имеют меньший срок эксплуатации по сравнению.
Если на одной подложке смонтировано множество кристаллов, то такой led-элемент называется светодиодной матрицей.
Конструктивное устройство PCB Star.
Состоит из одного большого кристалла, который монтируется на алюминиевую подложку в форме звезды. За счет увеличенной площади кристалла повышается мощность светодиода. Упрощается его фокусировка. Поэтому РCB Star востребованы в производстве ярких источников света: от фонариков до прожекторов.
Вольт-амперная характеристика светодиода.
Она имеет нелинейный характер. Led начинает пропускать ток с определенного значения напряжения. Оно называется пороговым. Пороговый вольтаж определяется химическими соединениями полупроводников.
Вольт-амперная зависимость.
Синяя кривая описывает протекание электричества при прямом включении. Красная кривая – при обратном включении.
UMAXи UMAXОБР – предельно допустимые значения напряжений. При их превышении элемент сгорает.
UMIN – минимальное величина напряжения. Начинается свечение.
Интервал между минимальным и максимальным – рабочая зона. Именно в ней диод светоизлучается.
IMAX – предельное допустимое значение тока. При превышении светодиод перегорает.
Подключение светодиода.
Самым простым случаем подключения светодиода является подключение с резистором. Последний необходим для токоограничения, чтобы исключить перегорание led при скачках напряжения.
При подключении led-элементов по любой схеме не забывайте придерживаться полярности! Иначе полупроводниковый прибор не будет светить и перегорит.
Электрическая схема соединения светодиода (LED) и резистора (R).
При соединении нескольких светоизлучающих диодов возможны разные варианты их соединения.
Последовательное подключение.
Схема последовательного соединения.
Элементы соединяются последовательно с учетом полярности. В цепи значение тока постоянно, а напряжение на led-элементах суммируется.
Параллельное соединение.
Схема параллельного соединения светодиодов через один резистор.
В этом случае постоянным в цепи сохраняется напряжение, а силы тока на элементах складываются. У данного типа соединения есть недостаток. На разных светодиодах может быть неодинаковое падение напряжения. Поэтому ток на каком-нибудь элементе может превысить допустимый, что приведет к поломке.
Во избежание этого следует подключать к каждой параллельной цепи свой резистор.
Схема параллельного подключения.
Параллельно-последовательное соединение.
При подключении большого количества светодиодов стоит использовать параллельно-последовательную электрическую схему. При этом в параллельных ветках напряжение одинаковое.
Электрическая схема параллельно-последовательного соединения.
Производители светодиодов
Монтаж светодиодов.
В рейтинге производителей лидируют несколько фирм с мировым именем. Именно они выпускают самые качественные изделия на рынке.
- Philips. Пожалуй, производитель, с самым известным именем. Под этой маркой выпускается множество изделий от лампочек, до телефонов. Фирма имеет заводы более чем в шестидесяти странах. Активно вкладывается в новейшие разработки. Покупает другие, более мелкие заводы и производства, которые изготавливают светодиоды.
- Cree. Американская фирма, которая начинала свой путь с производства чипов для телефонов. Специализируется на производстве led-изделий разного назначения. РРаРазработали и выпускают светодиоды из карбида кремния, которые ярко светят.
- Nichia. Японская компания. Одна из старейших в области изготовления светодиодной техники. Именно она разработала и внедрила выпуск синих и белых цветов led. Специализируется на производстве кристаллов. Лидер на рынке по доходам от продаж.
- Osram. Немецкий изготовитель. Работает более ста лет в паре с Siemens. Выпускает светоизлучающие диоды, которые соответствуют мировым стандартам качества.
Из российских производителей можно отметить «Оптоган» и «Светлана-Оптоэлектроника». Обе фирмы располагаются в Санкт-Петербурге и производят светотехнические изделия. Впрочем, кристаллы для выпуска продукции закупаются за рубежом.
Цветовая маркировка.
Маркировка led в мире не стандартизирована. Изготовитель сам решает, что он будет обозначать на корпусе.
Светодиоды российского производства маркируются цветовым кодом. Он состоит из цветных кружочков или черточек. Примеры маркировки приведены ниже на рисунке.
Цветовая маркировка российских индикаторных светодиодов.
Рассмотрим маркировку известных мировых производителей.
Philips.
В качестве примера возьмем модель Luxeon Rebel. Она маркируется LXML-ABCD-EFGH. В этой аббревиатуре зашифровано следущее:
- LXML – серия;
- ABC – информация о свете: как распределяется, цветовая температура;
- D – величина тока;
- E – запасная буква на будущие модели;
- FGH – яркость (в люменах).
Cree.
Фирма предлагает обозначение SSSCCC-BD-0000-NNNNN, где:
- SSS – серия;
- CCC – описание цвета:
- BD – индекс цветопередачи:
- 0000 – код производителя;
- NNNNN – индивидуальный номер по цветовой температуре и яркости. Стоит уточнить в техническом описании.
Достоинства и недостатки светодиодов
Плюсы
- Высокая механическая и вибрационная стойкость.
- Небольшой разогрев.
- Маленькие габаритные размеры, легкий
- Долговечность.
- Низкое энергопотребление и мощность.
- Возможность регулирования интенсивности свечения.
- Высокие декоративные качества: разнообразие цветов и оттенков свечения.
- Безынерционность: включаются сразу на полную мощность.
- Возможность работы при низких температурах.
- Низкая цена индикаторных светодиодов.
- Безопасность: низкие рабочие значения напряжения и тока.
Минусы
- Высокая цена SMD.
- Ухудшения со временем качества кристалла: чем дольше светодиод работает, тем он тусклее.
- Повышенные требования к источнику питания.
- Недопустимы даже небольшие превышения минимальных и максимальных значений электрических параметров.
Интересные факты.
Светодиодная лента.
Получение белого цвета. Есть три варианта. Первый – по технологии RGB. Включение всех трех цветов на 100% дает белый цвет. Во втором случае на линзу наносят три люминофора: голубой, красный и зеленый. Третий вариант заключается в нанесении красного и зеленого люминофора на оптическую систему голубого светодиода.
Работа при повышенных температурах. С ростом температуры в области p-n-перехода уменьшается яркость свечения. Причем у красных и желтых падение яркости больше, чем у синих и зеленых. Поэтому важно использовать хороший теплоотвод и не допускать эксплуатации led при повышенных температурах.
Как готовят полупроводники? В основном по технологии металлоорганической эпитаксии в атмосфере особо чистых газов. Выращиваются пленки толщиной от ангстремов до микрон. Разные слои легируются примесями, которые дадут слою высокую концентрацию электронов или дырок, то есть сформируют n или p структуру полупроводника. Зачем пленки травят, создают контакты к n и p слоям и разделяют на чипы нужных размеров.
Чем хороша СОВ-технология? Тем, что кристаллы монтируются на металлическую подложку, которая одновременно выполняет функции радиатора. Таким образом получают отличный теплоотвод непосредственно от полупроводникового кристалла. Дополнительно можно получить разную форму светодиода, разную гибкость и и.п.
типы, как работает, история, схема
В статье узнаете что такое светодиод (LED), типы, как работает, история, схема и характеристики, преимущества и недостатки.
Светодиоды повсюду вокруг нас: в наших телефонах, наших автомобилях и даже в наших домах. Каждый раз, когда горит что-то электронное, есть большая вероятность, что за ним стоит светодиод. Они бывают самых разных размеров, форм и цветов, но независимо от того, как они выглядят, у них есть одна общая черта это самая популярная вещь в электроники. Огромный выбор светодиодов на ваш вкус и цвет вы можете приобрести на Алиэкспресс, нажав на кнопку ниже:
Светодиоды («LED») — это особый тип диодов, которые преобразуют электрическую энергию в свет. На самом деле, светодиод означает «светоизлучающий диод». И можно увидеть сходство на схеме диода и светодиода:
Короче говоря, светодиоды похожи на крошечные лампочки. Тем не менее, для сравнения светодиоды требуют гораздо меньше энергии. Они также более энергоэффективны, поэтому они не имеют тенденцию нагреваться, как обычные лампочки. Это делает их идеальным устройством для мобильных телефонов и других электронных приборов с низким энергопотреблением. Светодиоды высокой интенсивности нашли свое применение в акцентном освещении, прожекторах и даже автомобильных фарах!
Кто изобрел светодиод
Общая светодиодная технология существует уже более сорока лет. Первый светоизлучающий диод видимого спектра был изобретен в 1962 году Ником Холоняком-младшим, который в то время работал консультантом в General Electric.
Однако некоторые факторы не позволили технологии перейти к практическому использованию освещения. Стоимость была главной проблемой, первые светодиоды стоили более 200 долларов за диод. Другим ограничивающим фактором был цвет, до 70-х годов единственным цветом, который мог создавать светодиод, был красный. Еще одним фактором был световой поток, который в течение ряда лет ограничивал практическое использование светодиодов для визуальных сигналов, таких как световые индикаторы и знаки.
Использование светодиодов в лампочках является довольно недавним и продолжающимся развитием. Первые массовые установки светодиодного освещения произошли всего за последние несколько лет, и технология постоянно совершенствуется.
Характеристики светодиода (LED)
Перед подключением светодиода нужно знать несколько характеристик светодиода (на самом деле, они очень важны). Если вы обращаетесь к какой-либо спецификации, предоставленной производителем, вы можете найти множество технических характеристик, соответствующих электрическим характеристикам, номинальным характеристикам, физическим размерам и так далее.
Я не буду утомлять вас всеми характеристиками, а только важными. Это полярность, прямое напряжение и прямой ток.
Советуем вам видео ниже «Как узнать параметры любого светодиода»
Полярность LED
Полярность является показателем симметричности электронного компонента. Светоизлучающий диод, подобный диоду PN-перехода, не является симметричным, то есть он позволяет току течь только в одном направлении.
В светодиоде положительный вывод называется анодом, а отрицательный вывод — катодом. Для правильной работы светодиода анод светодиода должен иметь более высокий потенциал, чем катод, так как ток в светодиоде течет от анода к катоду.
Что произойдет, если мы подключим светодиод в обратном направлении? Ну, ничего не происходит, так как светодиод не будет проводить ток. Вы можете легко идентифицировать анодную клемму светодиода, поскольку они обычно имеют более длинные выводы.
Прямой ток светодиодов
Светодиоды являются очень чувствительными устройствами, и величина тока, протекающего через светодиод, очень важна. Кроме того, яркость светодиода зависит от величины тока, потребляемого светодиодом.
Каждый светодиод имеет максимальный прямой ток, который может безопасно проходить через него, не перегорая. Да, допустимый ток, превышающий номинальный ток, фактически подожжет светодиод.
Например, наиболее часто используемые 5-миллиметровые светодиоды имеют номинальный ток от 20 мА до 30 мА, а 8-миллиметровые светодиоды имеют номинальный ток 150 мА (точные значения приведены в техническом описании).
Как нам регулировать ток, протекающий через светодиод? Для контроля тока, протекающего через светодиод, мы используем резисторы с ограничением тока.
Прямое напряжение LED
Светоизлучающие диоды также рассчитаны на максимальное напряжение, то есть количество напряжения, которое необходимо для светодиода. Например, все 5-миллиметровые светодиоды имеют номинальный ток 20 мА, но прямое напряжение меняется от одного светодиода к другому.
Максимальное напряжение на красных светодиодах составляет 2,2 В, максимальное напряжение на синих светодиодах — 3,4 В, а на максимальном напряжении белых светодиодов — 3,6 В.
Как работает светодиод
Светодиод является двухпроводным полупроводниковым источником света. Это p-n переходной диод, который излучает свет при активации. Когда к выводам приложено подходящее напряжение, электроны могут рекомбинировать с электронными отверстиями внутри устройства, выделяя энергию в виде фотонов. Этот эффект называется электролюминесценцией, а цвет света (соответствующий энергии фотона) определяется энергетической шириной запрещенной зоны полупроводника.
Материал, используемый в светодиодах, в основном алюминий-галлий-арсенид (AlGaAs). В своем первоначальном состоянии атомы этого материала прочно связаны. Без свободных электронов проводимость электричества здесь становится невозможной.
При добавлении примеси, которая известна как легирование, вводятся дополнительные атомы, что эффективно нарушает баланс материала.
Эти примеси в виде дополнительных атомов способны либо обеспечивать свободные электроны (N-тип) в системе, либо высасывать некоторые из уже существующих электронов из атомов (P-тип), создавая «дыры» на атомных орбитах. В обоих случаях материал становится более проводящим. Таким образом, под воздействием электрического тока в материале N-типа электроны могут перемещаться от анода (положительный) к катоду (отрицательный) и наоборот в материале P-типа. Из-за свойства полупроводника ток никогда не будет идти в противоположных направлениях в соответствующих случаях.
Из приведенного выше объяснения ясно, что интенсивность света, излучаемого источником (в данном случае светодиодом), будет зависеть от уровня энергии испускаемых фотонов, который, в свою очередь, будет зависеть от энергии, выделяемой электронами, прыгающими между атомными орбитами из полупроводникового материала.
Мы знаем, что для того, чтобы заставить электрон выстрелить с более низкой орбиты на более высокую, его энергетический уровень необходимо поднять. И наоборот, если электроны вынуждены падать с более высоких на более низкие орбитали, логически энергия должна высвобождаться в процессе.
В светодиодах вышеуказанные явления хорошо используются. В ответ на P-тип легирования электроны в светодиодах движутся, падая с верхних орбиталей на нижние, высвобождая энергию в виде фотонов, то есть света. Чем дальше эти орбитали отстоят друг от друга, тем больше интенсивность излучаемого света.
Различные длины волн, вовлеченные в процесс, определяют различные цвета, производимые светодиодами. Следовательно, свет, излучаемый устройством, зависит от типа используемого полупроводникового материала.
Инфракрасный свет создается с использованием арсенида галлия (GaAs) в качестве полупроводника. Красный или желтый свет получают с использованием галлия-арсенида-фосфора (GaAsP) в качестве полупроводника. Красный или зеленый свет получается при использовании галлия-фосфора (GaP) в качестве полупроводника.
Простая светодиодная схема
На следующем рисунке показана схема простой светодиодной цепи, состоящей из 5-миллиметрового белого светодиода с источником питания 5 В.
Поскольку это белый светодиод, номинальные значения тока и напряжения следующие: типичный прямой ток составляет 20 мА, а типовое прямое напряжение составляет 2 В.
Поэтому для регулирования тока и напряжения мы использовали резистор 180 Ом.
Типы светодиодов
- Сквозные светодиоды: они доступны в различных формах и размерах, и наиболее распространенными являются светодиоды 3 мм, 5 мм и 8 мм. Эти светодиоды доступны в различных цветах, таких как красный, синий, желтый, зеленый, белый и т. Д.
- Светодиоды SMD (светодиоды для поверхностного монтажа): Светодиоды для поверхностного монтажа представляют собой специальную упаковку, которую можно легко установить на печатную плату. Светодиоды SMD обычно различаются в зависимости от их физических размеров. Например, наиболее распространенными светодиодами SMD являются 3528 и 5050.
- Двухцветные светодиоды. Следующим типом светодиодов являются двухцветные светодиоды, как следует из названия, могут излучать два цвета. Двухцветные светодиоды имеют три контакта, обычно два анода и общий катод. В зависимости от конфигурации проводов, цвет будет активирован.
- Светодиод RGB (красный — синий — зеленый): светодиоды RGB являются самыми любимыми и популярными среди любителей и дизайнеров. Даже компьютерные сборки очень популярны для реализации светодиодов RGB в корпусах компьютеров, материнских платах, оперативной памяти и так далее.
- Светодиоды высокой мощности: Светодиод с номинальной мощностью, превышающей или равной 1 Вт, называется светодиодом высокой мощности. Это потому, что нормальные светодиоды имеют рассеиваемую мощность в несколько милливатт. Мощные светодиоды очень яркие и часто используются в фонариках, автомобильных фарах, прожекторах и так далее.
Преимущества светодиодов
- Для управления светодиодом достаточно очень низкого напряжения и тока. В диапазоне voltage- от 1 до 2 вольт. Ток — от 5 до 20 миллиампер.
- Общая выходная мощность будет менее 150 милливатт.
- Время отклика очень меньше — всего около 10 наносекунд.
- Устройство не требует нагрева и разогрева.
- Миниатюрный по размеру и, следовательно, легкий.
- Имеют прочную конструкцию и поэтому могут противостоять ударам и вибрациям.
- Срок службы светодиода составляет более 20 лет.
Недостатки светодиодов:
- Небольшое превышение напряжения или тока может повредить устройство.
- Известно, что устройство имеет более широкую полосу пропускания по сравнению с лазером.
- Температура зависит от выходной мощности излучения и длины волны.
Строение светодиодной лампы. Устройство светодиодных ламп и принцип работы
светодиодных ламп, которые должны заменить собой обычные лампы Ильича. Такие лампы скоро поступят в продажу в Москве и Санкт-Петербурге.
Конечно, всё было обставлено с пафосом: первым оценил новинку В.В.Путин. Мне удалось достать лампочку от «Оптогана» одним из первых, к тому же в руках у меня оказались ещё одна лампочка российского производства («СветаLED» или «SvetaLED»), правда побитая жизнью, но рабочая, и китайский NoName, которую с лёгкостью можно купить на ebay или dealextreme.com.
Как Вы думаете, почему все так озабочены заменой ламп накаливания, которые стали символом целой эпохи, на газоразрядные и светодиодные?
Конечно, во-первых, это энергоэффективность и энергосбережение. К сожалению, вольфрамовая спираль больше излучает «тепловых» фотонов (т.е. свет с длинной волны более 700-800 нм), чем даёт света в видимом диапазоне (300-700 нм). С этим трудно спорить — график ниже всё расскажет сам за себя. С учётом того, что потребляемая мощность газоразрядных и светодиодных ламп в несколько раз ниже, чем у ламп накаливания при той же освещённости, которая измеряется в люксах.
Таким образом, получаем, что для конечного потребителя это действительно выгодно. Другое дело — промышленные объекты (не путать с офисами): освещение пусть и важная часть, но всё-таки основные энергозатраты связаны как раз с работой станков и промышленных установок. Поэтому все вырабатываемые гигаватты уходят на прокатку труб, электропечи и т.д. То есть реальная экономия в рамках всего государства не так уж и велика.
Во-вторых, срок службы ламп, пришедших на замену «лампочкам Ильича», выше в несколько раз. Для светодиодной лампы срок службы практически неограничен, если правильно организован теплоотвод.
В-третьих, это инновации/модернизации/нанотехнологии (нужное подчеркнуть). Лично я ничего инновационного ни в ртутных, ни в светодиодных лампах не вижу. Да, это высокотехнологичное производство, но сама идея — это всего лишь логичное применение на практике знания о полупроводниках, которому лет 50-60, и материалов, известных около двух десятилетий.
Так как статья посвящена светодиодным лампам, то я более подробно остановлюсь на их устройстве. Давно известно, что проводимость освещённого полупроводника выше, чем проводимость неосвещённого.
Каким-то неведомым образом свет заставляет электроны бегать по материалу с меньшим сопротивлением. Фотон, если его энергия больше ширины запрещённой зоны полупроводника (E g), способен выбить электрон из так называемой валентной зоны и закинуть в зону проводимости.
Схема расположения зон в полупроводнике. E g — запрещённая зона, E F — энергия Ферми, цифрами указано распределение электронов по состояниям при T>0
Усложним задачу. Возьмём два полупроводника с разным типом проводимости n и p и соединим вместе. Если в случае с одним полупроводником мы просто наблюдали увеличение тока, протекающего через полупроводник, то теперь мы видим, что этот диод (а именно так по-другому называется p-n-переход, возникающий на границе полупроводников с различным типом проводимости) стал мини-источником постоянного тока, причём величина тока будет зависеть от освещённости. Если выключить свет, то эффект пропадёт. Кстати, на этом основан принцип работы солнечных батарей.
На стыке полупроводников p и n типа возникающие после облучения светом заряды разделяются и «уходят» каждый к своему электроду
Теперь вернёмся к светодиодам. Получается, что можно провернуть и обратное: подключить полупроводник p-типа к плюсу на батарейке, а n-типа — к минусу, и… И ничего не произойдёт, никакого излучения в видимой части спектра не будет, так как наиболее распространенные полупроводниковые материалы (например, кремний и германий) — непрозрачны в видимой области спектра. Всему виной то, что Si или Ge являются не прямозонными полупроводниками.
Но есть большой класс материалов, которые обладают полупроводниковыми свойствами и одновременно являются прозрачными. Яркие представители — GaAs (арсенид галия), GaN (нитрид галлия).
Итого, чтобы получить светодиод нам надо всего-то сделать p-n-переход из прозрачного полупроводника. На этом я, пожалуй, остановлюсь, ибо, чем дальше, тем сложнее и непонятнее становится поведение светодиодов.
Позволю себе лишь несколько слов о современных технологиях производства светодиодов. Так называемый активный слой представляет собой очень тонкие 10-15 нм толщиной перемежающиеся слои полупроводников p- и n-типа, которые состоят из таких элементов как In, Ga и Al.
Такие слои эпитаксиально выращивают с помощью метода MOCVD (metal-oxide chemical vapor deposition или химическое осаждение из газовой фазы).
Схематичное представление устройства светодиода
Есть ещё одна проблема, которая мешает реализова
разновидности, особенности, подключение, плюсы и минусы
Содержание статьи:
В ассортименте современных потолочных и настенных светильников модели, оснащенные линейными (трубчатыми) лампами, представлены достаточно широко. Они устанавливаются не только в офисах, заводских цехах и общественных местах, но также в жилых помещениях. В быту они нередко используются для подсветки аквариумов и других особых зон, где необходим рассеянный свет. Еще не так давно в качестве источника в них применялись только люминесцентные осветители (ЛЛ), однако сегодня на смену им пришла более совершенная светодиодная лампа Т8. Пользователям полезно узнать, какой из этих двух вариантов лучше и что нужно сделать, чтобы заменить ЛЛ на светодиодный аналог, не меняя корпуса самого светильника.
Конструкция и цоколь
Конструкция светодиодной лампы Т8
Лампы типовой конструкции Т8 изготавливаются в виде трубки с диаметром 25,4 мм, на концах которой имеются штырьки, разнесенные на 13 мм. Вместе с торцевой заглушкой трубчатой колбы они образуют цоколь, через который подается рабочее напряжение, одновременно фиксируя изделие в корпусе светильника.
Наиболее популярные образцы трубок имеют длину 600 и 900 мм. Светильники, оснащенные двумя лампами такой длины, устанавливаются повсеместно. Предлагаемые рынком изделия с длинными люминесцентными трубками 1,2 и 1,5 метра встречаются значительно реже и применяются в основном на промышленных объектах и при необходимости осветить значительные по объему пространства.
Миниатюрные приборы нестандартной длины используются для местного освещения, обеспечивающего пользователю комфортность и уют.
Виды и характеристики ламп
На отечественном рынке представлено два класса трубчатых изделий стандарта Т8. Это люминесцентные и светодиодные образцы лампочек. Несмотря на кажущееся сходство трубок различного типа, их принципы работы отличаются коренным образом.
Люминесцентные лампы Т8
Люминесцентная лампа OSRAM T8 NATURA L30W/76 G13
Этот тип осветительных приборов – самый распространенный образец группы под названием «лампы дневного света» или ЛДС. Их колба заполнена парами ртути, которые при зажигании тлеющего разряда испускают ультрафиолетовое излучение, близкое к голубому свечению. Оно воздействует на люминофор, который при изготовлении колбы наносится с ее внутренней стороны. В результате покрытие начинает светиться, а вредная для глаз часть спектра УФ поглощается в теле стеклянной трубки.
Для запуска и поддержания горения используются два спиралевидных электрода, напряжение к которым поступает через имеющиеся на торцах трубки разъемы G13. Для управления течением разряда в колбе, который не должен перейти в неуправляемый дуговой процесс, ток через промежуток ограничивается за счет принятия специальных мер. Для этого используется электронное или электромагнитное регулирующее устройство ЭПРА (так называемый «балласт»), одновременно обеспечивающее легкий запуск лампочки. Этот рабочий узел, встроенный непосредственно в светильник, рассчитан на работу сразу с двумя трубками по 18 Ватт каждая.
Светодиодные лампы Т8
Светодиодная лампа Т8
В лампах дневного света светодиодных трубчатых в отличие от ЛЛ не используются ртуть и люминофор, излучение формируется полупроводниковыми светодиодами, размещенными внутри колбы. Их общее количество определяется требованиями получения нужной светоотдачи (мощности излучения), а также зависит от габаритов светильника. Известно две разновидности LED осветителей с типовым размером Т8:
- Модели со встроенным драйвером.
- Изделия, способные работать без него.
Первые не нуждаются в дополнительных устройствах, что позволяет подключать их напрямую к сети 220 Вольт. Второй тип не содержит в своем составе встроенного драйвера, так что для их работы нужен отдельный блок питания. С его помощью удается преобразовать переменные 220 Вольт в напряжение, подходящее для питания светодиодов.
Какой осветитель лучше
Электронный ПРА очень часто выходит из строя
Чтобы выбрать подходящий вариант, нужно сравнить достоинства моделей, а потом сделать окончательный вывод. Результаты сравнения можно представить следующим образом:
- основное достоинство ЛЛ трубок Т8 (их экономичность и долговечность) с лихвой перекрываются светодиодными аналогами;
- для питания люминесцентных изделий необходима пусковая аппаратура, стоимость которой сравнима с ценой лампы на светодиодах;
- ЭПРА очень часто выходит из строя, а это предполагает дополнительные расходы;
- основной недостаток светодиодных ламп – их высокая стоимость – со временем сходит на «нет», поскольку полупроводники быстро дешевеют с увеличением производимой массы товара.
В современных условиях предпочтительней приобретать светодиодные трубчатые лампы дневного света, размеры которых ничем не отличаются от тех же показателей для ЛЛ.
В виде исключения рассматривается ситуация, когда невозможно или очень сложно поменять люминесцентные светильники на светодиодные аналоги из-за особенностей их конструкции.
Замена люминесцентных ламп Т8 их светодиодными аналогами
Трубки у этих ламп имеют одинаковые размеры и оснащаются идентичными разъемами. Такое сходство существенно упрощает их замену и подключение, которые производятся непосредственно в светильнике. В этом случае при наличии уже готового корпусного изделия достаточно купить светодиодный образец и поставить его на место старой лампы.
Подбор по посадочному месту
Схема подключения светодиодной лампы т8 с драйвером 220 В вместо люминесцентной в стандартном светильнике
Нельзя просто взять и удалить одну лампу из гнезда светильника, а затем поставить на ее место другую. Дополнительно к этому потребуется изменить электрическую схему, которая предусмотрена в конструкции имеющегося прибора освещения. Несмотря на то что некоторым пользователям это кажется сложным, обновить электрическую начинку может каждый желающий, знакомый с азами электрики.
Прежде всего следует разобраться в том, как светодиодная лампа подключается к сети. В зависимости от варианта исполнения она подсоединяется двумя способами:
- в первом случае напряжение подается на правый или левый цоколь (с одной стороны) сразу на оба штыря;
- в другом исполнении сетевой провод подключается с двух сторон трубки к разным цоколям, в которых задействован только один штырь.
В конструкции первых изделий обычно не предусматривается встроенный драйвер. В образцах второго типа имеется электронная схема управления, позволяющая подключать их напрямую к сети 220 Вольт.
В ассортименте отдельных производителей имеются модели, которые могут включаться в сеть независимо от наличия встроенного драйвера. Перед покупкой следует уточнить у продавца способ коммутации лампы, а также выяснить, на какое напряжение питания она рассчитана.
Подключение светодиодной лампы Т8
Доработка люминесцентного светильника под трубки типа т8 для светодиодной трубчатой лампы без драйвера
\
Проще всего заменить ЛДС на светодиодный аналог, если новая лампа уже имеет встроенный драйвер. В этом случае придется выполнить следующие несложные операции:
- Вытащить из гнезда стартер.
- Закоротить электромагнитный дроссель.
- Поскольку он в процессе питания не участвует, его допускается совсем демонтировать из светильника.
- В результате этих действий напряжение 220 Вольт будет подаваться на штыри цоколей, расположенных по разным концам лампы.
Когда в распоряжении имеется только светодиодный образец без драйвера, этот электронный прибор необходимо будет докупить. Придется немного доработать схему стандартного люминесцентного светильника:
- Один проводник, идущий от сети 220 Вольт к электромагнитному дросселю, отключается.
- Отсоединенный конец перекидывается на клемму драйвера, к которой был подключен снятый с нее стартер.
- Все сетевое напряжение будет приложено к электронному устройству, управляющему работой светодиодной лампы.
Всем, кто знаком с электротехникой на уровне школьной программы, проделать эти простейшие операции не составит труда.
Рекомендации по подбору
При покупке светодиодной лампы обращается внимание на ее цветовую температуру, которая для приборов этого класса измеряется в Кельвинах (К). От этого показателя зависит не только состояние здоровья пользующейся ей человека, но и комфортность получаемого освещения. Он обязательно указывается в сопроводительной документации к приобретаемому изделию или же наносится непосредственно на упаковку.
Только после ознакомления с особенностями устройства и работы ЛЛ и светодиодных ламп берутся за процедуру, связанную с их заменой. Благодаря этому удается избежать неоправданных расходов на покупку нового светильника.