Светодиодная лампа устройство: Светодиодные лампы:устройство, принцип работы,принципиальная схема,виды,характеристики – Какой бывает схема светодиодной лампы: устройство простейших драйверов

Содержание

Устройство светодиодной лампы EKF на 220 (В)

Здравствуйте, уважаемые читатели и гости сайта «Заметки электрика».

Сегодня я решил рассказать Вам об устройстве светодиодной лампы EKF серии FLL-A мощностью 9 (Вт).

Эту лампу я сравнивал в своих экспериментах (часть 1, часть 2) с лампой накаливания и компактной люминесцентной лампой (КЛЛ), и по многим показателям она имела явные преимущества.

А теперь давайте разберем ее и посмотрим, что же находится внутри. Думаю, что Вам будет не менее интересно, чем мне.

Итак, устройство современных светодиодных ламп состоит из следующих компонентов:

  • рассеиватель
  • плата со светодиодами (кластер)
  • радиатор (в зависимости от модели и мощности лампы)
  • источник питания светодиодов (драйвер)
  • цоколь

А теперь рассмотрим каждый компонент в отдельности по мере разбора лампы EKF.

У рассматриваемой лампы используется стандартный цоколь Е27. Он крепится к корпусу лампы с помощью точечных углублений (кернений) по окружности. Чтобы снять цоколь, нужно высверлить места кернения или сделать пропил ножовкой.

Красный провод соединяется с центральным контактом цоколя, а черный — припаян к резьбе.

Питающие провода (черный и красный) очень короткие, и если Вы разбираете светодиодную лампу для ремонта, то это нужно учесть и запастись проводами для их дальнейшего наращивания.

Через открывшееся отверстие виден драйвер, который крепится с помощью силикона к корпусу лампы. Но извлечь его можно только со стороны рассеивателя.

Драйвер — это источник питания светодиодной платы (кластера). Он преобразовывает переменное напряжение сети 220 (В) в источник постоянного тока. Для драйверов свойственны параметры мощности и выходного тока.

Существует несколько разновидностей схем источников питания для светодиодов.

Самые простые схемы выполняются на резисторе, который ограничивает ток светодиода. В этом случае нужно лишь правильно выбрать сопротивление резистора. Такие схемы питания чаще всего встречаются в выключателях со светодиодной подсветкой. Это фото я взял из статьи, в которой рассказывал о причинах мигания энергосберегающих ламп.

Схемы чуть посложнее выполняются на диодном мосте (мостовая схема выпрямления), с выхода которого выпрямленное напряжение подается на последовательно-включенные светодиоды. На выходе диодного моста также установлен электролитический конденсатор для сглаживания пульсаций выпрямленного напряжения.

В перечисленных выше схемах нет гальванической развязки с первичным напряжением сети, они обладают низким КПД и большим коэффициентом пульсаций. Их главное преимущество заключается в простоте ремонта, низкой стоимости и малых габаритах.

В современных светодиодных лампах чаще всего применяются драйверы, выполненные на основе импульсного преобразователя. Их главные достоинства — это высокий КПД и минимум пульсаций. Зато они по стоимости в несколько раз дороже предыдущих.

Кстати, в скором времени я планирую провести замеры коэффициентов пульсаций светодиодных и люминесцентных ламп различных производителей. Чтобы не пропустить выход новых статей — подписывайтесь на рассылку.

В рассматриваемой светодиодной лампе EKF установлен драйвер на микросхеме BP2832A.

Драйвер крепится к корпусу с помощью силиконовой пасты.

Чтобы добраться до драйвера, мне пришлось отпилить рассеиватель и вынуть плату со светодиодами.

Красный и черный провода — это питание 220 (В) с цоколя лампы, а бесцветные — это питание на плату светодиодов.

Вот типовая схема драйвера на микросхеме BP2832A, взятая из паспорта. Там же Вы можете ознакомиться с ее параметрами и техническими характеристиками.

Рабочий режим драйвера находится в пределах от 85 (В) до 265 (В) напряжения сети, в нем имеется защита от короткого замыкания, применяются электролитические конденсаторы, предназначенные для продолжительной работы при высоких температурах (до 105°С).

Корпус светодиодной лампы EKF выполнен из алюминия и теплорассеивающего пластика, который обеспечивает хороший отвод тепла, а значит увеличивает срок службы светодиодов и драйвера (по паспорту заявлено до 40000 часов).

Максимальная температура нагрева этой LED-лампы составляет 65°С. Об этом читайте в экспериментах (ссылки я указал в самом начале статьи).

У более мощных светодиодных ламп, для лучшего отвода тепла, имеется радиатор, который крепится к алюминиевой плате светодиодов через слой термопасты.

Рассеиватель выполнен из пластика (поликарбоната) и с помощью него достигается равномерное рассеивание светового потока.

А вот свечение без рассеивателя.

Ну вот мы добрались до платы светодиодов или другими словами, кластера.

На круглой алюминиевой пластине (для лучшего отвода тепла) через слой изоляции размещено 28 светодиодов типа SMD.

Светодиоды соединены в две параллельные ветви по 14 светодиодов в каждой ветви. Светодиоды в каждой ветви соединяются между собой последовательно. Если сгорит хоть один светодиод, то не будет гореть вся ветвь, но при этом вторая ветвь останется в работе.

А вот видео, снятое по материалам данной статьи:

P.S. В завершении статьи хочется отметить то, что конструкция LED-лампы EKF с точки зрения ремонта не очень удачная, лампу невозможно разобрать без отпиливания рассеивателя и высверливания цоколя.

Если статья была Вам полезна, то поделитесь ей со своими друзьями:


Ремонт Led ламп или делаем «вечную» Led лампу.

Хочу рассказать о ремонте Led ламп
, которые давно вошли в наш быт. Производитель позиционирует светодиодные лампы как очень надежные, долговечные и экономичные. Но что на практике? Лампы и светильники выходят из строя уже через год-два. О ремонте и переделке пойдет дальнейший рассказ.

Первый мой пост. Прошу сильно не пинать 🙂
Зачастую причиной выхода из строя являются экономия на компонентах драйвера, низкокачественные светодиоды, перегрузка и перегрев! Производитель иногда умышленно допускает эксплуатацию светодиодов в предельных режимах, чтобы уменьшить срок службы.

Это я заметил на своих круглых светодиодных светильниках, когда спустя год эксплуатации на одном из них вышел из строя светодиод. Оказалось, что из заявленных 30 Вт, светильник потреблял 32 Вт, при этом светодиоды работали на пределе. И не удивительно, что гарантия закончилась пару месяцев назад. Все рассчитано в Китае? 🙂

Светильник 30 Вт

Немного подумав, я закоротил умерший светодиод перемычкой и поковырявшись в драйвере снизил общий ток через светодиоды для уменьшения нагрева оставшихся. Процедуру снижения мощности я произвел на всех светильниках в квартире.

Если у вас вышел из строя один из светодиодов, его можно закоротить перемычкой. И будет не лишним перенастроить драйвер на меньший ток. Драйверы бывают разные, но ток светодиодов на всех задается одинаково — токовым резистором номиналом в несколько Ом. При помощи этого резистора микросхема драйвера измеряет и стабилизирует ток, который протекает через светодиоды. Увеличивая номинал этого резистора можно снизить ток, соответственно мощность и яркость всей лампы. Уменьшать сопротивление резистора не советую, т.к. увеличится нагрев светодиодов и они быстрее деградируют.

Если покупать новые светильники, можно выбирать светильники с избыточной для помещения мощностью и снижать яркость перенастройкой драйвера. Это снизит нагрев, яркость и увеличит срок службы ламп и светильников.

Осторожно, напряжение опасное для жизни!

Перейдем к практике.
Весь процесс опишу на примере ремонта Led лампочки GU10 неизвестного производителя.
После проверки светодиодов подачей на них 3 В выяснилось, что один из них вышел из строя. Неисправный светодиод нужно закоротить перемычкой.

Паяем перемычку



Далее для снижения нагрева нужно найти на плате драйвера резистор сопротивлением в несколько Ом. В моем случае это резистор с номиналом 1,15 Ом и маркировкой 1R15. В зависимости от мощности светильника могут быть установлены резисторы от 1 до 15-20 Ом или больше. Рассчитать номинал сразу довольно сложно. Мы пойдет путем проб и ошибок, — а именно будем подбирать резистор. К примеру, если был установлен резистор 1,15 Ом, можно начать с резистора 2 Ом и постепенно его уменьшать. Если под рукой нет подходящего резистора, всегда можно соединить несколько резисторов параллельно для получения необходимого сопротивления.

Драйвер



Для расчетов удобно пользоваться калькулятором.

После, нужно аккуратно подать 220 в на светильник и измерить мощность при помощи ваттметра или амперметра с дальнейшим пересчетом тока в мощность.

Ваттметр



Далее необходимо узнать номинальную мощность светильника и уменьшить ее на 5-15%.
Еще можно увеличить емкость фильтрующего электролитического конденсатора, если позволяет конструкция. При высыхании конденсатора лампа может начать мигать.

В результате всех манипуляций имеем светильник или лампу с немного меньшей мощностью, но с большим ресурсом. Еще такой ремонт помогает сэкономить средства, уменьшает количество выбросов в атмосферу, уменьшает количество мусора и прокачивает ваши знания в области электроники. Всем добра!

По традиции…

Основные компоненты в устройстве светодиодных ламп

Как устроены светодиодные лампы

Не смотря на то, что светодиодные лампы уже прочно вошли в нашу жизнь и 60 процентов населения нашей страны давно используют их в своих квартирах, для большинства устройство светодиодных ламп остается «секретом». И не потому, что внутренности лампы сложны, а из-за того, что мало кого интересует из чего состоят любые LED лампы. Мы уже выяснили, что светодиодные лампы не имеют аналогов по энергоэффективности. Но немаловажным является и то, что эти источники света являются экологически чистыми.

Но не будем опять переливать из пустого в порожнее о том, на сколько хороши LED лампы. Цель этой статьи – рассмотреть как устроены светодиодные лампы. В отличии от ламп накаливания состоят они из нескольких важных элементов. Но обо всем по порядку…

Устройство светодиодных лампУстройство светодиодных ламп

Цоколь — одна из важных частей в устройстве LED ламп при их выборе


 

Устройство светодиодных ламп - цоколиЦоколи светодиодных ламп

Эта часть практически ничем не отличается от привычных нам ЛН или КЛЛ. Так же, как и везде при производстве используют либо металл, либо керамику. Хорошие лампы от известных производителей выпускают без применения пайки, что позволяет полностью исключить окисление или прилипание цоколя к патрону. Вроде бы несущественное изменение, но очень приятное, особенно для тех, кто помнит, сколько времени стоит потратить, чтобы «вызволить цоколь из лап патрона» светильника.

Цоколи выпускают разных типов и видов. Наиболее популярные и распространенные представлены на картинке выше. В нашей стране большинство потребителей используют LED лампы с цоколем Е27 и Е14.

Устройство LED ламп не мыслимо без радиатора


Мы рассматривали вопрос о том, что излишнее тепло очень критично сказывается на работоспособности светодиода. И это если мы берем во внимание только один диод. А если рассматривать лампу, то тепловой нагрев в этом случае становится еще более критичным. Без хорошего теплоотвода лампа проживет в лучшем случае год. В худшем – два-три месяца. Поэтому перед покупкой стоит обратить внимание на то, каким образом выполнен теплоотвод в лампе.

Много LED lamp устроены таким образом, что теплоотвод выполнен ТОЛЬКО одними продольными или поперечными отверстиями по всему корпусу лампы. Как показывает эксплуатация, этого не достаточно. Не зря «продвинутые» производители используют металлические радиаторы. Китайцы зачастую вместо металла могут впихнуть керамику. Не скажу, что это плохо, но хрупкое от этого получается детище.

Радиаторы могут быть сплошными, спиралевидными, пластинчатыми и т.д. Толщина зависит от мощности используемых светодиодов.

Устройство светодиодных ламп - радиаторыРадиаторы LEDs lamp

Какой бы радиатор не использовался, как бы не отводилось тепло, мы все-равно до сих пор не можем найти тот единственный радиатор, который смог бы установить необходимое рабочее тепло для светодиодов. Разные производители с попеременным успехом пытаются решить эту проблему.

Есть даже такие, которые внесли кардинальное изменение в устройство светодиодной лампы и в качестве охладителя используют обычную воду. К сожалению, мне еще не попадались такие экземпляры, но я бы с удовольствием их протестировал. Может когда-нибудь и свершится это чудо))).

Драйвер в устройстве светодиодных ламп


Драйверы для светодиодных лампДрайеры для светодиодных ламп

Драйвер – один из главных, если не основных компонентов в устройстве светодиодной лампы. Ни один LED источник света без него не будет работать. Другое дело, что кто-то выполняет его из качественных компонентов, а кто-то использует минимум компонентов. Драйверы можно разделить на электронные и на конденсаторах. Лампа и в том и в другом случае работать будет, но как долго и какая безопасность от этого – другой вопрос.

О том, какие драйвера лучше я рассмотрю в другой статье. А сейчас могу только сказать, что огромным минусом в устройстве светодиодных ламп драйверов на конденсаторах стоит считать пульсацию.

Монтажные платы со светодиодами


Лирическое отступление))) Вообще я не люблю писать материал на очевидные темы. Мне всегда кажется, что понятные вещи мне, должны быть понятны и другим. Так и с этой статьей. Пишу и думаю… А кому эта информация нужна? Ведь все очевидно! Но да ладно… Раз начал, то прийдется закончить и перейти к более интересным темам.

ПлатаМонтажная плата со светодиодами

Монтажная плата. Тут каждый производитель изгаляется по своему. Пытаясь удешевить свою конструкцию за счет использования этих плат. Вернее материалов, на которых выполнена плата. В настоящий момент я отдаю предпочтение лампам, в которых монтажные платы выполнены из сплава алюминия. Т.к. это способствует абсорбции теплового излучения до 90 процентов. При этом не стоит забывать о том, что использование термопасты уменьшит тепловое сопротивление самой платы, тем самым передав тепло на радиатор.

Светодиоды в устройстве диодных ламп


Второй по значимости компонент))

Светодиоды, используемые в лампахСветодиоды в лампах

Тут уж точно, ставят виды светодиодов какие бог на душу положит. Лампы могут быть на smd диодах, мощных или COB. Упоминалось в наших статьях и о филаментных светодиодах. Важным моментом остается только факт «правильного» количества чипов. Чем больше свтодиодов, тем больше тепла выделяется, тем тяжелее его отводить. Чем меньше, тем холоднее будет лампа. Но от этого пострадает мощность. Дилемма…

Рассеиватели и линзы в светодиодных лампах


Рассеиватели LEDs lampРассеиватели светодиодных ламп

Очень мало видов ламп, которые выпускаются без рассеивателей. Они способствуют концентрировать свет под определенным углом. В своем большинстве изготовлены из матового пластика. Плюсом стоит отметить то, что такие рассеиватели безопасны, в отличии от стеклянных колб по вполне понятным причинам. По конструкции могут быть шарообразные, грушевидные, свечеообразные и т.п.

ЛинзыЛинзы для светодиодных ламп

Часто производители вместо рассеивателей используют линзы для светодиодов. Они также имеют огромное количество разновидностей. Производят их из разнообразных материалов. Более полную информацию о рассеивателях и линзах я опубликую не много позднее.

В принципе, устройство любой светодиодной лампы одинаково. И основные компоненты указаны в моей статье. Кто-то может вносить некоторые изменения в форму, корпус, радиатор и т.п. Но от этого ничего не меняется. Улучшаются одни характеристики и занижаются другие. Какие? Это уже необходимо смотреть каждую лампу индивидуально. Но сам факт того, что устройство LED ламп простое не подвергается сомнению. Пока «рожал» в муках ( так как особо писать про устройство не вижу смысла ) статью, появилась мысль о создании другого интересного материала, в частности про светодиодные драйверы лед ламп. Типы, виды и преимущества… Чем и займусь в ближайшее время. А пока можете оставить комментарии, поругать или похвалить…Как говорится, мне все равно…Вообще, у меня стоит задача в настоящее время наполнить наш раздел общей информацией по светодиодным лампам. Для меня это тяжело, т.к. больше люблю освещать не обыденные и обмусоленные всеми темы, а что-то новое и интересное. Жду-не дождусь, когда закончу с общими вопросами и приступлю к публикации тестов и обзоров). Благо материала накопилось вагон и маленькая тележка.

Видео материал по устройству светодиодных ламп


Ну и в конце, как уже повелось, приведу пример видео материала, в котором Вы можете воочию увидеть то, из чего устроена светодиодная лампа. Пишу, пишу… А может заняться и делать видеообзоры? Стоит подумать. Но и времени, как всегда, катастрофически не хватает…( Жаль.

поиск неисправностей и их устранение

Несмотря на огромное разнообразие электрических осветительных приборов, высокая экономичность и максимально продолжительные сроки эксплуатации позволяют светодиодам существенно опережать конкурентов.

Именно такие источники света предпочитают сегодня жители многих стран мира, однако большой спрос порождает и массовое производство. Далеко не все изготовители относятся добросовестно к технологиям и рекомендациям, что приводит к быстрому перегоранию изделий. Постоянно покупать новые устройства — «себе дороже». В таких ситуациях и требуется ремонт светодиодных ламп своими руками.

Быстрый ремонт светодиодной лампыБыстрый ремонт светодиодной лампы

Не стоит пугаться и моментально закрывать статью — прочитав информацию ниже, вы поймете, что с такой работой может справиться даже неквалифицированный человек без опыта работы. В сборе светодиодная лампа или светильник — дорогостоящее изделие, но по отдельности купить сгоревшую деталь не составит труда.

к содержанию ↑

Устройство светодиодной лампы

Приступая к ремонту чего-либо, для начала следует тщательно изучить устройство и принцип работы оборудования. Независимо от внешнего вида и используемых светодиодов каждая лампа, включая филаментную, сконструирована по одной электрической схеме. Снимите корпус изделия и внутри увидите драйвер — электронную плату, к которой крепятся различные радиотехнические компоненты.

Любая LED-лампа функционирует по одному принципу. Напряжение питания поступает на контакты электрического патрона и передается на вывод обычного цоколя лампочки (E27 или другого формата). Таких выводов может быть несколько штук. К ним паяются два провода, по которым напряжение переходит на вход электронной платы. Драйвер преобразует переменное напряжение в постоянное, обычно понижая его, после чего передает на другую электронную плату со светодиодами.

Устройство LED-лампыУстройство LED-лампы

Драйвер — электронный блок, генерирующий и преобразующий ток с напряжением в те значения, которых достаточно для работы светодиодов. В более дорогостоящих изделиях в целях защиты плата прячется под рассеивающим стеклом.

к содержанию ↑

Простейшая схема устройства светодиодной лампы 220 В

Максимально простая схема для светодиодной лампы, подключаемой к сети 220 В, включает драйвер, состоящий из двух гасящих резисторов, стабилизирующих напряжение. Подключение LED-диодов происходит в разных направлениях, что гарантирует идеальную защиту от обратного напряжения. В таком случае частота мерцания увеличивается с 50 до 100 Гц.

К примеру, для подключения светодиодной ленты к цоколю припаиваются два провода. Концы этих проводов впоследствии соединяют с концами светодиодной ленты. Электрическая цепь плюсового провода включает конденсатор с параллельно подключенным резистором и проходит через положительную часть диодного моста, а цепь минусового провода — резистор и соединяется с отрицательной частью диодного моста. Между диодным мостом и светодиодной лентой устанавливают второй блок «конденсатор-резистор», подключаемый к обоим проводам.

Проще говоря, питающее напряжение проходит через ограничительный конденсатор и поступает на диодный мост, а оттуда — на светодиодные элементы. Заменив светодиод на выпрямительный диод, вы в два раза не увеличите, а понизите напряжение — с 50 до 25 Гц. При таком раскладе мерцание изделия станет чувствительным, вредным для зрительных органов, приводящим к быстрой утомляемости и мигреням.

Простая схема диодной лампыПростая схема диодной лампы

к содержанию ↑

Разборка светодиодной лампочки с герметиком

Далеко не все изделия легко и просто разобрать, не повреждая составных частей. Попробуйте повернуть верхнюю часть корпуса. Если ничего не получается, придется воспользоваться растворителем. Наберите некоторое количество растворителя в шприц и через иголку выдавите вдоль шва. Подождите около 5 – 10 минут, затем повторите операцию.

Проделайте действия не менее трех раз, затем начните поворачивать верхнюю часть корпуса в разные стороны, чтобы раскачать ее. Когда колба будет снята, очистите внутренние стенки, удалив герметик и обезжирив поверхности. Если устройство будет эксплуатироваться в помещении с невысоким уровнем влажности, герметик не накладывается.

Разборка LED-лампы с герметикомРазборка LED-лампы с герметиком

к содержанию ↑

Выявляем причину выхода из строя светодиодной лампочки

Срок эксплуатации любого изделия, включая светодиодные лампы, зависит от условий применения, соблюдения правил и рекомендаций, прописанных изготовителями.

Существует масса причин, из-за которых срок службы, указанный производителем, не соответствует действительности: применение некачественных кристаллов и неправильная оценка работоспособности, поскольку условия реальной эксплуатации практически всегда отличаются от потенциальных.

Перечислим главные причины выхода из строя светодиодных изделий:

  1. Скачки напряжения. Звучит странно, поскольку диодные лампы из всех осветительных приборов менее чувствительны к колебаниям электрических параметров. Любые изменения напряжения в худшую сторону влияют на функциональность устройства. Это менее заметно по сравнению с лампами накаливания, галогенками, экономками или КЛЛ, но имеет место быть.
  2. Просчеты при выборе светильника — выбор неподходящего плафона. Если конфигурация технически неверная, возрастает вероятность перегрева. И вновь нужно вспомнить о том, что в сравнении с остальными источниками света светодиодные лампы выделяют минимум тепла. Возгорания не произойдет, но повышение температуры на несколько градусов снизит долговечность устройства.
  3. Использование некачественных компонентов (кристаллов). Немногие производители применяют детали с хорошими технико-эксплуатационными характеристиками, что обусловлено желанием снизить себестоимость. В результате лампы быстрее выходят из строя.
  4. Технические ошибки, допущенные при построении электрической цепи системы освещения. К примеру, при подключении светодиодных ламп использовалась электропроводка с недостаточным сечением кабеля.
  5. Разнообразные внешние факторы, несмотря на повышенные прочностные характеристики устройств, спрятанных в пластиковой колбе. Сюда относятся вибрации, механические удары.

Светодиодная лампа может выйти из строя из-за механических поврежденийСветодиодная лампа может выйти из строя из-за механических повреждений

Чтобы продлить срок эксплуатации светодиодных ламп и повысить качество свечения, постарайтесь исключить или снизить до минимума влияние вышеперечисленных факторов. Доверьте прокладку электрической проводки мастерам, создайте максимально комфортные и приемлемые условия для использования изделий.

Хорошее устройство будет иметь ровные края. Не всегда получается оценить качество применяемых кристаллов, поэтому старайтесь покупать лампы в проверенных магазинах от брендовых производителей.

Другой вариант продления срока службы светодиодной лампочки — использование диммера, регулирующего световой поток. Важно заранее купить диммируемые устройства или самостоятельно выполнить модернизацию имеющихся. Диммер позволит понизить пусковой ток: чем меньше значение, тем лучше.

к содержанию ↑

Ремонт

Светодиодную лампу можно отремонтировать независимо от причин выхода из строя. Чтобы это сделать, нужно разобрать изделие на части и добраться до начинки. Для начала удаляется рассеиватель, выполняющий несколько функций. Компонент либо крепится к базовой части через герметик, либо удерживается с помощью защелки. Если элемент будет поворачиваться отдельно от корпуса, для снятия достаточно в нужном месте надавить.

Выше было описано, что нужно делать, если рассеиватель надежно приклеен к корпусу. Добавим к применению растворителя возможность удаления корпуса при помощи тонкой отвертки: аккуратно подденьте, не прикладывая больших усилий.

Неремонтопригодны светодиодные лампы со стеклянными колбами, поскольку удалить подобный рассеиватель без повреждений практически нереально.

Светодиодные лампы со стеклянной колбой не подлежат ремонтуСветодиодные лампы со стеклянной колбой не подлежат ремонту

к содержанию ↑

Замена блока питания

В комнатах с повышенным уровнем влажности используются осветительные приборы низкого напряжения — 12 или 24 В, которые подключаются к общей электрической сети 220 В. Для понижения высокого напряжения переменного тока до необходимых значений постоянного используются стабилизирующие блоки питания, которые могут выйти из строя.

Причиной поломки блока питания может стать повышенная нагрузка (если суммарная мощность используемых светильников превышает допустимую для стабилизатора) или неправильно подобранная степень защиты от проникновения пыли и влаги (IP). Чтобы починить данные изделия, следует обратиться в специализированные сервисные центры, поскольку в бытовых условиях восстановить их нереально (требуется определенное оборудование и знания радиоэлектроники). Единственный вариант — поменять блок питания.

Во время замены стабилизатора светодиодная лампа должна быть полностью отключена от сети питания — перерезаны провода или отключены клеммы. Не надейтесь исключительно на выключатель. Обязательно отключите напряжение через распределительный щиток квартиры.

Мощность для стабилизирующего блока питания должна быть выше суммарного значения подключаемых ламп. После отключения вышедшего из строя элемента подключите новый в соответствии с коммутирующей схемой. Найти ее можно в технической документации к оборудованию. Процесс максимально прост, поскольку провода имеют цветовую, а контакты — буквенную маркировки.

Выявление неисправности в блоке питания светодиодных источников светаВыявление неисправности в блоке питания светодиодных источников света

Степень защиты от пыли и влаги для ванной комнаты должна быть не менее IP45.

к содержанию ↑

Замена светодиодов

Чтобы максимально упростить процедуру, воспользуйтесь паяльной станцией/феном. Паяльником действовать труднее, но можно.

Большинство устройств состоят из нескольких светодиодов, соединенных последовательно. Если выходит из строя хотя бы один, перестает работать целая группа или весь источник света. В таком случае, если под рукой нет подходящего светодиода, сгоревший можно заменить обычной перемычкой. Помните, что из-за перемычки лампа проработает недолго, но так можно выиграть немного времени на покупку нужного элемента. Чем меньше общее число светодиодов, тем быстрее лампа с перемычкой выйдет из строя.

Замена сгоревшего светодиода перемычкойЗамена сгоревшего светодиода перемычкой

В современных осветительных приборах используются SMD-диоды, которые могут быть выпаяны из ленты. При замене убедитесь, что купили деталь с идентичными техническими параметрами.

к содержанию ↑

Ремонт драйвера

Если вышел из строя драйвер, изучите его конструкцию. Электронная плата может состоять из нескольких SMD-диодов, размер которых гораздо меньше, чем у жала паяльника. В таком случае нужно выбрать паяльник с медной проволокой на жале. Выполните выпаивание сгоревшего элемента и подберите подходящий по характеристикам или маркировке.

Когда видимых неисправностей не обнаружено, задача усложняется. Придется выпаивать каждую деталь отдельно и прозванивать ее. Как только будет найден сгоревший компонент, замените его на новый и верните все элементы на свои места. Для упрощения работы используйте пинцет.

Никогда не удаляйте с платы все детали разом. Вы можете не запомнить их правильное расположение и впоследствии перепутать. Действуйте следующим образом: выпаяйте один диод, проверьте его работоспособность, а затем верните на место. Повторите то же самое для остальных элементов.

Ремонт драйвера светодиодной лампыРемонт драйвера светодиодной лампы

к содержанию ↑

Особенности ремонта лампы «кукуруза»

«Кукуруза» — одна из разновидностей светодиодных ламп, получившая название из-за своей формы и расположения полупроводников.

Обслуживать такие изделия проще простого! Светодиоды расположены сверху и ничем не защищены, поэтому при их замене необязательно разбирать устройство и лезть в его начинку.

Прозвоните каждый элемент отдельно и замените вышедшие из строя. Неисправный компонент может быть заменен обычной перемычкой. Наличие таковой незначительно снижает срок эксплуатации «кукурузы», но никак не влияет на стабильность и надежность устройства. Это актуально только для ламп данного типа!

Ремонт лампы типа кукурузаРемонт лампы типа кукуруза

к содержанию ↑

Модернизация лампы в ходе ремонта

Параллельно ремонту ламп можно немного поэкспериментировать со светодиодами. Делается это по причине того, что одинаковые светодиоды (по типу и яркости) с разной цветовой температурой (теплым желтым и холодным белым свечением) отличаются по цене в 3 – 4 раза. Несмотря на это, покупные светодиоды с теплым свечением, считающиеся наиболее дорогими по сравнению с обычной лампой накаливания, имеют синеватый оттенок.

Более дешевые заводские лампы выпускаются без выпрямителя или сглаживающего конденсатора. Вы можете самостоятельно установить его в домашних условиях, используя обычный паяльник. Обычно элементы отсутствуют в китайских изделиях, производители которых просто соединяют пары светодиодов, подключенных в разных направлениях, и добавляют балластный конденсатор. Мерцание лампы усиливается в 2 – 3 раза, что негативно сказывается на здоровье человека.

к содержанию ↑

Моргание и устранение их причин в светодиодной лампочке

Главная причина, по которой мерцают светодиодные лампочки, — использование слабого конденсатора или отсутствие такового. Проблема решается довольно просто — путем установки более мощного компонента. Если напряжение конденсатора будет составлять 102 В, а светодиодов — 180 В, значение первого должно быть повышено в 1,5 – 2 раза.

Замена электролитического конденсатора в LED-лампеЗамена электролитического конденсатора в LED-лампе

Установите аналогичный конденсатор, но уже большей емкости. Просто перепаяйте старый конденсатор, заменив его на новый. Другой выход — параллельно подключить второй конденсатор, чтобы увеличить суммарную емкость и мощность.

к содержанию ↑

Заключение

Несмотря на постепенное снижение стоимости светодиодных ламп, их цена по-прежнему высока. Не каждому человеку по карману покупать постоянно качественную продукцию, но и дешевые изделия прослужат недолго.

В случае поломок не стоит торопиться с походом в магазин. Возможно, проблема не так страшна, как кажется, и вы обойдетесь банальной заменой блока питания или сгоревшего светодиода. Не забывайте о соблюдении правил и условий эксплуатации ламп, что обеспечит их долговечность.

Ремонт светодиодных ламп своими руками: поиск неисправностей и их устранение

Лампа филаментная – устройство, принцип работы, схема

Светодиодная филаментная лампа – это искусственный источник света, в котором световая энергия вырабатывается нитевидным элементом, называемым филаментом (filament), состоящим из множества включенных последовательно светодиодных кристаллов.

Внешний вид филаментной лампы

Филаментная лампа была разработана японской компанией «Ushio» в 2008 году, но из-за малой мощности для освещения была непригодна. И только в 2013 году китайским компаниям удалось добиться величины излучения светового потока филаментной лампы, сравнимого с лампой накаливания мощностью 60 Вт. Внешний вид филаментной лампочки показан на фотографии.

Филаменты

Источником излучения светового потока в филаментной лампе являются филаменты, откуда и произошло название лампы.

Внешний вид филаментов, извлеченных из лампы

На фотографии показано шесть филаментов, извлеченных из перегоревшей лампы. Филаменты могут иметь любую форму, даже спирали. Это позволяет дизайнерам создавать эксклюзивные лампочки.

Устройство светодиодного филамента

Филаменты изготавливают по технологии Chip-On-Glass, сокращенно COG, что переводится как чип на доске.

Основанием филамента служит стеклянный или сапфировый стержень круглой формы с вплавленными в него по торцам электродами. Диаметр стандартного стержня составляет 2 мм, длина – 30 мм.

Устройство LED филамента

Вдоль стержня закреплено последовательно соединенных 28 светодиодных миниатюрных кристаллов синего и красного цветов излучения. Сверху светодиоды покрыты слоем лака, пропускающим только белый свет.

Мощность филамента составляет около 1 Вт, напряжение, необходимо для свечения составляет около 60 В. Рабочий ток, соответственно, около 16 мА.

Филаменты в лампочках размещают в герметичную стеклянную колбу, но они успешно могут работать и на открытом воздухе, что позволяет из них делать оригинальные самодельные светильники.

Устройство филаментной лампочки

Если посмотреть на филаментную лампочку издалека, то можно и не отличить ее от лампы накаливания. Такая же стеклянная колба и внутреннее устройство. Только спирали толще и расположены вертикально.

Но это только внешнее сходство, так как работает филаментная лампа по принципу светодиодной лампочки.

Устройство филаментной лампы

Для подачи питающего напряжения в лампе имеется металлический цоколь с резьбой Эдисона. В настоящее время лампы оснащают цоколями только типоразмеров Е14 и Е27. В цоколе размещен драйвер, который обеспечивает преобразование переменного напряжения сети в постоянное напряжение, стабилизированное по току.

С драйвера питающее напряжение подается через два проводника, вплавленных в герметичную стеклянную колбу, на выводы размещенных в ней филаментов. Филаменты между собой и токовводами соединяются с помощью точечной сварки. Для эффективного отведения тепловой энергии от филаментов колба заполнена гелиевой газовой смесью, которая обладает высокой теплопроводностью.

Анализ причины перегорания филаментной лампы

Чтобы не отставать от технического прогресса при появлении на рынке филаментных ламп приобрел двенадцать таких лампочек с цоколем Е14 мощностью 6 Вт для двух люстр.

Внешний вид филаментной лампы мощностью 6 ватт

Лампы красиво смотрелись в люстре и хорошо освещали помещение, но через год эксплуатации одна из них ярко вспыхнула и перестала светить. Решил выяснить, в чем причина отказа.

Внешний вид разбитой филаментной лампы с помощью тисков

Попытка отделить цоколь от колбы лампы не увенчалась успехом. Клей-компаунд скрепил цоколь с колбой намертво. Пришлось применить разрушающий метод разборки с помощью тисков.

Извлечение остатков колбы филаментной лампы из цоколя

Для извлечения драйвера из цоколя пришлось, вращая его сжимать по немного тоже в тисках. Компаунд и остатки стекла колбы при этом крошились.

Разобранная филаментная лампа, внешний вид драйвера и филаментов

В результате удалось извлечь из лампы филаменты и драйвер без их повреждения. На фотографии показано как выглядит филаментная лампа без колбы и цоколя.

Внешний вид драйвера филаментной лампы со стороны конденсатора

При осмотре драйвера сразу бросилось в глаза, что рядом с токоограничивающим конденса

устройство, принцип работы, советы мастеров

Светодиодные лампы постепенно вытесняют иные осветительные приборы с рынка. Это экономичные, долговечные приборы, которые могут создавать световой поток разных оттенков. Они отличаются более сложным устройством, чем лампы накаливания. У них предусмотрен в конструкции блок питания. Он может быть разным. Как устроен блок питания для светодиодных ламп, какую разновидность выбрать, будет рассмотрено далее.

Источник питания для светодиодов

Чтобы выполнить ремонт блока питания светодиодной лампы, нужно понимать принцип работы такого элемента системы.

блок питания для светодиодной лампы 12в

Источник питания подобного осветительного прибора должен соответствовать ряду требований. Основные из них следующие:

  • энергоэффективность;
  • надежность;
  • электромагнитная совместимость;
  • безопасность.

Только обеспечив светодиоды источником питания с перечисленными качествами, можно добиться правильной работы прибора, продлить срок его эксплуатации.

Стоит отметить, что продолжительность эксплуатации представленных осветительных приборов составляет не менее 50 тыс. часов. Соответственно и блок питания должен проработать не меньшее количество времени. При этом нужно помнить, что основной причиной, по которой светодиодные лампы вытесняют все другие разновидности осветительных приборов, являются энергосберегательные технологии. Поэтому блок питания также должен обладать высоким КПД. В противном случае из-за блока питания экономия энергии будет незначительной.

Стоит также отметить, что представленная деталь является единственным источником помех электромагнитного типа. Поэтому от блока питания зависит совместимость светодиодного светильника с электросетью.

Единственным элементом в представленном осветительном приборе, к которому подводится напряжение от бытовой сети, является блок питания светодиодных ламп. 220В в этом элементе системы трансформируется, снижаясь до 12 В на выходе. По этой причине электробезопасность устройства полностью зависит от этого прибора.

Кроме того, блок питания влияет на светотехнические характеристики лампы, на то, какой ток будет протекать через светодиод. Если он будет пульсировать, то и световой поток будет отличаться низким качеством, плохо влиять на зрение.

Устройство лампы и драйвера

Блок питания для светодиодной лампы 12В является самой распространенной разновидностью. В зависимости от характеристик лампы он может выдавать на выходе 5, 12, 24, 48 В. При этом ток из переменного преобразовывается в постоянный. Это обязательное условие правильной работы системы.

блок питания светодиодных ламп 220в

Прежде чем рассмотреть устройство этого элемента лампы, нужно обратить внимание на его место в конструкции. Это позволит при необходимости выполнить ремонт. Лампы светодиодного типа имеют одинаковое устройство. Если демонтировать корпус, можно увидеть внутри драйвер. Это печатная плата, на которую напаяны радиоэлементы.

Цоколь представленных приборов чаще всего имеет размер G4. Блок питания для светодиодных ламп следует сразу после него. Электричество подается на контакты патрона, передаваясь на выводы цоколя. К нему подведено два провода, по которым напряжение подается на драйвер (блок питания). Здесь происходит трансформация тока до заданных параметров. Оно поступает на плату, к которой припаяны светодиоды.

Драйвер – это электронный блок, который представляет собой генератор тока. Он, в свою очередь, также имеет несколько основных компонентов. Напряжение от бытовой сети попадает сначала на фильтр. Он устраняет электромагнитные помехи. Далее ток попадает на выпрямитель. Здесь он становится постоянным. Следующая ступень блока питания предназначена для коррекции коэффициента мощности. Последней стадией, которую проходит в этом устройстве электрический ток, является импульсный стабилизатор тока. К его выходу подсоединены светодиоды.

Такое устройство имеет любая светодиодная лампа. Если нужно собрать блоки питания светодиодных ламп аварийного или основного назначения, придерживаются указанной схемы.

Особенности питания светодиодов

Блок питания светодиодных ламп на 220В имеет некоторые особенности работы. Это нужно обязательно учесть, собираясь сделать или отремонтировать этот прибор. Светодиод имеет нелинейную зависимость напряжения и тока. Этой особенностью обладают все осветительные приборы представленного типа.

блок питания из светодиодной лампы своими руками

Так, при увеличении номинального напряжения ток на светодиоде резко возрастает. Это может привести к поломке. Поэтому в недорогих лампах (часто китайского происхождения) последовательно со светодиодом устанавливается ограничивающий резистор. Если произойдет скачок напряжения, он не позволит току увеличиться. Но при этом на резисторе упадет мощность. КПД недорогого светильника по этой причине уменьшается.

Блок питания обеспечивает нормальное напряжение для питания светодиодов. Именно этот прибор чаще всего включается в схему ламп представленного типа. Блок питания для светодиодной лампы 12В или с иным значением исходящего напряжения, называется драйвером. Это маркетинговое обозначение подобных приборов. Источник постоянного напряжения для светодиодов, которые работают от напряжения 12 В, принято называть блоком питания. Если же устройство еще и стабилизирует входной ток, то это драйвер. Можно сказать, что это разновидность блока питания, которая устанавливается в качественных лампах.

Разновидности блоков питания

Рассмотрев устройство блока питания светодиодной лампы, нужно обратить внимание на разновидности подобных приборов. Они могут быть трансформаторными или импульсными. Они отличаются устройством и принципом работы.

блок питания для светодиодной лампы 220

Так, в основе трансформаторного блока применяется трансформатор. Это прибор понижающего типа. Напряжение для любой лампы светодиодного типа нужно понижать с 220 В до 12 В или иного нужного значения. Только после этого ток подается на выпрямитель. Любая светодиодная лампа работает от постоянного тока.

Преимуществом трансформаторных разновидностей приборов является простота их конструкции. Они способны выдержать нагрузку в режиме холостого хода и имеют развязку от бытовой сети. Однако у представленной разновидности блока имеются и недостатки. Основными из них являются малый КПД (50-70%), а также чувствительность системы к перегрузкам.

Импульсный блок питания для светодиодных ламп также имеет в своей конструкции трансформатор. Но в этом случае он работает на более высоких частотах. Поэтому его вес и размер в несколько раз меньше. Обычный трансформаторный блок питания работает на частоте 50 Гц. Он значительно габаритнее. КПД импульсного прибора составляет 70-80%.

В импульсных разновидностях прибора также присутствует развязка от сети. Этот прибор также чувствителен к перегрузкам, но при этом может перестать функционировать даже при холостом ходе. Такой прибор при значительной перегрузке может воспламеняться.

Особенности драйвера

Выбирая блок питания для светодиодной лампы 220 В, нужно обратить внимание на особенности приборов, которые принято называть драйверами. Это импульсные разновидности источников питания. Они стабилизируют исходящее напряжение, которое подается на светодиоды. Такие приборы бывают одно- и двухкаскадными. Второй вариант предпочтительнее. Двухкаскадные драйверы устанавливают в подавляющем большинстве схем. Они обладают особым принципом действия.

блоки аварийного питания светодиодных ламп

Так, первый каскад является корректором коэффициента мощности. Второй элемент системы является стабилизатором напряжения на выходе. Блок корректора необходим, так как драйвер представляет собой импульсный тип устройства. Он должен соответствовать требованиям, оговоренным в ГОСТ, которые касаются подавления гармоник входящего напряжения.

Двухкаскадный драйвер соответствует нормам и требованиям, которые выдвигаются к качеству светового потока. Такой блок питания для светодиодных ламп 12 вольт способен обеспечить пульсацию, равную 1%. Это хороший показатель. Подобное освещение не будет негативно воздействовать на зрение и нервную систему человека. При этом коэффициент мощности двухкаскадного прибора составляет 0,92-0,96.

Стоит отметить, что представленная схема драйвера довольно дорогая. Поэтому производители дешевых ламп устанавливают однокаскадную схему драйвера. Такие системы больше подходят для создания освещения в кладовке, техническом помещении, подвале или подъезде. В квартире или доме нужно применять двухкаскадные схемы.

Еще несколько слов о драйверах

Стоит отметить, что в отличие от блока питания у драйвера нет такой характеристики как «исходящее напряжение». Для этого прибора характерны только такие показатели, как выходной ток и мощность. Это означает, что представленная разновидность источника питания не выдаст ток с большим значением, чем было рассчитано производителем.

импульсный блок питания для светодиодных ламп

Существуют драйверы, рассчитанные на определенное количество светодиодов (например, 5 шт.). В этом случае подключить можно и меньше осветительных элементов, но не больше.

Иные типы представленных элементов электросхемы лампы могут работать с любым количеством светодиодов. Однако их суммарная мощность не должна быть больше установленного производителем значения. Стоит отметить, что у универсальных драйверов КПД будет меньше. Это объясняется спецификой работы импульсной схемы.

Разновидности драйверов

блок питания светодиодной лампы ремонт

В продаже представлено несколько типов представленных источников питания для светодиодных ламп. Основные из них следующие:

  • конденсаторная схема;
  • резистор;
  • драйвер со входом низковольтного типа;
  • микросхема HV9910;
  • сетевой драйвер;
  • микросхема LM317.

Выбор зависит от особенностей прибора, параметров его эксплуатации.

Советы специалистов

Выбирая блок питания для светодиодных ламп, нужно знать, чем отличаются существующие их виды. Специалисты в области светотехники дают несколько советов. Мастера утверждают, что при использовании в схеме драйвера светодиоды могут работать на полную мощность. Это объясняется отсутствием необходимости понижать напряжение. В этом случае светодиоды не выйдут из строя из-за повышения мощности.

Если же питание осуществляется при помощи блока питания, часть напряжения будет расходоваться из-за нагрева резисторов. Последние отвечают за ограничение напряжения при скачке показателей тока. Поэтому, запитав систему при помощи драйвера, можно значительно продлить срок службы светодиодов. Ток в этом случае никогда не превысит допустимое значение.

Стоит учесть, что драйвер представляет собой прибор, который предназначен для тока с определенными характеристиками, заданной мощности. Поэтому желая собрать или отремонтировать блок питания из светодиодной лампы своими руками, нужно подбирать его в соответствии с количеством и типом светодиодов. Их мощность должна соответствовать выбранному питающему устройству.

Обычный блок питания можно применять для любых электрических приборов, а драйвер специально предназначен для светодиодов. Это обязательно учитывают при покупке прибора. Существует ряд факторов, которые влияют на выбор типа питающего устройства.

Какой тип устройства выбрать?

Блок питания для светодиодных ламп, а также драйверы нужно выбирать в соответствии с особенностями эксплуатации прибора. Опытные мастера дают несколько советов, какую разновидность питающего устройства лучше приобрести в том или ином случае.

Драйвер предпочтительнее применять в схеме со светодиодами, если в схеме не предусмотрены резисторы. Такое случается, если нужно запитать отдельные диоды. Также представленную разновидность приборов применяют в том случае, если не надо периодически отключать часть светодиодов от драйвера.

Также в специализированных магазинах проще подобрать стабилизатор входного напряжения. Драйвер подбирается в соответствии с количеством светодиодов и их мощностью. В этом должен помочь квалифицированный консультант-продавец. Поэтому, приобретая необходимое оборудование в магазине, лучше остановить свой выбор на драйвере.

Если же в схеме предусмотрены светодиоды со встроенными резисторами, лучше приобрести блок питания. Это решение будет правильным и в случаях, когда требуется иногда отключать часть светодиодов.

Советы по выбору

Специалисты советуют подходить к выбору блока питания для светодиодных ламп комплексно. Обратившись в специализированный магазин, нужно сначала определиться с типом источника питания. Решив, нужен ли драйвер или блок питания, можно переходить к следующему этапу. Определяется суммарная мощность светодиодов. Блок питания должен не только соответствовать этому значению, но и иметь запас около 20%. Чтобы рассчитать мощность, нужно заглянуть в техпаспорт лампы.

Драйвер должен соответствовать номинальной мощности и току светодиодов. Источник питания, который выдает на выходе 12 вольт не подойдет для осветительного прибора на 48 вольт.

Дальше нужно обратить внимание на показатель защиты корпуса от внешних погодных условий. Нужно решить, для каких целей нужна лампа. Если она будет смонтирована на улице, во влажном или запыленном помещении, класс защиты должен быть высоким. Этот показатель обозначается буквами IP в маркировке. Для домашнего применения можно выбирать блок питания с самым низким классом защиты. Приборы типа IP65 предназначены для уличного монтажа или в помещении ванны, бани или душа. Такой блок питания не боится прямого попадания струи воды на корпус. Стоимость защищенных устройств на порядок выше.

Подробное устройство и принцип работы светодиода

С момента открытия красного светодиода (1962 г.) развитие твердотельных источников света не останавливалось ни на миг. Каждое десятилетие отмечалось научными достижениями и открывало для ученых новые горизонты. В 1993 году, когда японским ученым удалось получить синий свет, а затем и белый, развитие светодиодов перешло на новый уровень. Перед физиками всего мира стала новая задача, суть которой заключалась в использовании светодиодного освещения в качестве основного.

В наше время можно сделать первые выводы, свидетельствующие об успехах становления светодиодного освещения и продолжающейся модернизации светодиода. На прилавках магазинов появились светильники со светодиодами, изготовленными по технологии COB, COG, SMD, filament.

Как устроен каждый из перечисленных видов, и какие физические процессы вынуждают полупроводниковый кристалл светиться?

Что такое светодиод?

Перед разбором устройства и принципа работы, кратко рассмотрим, что светодиод из себя представляет.

Светодиод – это полупроводниковый компонент с электронно-дырочным переходом, создающий оптическое излучение при пропускании электрического тока в прямом направлении.

В отличие от нити накала и люминесцентных источников света, испускаемый свет светодиодом лежит в небольшом диапазоне спектра. То есть кристалл светоизлучающего диода испускает конкретный цвет (в случае со светодиодами видимого спектра). Для получения определенного спектра излучения в светодиодах используют специальный химический состав полупроводников и люминофора.

Устройство, конструкция и технологические отличия

Существует много признаков, по которым можно классифицировать светодиоды на группы. Одним из них является технологическое отличие и небольшое различие в устройстве, которое вызвано особенностью электрических параметров и будущей сферой применения светодиода.

DIP

DIP светодиодЦилиндрический корпус из эпоксидной смолы с двумя выводами стал первым конструктивом для светоизлучающего кристалла. Закругленный цветной или прозрачный цилиндр служит линзой, формируя направленный пучок света. Выводы вставляются в отверстия печатной платы (DIP) и с помощью пайки обеспечивают электрический контакт.

Излучающий кристалл располагается на катоде, который имеет форму флажка, и соединяется с анодом тончайшим проводом. Существуют модели с двумя и тремя кристаллами разного цвета в одном корпусе с количеством выводов от двух до четырёх. Кроме этого, внутри корпуса может быть встроен микрочип, управляющий очередностью свечения кристаллов либо задающий чистоту его мигания.светодиоды "пиранья" Светодиоды в DIP корпусе относятся к слаботочным, используется в подсветке, системах индикации и гирляндах.

В попытках нарастить световой поток, появился аналог с усовершенствованным устройством в DIP корпусе с четырьмя выводами, известный как «пиранья». Однако увеличенная светоотдача нивелировалась размерами светодиода и сильным нагревом кристалла, что ограничило область применения «пираньи». А с появлением SMD технологии их производство практически прекратилось.

SMD

SMD светодиодПолупроводниковые приборы с креплением на поверхность печатной платы коренным образом отличаются от предшественников. Их появление расширило возможности конструирования систем освещения, позволило снизить габариты светильника и полностью автоматизировать монтаж. Сегодня SMD-светодиод – это самый востребованный компонент, используемый для построения источников света любых форматов.

Основа корпуса, на которую крепится кристалл, является хорошим проводником тепла, что в разы улучшило отвод тепла от светоизлучающего кристалла. В устройстве белых светодиодов между полупроводником и линзой присутствует слой люминофора для задания нужной цветовой температуры и нейтрализации ультрафиолета. В SMD-компонентах с широким углом излучения линза отсутствует, а сам светодиод имеет форму параллелепипеда.

COB

cob-matricaChip-On-Board – одно из новейших практических достижений, которое в ближайшем будущем займет лидерство по производству белых светодиодов в искусственном освещении. Отличительная черта устройства светодиодов по технологии COB заключается в следующем: на алюминиевую основу (подложку) через диэлектрический клей крепят десятки кристаллов без корпуса и подложки, а затем полученную матрицу покрывают общим слоем люминофора. В результате получается источник света с равномерным распределением светового потока, исключающий появление теней.

Разновидностью COB является Chip-On-Glass (COG), которая подразумевает размещение множества мелких кристаллов на поверхности из стекла. В частности, широко известны филаментные лампы на 220 В, в которых излучающим элементом служит стеклянный стержень со светодиодами, покрытыми люминофором.

Принцип работы светодиода

Несмотря на рассмотренные технологические особенности, работа всех светодиодов базируется на общем принципе действия излучающего элемента. Преобразование электрического тока в световой поток происходит в кристалле, который состоит из полупроводников с разным типом проводимости. Материал с n­-проводимостью получают путем его легирования электронами, а материал с p-проводимостью – дырками. Таким образом, в сопредельных слоях создаются дополнительные носители заряда противоположной направленности. принцип работы LED В момент подачи прямого напряжения начинается движение электронов и дырок к p-n-переходу. Заряженные частицы преодолевают барьер и начинают рекомбинировать, в результате чего протекает электрический ток. Процесс рекомбинации дырки и электрона в зоне p-n-перехода сопровождается выделением энергии в виде фотона.

Вообще, данное физическое явление применимо ко всем полупроводниковым диодам. Но в большинстве случаев длина волны фотона находится за пределами видимого спектра излучения. Чтобы заставить элементарную частицу двигаться в диапазоне 400-700 нм ученым пришлось провести немало экспериментов с подбором подходящих химических элементов. В результате появились новые соединения: арсенид галлия, фосфид галлия и более сложные их формы, каждая из которых характеризуется своей длиной волны, а значит, и цветом излучения.

Кроме полезного света, испускаемого светодиодом, на p-n-переходе выделяется некоторое количество теплоты, которая снижает эффективность полупроводникового прибора. Поэтому в конструкции мощных светодиодов должна быть продумана возможность реализации эффективного отвода тепла.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *