Схема электронного зажигания – установка и схема подключения бесконтактного, проверка коммутатора, инструкции с фото и видео

Электронное зажигание для автомобиля

В данной статье расскажем про электронное зажигание для автомобиля. Покажем схему электронного зажигания.

В 90-е годы у меня был автомобиль ВАЗ-2101, Фиатовской сборки, который мне достался от моего деда. Качество автомобиля было таким, что после перегрева двигателя с лопанием компрессионных колец и 90 километрового возвращения до дома, при капитальном ремонте этого двигателя даже не потребовалась расточка блока цилиндров. Поверхности цилиндров при 200 000 пробеге были идеальными. При расходе 7 литров на 100 километров пути, на трассе моей «копейке» не хватало пятой передачи. Один был существенный недостаток – канифолила мозги контактная система зажигания. Уж слишком часто нагорали контакты прерывателя. Покопавшись в радиолюбительской литературе я нашел то, чего моей «ласточке» не хватало – схему электронного зажигания. После установки этой схемы на автомобиль, расход уменьшился до 6,5 литров на 100 километров пути, а проблем с перебоями зажигания не стало. Я давно уже пересел на японца, а вот мой отец – фанат «классики» никогда от неё не отказывался. А сколько по стране ещё бегает Жигулёнков? Схему электронного зажигания, которую я собирал на свою «копейку», я давно уже потерял, но нашёл другую схему, которая почти не отличалась от моей. После некоторой доработки, я собрал для отца предлагаемую ниже схему и что замечательно, у него расход топлива тоже упал приблизительно на 0,5 литра.


Предлагаемая схема электронного зажигания предназначена для установки на автомобили только с контактной системой зажигания.

 

Схема, установленная к стандартной системе контактного зажигания, имеет следующие преимущества:

  • не обгорают контакты прерывателя;
  • предусмотрена схема защиты катушки зажигания от возможного сгорания в результате длительного включения зажигания без вращения двигателя;
  • искра формируется в колебательном режиме, другими словами формируется несколько коротких импульсов, что улучшает качество сгорания паров бензина в цилиндрах ДВС.

картинка-схема электронного зажигания


Рассмотрим работу схемы электронного зажигания:

график работы схемы электронного зажиганияПри замыкании и размыкании контактов прерывателя SK импульс проходит через С1, кратковременно открывая VT1, VT2 и VT3. При закрывании VT3 возникает искра. С3 немного сглаживает пик импульса высокого напряжения появляющегося между коллектором и эмиттером VT3, защищая его от пробоя. Когда в результате самоиндукции катушки зажигания и заряда С3 напряжение между коллектором и эмиттером достигнет порядка 230 вольт, происходит первичный пробой диода VD3. В результате этого, ток снова пойдёт через первичную обмотку катушки. С3 обеспечивает кратковременную задержку закрывания диода VD3, позволяя насытиться катушке зажигания. Когда диод закрывается, возникает вторая искра, которая немного слабее первой. Процесс образования искры имеет затухающий характер, может повториться несколько раз, и зависит от напряжения пробоя диода VD3 и емкости конденсатора С3. Длительность каждого импульса искрообразования короче, чем один импульс стандартной системы зажигания, а общая длительность пачки импульсов зажигания больше. В результате этого происходит многократное воспламенение паров топлива, без уменьшения срока службы свечей зажигания. Топливо сгорает лучше, уменьшается нагар свечей, что в свою очередь снижает расход бензина.

В случае длительно замкнутых контактов прерывателя, конденсатор С1 постепенно заряжается через замкнутые контакты, ток через конденсатор убывает, соответственно и транзисторы плавно закрываются, защищая катушку зажигания от возможного перегрева.

Элементы схемы: Резисторы – любые, на мощность не ниже указанной на схеме. Их номиналы могут отличаться от указанных на схеме на 20%, схема будет работать надёжно. Электролитические конденсаторы любого типа, на напряжение не ниже указанного на схеме. Диод VD1 — любой маломощный импульсный. Диод VD2 – любой маломощный выпрямительный. Диод VD3 используется и как защитный диод в цепи коллектор-эмиттер транзистора VT3, и как стабилитрон. Обратное напряжение пробоя диода VD3 равное 200…250 вольтам определяет скорость и амплитуду повторных импульсов зажигания, поэтому в качестве VD3 применимы мощные импульсные диоды 2Д213А, 2Д213Б, 2Д231 с любым индексом, 2Д245Б, или два последовательно соединённых 2Д213В. Возможно подобрать диод и другого типа, но с не худшими параметрами и указанным обратным напряжением. Транзистор VT1 – типа КТ361Б,В,Г, или КТ3107 с любой буквой. Транзистор VT2 – типа КТ315Б,Г,Е,Н, или КТ3102 с любой буквой. Транзистор VT3 – типа 2Т812А (КТ812А), можно использовать КТ912А, или КТ926А.

 

Прошу обратить внимание, что плюсовой вывод катушки не отключается от общего плюса системы зажигания, как может показаться на схеме, а лишь питание схемы осуществляется от 12 вольт, имеющимися на катушке зажигания. Разрывается только цепь «прерыватель — катушка зажигания». Как это реализуется изображено на следующих рисунках. На первом изображена стандартная схема зажигания, на втором — подключение схемы электронного зажигания.

 

картинка-схема контактного зажигания

Для подключения схемы электронного зажигания необходимо разорвать чёрный провод идущий от прерывателя к катушке зажигания. Прерыватель подключить на вход схемы электронного зажигания, а вывод катушки — к коллектору транзистора. Конденсатор висящий на прерывателе можно оставить, а лучше выкинуть, он почти не влияет на работу схемы. Никакие другие цепи «стандартного» зажигания не разрывают и не переключают. Необходимо только запитать схему зажигания: минус — это корпус авто, а плюс взять от другого контакта катушки зажигания (на рисунке — сине-чёрный провод). Все изменения изображены на рисунке красным цветом.

картинка-схема подключения электронного зажигания

Вся схема собрана на маленькой плате размерами 3,5 х 5,0 см, помещённой в алюминиевый корпус размерами 4,0 х 6,5 х 2,5 см. Транзистор расположен непосредственно на корпусе через слюдяную прокладку. Важно обеспечить изоляцию коллектора транзистора от корпуса автомобиля (нуля). После сборки, для уменьшения расхода топлива, может понадобиться небольшая регулировка угла опережения зажигания.

Простая схема электронного зажигания – Схема-авто – поделки для авто своими руками

Автор admin На чтение 3 мин. Просмотров 18k. Опубликовано

Общеизвестно, что воспламенение топлива в двигателях внутреннего сгорания происходит благодаря искре от свечи зажигания, напряжение которого может достигать 20 Кв (если свеча полностью исправна).

На некоторых двигателях, для полноценной его работы иногда необходима энергия значительно больше, чем могут дать 20 Кв. Для решения данной проблемы и создана специальная электронная система зажигания. В российских отечественных автомашинах применяются обычные системы зажигания. Но все они имеют очень большие минусы.

2

2

Когда авто стоит на холостом ходу, в прерывателе, а иемнно между контактами появляется дуговой разряд, который поглощает большую часть энергии. При достаточно больших оборотах вторичное напряжение на катушке уменьшается из-за дребезга этих контактов. В результате чего это приводит к плохой аккумуляции энергии для образования искры зажигания. Из-за чего значительно снижается КПД двигателя автомобиля, увеличивается объем CO2 в выхлопной системе, топливо практически полностью не расходуется, автомашина прожирает топливо просто так.

Большим минусом старых систем зажигания является быстрота износа контактов прерывателя. Обратной же стороной этой медали является то, что эти системы с многоискровой механической распределителем, его называют также «Трамблер»ом, простота, которая обеспечивается 2-ной функцией механизма распределителя.

Для того чтобы повысить вторичное напряжение, которое генерируется такой системой, можно воспользовавшись приборами, на основе полупроводников, которые будут работать в качестве ключей управления. Именно они будут прерывать ток в первичной обмотке катушки. В качестве таких ключей сегодня используются транзисторы, которые генерируют токи до десяти Ампер без всяких повреждений и искр. Существуют экземпляры, построенные на базе тиристоров, но из-за своей нестабильности широкого применения они не нашли.

Processed by: Helicon Filter;

Processed by: Helicon Filter;

Одним из вариантов модернизации БСЗ – переделка в контактно-транзисторную систему зажигания (КТСЗ).

4

4

На схеме проиллюстрировано устройство КТСЗ.

Данное устройство генерирует искру с достаточно большой длительностью. И благодаря чему сгорание топлива становится оптимальным. По схеме можно разобрать, что система построена на основе так называемого триггера Шмитта. Собран он из транзисторов V1 и V2, усилителя V3, V4 и ключа V5. Здесь ключ выполняет роль коммутатора тока на обмотке катушки.

5

5

Триггер предназначен для генерации импульсов с достаточно широким спадом и фронтов при замыкании контактов в прерывателе. В результате чего на первичной обмотке увеличивается быстрота прерывания тока, что в свою очередь намного увеличивает амплитуду напряжения на вторичной обмотке.

Простая схема электронного зажигания

Простая схема электронного зажигания

Это увеличивает шансы для возникновения более мощной искры, которая способствует улучшению запуска мотора и полному результативному расходу топлива.

В сборке были использованы:
• Транзисторы VI, V2, V3 – KT312B, V4 – KT608, V5 — KT809A, C4106.
• Конденсатор – С2 (от 400 Вольт)
• Катушка B115.

Блок электронного зажигания

В. Беспалов, «Радио», №1, 1987
Модификация: Алексей Кузнецов
E-mail: RA3TSL (at) mail.ru
(замените (at) на @)

Для экономии бензина и уменьшения вредных продуктов сгорания в последнее время наметилась тенденция обеднять горючую смесь в двигателях автомобилей. Для надежного воспламенения обедненной смеси требуется мощный и длительный искровой разряд. Установлено, что такой разряд, кроме этого, допускает больший разброс угла опережения зажигания, уменьшает детонацию, улучшает пуск и повышает устойчивость работы двигателя на любых режимах. Формирование запальных искровых разрядов в последние годы все чаще доверяют электронным системам зажигания, преимущества которых широко известны.

Описываемый ниже блок объединяет в себе свойства транзисторной и тринисторной систем зажигания. От первой он отличается тем, что в нем использован закрытый (при замкнутых контактах прерывателя) транзисторный ключ, коммутирующий цепь первичной обмотки катушки зажигания, а от второй — тем, что накопительный конденсатор заряжается от ЭДС самоиндукции этой же обмотки, когда транзисторный ключ прерывает ток через нее [1].

От известных систем зажигания с импульсным накоплением энергии на конденсаторе [2] и от комбинированных систем [3, 4] она отличается отсутствием специального многообмоточного накопительного трансформатора. Система обеспечивает искровой разряд более высокой длительности и энергии. По этим параметрам она превосходит известные системы зажигания. Так, по длительности разряда устройство в 8… 10 раз превосходит тринисторно-конденсаторные системы с непрерывным и импульсным накоплением энергии. При неработающем двигателе она потребляет незначительный ток, имеет высоную скорость нарастания высоковольтного импульса и при всех значениях частоты вращения коленчатого вала двигателя формирует на один запускающий импульс мощный двойной искровой разряд. Система защищена от дребезга контактов прерывателя и от помех бортовой сети автомобиля.

Недостатком системы зажигания является обязательность использования в ней катушки зажигания с малой индуктивностью первичной обмотки и высоким коэффициентом трансформации (около 300). Удовлетворительно работает система с катушкой Б114 (коэффициент трансформации 227). Но для полной реализации возможностей системы катушку надо несколько переделать, чтобы довести коэффициент трансформации до 280. После переделки можно использовать и широко распространенные катушки Б115, Б117 О самой переделке рассказано в конце статьи.

Основные технические характеристики

Напряжение питания. В 6…17
Потребляемый ток, А. при неработающем двигателе и замкнутых контактах прерывателя 0,15
разомкнутых контактах прерывателя 0.015
частоте искрообразования 100 Гц 3.3
максимальной частоте искр образования (200 Гц) 4.5
Энергия искры, мДж, при напряжении питания 14 В, частоте искрообразования 100 Гц и длине искрового промежутка 7 мм 170
Длительность искрового разряда при тех же. условиях, мс 4.8
Скорость нарастания высоковольтного импульса, В/мкс, при длине искрового промежутка 7 мм 350
15 мм 500

Принципиальная схема блока зажигания показана выше. Устройство состоит нз узла запуска, собранного на транзисторе VТ1, формирователя запускающих импульсов на транзисторах VT2 и VТЗ, транзисторного ключа VТ4, тринисторного ключа VS1 и накопительного конденсатора С5.

Временные диаграммы (мгновенное значение) поясняют работу системы зажигания при частоте искрообразования 50 Гц, угле замкнутого состояния контактов прерывателя 55°, напряжении питания 14 В и длине искрового промежутка 7 мм. Диаграммы А, Б, В, Е, И сняты относительно общего провода, Г (показана в увеличенном масштабе времени) и Ж — относительно катода тринистора VS1; Д снята в разрыве цепи коллектора транзистора VT4; И — диаграмма напряжения на вторичной обмотке, снята с делителя напряжения, составленного из резисторов 10 МОм и 1кОм; для снятия диаграммы К — тока вторичной обмотки катушки зажигания — последовательно с искровым промежутком, со стороны общего провода, включали резистор сопротивлением 10 Ом, с которого сигнал подавали на осциллограф.

Предположим, что в исходном состоянии контакты прерывателя замкнуты, тогда конденсатор С1 узла запуска разряжен и транзистор VT1 закрыт. Транзистор VT2 открывается током, протекающим через резисторы R5—R7, a VT3 будет закрыт, так как напряжение на его базе будет близко к нулю. Формирующий конденсатор С2 через резисторы R10, R9, R7 и эмиттерный переход транзистора VT2 заряжен до напряжения около 5,3 В. Так как транзистор VT3 закрыт, то транзистор VT4 будет также закрыт. Ток через первичную обмотку катушки зажигания Т2 от бортовой сети автомобиля не протекает и накопительный конденсатор С5 разряжен.

При первом размыкании контактов прерывателя через цепь R1VD1 заряжается конденсатор С1 и открывается транзистор VT1. Напряжение конденсатора С2 оказывается приложенным через открытый транзистор VT1 с закрывающей полярности к эмиттерному переходу транзистора VT2 и поэтому он закрывается, а сам конденсатор начинает перезаряжаться от источника питания через резисторы R5 и R6. Пока разряжается конденсатор С2, транзисторы VT3— VT4 открыты. Время разрядки конденсатора С2 можно регулировать резистором R5. Через первичную обмотку катушки зажигания начинает протекать ток, и в ней накапливается электромагнитная энергия. Параметры этой обмотки должны быть такими, чтобы процесс накопления энергии закончился через 2…2.5 мс. Примерно такое же время необходимо, чтобы напряжение на конденсаторе С2 успело уменьшиться до напряжения, при котором открывается транзистор VT2. Из-за большого статического коэффициента передачи тока транзисторов VT2—VT4 транзисторный ключ VT4 в момент открывания транзистора VT2 резко закрывается, что приводит к прерыванию тока в первичной обмотке катушки зажигания. Во вторичной обмотке катушки зажигания через 2…2,5 мс возникает высоковольтный импульс, вызывающий искру в запальной свече. После уменьшения его напряжения до 1,2 кВ искровой разряд поддерживается некоторое время, которое зависит от параметров катушки зажигания и искрового промежутка.

В момент закрывания ключа VT4 возникает большая ЭДС самоиндукции в первичной обмотке Импульсом этой ЭДС через диоды VD6 и VD4 накопительный конденсатор С5 заряжается до напряжения примерно 105 В даже при замкнутой вторичной обмотке катушки зажигания.

После замыкания контактов прерывателя из-за разрядки конденсатора С1 через базовую цепь транзистора VT1 обеспечивается временная задержка (около 0.5 мс) закрывания этого транзистора, что защищает систему от дребезга контактов п р рывателя. Как только транзистор VT1 закроется, вновь заряжается формирующий конденсатор С2.

При втором и последующих размыканиях контактов прерывателя снова открываются транзисторы VT1, VT3 — VT4. Перепад напряжения, который формируют транзисторы VT2, VT3. открывает транзистор VT4. Во вторичной обмотке трансформатора T1 возникает импульс, который открывает тринистор VS1. Ранее заряженный накопительный конденсатор С5 разряжается через транзистор VT4, источник питания, первичную обмотку катушки зажигания и тринистор VS1. Во время разрядки накопительного конденсатора диод VD6 закрывается. Пропускание разрядного тока конденсатора по первичной обмотке катушки зажигания вызывает пробой искрового промежутка в свече зажигания, но теперь уже в момент размыкания контактов прерывателя.

После того, как разрядный ток накопительного конденсатора значительно уменьшится, триннстор VS1 закроется, через первичную обмотку катушки зажигания, открывшийся диод VD6, транзистор VT4 от бортовой сети потечет тек. Этот ток некоторое время поддерживает возникший искровой разряд. Одновременно с ним происходит накопление энергии в первичной обмотке катушки зажигания.

Когда через 2…2,5 мс будет прерван ток в первичной обмотке катушки зажигания, накопленная в ней энергия преобразуется в положительный импульс для повторного пробоя искрового промежутка и разряд поддерживается еще некоторое время. Одновременно после закрывания транзисторного ключа вновь заряжается накопительный конденсатор. Таким образом, длительность всего искрового разряда достигает 4,8 мс.

С повышением частоты искрообразования из-за уменьшения времени, отводимого на зарядку формирующего конденсатора С2, время, в течение которого открыт транзисторный ключ УТ5, уменьшается (при частоте более 120 Гц — до 1,7.-2 мс), что приводит к уменьшению длительности и энергии искрового разряда.

Защиту блока зажигания от помех со стороны бортовой сети автомобиля обеспечивают цепи VD7C6, СЗС4 и резистор R7. Кроме этого, во время формирования запускающих импульсов цепь обратной связи через резистор R4 удерживает транзистор VT1 открытым, что увеличивает помехозащищенность и четкость работы системы в момент размыкания контактов прерывателя.

Чертеж печатной платы, которая изготовлена из фольгированного стеклотекстолита толщиной 2 мм, показан на рисунке. Диод VD6 для улучшения его охлаждения установлен на дюралюминиевом уголке и изолирован слюдяной прокладкой. Соединительные проводники между коллектором транзистора VT4, диодом VD6 и зажимом 2 блока должны иметь минимальную длику и сечение не менее 0,75 мм2.

Разделительный трансформатор Т1 наматывают на кольцевом магнито проводе типоразмера К12Х6Х4 из феррита с магнитной проницаемостью 1000—2000. Можно применить магнитопровод другого типоразмера, например, K12X5X5,5 или из двух колец K10Х Х6Х4.5. Обмотки содержат по 70 витков провода ПЭЛШО 0,15. Наматывают их одновременно двумя проводами.

Конденсаторы С1, СЗ, С4 — К10-7В или КЛС; С2 — К73П-3; С5 — МБГО; Сб — К50-3, его можно заменить малогабаритным К52-2 емкостью 15 мкФ на номинальное напряжение 70 В. Диод КД202Р можно заменить на КД202М, КД202К, Д245А — на Д231А, Д232, Д246А; тринистор КУ202Н — на КУ202Л, КУ202И; стабилитрон КС168А — на КС168В, КС162А, КС156А; КС630А — на 2С930А. Транзисторы КТ315И можно заменить на КТ315В. КТ315Г, КТ503 с любым буквенным индексом; КТ608Б — на КТ608А, КТ815Б — КТ815Г; КТ805АМ — на КТ805БМ; 1Т813В — на 1Т813Б, 1Т806В, ГТ806В.

Общий вид блока (со снятой крышкой) и размещение деталей в нем показаны на рисунке.

Переделка катушки зажигания

Для переделки катушки зажигания Б114 ее разбирают. Перед разборкой, чтобы было легче развальцевать металлический стакан, снимают напильником фаску по его краю. После этого, осторожно, чтобы не повредить пластмассовую крышку, развальцовывают край металлического стакана, вынимают катушку и резиновое уплотнительное кольцо. С первичной обмотки, расположенной поверх вторичной, сматывают верхний слой (35 витков). Оставшиеся витки необходимо надежно укрепить петлей из тесьмы. Поверх обмотки следует уложить 2—3 слоя бумаги и обмотать сверху нитками.

Для обеспечения оптимальной индуктивности рассеяния сечение стержневого магнитопровода катушки зажигания надо уменьшить в 2,5 раза (оставить 10 пластин). Эти пластины обертывают несколькими слоями бумаги и плотно вставляют в катушку.
Затем катушку зажигания собирают, при необходимости в стакан добавляют трансформаторного масла и снова завальцовывают. Перед завальцовкой крышку катушки следует прижать, например, струбциной.

У катушек зажигания Б117, Б115 надо также оставить 10 пластин, а первичную обмотку следует удалить и намотать другую проводом ПЭВ-2 диаметром 1,2 мм. Число витков — 100; их укладывают в три слоя. Обмотку следует надежно закрепить; расстояние по поверхности изоляции между ее крайними витками и магнитопроводом не должно быть менее 15 мм.

Перед налаживанием блока особое внимание следует уделить проверке цепи управления тринистором и подключению источника питания. Полярность подключения первичной обмотки катушки зажигания Б114 особой роли не играет. Однако, если катушку зажимом «К» подключить к плюсовому выводу источника питания, то запас по пробивному напряжению будет выше на 10… 15 % и произойдет изменение полярности высоковольтных импульсов. У катушек Б117, Б115 общую точку соединения обмоток рекомендуется подключать к плюсовому проводу питания. С такими катушками общая длительность искрового разряда уменьшается до 3,4…3,7 мс, а скорость нарастания высоковольтного импульса увеличивается до 600 В/мкс.

Для налаживания блока зажигания требуется регулируемый источник питания с напряжением до 15 В на ток нагрузки не менее 2 А. Выходные зажимы источника питания следует зашунтировать батареей конденсаторов с общей емкостью не менее 15 000 мкФ. Налаживают устройство при напряжении питания 14 В. Испытательный искровой промежуток в цепи вторичной обмотки катушки зажигания должен быть равен 7…8 мм. Вместо прерывателя подключают микропереключатель. Параллельно накопительному конденсатору С5 включают вольтметр постоянного тока на напряжение не менее 120 В и с током полного отклонения стрелки не более 100 мкА.

После включения питания микропереключателем подают одиночные запускающие импульсы. В искровом промежутке должна проскакивать мощная искра. При этом напряжение на накопительном конденсаторе С5 должно быть в пределах 100…105 В, его устанавливают подстроенным резистором R5. Если напряжение превышает 110 В и его не удается уменьшить, то следует проверить подключение обмоток трансформатора Т1 По окончании налаживания печатную плату и внутреннюю поверхность корпуса блока рекомендуется покрыть лаком.

Блок зажигания устанавливают на автомобиле в двигательном отсеке. Конденсатор, установленный на корпусе прерывателя, следует отключить. Проводники, соединяющие блок с бортовой сетью автомобиля, должны иметь сечение не менее 1,5 мм и минимальную длину.

Для более полной передачи энергии на свечи зажигания при большой частоте вращения коленчатого вала двигателя (свыше 3000 мин-1) рекомендуется доработать пластину ротора (бегунка) распределителя зажигания [5].

В. БЕСПАЛОВ, г. Кемерово

ЛИТЕРАТУРА
  1. Беспалов В. Е. Авторское свидетельство СССР № 977846 Бюллетень «Открытия, изобретения…*, 1982. № 44, с. 155.
  2. Синельников А. X. Электронные приборы для автомобилей.— М.: Энергоиз-дат. 1981; с. 16—34, 41—46.
  3. Everdlnq H. Elektronlsches Zundsystem reduziert schadiiche Abgase.— Elektronik. 1976. № 1, s. 61—64.
  4. Штырлов А., Вавннов В. Комбинированная электронная система зажигания.— Радио, 1983, № 7, с. 30—32.
  5. Синельников А. X. Электроника в автомобиле.— М.: Радист и связь, 1985; с. 32.

Усовершенствованная электронная система зажигания автомобиля.

   В последние годы электронные приборы находят все большее применение в автомобильном транспорте, в том числе и приборы электронного зажигания. Прогресс автомобильных карбюраторных двигателей неразрывно связан с их дальнейшим совершенствованием. Кроме того, сейчас к приборам зажигания предъявляются новые требования, направленные на радикальное повышение надежности, обеспечение топливной экономичности и экологической чистоты двигателя.

Существуют две системы устройств электронного зажигания — транзисторные и тринисторные. Сравнивая их между собой, можно отметить характерные преимущества и недостатки.

Транзисторные устройства проще и дешевле, обеспечивают большую длительность искрового разряда в свечах, достигающую 2.Б…З мс. Однако при сравнительно небольшой скорости нарастания высоковольтного напряжения на свечах эффективность работы их значительно падает от появления шунтирующих нагрузок, которые обусловлены дополнительными утечками тока, вызванными загрязнением электропроводки, самого распределителя, работающего под высоким напряжением, изоляторов свечей и нагара в них, а со временем и старения изолирующих деталей системы зажигания. Кроме того, транзисторные устройства требуют применения специальной катушки зажигания.

Тринисторные устройства несколько сложнее и позволяют получить высокую скорость нарастания высоковольтного напряжения на свечах, практически не критичны к шунтирующим нагрузкам. Ток утечки не влияет существенно на качество искрового разряда при крутом фронте его нарастания. Но, имея малую длительность искры, в лучших конструкциях — до 0,6 мс, тринисторные устройства также не обеспечивают эффективной работы двигателя в свете новых требований.

Тринисторная система зажигания принципиально отличается от транзисторной тем, что в ней энергия накапливается не в катушке зажигания, а в накопительном конденсаторе. Такой принцип действия позволяет в наибольшей степени устранить недостатки, присущие как классической контактной, так и транзисторной системам. Поэтому тринисторная система была взята за основу с целью доработки ее таким образом, чтобы увеличить длительность искрового разряда и свече до 1,1…1,3 мс, так как типичная для таких систем длительность 0,25 мс явно недостаточна для стабильной работы двигателя на разных режимах, полного сгорания топливной смеси и особенно для надежного пуска двигателя в зимнее время.

Как было установлено автором, на автомобиле ЗАЗ для надежного пуска двигателя в зимнее время длительность искрового разряда должна быть как минимум 0,8 мс с экспериментально измеренной амплитудой напряжения 1 В на сопротивлении 14 Ом в цепи свечи при минимальном напряжении бортовой сети 5…6 В, что обусловлено работой стартера. Эти условия были исходными для разработки усовершенствованного блока. Известно, что выпускаемые промышленностью тринистор-ные электронные устройства, имеющие длительность искрового разряда 0,25…0,6 мс, обеспечивают стабильную работу устройства при снижении напряжения питания до 8 В, что явно недостаточно для надежного пуска двигателя в зимнее время.

Технически задача была сформулирована следующим образом: при пуске двигателя необходимо подавать довольно мощную серию импульсов длительностью не менее 0,8 мс во время нахождения поршня цилиндра в верхней мертвой точке. Следовало также попытаться использовать этот принцип и для основного режима работы двигателя.

В результате разработки был создан блок тринисторного зажигания (БТЗ) со следующими параметрами:

Напряжение питания, В 12±50 %

Начальный потребляемый ток, А ….. 0,55

Максимальный потребляемый ток, А . . . . 2,2…2,5

Максимальная частота вращения 4-цилиндрового двигателя, об/мин 5000

Начальная амплитуда 1-го разрядного импульса на сопротивлении 14 Ом, В 3±0,2

Длительность искрового разряда в свече, мс . 1,1…1,3

Напряжение на накопительном конденсаторе, В 400

Нестабильность напряжения на накопительном
конденсаторе при минимальной и максимальной частоте вращения, %. 10

Рабочая частота генератора, Гц ….. 800

Принципиальная электрическая схема БТЗ приведена на рис. 1. Во многом она повторяет известные разработки, поэтому ниже приведено описание работы отличающихся узлов. Подключение БТЗ к системам зажигания автомобилей приведено на рис. 2, 3.


Основным отличием БТЗ является введение обратной связи на управляющий электрод тринистора VS1 через цепочку C5R7R8VD12, в результате чего за один цикл работы БТЗ на управляющий электрод подается не только импульс по цепи запуска от контактного прерывателя, как раньше, а пакет из 4…5 импульсов (рис.4). В итоге после размыкания контактов прерывателя тринистор дополнительно открывается соответственное число раз, обеспечивая тем самым более полную разрядку накопительного конденсатора С4 на первичную обмотку катушки зажигания, т. е. более полное использование запасенной энергии на создание разряда в искровом промежутке.

Дополнительная серия искровых разрядных импульсов в свече после первых двух (импульсы 3… на рис 5) образуется за счет накопленной от разрядки конденсатора С4 электромагнитной энергии в катушке зажигания при пробое искрового промежутка свечи и трансформации этой энергии в первичную обмотку с подзарядкой накопительного конденсатора. Эти же импульсы воздействуя с уменьшающейся амплитудой через цепочку C5R7R8VD12 на управляющий электрод тринистора VS1, заставляют его открываться через каждые 150…200 мкс, что обеспечивает повторную разрядку накопительного конденсатора С4 на первичную обмотку. Так продолжается до тех пор, пока не израсходуется вся энергия, запасенная в катушке зажигания от первого разрядного импульса. Таким образом, добавлением цепочки C5R7R8 с диодом VD12 удалось увеличить длительность искрового разряда в свече до 1,3 мс. В известных разработках тринисторных систем обеспечено лишь частичное использование энергии, запасенной емкостным накопителем. Искровой разряд БТЗ имеет колебательный затухающий характер с изменением полярности полуволн. Такой характер разрядного процесса положительно влияет на увеличение срока службы свечей, так как происходит равномерное выгорание металла как центрального, так и бокового электродов в искровом промежутке.

Многократное искрообразование в течение одного цикла создает дополнительную нагрузку на преобразователь постоянного тока и увеличивает время запуска автогенератора после срыва колебаний при включении тринистора. При испытании модернизированного заводского блока зажигания (типа Электроника) напряжение на накопительном конденсаторе снижалось с 400 до 80 В на большой частоте вращения коленчатого вала двигателя. Такое устройство не могло нормально работать. С целью устранения этого недостатка был изготовлен более мощный преобразователь с удвоением выходного напряжения. Это схемное решение, являясь второй отличительной чертой усовершенствованного блока зажигания, привело к уменьшению времени пуска автогенератора с 1 до 0,25 мс, так как обеспечивалась более мягкая связь между тринисторным коммутатором и автогенератором. При неизменном напряжении питания устройство позволяет обеспечивать на минимальной и максимальной частоте вращения коленчатого вала двигателя довольно постоянное напряжение на накопительном конденсаторе С4, колеблющееся в пределах лишь 8…10%. Напряжение на накопительном конденсаторе выбрано таким же, как и у заводского блока — 400 В при номинальном напряжении питания.

Элементы R5 и СЗ в цепи высокого напряжения +400 В служат для сглаживания и стабилизации высокого напряжения на выходе выпрямителей, а также для уменьшения времени запуска автогенератора.

В связи с уменьшением количества витков вторичной обмотки трансформатора Т1 в два раза увеличилась его надежность, так как напряжение на вторичной обмотке уменьшилось с 400 до 200 В.

Усовершенствованный таким образом блок обеспечивает значительное улучшение пуска двигателя в зимнее время, надежную работу на скоростях до 90… 100 км/ч. На автомобиле ЗАЗ-968 был неоднократно проверен расход бензина на 100 км пробега. Экономия составила 7,2 %. Наряду с установкой БТЗ был также увеличен зазор в свечах до 1,5 мм, а положение регулятора качества смеси для ее обеднения было изменено с 1,5…2,0 оборотов (720°) до 180…2000 от своего начального полностью закрученного положения.

Выясняя причины плохого пуска двигателя в зимнее время, было обнаружено следующее: при падении напряжения в бортсети автомобиля до 5…6 В во время работы стартера БТЗ, как и другие блоки зажигания, не обеспечивал стабильной подачи искры в цилиндры. Причиной тому оказалось следующее: при таком значительном снижении напряжения питания амплитуда управляющих импульсов, которые поступают в т.А при размыкании контактов прерывателя (рис. 1), оказывается недостаточной для надежного запуска тринистора VS1, становясь соизмеримой с уровнем помех от работающего стартера и транзисторного автогенератора. Это вызывает пропуски искрообразования. Используемый фильтр L1C7 выполняет две функции. Основная из них: после размыкания прерывателя в обмотке дросселя L1 за счет накопленной магнитной энергии возникают затухающие колебания из-за переходного процесса, по принципу равносильного тому, как это происходит в классической батарейной системе зажигания. Амплитуда этих колебаний в зависимости от индуктивности дросселя L1 может достигать нескольких десятков вольт. Положительные полуволны колебаний длительностью до 10… 15 мкс через диод VD11 накладываются на передние фронты основных импульсов и обеспечивают надежный запуск тринистора VS1 (в описываемом устройстве их амплитуда составляла 7…9 В).

Второе назначение фильтра L1C7 — уменьшение влияния помех от работы стартера и транзисторного автогенератора на пусковую цепь тринистора.

Конструктивно БТЗ может быть выполнен в двух модификациях: в виде объемного модуля с расположением деталей на платах с монтажными лепестками или изготовлением общей печатной платы блока, одновременно являющейся и несущей конструкцией. По мнению автора, для индивидуального изготовления проще первый вариант, так как платы с монтажными лепестками могут быть использованы от старых, отслуживших свой срок радиоприборов. В качестве разъема для подключения БТЗ к бортсети автомобиля подойдут панельки и цоколи от старых радиоламп. Переход от электронного зажигания на обычное (контактное) производится простой перестановкой разъема — цоколя из одной панельки в другую (см. рис. 1). В БТЗ использованы резисторы типа МЛТ, кроме проволочных R1 и R4, которые намотаны на каркасах резисторов типа ВС-0,5. В качестве накопительного конденсатора С4 использованы два конденсатора МБГ на 1 мкФ, 500 В.

Выпрямительный сдвоенный диодный блок КЦ-403Б может быть заменен диодами, например МД218, но это несколько увеличит размеры устройства из-за монтажа восьми диодов. В таком случае лучше использовать диоды КД105В.

Конденсатор С5 должен быть высокого качества, герметизированным, рассчитанным на напряжение не менее 1000 В, например КБГ-М2. В качестве дросселя L1 можно использовать вторичную обмотку малогабаритного выходного трансформатора транзисторных радиоприёмников ВЭФ, Альпинист и др. Индуктивность дросселя составляет 0,07…0,1 Гн.

Трансформатор Т1 должен быть выполнен на кольцевом сердечнике из феррита марки 2000 НМ типоразмера К45Х28Х12, составленном из двух колец, или на Ш-образном ферритовом сердечнике Ш12Х15, составленном из двух половин без зазора. Использование трансформаторного железа исключается.

Данные обмоток (в порядке их намотки):

III — 500 + 50+50 витков (с отводами проводом ПЭЛШО 0,23 в случае тороида (кольца). Для Ш-образного сердечника можно использовать провод ПЭВ-1 0,23. Намотку вести с межслойной изоляцией из кабельной или конденсаторной бумаги;

Иа + Пб — 35+35 витков проводом ПЭЛШО-0,75 (намотка в два провода) в случае тороида, а для Ш-об-разного сердечника — ПЭВ-1 0,75;

la+ I6—11 + 11 витков проводом ПЭЛШО-0,28 (намотка в два провода) для обоих сердечников.

Транзисторы П210А…Г желательно подобрать в паре, т. е. с равными или по возможности близкими значениями обратных токов коллекторных переходов и коэффициентов усиления по току. Транзисторы установлены на унифицированных радиаторах по ТУ.8.650.022.

Настройка. Правильно собранный блок БТЗ обычно в дополнительной наладке не нуждается. Если же после сборки и проверки правильности монтажа блок не будет нормально работать, то основными причинами могут быть следующие:

если устройство зажигания переходит в режим непрерывной генерации искр и не управляется контактами прерывателя, то либо в нем применен тринистор с низким напряжением переключения, либо пробит диод VD11;

если отсутствует генерация преобразователя напряжения при заведомо исправных транзисторах, необходимо проверить правильность (полярность) подключения базовых обмоток трансформатора;

если работа преобразователя сопровождается хриплым или шипящим звуком, надо проверить диоды выпрямителя и правильность их включения, а затем транзисторов. Причиной большой нагрузки на преобразователь может быть также неисправность накопительного конденсатора С4. В случае исправности тринистора надо убедиться в отсутствии замыкания его корпуса на общую (минусовую) шину устройства.

Необходимо помнить, что корпус тринистора является анодом и в рабочем состоянии всегда будет находиться под высоким напряжением +400 В.

При проверке устройства зажигания вне автомобиля на стенде следует обязательно соединить корпус катушки зажигания с корпусом электронного блока (общая минусовая шина), так как в противном случае может произойти пробой катушки и повреждение деталей электронного блока.

Необходимо помнить, что напряжение на выходе катушки зажигания значительно более высокое, чем в обычной системе зажигания, поэтому надо соблюдать осторожность и правила техники безопасности.

Перед установкой устройства на автомобиль желательно проверить его работоспособность с катушкой зажигания при напряжении питания 12,6 В от аккумулятора. При этом следует помнить, что без подключенной свечи к высоковольтному выходу катушки зажигания нельзя испытывать устройство, так как это грозит выходом катушки из строя. Напряжение на накопительном конденсаторе проверяют в контрольной точке Б относительно корпуса блока (общей минусовой шины). Оно должно быть равно 400±20 В.

В случае большего отклонения напряжения следует переключить выводы вторичной обмотки трансформатора. Схема измерения напряжения на конденсаторе G4 приведена на рис. 6.

Желательно также убедиться, работает ли дополнительная цепочка C5R7R8VD12. Для этого ее вначале отключают. При имитации работы прерывателя искра просматривается в виде одной тонкой жилки толщиной до 0,2 мм с параметрами искрового разряда по рис. 5, где длительность импульсов 1 — 2 составляет около 0,4 мс. С подключением цепочки искра становится более яркой и широкой, видно много искровых разрядов в прямом и обратном направлениях — так называемая мохнатая искра.

Измерение амплитуды и длительности выходного импульса. Этот параметр блока является основным, определяющим его эффективность. Большинство авторов, представивших свои конструкции в технических изданиях за период 1976—1983 гг., не приводили данных о длительности искрового разряда, его характере, а также о схеме и методике его измерения.

Для измерения необходим генератор импульсов управления с регулируемой частотой следования в пределах 200 Гц. При отсутствии его потребуется автономный распределитель зажигания, вращаемый электродвигателем постоянного тока с переходной муфтой. Электродвигатель запитывают от зарядного устройства через реостат, для того чтобы регулировать скорость вращения валика распределителя.

Схема измерения параметров разряда представлена на рис. 7. Выбор измерительного сопротивления продиктован удобством масштаба отсчета и рассмотрения осциллограммы, а также соображениями техники безопасности. Зазор искрового промежутка свечи — не менее 1,5 мм.

Для реальной оценки длительности искрового разряда с учетом компрессии двигателя были проведены дополнительные измерения на разряднике с зазором 7 мм и на работающем двигателе, когда на вход осциллографа подавался сигнал с трех витков изолированного провода, намотанного на высоковольтный провод первого цилиндра. Результаты измерений примерно совпали. На режиме холостого хода двигателя длительность искрового разряда, равная 1,3 мс, сохраняется. На большей частоте вращения коленчатого вала двигателя остается шесть импульсов с длительностью 1,1 мс, а напряжение на накопительном конденсаторе уменьшается с 400 до 350 В. Амплитуда разрядных импульсов уменьшилась также на 10 %.

Автор имел возможность проверить БТЗ на стенде при частоте вращения валика распределителя до 720 об/мин с подключенным разрядником с зазором 7 мм. Длительность искрового разряда при этом уменьшалась до 1,0 мс, напряжение на накопительном конденсаторе снижалось до 320 В, а амплитуда разрядных импульсов падала на 25 %.

Для сравнения усовершенствованного блока БТЗ с другими известными устройствами были сняты осциллограммы характера искрового разряда на одном и том же сопротивлении в цепи свечи, равном 14 Ом. На рис. 5 они изображены с соблюдением масштаба амплитуд и длительности искры.

Заключение. Предлагаемая модификация БТЗ была собрана в виде макетного образца и испытана в 1984—1985 гг. на автомобилях ЗАЗ, Москвич-412, ВАЗ-2101. В общей сложности пройдено 15 000 км без каких-либо замечаний и отказов в работе. Блок зажигания в автомобиле ЗАЗ располагается в салоне за задним сиденьем на подставке для улучшения его охлаждения. Размещать его в моторном отсеке не следует из-за высокой температуры в летнее время, а также большой запыленности. В автомобилях Жигули и Москвич блок может быть укреплен под приборным щитком или в другом более удобном месте. Жгут, соединяющий БТЗ с системой зажигания автомобиля, может быть длиной до 1,5 м. На передней панели блока имеются гнезда под штепсельную вилку, куда выведено напряжение +210 В от первого выпрямительного мостика (до удвоения) для пользования в пути электробритвой типа Харьков или другой с коллекторным приводом.

Были проведены измерения содержания СО в выхлопных газах двигателя ЗАЗ с контактной системой зажигания и с блоком БТЗ. С контактной системой после оптимальной подрегулировки карбюратора содержание СО составило 3,3 %. При работе двигателя с блоком БТЗ и выполненных регулировках карбюратора согласно приведенной выше рекомендации с зазором в свечах 1,5 мм содержание СО составило 2,1 %.

П.Гацанюк.

Источник: В помощь радиолюбителю, №101. 



ПОДЕЛИТЕСЬ С ДРУЗЬЯМИ



П О П У Л Я Р Н О Е:

  • Сигнализатор гололеда для автомобилистов
  • Сигнализатор гололеда

    Каждый водитель знает, что такое гололед. В такую погоду резко возрастает количество дорожно-транспортных происшествий. Поэтому трудно переоценить необходимость специ­ального устройства, сигнализирующего о температуре окружающего воздуха. При сниже­нии температуры ниже 4°С контрольная лампочка (светодиод), выведенная на приборный щиток автомобиля, начинает мигать. Если температура продолжает снижаться, частота мигания увеличивается, а при температуре  —1°С  светодиод перестает мигать и горит постоянно. Когда температура достигнет —6°С, устройство отключается. Подробнее…

  • Звуковой сигнализатор для автомобиля.
  • Звуковой сигнализатор дублирования контрольных ламп в щитке автомобиля двухтональным сигналом. 

    Звуковой сигнализатор автомобиля предназначен для дублирования двухтональным сигналом всех аварийных и «поворотной» контрольных ламп автомобиля, а также сигнализирования о превышении бортового напряжения свыше 17в.

    Подробнее…

  • Зарядное устройство для автомобильных аккумуляторов
  • Существует много разных схем зарядных устройств для автомобильных аккумуляторов. Любая из них обладает своими достоинствами и недостатками. В статье, ниже рассмотрим несколько схем ЗУ для автомобильных АКБ.

    Большинство простейших схем зарядных устройств построено по принципу регулятора напряжения с выходным узлом, собранным на тиристорах или мощных транзисторах.

    Эти схемы обладают существенными недостатками…   Подробнее…


Популярность: 10 162 просм.

Системы зажигания автомобиля

Автомобильный мотор еще в первых своих модификациях представлял собой сложную конструкцию, состоящую из ряда систем, работающих воедино. Одним из основных компонентов любого бензинового мотора является система зажигания. Об ее устройстве, разновидностях и особенностях мы сегодня и поговорим.

Система зажигания

Система зажигания автомобиля представляет собой комплекс из приборов и устройств, которые работают на обеспечение своевременного появления электрического разряда, воспламеняющего смесь в цилиндре. Она является неотъемлемой деталью электронного оборудования и в своем большинстве завязана на работе механических компонентов мотора. Этот процесс присущ всем моторам, которые не используют для воспламенения сильно нагретый воздух (дизель, компрессионные карбюраторные). Искровое воспламенение смеси применяется и в гибридных моторах, работающих на бензине и газу.

Принцип работы системы зажигания зависит от ее вида, но если обобщать ее работу, можно выделить следующие этапы:

  • процесс накопления высоковольтного импульса;
  • проход заряда через повышающий трансформатор;
  • синхронизация и распределения импульса;
  • возникновение искры на контактах свечи;
  • поджог топливной смеси.


Важным параметром является угол или момент опережения – это время, в которое осуществляется поджог воздушно-топливной смеси. Подбор момента происходит так, чтобы предельное давление возникало при попадании поршня в верхнюю точку. В случае с механическими системами его придется выставлять вручную, а в электронно-управляемых системах настройка происходит автоматически. На оптимальный угол опережения влияет скорость движения, качество бензина, состав смеси и другие параметры.

Классификация систем зажигания

Основываясь на методе синхронизации зажигания, различают схемы контактные и бесконтактные. По технологии формирования угла опережения зажигания можно выделить системы с механической регулировкой и полностью автоматические или электронные.

Исходя из типа накопления заряда, для пробития искрового промежутка, рассматривают устройства с накоплением в индуктивности и с накоплением в емкости. По способу коммутации первичной цепи катушки бывают – механические, тиристорные и транзисторные разновидности.

Узлы систем зажигания

Все существующие виды систем зажигания различаются способом создания контролирующего импульса, в остальном их устройство практически не отличается. Поэтому можно указать общие элементы, которые являются неотъемлемой частью любой вариации системы.

Питание – первичным, служит аккумулятор (задействуется при пуске), а при работе – эксплуатируется напряжение, которое производит генератор.

Выключатель – устройство, которое необходимо для подачи питания на всю систему или его отключения. Выключателем служит замок зажигания или управляющий блок.

Накопитель заряда – элемент необходимый для концентрации энергии в нужном объеме, для воспламенения смеси. Существует два типа компонентов для накопления:

  • Индуктивный – катушка, внутри которой расположился повышающий трансформатор который создает достаточный импульс для качественного поджога. Первичная обмотка устройства питается от плюса батареи и приходит через прерыватель к ее минусу. При размыкании первичного контура прерывателем на вторичном создается высоковольтный заряд, который и передается на свечу.
  • Емкостный – конденсатор, который заряжается повышенным напряжением. В нужное время накопленный заряд по сигналу передается на катушку.

Схема работы в зависимости от вида накопления энергии

Свечи – изделие, состоящее из изолятора (основа свечи), контактного вывода для подключения высоковольтного провода, металлической оправы для крепления детали и двух электродов, между которыми и образуется искра.

Система распределения – подсистема, предназначенная для направления искры на нужный цилиндр. Состоит из нескольких компонентов:

  • Распределитель или трамблер – устройство, сопоставляющее обороты коленвала и соответственно – рабочее положение цилиндров с кулачковым механизмом. Компонент может быть механическим или электронным. Первый – передает вращение мотора и посредством специального бегунка распределяет напряжение от накопителя. Второй (статический) исключает наличие вращающихся частей, распределение происходит благодаря работе блока управления.
  • Коммутатор – прибор, генерирующий импульсы заряда катушки. Деталь присоединяется к первичной обмотке и разрывает питание, генерируя напряжение самоиндукции.
  • Блок управления – устройство на микропроцессорах, определяющее момент передачи тока в катушку на основании показаний датчиков.

Провод – одножильный высоковольтный проводник в изоляции, соединяющий катушку с распределителем, а также контакты коммутатора со свечами.

Магнето

Одной из первых систем зажигания является – магнето. Она состоит из генератора тока, который создает разряд исключительно для искрообразования. Состоит система из постоянного магнита, который приводится в движение коленчатым валом и катушки индуктивности. Искру, способную пробить искровой промежуток генерирует повышающий трансформатор, одной частью которого служит грубая обмотка катушки индуктивности. Для повышения напряжения используют часть обмотки генератора, которая соединена с электродом свечи.

Система зажигания с магнето

Контроль за подачей искры может быть контактный, выполненный в виде прерывателя или бесконтактный. При бесконтактном методе подачи искры применяются конденсаторы, которые улучшают качество искры. В отличие от представленных далее схем зажигания, магнето не требуется аккумулятор, оно легкое и активно применяется в компактной технике – мотокосах, бензопилах, генераторах и т.д.

Контактная система зажигания

Устаревшая, распространенная схема воспламенения топливной смеси. Отличительной особенностью системы является создание высокого напряжения, вплоть до 30 тысяч В на свечи. Создает такое высокое напряжение катушка, которая соединена с распределительным механизмом. Импульс на катушку передается благодаря специальным проводам, соединенным с контактной группой. При размыкании кулачков происходит формирование разряда и искры. Устройство также выполняет роль синхронизатора, так как момент образования искры должен совпадать с нужным моментом такта сжатия. Данный параметр устанавливается посредством механической регулировки и сдвига искры на более раннюю или позднюю точку.

Простейшая схема

Уязвимой частью такого варианта является естественный механический износ. Из-за него меняется момент образования искры, он нестабильный для различных положений бегунка. Ввиду чего появляются вибрации мотора, падает его динамика, ухудшается равномерность работы. Тонкие настройки позволяют избавиться от явных неисправностей, но проблема может возникнуть повторно.

Преимуществом контактного зажигания является его надежность. Даже при серьезном износе деталь будет работать безотказно, позволяя мотору работать. Схема не прихотлива к температурным режимам, практически не боится влаги или воды. Такой вид зажигания распространен на старых автомобилях и по сей день используется на ряде серийных моделей.

Бесконтактное зажигание

Принципиальная схема работы бесконтактной системы несколько отличается. Она сохраняет трамблер, как элемент конструкции, но он лишь выполняет функцию синхронизации цилиндров и отсылает импульс на коммутатор. В свою очередь транзисторный элемент, синхронизируется с показателем датчика и определяет угол зажигания, а также другие настройки – автоматически.

Преимущество системы – стабильность качества искрообразования, которое не зависит от ручных настроек или сохранности поверхности контактов. Если рассматривать превосходство данного варианта над контактной схемой, можно выделить:

  • система генерирует искру высокого качества постоянно;
  • устройство системы зажигания исключает ухудшение ее работы вследствие износа или загрязнения;
  • отсутствует необходимость производить тонкие настройки угла зажигания;
  • не приходится следить за состоянием контактов, контролировать их угол замыкания и другие настройки.

В результате использования бесконтактной системы можно наблюдать снижение расхода топлива, улучшение динамических характеристик, отсутствие сильных вибраций мотора, стабильная искра позволяет облегчить холодный пуск.

Электронное зажигание

Современная, наиболее совершенная схема, которая полностью исключает наличие подвижных частей. Для получения необходимых данных о положении коленвала и других применяются специальные датчики. Далее электронный блок управления производит расчеты и посылает соответствующие импульсы на рабочие компоненты. Такой подход позволяет максимально точно определить момент подачи искры, благодаря чему смесь разжигается своевременно. Это позволяет получить больше мощности, улучшить продувку цилиндра и снизить вредные выбросы, благодаря лучшему дожигу топлива.

Схема электронной системы

Электронная система зажигания автомобиля отличается высокой стабильностью работы и устанавливается на большинство современных авто. Такая популярность определена преимуществами данной схемы:

  • Снижение расхода топлива во всех режимах работы мотора.
  • Улучшение динамических показателей – отклик на педаль газа, скорость разгона и т.д.
  • Более плавная работа мотора.
  • Выравнивается график момента и лошадиных сил.
  • Минимизируются потери мощности на низких оборотах.
  • Совместима с газобаллонным оборудованием.
  • Программируемый электронный блок позволяет настроить двигатель на экономию топлива или наоборот, на повышение динамических показателей.

Назначение системы зажигания достаточно простое, она является неотъемлемой частью бензинового двигателя, а также моторов, оснащенных ГБО. Этот компонент постоянно меняется и приобретает новые формы, соответствующие современным требованиям. Несмотря на это даже самые простые модели зажигания все еще используются на различной технике, успешно выполняя свою работу, как и десятки лет назад.

Системы зажигания | Система зажигания

Для принудительного воспламенения топливовоздушной смеси, поступившей в цилиндр бензинового двигателя, используется энергия искры высоковольтного электрического разряда, возникающего между электродами свечи зажигания. Системы зажигания предназначены для того, чтобы увеличить напряжение автомобильной аккумуляторной батареи до величины, необходимой для возникновения электрического разряда и, в требуемый момент, подать это напряжение на соответствующую свечу зажигания. Сведём основные системы в таблицу и опишем работу таких систем.

ОбозначениеОписание
ОтечественноеЗарубежное
ксзKSZКлассическая контактная с прерывателем-распределителем
ктсзHKZk, JFU4Электронная с накоплением энергии в системе и контактным датч.
БТСЗHKZi, TSZ-2Бесконтактная транзисторная с индукционным датчиком
БТСЗHKZh, EZK,TZ28HБесконтактная транзисторная с накоплением энергии в ёмкости с датчиком Холла
КТСЗTSZkКонтактная транзисторная с накоплением энергии в индуктивн.
БТСЗTSZiБесконтактная транзисторная с накоплением энергии в индуктивности с индукционным датчиком
БТСЗTSZhБесконтактная транзисторная с накоплением энергии в индуктивности с датчиком Холла
МСУДVSZ, EZLЭлектронная система зажигания статического типа

Подробно рассмотрим работу только использующихся в настоящее время систем зажигания.

В первой блок-схеме отдельно выделен Блок Управления Зажиганием (БУЗ). Раскроем этот прямоугольник и приведём несколько структурных схем построения систем зажигания.

БС1

В таких системах датчиком первичных импульсов (датчик вращения) являются контакты механического прерывателя, расположенного в распределителе зажигания(трамблёра), который механически связан коленвалом двигателя через шестерни. Один оборот вала трамблёра осуществляется за два оборота коленвала двигателя. Электрический разряд создаётся при помощи механического прерывателя, приводимого в действие двигателем. Для получения высокого напряжения применяется катушка зажигания. В зависимости от способа размыкания первичной цепи катушки зажигания, по которой проходит большой ток, различают классической батарейное зажигание, транзисторное зажигание и тиристорно-конденсаторное зажигание. В таких системах роль силового реле выполняют контакты прерывателя, транзистор или тиристор.

БС2

Схема контактной системы зажигания

Рис. Схема контактной системы зажигания: 1 — свечи зажигания, 2 — прерыватель-распределитель, 3 — выступ кулачка, 4 — упор, 5 — аккум. батарея, 6 — генератор, 7 — выключатель зажигания, 8 — катушка зажигания, 9 — конденсатор.

Нa приведённом выше рисунке показана схема самой простой контактной системы зажигания (КСЗ). Устройство катушки зажигания рассмотрим отдельно, а сейчас напомним, что катушка — это трансформатор с двумя обмотками намотанными на специальный сердечник. Вначале намотана вторичная обмотка тонким проводом и большим количеством витков, а сверху на неё намотана первичная обмотка толстым проводом и небольшим количеством витков. При замыкании контактов первичный ток постепенно нарастает и достигает максимального значения, определяемого напряжением аккумуляторной батареи и омическим сопротивлением первичной обмотки. Нарастающий ток первичной обмотки встречает сопротивление э.д.с. самоиндукции, направленное встречно напряжению аккумуляторной батареи.

Когда контакты замкнуты, по первичной обмотке протекает ток и создает в ней магнитное поле, которое пересекает и вторичную обмотку и в ней индуцируется ток высокого напряжения. В момент размыкания контактов прерывателя как в первичной, так и во вторичной обмотках индуцируется э.д.с. самоиндукции. Согласно закону индукции вторичное напряжение тем больше, чем быстрее исчезает магнитный поток, созданный током первичной обмотки, чем больше отношение чисел витков и чем больше первичный ток в момент разрыва.

Для повышения вторичного напряжения и уменьшения обгорания контактов прерывателя параллельно контактам включают конденсатор.

Ниже представлены осциллограммы электрических сигналов в цепях зажигания.

Осциллограммы электрических сигналов в цепях зажигания

Рис. Осциллограммы электрических сигналов в цепях зажигания: 1 — первичный ток, 6 — контакты прерывателя разомкнуты, 7 — контакты замкнуты.

При некотором значении вторичного напряжения между электродами свечи зажигания возникает электрический разряд. Из-за возрастания тока во вторичной цепи вторичное напряжение резко падает до, так называемого, напряжения дуги, которое поддерживает дуговой разряд. Напряжение дуги остается почти постоянным до тех пор, пока запас энергии не станет меньше некоторой минимальной величины. Средняя продолжительность батарейного зажигания составляет 1,4 мс. Обычно этого достаточно для воспламенения топливовоздушной смеси. После этого дуга исчезает, а остаточная энергия расходуется на поддержание затухающих колебаний напряжения и тока. Продолжительность дугового разряда зависит от величины запасённой энерги, состава смеси, частоты вращения коленвала, степени сжатия и пр. При увеличении частоты вращения коленвала время замкнутого состояния контактов прерывателя уменьшается и первичный ток не успевает нарасти до максимальной величины. Из-за этого уменьшается запас энергии, накопленной в магнитной системе катушки зажигания и понижается вторичное напряжение.

Отрицательные свойства систем зажигания с механическими контактами проявляются при очень малых и высоких частотах вращения юленвала. При малых частотах вращения между контактами прерывателя возникает дуговой разряд, поглощающий часть энергии, а при высоких частотах вращения вторичное напряжение уменьшается из-за «дребезга» контактов прерывателя. «Дребезг» возникает когда при замыкании контактов подвижный контакт ударяется о неподвижный с энергией, определяемой массой и скоростью подвижного контакта, а затем после незначительной упругой деформации соприкасающихся поверхностей отскакивает, разрывая уже замкнутую цепь. После размыкания, подвижный контакт под дейсткием пружины, снова ударяется о неподвижный контакт Из-за такого «дребезга» контактов уменьшается действительное время замкнутого состояния и, соответственно, энергия зажигания и величина вторичного напряжения.

Контактные системы зажигания перестали справляться со своими функциями при увеличении оборотов двигателей, числа цилиндров, использовании более бедных рабочих смесей. Появилась необходимость применения электронных систем зажигания. Формирование момента ценообразования может осуществляться как обычной контактной группой (КТСЗ), так и с использованием специальных датчиков(бесконтактные системы).

Схема контактнотранзисторной системы зажигания

Рис. Схема контактно-транзисторной системы зажигания: 1 — свечи зажигания, 2 — распределитель зажигания, 3 — коммутатор, 4 — катушка зажигания, К — коллектор, Э — эмиттер, Б — база, R — резистор.

Рассмотрим функциональную схему контактнотранзисторной системы зажигания. На рисунке, приведённом рядом показан фрагмент такой схемы. Механические контакты переключают только управляющий ток базы транзистора, который значительно меньше первичного тока, протекающего между эмиттером и коллектором. Для защиты полупроводникового устройства, названного коммутатором, приходилось уменьшать величину э.д.с. самоиндукции в первичной цепи путём снижения индуктивности первичной обмотки. Индуктивность первичной обмотки уменьшается быстрее, чем сё сопротивление. Уменьшается э.д.с. самоиндукции и меньше препятствует увеличению первичного тока.

Из-за уменьшения индуктивности первичной обмотки и величины э.д.с. самоиндукции для получения неизменного вторичного напряжения увеличивают и коэффициент трансформации катушки зажигания.

Изменение скорости нарастания и максимальной величины первичного тока в классической и транзисторной системах зажигания представлено наследующем графике.

График

Рис. График: 1 — транзисторное зажигание, 2 — катушечное зажигание, 3 — момент размыкания

Поскольку контакты прерывателя находятся под напряжением только аккумуляторной батареи, то образующаяся при размыкании незначительная дуга позволяет обойтись без конденсатора. Контакты подвержены механическому износу и сохраняется возможность «дребезга».

Отличие электронных систем зажигания состоит в том, что коммутирование и разрыв тока в первичной обмотке катушки зажигания осуществляется не замыканием и размыканием контактов, а открыванием(проводящее состояние) и запиранием (отсечкой) мощного выходного транзистора. Это позволяет увеличить значение тока разрыва до 8 — 10 А, что позволяет в несколько раз увеличить энергию, запасаемую катушкой зажигания. Бесконтактные системы зажигания используют для подачи сигнала различные типы датчиков. Ниже приведём блок-схемы построения систем зажигания.

БС3 БС4 БС5 БС6

В приведенных выше системах зажигания коммутатор находится внутри ЭБУ двигателем.

Приведённые выше схемы систем управления зажиганием применяют многокатушечное построение. Катушки могут быть индивидуальными, вставленными в свечной туннель(СОР) с коммутатором встроенным в ЭБУ двигателем. Иногда одна встроенная в свечной туннель катушка обслуживает два цилиндра (к другой свече идёт ВВ провод). Встречаются системы, в которых коммутатор интегрирован в единый МОДУЛЬ ЗАЖИГАНИЯ, причём такой модуль может быть индивидуальным на цилиндр или отдельным блоком обслуживающим все цилиндры. Встречаются системы у которых на свечи одевается единый модуль, объединяющий в себе систему зажигания и датчики вращения и детонации (СААБ, МЕРСЕДЕС). У каждой системы есть свой достоинства и недостатки и только производитель решает какую систему или симбиоз разных систем применить и создать головную боль диагностам и пользователям автомобилей.

Опишем кратко только основные типы датчиков:

  • индукционный (генераторного типа)
  • датчик Холла (на одноимённом эффекте)
  • оптический датчик

Функциональная схема системы зажигания, построенная на использовании индукционного датчика показана рядом.

Схема системы зажигания с испольованием индукционного датчика

Рис. Схема системы зажигания с использованием индукционного датчика: 1 — свечи зажигания, 2 — датчик-распределитель, 3 — коммутатор, 4 — катушка зажигания.

Индукционный датчик представляет собой однофоазный генератор переменного тока с ротором на постоянных магнитах, число которых равно числу цилиндров. Мощность выходного сигнала датчика мала, поэтому выходные сигналы предварительно формируются и усиливаются. Обычно такие датчики устанавливаются в распределителе зажигания. В настоящее время такие датчики не применяются.

Часто применяемым датчиком частоты вращения или положения является датчик на эффекте Холла. Рядом приведён фрагмент электросхемы системы зажигания, использующей такой датчик.

Схема системы зажигания с испольованием датчика на эффекте Холла

Рис. Схема системы зажигания с использованием датчика на эффекте Холла: 1 — свечи зажигания, 2 — датчик Холла, 3 — коммутатор, 4 — распределитель зажигания, 5 — катушка зажигания.

Принцип действия такого датчика основан на изменении выходного сигнала в результате прерывания магнитного потока (экранирование), воздействующего на чувствительный элемент Холла (электросхема с питающим напряжением 5 или 12 В). Расположен обычно в распределителе зажигания, но может быть установлен и в других местах (маркерный диск коленвала или распредвала).

Распространенными являются и оптические датчики (особенно на а\м производства Японии). Принцип действия оптических датчиков основан на периодическом прерывании светового потока, излучаемого светодиодом. Маркерный диск с отверстиями механически связан с механизмом ГРМ. Отверстия на диске проходят мимо излучателя и поток света попадает на фотодиод. После усиления напряжения фотодиода получается напряжение импульсной формы — обычно прямоугольные импульсы.

Разрабатывалась и ранее использовалась тиристорная система зажигания. Энергия для искрового разряда в тиристорных системах накапливается в конденсаторе, а в качестве силового реле применялся тиристор. Катушка зажигания в этих системах не накапливает энергию, а лишь преобразует напряжение. Тиристорные системы применялись на мощных и высокооборотных двигателях. Скорость нарастания вторичного напряжения в тиристорной системе примерное 10 раз больше, чем в классической или транзисторной системах зажигания, поэтому пробой искрового промежутка свечи надёжно обеспечивается даже при загрязненных и покрытых нагаром изоляторах свечи. Сравнивать различные системы зажигания можно по различным характеристикам:

  • зависимость вторичного напряжения от частоты вращения коленвала двигателя;
  • продолжительность электрического разряда;
  • расход мощности;
  • надёжность схемы;
  • потребность в обслуживании;
  • чувствительность к шунтированию искрового промежутка свечи.

На рядом приведённом графике показано изменение вторичного напряжения U2 в зависимости от частоты следования разрядов f для различных систем зажигания.

При тиристорной системе зажигания вторичное напряжение можно считать постоянным во всём диапазоне частот вращения, а наибольшее снижение вторичного напряжения наблюдается в классической системе зажигания. При сравнении потребляемой мощности различными системами, можно констатировать, что электронные системы потребляют значительно большую мощность, чем классическая система. В классической и транзисторной системах зажигания продолжительность электрического разряда почти одинакова (около 1 мс) и является достаточной, а при конденсаторной (тиристорно-транзисторной) очень мала и составляет около 300 мкс.

Терристорная система зажигания - график

Рис. Тирристорная система зажигания — график

Наименее чувствительна к шунтированию искрового промежутка свечи тиристорная (конденсаторная) система благодаря быстрому нарастанию вторичного напряжения.

В современных системах управления система зажигания не выделяется, а является частью единой системы управления двигателем. В таких системах используются индивидуальные или парные (работающие на два цилиндра одновременно) катушки зажигания, позволяющие создавать искровой разряд в цилиндре в конкретный вычисленный момент времени. При расчёте момента ценообразования учитывается температура двигателя, состав отработанных газов, скорость движения и другие параметры двигателя, а также учитывается информация полученная по сетевой шине от других электронных блоков управления. Одновременно с моментом искрообразования ЭБУ двигателем управляет моментом открытия впускных и выпускных клапанов, положением дроссельной заслонки, моментом и длительностью впрыска топлива и другими параметрами.

В заключении общего описания принципов построения систем зажигания отметим, что во всех системах используются катушки зажигания для формирования высоковольтного напряжения на электродах свечи зажигания. Более подробно описание процессов, проходящих в ЭБУ зажиганием, коммутаторах, катушках зажигания и формы осциллограмм будут приведены при описании конкретных элементов систем управления. У каждой системы есть свои преимущества и недостатки, поэтому различные разработчики и производители для конкретных систем управления и конкретных двигателей применяют те или иные системы зажигания. Иногда это синтез различных систем.

Моделист-Конструктор 1983-07. Электронное зажигание для мопеда

О преимуществе электронных систем зажигания по отношению к обычным известно любому мото — любителю: мощности движка возрастают, а расходы бензина снижаются, облегчен пуск двигателя и контакты прерывателя не подгорают. Мало того, эта электронная приставка, смонтированная на мопеде, в автоматическом режиме регулирует опережение зажигания от количества оборотов коленвала мотора, создавая условия крутящему моменту движка, близкими к максимальному.
Моделист-Конструктор  1983-07. Электронное зажигание для мопеда
Генератором мопеда выдается переменное напряжение, пропорциональное количеству оборотов коленвала мотора. Данное напряжение повышается трансформатором и выпрямленное диодным мостом, заряжает накопительный конденсатор и запитывает электронное устройство управления.
Моделист-Конструктор  1983-07. Электронное зажигание для мопеда
Трансформатор Т 1 наматывают на магнитопроводе Ш 12X20. В обмотке I содержится 160 виточков провода ПЭЛ 0,23, в обмотке II-2800 витков провода ПЭЛ 0,12. С 1 — родной конденсатор механической системы зажигания мопеда.
Моделист-Конструктор  1983-07. Электронное зажигание для мопеда
Налаживается устройство подбором оптимального сопротивления для резистора R2.
Моделист-Конструктор  1983-07. Электронное зажигание для мопеда
Пробные испытания электронного устройства на мопеде выявили, что при работе на данной системе зажигания создается экономия топлива в пределах 15% с заметным ростом тягового усилия мотора.
Моделист-Конструктор  1983-07. Электронное зажигание для мопеда

Скачать или читать онлайн

Моделист-Конструктор  1983-07. Электронное зажигание для мопеда Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *