Схема плавный пуск коллекторного электродвигателя – что это за механизм УШМ, схема подключения, устройство, фото блока на электроинструменте, а также нужен ли регулятор оборотов

Содержание

Как сделать плавный пуск для электроинструмента своими руками

Плавный пуск для электроинструмента своими рукамиПлавный пуск получил широкое применение в безопасном запуске электродвигателей. Во время запуска двигателя происходит превышение номинального тока (Iн) в 7 раз. В результате этого процесса происходит уменьшение эксплуатационного периода мотора, а именно обмоток статора и значительная нагрузка на подшипники. Именно из-за этой причины и рекомендуется сделать плавный пуск для электроинструмента своими руками, где он не предусмотрен.

Общие сведения

Статор электродвигателя представляет собой катушку индуктивности, следовательно, существуют сопротивления с активной и реактивной составляющей.

Плавный пуск болгарки

При протекании электрического тока через радиоэлементы, имеющие сопротивление с активной составляющей, происходят потери, связанные с преобразованием части мощности в тепловой вид энергии. Например, резистор и обмотки статора электродвигателя обладают сопротивлением с активной составляющей. Вычислить активное сопротивление не составляет труда, так как происходит совпадение фаз тока (I) и напряжения (U). Используя закон Ома для участка цепи, можно рассчитать активное сопротивление: R = U/I. Оно зависит от материала, площади поперечного сечения, длины и его температуры.

Схема плавного пуска болгарки Если ток проходит через реактивный тип элементов (с емкостными и индуктивными характеристиками), то, в этом случае, появляется реактивное R. Катушка индуктивности, не имеющая практически активного сопротивления (при расчетах не учитывается R ее обмоток). Этот вид R создается благодаря Электродвижущей силе (ЭДС) самоиндукции, которая прямо пропорционально зависит от индуктивности и частоты I, проходящего через ее витки: Xl = wL, где w — угловая частота переменного тока (w = 2*Пи*f, причем f — частота тока сети) и L — индуктивность (L = n * n / Rm, n — число витков и Rm — магнитное сопротивление).

При включении электродвигателя пусковой ток в 7 раз больше номинального (ток, потребляемый при работе инструмента) и происходит нагрев обмоток статора. Если статорная катушка является старой, то может произойти межвитковое КЗ, которое повлечет выход электроинструмента из строя. Для этого нужно применить устройство плавного пуска электроинструмента.

Одним из методов снижения пускового тока (Iп) является переключение обмоток. Для его осуществления необходимы 2 типа реле (времени и нагрузки) и наличие трех контакторов.

Модуль плавного пуска для электроинструмента

Пуск электромотора с обмотками, соединенными по типу «звезда» возможен только при 2-х не одновременно замкнутых контакторах. Через определенный интервал времени, который задает реле времени, один из контакторов отключается и включается еще один, не задействованный ранее. Благодаря такому чередованию включения обмоток и происходит снижение пускового тока. Этот способ обладает существенным недостатком, так как при одновременно замыкании двух контакторов возникает ток КЗ. Однако при использовании этого способа обмотки продолжают нагреваться.

Еще одним способом снижения пускового тока является частотное регулирование запуска электродвигателя. Принципом такого подхода является частотное изменение питающего U. Основной элемент этого вида устройств плавного пуска является частотный преобразователь,

состоящий из следующих элементов:

  1. Выпрямитель.
  2. Промежуточная цепь.
  3. Инвертор.
  4. Электронная схема управления.

Выпрямитель изготавливается из мощных диодов или тиристоров, выполняющий роль преобразователя U питания сети в постоянный пульсирующий ток. Промежуточная цепь сглаживает пульсирующий постоянный ток на выходе выпрямителя, которая собирается на конденсаторах большой емкости. Инвертор необходим для непосредственного преобразования сигнала на выходе промежуточной цепи в сигнал амплитуды и частоты переменной составляющей. Электронная схема управления нужна для генерации сигналов, необходимых для управления выпрямителем, инвертором.

Принцип действия

Во время пуска электродвигателя коллекторного типа происходит значительное кратковременное увеличение тока потребления, которое и служит причиной преждевременного выхода из строя электроинструмента и сдачей его в ремонт. Происходит износ электрических частей (превышение тока в 7 раз) и механических (резкий запуск). Для организации «мягкого» пуска следует применять устройства плавного пуска (далее УПП).

Эти устройства должны соответствовать основным требованиям:

  1. Плавный пуск электродвигателя своими рукамиПлавное увеличение нагрузки.
  2. Возможность запуска двигателя через определенные интервалы времени.
  3. Обеспечение защиты от линейных скачков U, пропадания фазы (для 3-фазного электродвигателя) и различных помех электрической составляющей.
  4. Значительно повышение срока эксплуатации.

Наиболее широкое распространение получили симисторные УПП, принципом действия которых является плавное регулирование U при помощи регулировки угла открытия перехода симистора. Симистор нужно подключить напрямую к обмоткам двигателя и это позволяет уменьшить пусковой ток от 2 до 5 раз (зависит от симистора и схемы управления).

К основным недостаткам симисторных УПП являются следующие:

  1. Сложные схемы.
  2. Перегрев обмоток при длительном запуске.
  3. Проблемы с запуском двигателя (приводит к значительному нагреву статорных обмоток).

Схемы усложняются при использовании мощных двигателей, однако, при небольших нагрузках и холостом ходе возможно использование простых схем.

Болгарка с регулировкой оборотов и плавным пуском

УПП с регуляторами без обратной связи (по 1 или 3 фазам) получили широкое распространение. В моделях этого типа появляется возможность предварительного выставления времени пуска и величины U перед пуском двигателя. Однако, в этом случае невозможно регулировать величину вращающего момента при нагрузке. С этой моделью применяется специальное устройство для снижения пускового тока, защиты от пропадания и перекоса фаз, а также от перегрузок. Заводские модели имеют функцию слежения за состоянием электромотора.

Простейшие схемы однофазного регулирования исполняются на одном симисторе и используются для инструмента с мощностью до 12 кВт. Существуют более сложные схемы, позволяющие производить регулировку параметров питания двигателя мощностью до 260 кВт. При выборе УПП заводского производства необходимо учесть такие параметры: мощность, возможные режимы работы, равенство допустимы токов и количество запусков в определенный промежуток времени.

Применение в болгарке

Плавный пуск болгарки своими рукамиВо время запуска угловой шлифовальной машинки (УШМ) появляются высокие нагрузки динамического характера на детали инструмента.

Дорогие модели снабжены УПП, но не обыкновенные разновидности, например, УШМ фирмы «Интерскол». Инерционный рывок способен вырвать из рук УШМ, при этом происходит угроза жизни и здоровью. Кроме того, при пуске электродвигателя инструмента происходит перегрузка по току и в результате этого — износ щеток и значительный нагрев статорных обмоток, изнашивается редуктор и возможно разрушение режущего диска, который может треснуть в любой момент и причинить вред здоровью, а может даже и жизни. Инструмент нужно обезопасить и для этого следует сделать болгарку с регулировкой оборотов и плавным пуском своими руками.

Самодельные варианты

Болгарки с плавным пускомСуществует множество схем модернизации электроинструмента при помощи УПП. Среди всех разновидностей широкое применение получили устройства на симисторах. Симистор — полупроводниковый элемент, позволяющий плавно регулировать параметры питания. Существуют простые и сложные схемы, которые отличаются между собой вариантами исполнения, а также поддерживаемой мощностью, подключаемого электроинструмента. В конструктивном исполнении бывают внутренние, позволяющие встраиваться внутрь корпуса, и внешние, изготавливаемые в виде отдельного модуля, выполняющего роль ограничителя оборотов и пускового тока при непосредственном пуске УШМ.

Простейшая схема

УПП с регулированием оборотов на тиристоре КУ 202 получил широкое применение благодаря очень простой схеме исполнения (схема 1). Его подключение не требует особых навыков. Радиоэлементы для него достать очень просто. Состоит эта модель регулятора из диодного моста, переменного резистора (выполняет роль регулятора U) и схемы настройки тиристора (подача U на управляющий выход номиналом 6,3 вольта) отечественного производителя.

Схема плавного пуска электроинструмента

Схема 1. Электросхема внутреннего блока с регулировкой оборотов и плавным пуском (схема электрическая принципиальная)

Ушм с регулировкой оборотов

Благодаря размерам и количеству деталей регулятор этого типа можно встроить в корпус электроинструмента. Кроме того, следует вывести ручку переменного резистора и сам регулятор оборотов можно доработать, встроив кнопку перед диодным мостом.

Основной принцип работы заключается в регулировке оборотов электродвигателя инструмента благодаря ограничению мощности в ручном режиме. Эта схема позволяет использовать электроинструмент мощностью до 1,5 кВт. Для увеличения этого показателя необходимо заменить тиристор на более мощный (информацию об этом можно найти в интернете или справочнике). Кроме того, нужно учесть и тот факт, что схема управления тиристором будет отличаться от исходной. КУ 202 является отличным тиристором, но его существенный недостаток состоит в его настройке (подборка деталей для схемы управления). Для осуществления плавного пуска в автоматическом режиме применяется схема 2 (УПП на микросхеме).

Плавный пуск на микросхеме

Оптимальным вариантом для изготовления УПП является схема УПП на одном симисторе и микросхеме, которая управляет плавным открытием перехода p-n типа. Питается устройство от сети 220 В и ее несложно собрать самому. Очень простая и универсальная схема плавного пуска электродвигателя позволяет также и регулировать обороты (схема 2). Симистор возможно заменить аналогичным или с характеристиками, превышающими исходные, согласно справочнику радиоэлементов полупроводникового типа.

Ушм с регулировкой оборотов и плавным пуском

Схема 2. Схема плавного пуска электроинструмента

Общие сведения плавного пуска электроинструмента

Устройство реализуется на основе микросхемы КР118ПМ1 и симисторе. Благодаря универсальности устройства его можно использовать для любого инструмента. Он не требует настройки и устанавливается в разрыв кабеля питания.

При пуске электродвигателя происходит подача U на КР118ПМ1 и плавный рост заряда конденсатора С2. Тиристор открывается постепенно с задержкой, зависящей от емкости управляющего конденсатора С2. При емкости С2 = 47 мкФ происходит задержка при запуске около 2 секунд. Она зависит прямо пропорционально от емкости конденсатора (при большей емкости время запуска увеличивается). При отключении УШМ конденсатор С2 разряжается при помощи резистора R2, сопротивление которого равно 68 к, а время разрядки составляет около 4 секунд.

Принцип действия плавного пуска электроинструмента

Для регулирования оборотов нужно заменить R1 на резистор переменного типа. При изменении параметра переменного резистора происходит изменение мощности электромотора. R2 изменяет величину тока, протекающего через вход симистора. Симистор нуждается в охлаждении и, следовательно, в корпус модуля можно встроить вентилятор.

Основной функцией конденсаторов C1 и C3 является защита и управление микросхемой. Симистор следует подбирать, руководствуясь следующими характеристиками: прямое U должно составлять 400..500 В и прямой ток должен быть не менее 25 А. При таких номиналах радиоэлементов к УПП возможно подключать инструмент с мощностью от 2 кВт до 5 кВт.

Применение плавного пуска в болгарке

Таким образом, для запуска электродвигателей различного инструмента необходимо использовать УПП заводского изготовления или самодельные. УПП применяются для увеличения срока эксплуатации инструмента. При запуске двигателя происходит резкое увеличение тока потребления в 7 раз. Из-за этого возможно подгорание статорных обмоток и износ механической части. УПП позволяют значительно снизить пусковой ток. При изготовлении УПП самостоятельно нужно соблюдать правила безопасности при работе с электричеством.

Плавный пуск коллекторного двигателя. Сначала ничего не вышло, но все закончилось хорошо

До этого я никогда не делал устройство плавного пуска. Чисто теоретически, я представлял, как реализовать эту функцию на симисторе, правда такой вариант не без недостатков — потеря мощности и необходим теплоотвод.
Блуждая по пыльным китайским лабазам, в тщетных попытках в залежах контрафакта и неликвида отыскать что-нибудь стоящее, но не дорогое, наткнулся я на этот товар.

Бла-бла-бла

Покупка не была ради покупки, а осознанная необходимость. Задумал я написать обзор в стол поставить ручной фрезер. А он у меня без плавного пуска, стартует резко, саморазрушаясь и руша окружающее его. Мягкий старт и плавный пуск разве не одно и тоже? Сомнения конечно были, хотя я с терморезисторами дел не имел, видел их только в блоках питания компьютеров, всегда думал, что они реагируют на «скачки и всплески», т. е. быстро, но «the voltage to rise slowly» и «after about five seconds» зародили червь сомнения. Да еще и “or other high starting current machine applications.»
Поскольку отсутствие знаний делает нас расточительными и решительными, я заказал этот девайс и не на секунду об этом не пожалел.


Вот что пишет про него продавец:
Мягкий старт блока питания для усилителя класса А, обещая: 4 кВт мощности и 40 А через контакты реле при напряжении AC от 150 В до 280 В. Размер 67 мм x 61 мм x 30 мм, продавец называет его ультра-маленьким – а-ха-ха. Как бы мой фрезер по току в рамки попадает, даже если разделить китайские амперы на два, но в таком размере внутрь корпуса инструмента плата невпихуема.
И, да, это конструктор. Нужно паять!

Товар пришел в таком виде, плюс еще для лучшей сохранности был завернут в обрывок газеты на китайском/корейском/японском языке, который пропал, опрос домочадцев и многочисленной челяди ясности не внес, кому и для каких надобностей этот клочек понадобился, поэтому фото газеты нет, сверху был еще пакетик без всякой пупырки.
Паять легко — все нарисовано и подписано.

Плата — может кому пригодится


Спаял:

Обратная сторона


Набросал принципиальную схему

Как работает: при включении у R2 сопротивление большое, напряжение на нагрузке меньше чем 220 V, терморезистор нагревается, сопротивление его стремится к нулю, а напряжение на нагрузке к 220 V. Соответственно двигатель набирает обороты.

Заумь


Одновременно с этим выпрямленное и стабилизированное VD2 напряжение (24 V, хотя по первому попавшемуся даташиту должно быть 25, но вольт туда, вольт сюда…) запитывает схему включения реле. Через R1 заряжается конденсатор C3, емкость которого определяет время срабатывания реле. Через 5 секунд открывается транзистор VT2, контакты реле шунтируют терморезистор R2 и двигатель работает на максимальной мощности.
Гладко было на бумаге… В реальности подключение данного устройства никакого плавного пуска двигателю не обеспечивает, терморезистор нагревается мгновенно, мотор сразу молотит почем зря, только реле издевательски щелкает через 5 секунд. Пробовал двигатель на 150 Вт — эффект тот же.


Бла-бпа-бла

Ругал на чем свет стоит китайского купца. Домашние животные, дошколята и приживалки, наблюдавшие за экспериментом, разбежались и попрятались по темным углам, теща на всякий случай достала из рукава пестик. А вот не надо вводить в заблуждение доверчивых русских покупателей. Допил одонки из бутылки, оставшейся с позапрошлой коронации, закусил холодной кулебякой, успокоился… Достал из помойного ведра плату, обобрал с нее подсолнечную шелуху.


«Если работа проваливается, то всякая попытка ее спасти ухудшит дело», — утверждает Эдвард Мерфи. «Слишком много людей ломаются, даже не подозревая о том, насколько близко к успеху они были в тот момент, когда упали духом,» — спорит с ним Томас Эдисон. Эти две цитаты никакого отношения к делу не имеют, приведены здесь, чтобы показать, что автор отчета не просто охотник за халявой и тупой потребитель китайских товаров, а человек начитанный, приятный собеседник и интеллектуал. Фигли. Но к делу.
Завалялись у меня в чулане на антресолях в шляпной коробке пара микросхем К1182ПМ1Р.

Выжимка из даташита:

Непосредственное применение ИС — для плавного включения и выключения электрических ламп накаливания или регулировки их яркости свечения. Так же успешно ИС может применяться для регулировки скорости вращения электродвигателей мощностью до 150 Вт (например, вентиляторами) и для управления более мощными силовыми приборами (тиристорами).


На одной из них я и собрал устройство плавного пуска, которое не лишено недостатков, но работает, как надо.

С1 задает время плавного включения, R1 величину напряжения на нагрузке. У меня максимальное напряжение при 120 ом получилось. При С1 100 мкФ время разгона около 2-х секунд. Поменяв R1 на переменный можно регулировать обороты коллекторного двигателя, без обратной связи естественно (хотя так реализовано на подавляющем большинстве продаваемого электроинструмента). Симистор VS1 любой нашедшейся, подходящий по мощности. У меня завалялся BTA16 600B.

Обратная сторона


Все работает.


Теперь осталось скрестить два устройства, которые взаимно дополняют друг друга, сводя на нет недостатки присущие каждому в отдельности.

Бла-бла-бла



В принципе задача несложная для живого, пытливого ума. Выпаял термистор, и выбросил его спрятал до лучших времен, на его место впаял два проводка идущие от катода и анода симистора второй платы. Уменьшил емкость С3 на первой плате до 22 мкФ, что бы реле замыкало катод и анод симистора не через 5 секунд, а примерно через две.


При температуре воздуха 30 град. С температура диодного моста 50 град., стабилитрона 65 град., реле 40 град.
Все — переделка закончена.

Бла-бла-бла

Другой бы, менее уверенный в своих силах, обрадовался бы результату, закатил бы пир горой, устроил бы праздник с медведями и цыганами. Я же просто открыл бутылочку шампанского, заставил девок плясать хороводы во дворе и отменил субботнюю порку.


Осталось только оформить это все в корпус, уже было хотел, но что-то дома нет пластинки металлической, с помощью которой корпус будет крепиться к столу. Выглядеть будет все примерно так:

Мои выводы неоднозначны, оценки предвзяты, рекомендации сомнительны.
Все устал, еще эти коты все время в кадр лезли – замучился гонять.

Плавный пуск электродвигателя своими руками: для болгарки, электроинструмента

У всех кто пользуется болгаркой не один год, она ломалась. Поначалу каждый мастер пытался отремонтировать шлифовальную машинку сверкающую искрами самостоятельно, надеясь, что она заработает после замены щёток. Обычно после такой попытки, сломанный инструмент остается лежать на полке с прогоревшими обмотками. А на замену покупается новая болгарка.

Дрели, шуруповёрты, перфораторы, фрезеры в обязательном порядке оборудованы регулятором набора оборотов. Некоторые так называемые калибровочные шлифмашинки также снабжаются регулятором, а обычные болгарки имеют только кнопку включения.

Маломощные болгарки производители не усложняют дополнительными схемами преднамеренно, ведь такой электроинструмент должен стоить дешево. Понятно конечно, что срок службы недорого инструмента всегда короче, чем у более дорогого профессионального.

Самую простую болгарку можно модернизировать, так что у неё перестанут повреждаться редуктор и обмоточные провода якоря. Эти неприятности преимущественно происходят при резком, другими словами, ударном пуске болгарки.

Вся модернизация заключается всего лишь в сборке электронной схемы и закреплении её в коробке. В отдельном коробке, потому что в ручке шлифмашинки очень мало места.

Проверенная, рабочая схема выложена ниже. Она первоначально предназначалась для регулировки накала ламп, то есть для работы на активную нагрузку. Её главное достоинство ? простота.

рабочая схема

  1. Изюминкой устройства плавного пуска, принципиальную схему которого вы видите, является микросхема К1182ПМ1Р. Эта микросхема узкоспециализированная, отечественного производства.
  2. Время разгона можно увеличить, выбрав конденсатор С3 большей емкости. Во время заряжания этого конденсатора, электродвигатель набирает обороты до максимума.
  3. Не нужно ставить взамен резистора R1 переменное сопротивление. Резистор сопротивлением 68 кОм оптимально подобран для этой схемы. При такой настройке можно плавно запустить болгарку мощностью от 600 до 1500 Вт.
  4. Если собираетесь собрать регулятор мощности, тогда нужно заменить резистор R1 переменным сопротивлением. Сопротивление в 100 кОм, и больше, не занижает напряжение на выходе. Замкнув ножки микросхемы накоротко, можно вовсе выключить подключенную болгарку.
  5. Вставив в силовую цепь семистор VS1 типа ТС-122-25, то есть на 25А, можно плавно запускать практически любую доступную в продаже шлифмашинку, мощностью от 600 до 2700 Вт. И остается большой запас по мощности на случай заклинивания шлифмашинки. Для подключения болгарок мощностью до 1500 Вт, достаточно импортных семисторов BT139, BT140. Эти менее мощные электронные ключи дешевле.

Семистор в приведенной выше схеме полностью не открывается, он отрезает около 15В сетевого напряжения. Такое падения напряжения никак не сказывается на работе болгарки. Но при нагреве семистора, обороты подключенного инструмента сильно снижаются. Эта проблема решается установкой радиатора.

У этой простой схемы есть ещё один недостаток – несовместимость её с установленным в инструмент регулятором оборотов.

Собранную схему нужно запрятать в коробок из пластмассы. Корпус из изоляционного материала важен, ведь нужно обезопасить себя от сетевого напряжения. В магазине электротоваров можно купить распределительную коробку.

К коробке прикручивается розетка и подключается кабель с вилкой, что делает эту конструкцию внешне похожей на удлинитель.

конструкция

конструкция

Если позволяет опыт и есть желание, можно собрать более сложную схему плавного пуска. Приведенная ниже принципиальная схема является стандартной для модуля XS–12. Этот модуль устанавливается в электроинструмент при заводском производстве.

Схема модуля

Если нужно менять обороты подключенного электродвигателя, тогда схема усложняется: устанавливается подстроечный, на 100 кОм, и регулировочный резистор на 50 кОм. А можно просто и грубо внедрить переменник на 470 кОм между резистором 47 кОм и диодом.

Параллельно конденсатору С2 желательно подсоединить резистор сопротивлением 1 МОм (на приведенной ниже схеме он не показан).

Напряжение питания микросхемы LM358 находится в пределах от 5 до 35В. Напряжение в цепи питания не превышает 25В. Поэтому можно обойтись и без дополнительно стабилитрона DZ.

Схема модуля-2

Какую бы вы схему плавного пуска ни собрали, никогда не включайте подключенный к ней инструмент под нагрузкой. Любой плавный пуск можно сжечь, если торопиться. Подождите пока болгарка раскрутиться, а затем работайте.

Оптимальные схемы для плавного пуска электродвигателя, созданных своими руками

Устройство плавного пуска своими руками

Устройство плавного пуска своими рукамиКому хочется напрягаться, тратить свои деньги и время на переоборудование устройств и механизмов, которые и так прекрасно работают? Как показывает практика – многим. Хоть и не каждый в жизни сталкивается с промышленным оборудованием, оснащённым мощными электродвигателями, но, постоянно встречается пусть с не столь прожорливыми и мощными, электромоторами в быту. Ну а лифтом, наверняка, пользовался каждый.

Электродвигатели и нагрузки — проблема?

Схема плавного пуска электродвигателя

Схема плавного пуска электродвигателяДело в том, что фактически любые электродвигатели, в момент пуска или остановки ротора, испытывают огромные нагрузки. Чем мощнее двигатель и оборудование, приводимое им в движение, тем грандиозней затраты на его запуск.

Наверное, самая значительная нагрузка, приходящаяся на двигатель в момент пуска, это многократное, хоть и кратковременное, превышение номинального рабочего тока агрегата. Уже через несколько секунд работы, когда электромотор выйдет на свои штатные обороты, ток, потребляемый им, тоже вернётся к нормальному уровню. Для обеспечения необходимого электроснабжения приходиться наращивать мощность электрооборудования и токопроводящих магистралей, что приводит к их подорожанию.

При запуске мощного электродвигателя, из-за его большого потребления, происходит «просадка» напряжения питания, которая может привести к сбоям или выходу из строя оборудования, запитанного с ним от одной линии. Ко всему прочему, снижается срок службы аппаратуры электроснабжения.

При возникновении нештатных ситуаций, повлёкших перегорание двигателя или его сильный перегрев, свойства трансформаторной стали могут измениться настолько, что после ремонта двигатель потеряет до тридцати процентов мощности. При таких обстоятельствах, к дальнейшей эксплуатации он уже непригоден и требует замены, что тоже недешево.

Для чего нужен плавный пуск?

Казалось бы, все правильно, да и оборудование на это рассчитано. Вот только всегда есть «но». В нашем случае их несколько:

  • в момент запуска электродвигателя, ток питания может превышать номинальный в четыре с половиной-пять раз, что приводит к значительному нагреву обмоток, а это не очень хорошо;
  • старт двигателя прямым включением приводит к рывкам, которые в первую очередь влияют на плотность тех же обмоток, увеличивая трение проводников во время работы, ускоряет разрушение их изоляции и, со временем, может привести к межвитковому замыканию;
  • вышеупомянутые рывки и вибрация передаются на весь приводимый в движение агрегат. Это уже совсем нездорово, потому что может привести к повреждению его движущихся элементов: систем зубчатых передач, приводных ремней, конвейерных лент или просто представьте себя едущим в дёргающемся лифте. В случае насосов и вентиляторов — это риск деформации и разрушения турбин и лопастей;
  • не стоит также забывать об изделиях, возможно находящихся на производственной линии. Они могут упасть, рассыпаться или разбиться из-за такого рывка;
  • ну, и наверно, последний из моментов, заслуживающих внимание — стоимость эксплуатации такого оборудования. Речь идёт не только о дорогостоящих ремонтах, связанных с частыми критическими нагрузками, но и об ощутимом количестве не эффективно израсходованной электроэнергии.

Казалось бы, все вышеперечисленные сложности эксплуатации присущи лишь мощному и громоздкому промышленному оборудованию, однако, это не так. Все это может стать головной болью любого среднестатистического обывателя. В первую очередь это касается электроинструмента.

Специфика применения таких агрегатов, как электролобзики, дрели, болгарки и им подобных, предполагают многократные циклы запуска и остановки, в течение относительно небольшого промежутка времени. Такой режим эксплуатации, в той же мере, влияет на их долговечность и энергопотребление, как и у их промышленных собратьев. При всем этом не стоит забывать, что системы плавного запуска не могут регулировать рабочие обороты мотора или реверсировать их направление. Также невозможно увеличить пусковой момент или снизить ток ниже, чем требуется для начала вращения ротора электродвигателя.

Видео: Плавный пуск, регулировка и защита колектор. двигателя

Варианты систем плавного пуска электродвигателей

Система «звезда-треугольник»

Основные принципы плавного пуска

Основные принципы плавного пускаОдна из наиболее широко применяемых систем запуска промышленных асинхронных двигателей. Основным её преимуществом является простота. Двигатель запускается при коммутации обмоток системы «звезда», после чего, при наборе штатных оборотов, автоматически переключается на коммутацию «треугольник». Такой вариант старта позволяет добиться тока почти на треть ниже, чем при прямом запуске электромотора.

Однако, этот способ не подойдёт для механизмов с небольшой инерцией вращения. К таким, к примеру, относятся вентиляторы и небольшие насосы, из-за малых размеров и массы их турбин. В момент перехода с конфигурации «звезда» на «треугольник», они резко снизят обороты или вовсе остановятся. В результате после переключения, электродвигатель по сути, запускается заново. То есть в конечном счёте вы не добьётесь не только экономии ресурса двигателя, но и, вероятнее всего, получите перерасход электроэнергии.

Видео: Подключение трёхфазного асинхронного электродвигателя звездой или треугольником

Электронная система плавного пуска электродвигателя

Основные принципы плавного пуска

Основные принципы плавного пускаПлавный пуск двигателя может быть произведён с помощью симисторов, включённых в цепи управления. Существует три схемы такого включения: однофазные, двухфазные и трехфазные. Каждая из них отличается своими функциональными возможностями и конечной стоимостью соответственно.

С помощью таких схем, обычно, удаётся снизить пусковой ток до двух–трёх номинальных. Кроме этого, удаётся снизить существенный нагрев, присущий вышеупомянутой системе «звезда-треугольник», что способствует увеличению срока службы электродвигателей. Благодаря тому, что управление запуска двигателя происходит за счёт снижения напряжения, разгон ротора осуществляется плавно, а не скачкообразно, как у других схем.

В целом, на системы плавного пуска двигателя возлагаются несколько ключевых задач:

  • основная – понижение пускового тока до трёх–четырёх номинальных;
  • снижение напряжения питания двигателя, при наличии соответствующих мощностей и проводки;
  • улучшение параметров пуска и торможения;
  • аварийная защита сети от перегрузок по току.

Однофазная схема пуска

Данная схема предназначена для запуска электродвигателей мощностью не более одиннадцати киловатт. Применяют такой вариант в том случае, если требуется смягчить удар при запуске, а торможение, плавный пуск и понижение пускового тока не имеют значения. В первую очередь из-за невозможности организации последних, в такой схеме. Но по причине удешевления производства полупроводников, в том числе и симисторов, они сняты с производства и редко встречаются;

Двухфазная схема пуска

Такая схема предназначена для регулирования и пуска двигателей мощностью до двухсот пятидесяти ватт. Такие системы плавного пуска иногда комплектуют обходным контактором для удешевления прибора, однако, это не решает проблемы несимметричности питания фаз, что может привести к перегреву;

Трехфазная схема пуска

Эта схема является наиболее надёжной и универсальной системой плавного пуска электродвигателей. Максимальная мощность, управляемых таким устройством двигателей, ограничена исключительно максимальной температурной и электрической выносливостью применённых симисторов. Его универсальность позволяет реализовать массу функций, таких как: динамический тормоз, подхват обратного хода или балансировку ограничения магнитного поля и тока.

Как сделать плавный пуск электродвигателя

Как сделать плавный пуск электродвигателяВажным элементом последней, из упомянутых схем, является обходной контактор, о котором говорилось раньше. Он позволяет обеспечить правильный тепловой режим системы плавного пуска электродвигателя, после выхода двигателя на штатные рабочие обороты, предотвращая его перегрев.

Существующие на сегодняшний день устройства плавного пуска электродвигателей, помимо приведённых выше свойств, рассчитаны на их совместную работу с различными контроллерами и системами автоматизации. Имеют возможность включения по команде оператора или глобальной системы управления. При таких обстоятельствах, в момент включения нагрузок, возможно появление помех, могущих привести к сбоям в работе автоматики, а следовательно, стоит озаботиться системами защиты. Использование схем плавного пуска, способно значительно уменьшить их влияние.

Плавный пуск своими руками

Большинство перечисленных выше систем фактически неприменимы в бытовых условиях. В первую очередь по той причине, что дома мы крайне редко используем трехфазные асинхронные двигатели. Зато коллекторных однофазных моторов — хоть отбавляй.

Существует немало схем устройства плавного запуска двигателей. Выбор конкретной зависит исключительно от вас, но в принципе, имея определённые знания радиотехники, умелые руки и желание, вполне можно собрать приличный самодельный пускатель, который продлит жизнь вашего электроинструмента и бытовой техники на долгие годы.

устройство, схема, как сделать из утюга, энергосберегающей лампы и другие решения, как подключить, проверить, убрать

УШМ (болгарка) MAKITA GA4530 без плавного пуска. Фото 220Вольт

При покупке дешевой болгарки у нее наверняка будет отсутствовать опция плавного пуска. Во время запуска, особенно мощной УШМ, можно прочувствовать все «прелести» рывка, который производит болгарка при включении. При наличии устройства плавного пуска электроинструмент в комфортных для пользователя условиях начнет выполнять свою работу. Несомненно, болгарка с такой опцией стоит дороже. Однако, возможно самостоятельно установить на болгарку устройство плавного пуска. Это решит вопросы экономии средств и облегчит дальнейшую эксплуатацию — устройство, сделанное своими руками, легче отремонтировать в случае выхода его из строя.

Устройство

В болгарках без плавного пуска на обмотки коллекторного двигателя сразу подается напряжение сети 220 В, а для приведения его в рабочее состояние требуется повышенный пусковой ток. Устройство плавного пуска обеспечивает постепенное нарастание напряжения и соответственно, ток при запуске также не растет скачкообразно.

Обеспечить такой режим пуска возможно при использовании специальной электронной схемы. Основным компонентом ее является полупроводниковая микросхема, которая управляет другим, более мощным полупроводниковым прибором симистором, обеспечивающим подачу мощности на электропривод болгарки. Тиристоры микросхемы работают с задержкой питающего напряжения, до того момента пока конденсатор цепи не зарядится полностью. Принцип работы микросхемы удачно сочетается с обеспечением плавного пуска болгарок.

Микросхемы к1182, LM358

Наиболее известная микросхема для устройства плавного пуска к1182. Эта микросхема была создана еще в советские времена и сейчас ее не так просто найти. Существуют другие более доступные микросхемы, например, LM358. Многие современные болгарки в заводском исполнении устройства используют микросхему LM358.

Микросхема LM358

Принцип действия

Устройство плавного пуска в УШМ заводского исполнения находится внутри корпуса болгарки и соединяется контактами с кнопкой включения и обмотками статора электропривода. Требуется определенное время для выхода УШМ на номинальный режим и электромагнитное поле, создаваемое равномерно нарастающими силой тока и напряжением через обмотки статора, заставляет якорь привода болгарки плавно набирать обороты.

Для болгарок, где производителем не предусмотрено такое устройство, обычно в очень редких случаях удается скрыть его под корпусом болгарки. Наиболее часто оно выполняется в виде отдельного блока, обустроенного в разрыве цепи силового кабеля. Однако принцип действия от этого не меняется.

Недостатки УШМ без плавного пуска

Аккумуляторная угловая шлифмашина Metabo W 18 LTX 125 602174850 с плавным пуском. Фото ВсеИнструменты.ру

Кроме обеспечивающих комфортные условия работы пользователю, болгарка с плавным пуском обладает рядом других достоинств.

  • Отсутствие во время плавного пуска болгарки большого пускового тока, который в разы превышает номинальное значение этого параметра во время работы, повышает надежность электрической части электроинструмента. В этом случае провода обмоток не испытывают перегрузок и не растрескиваются, ламели коллектора и щетки не подвергаются износу от повышенного искрения, в местах контакта не происходят процессы, ухудшающие соединение.
  • Во время равномерного повышения числа оборотов до номинального значения болгарка с плавным пуском не испытывает повышенных динамических нагрузок, которые возникают при его отсутствии. Мгновенный набор 6000 оборотов в минуту и более не проходит бесследно для шестеренчатой передачи и подшипниковых узлов. Они быстрее выходят из строя, поэтому болгарки без такого устройства чаще ремонтируются.

Как сделать блок пуска для электроинструмента

Существует достаточно много вариантов самостоятельного оборудования болгарки устройством плавного пуска. Некоторые из них представлены в авторских видео.

Блок пуска на базе микросхемы LM358

В следующем видео автор делится опытом самостоятельного изготовления платы блока плавного пуска по схеме, взятой из интернета, на базе микросхемы LM358. Корпус для платы автор изготовил из коробочки из-под шампуня, что говорит о богатой фантазии мастеров самодеятельного творчества. Автор не просто слепо скопировал схему из интернета, а доработал с заменой характеристик некоторых ее элементов: транзисторов, диодов, резисторов. Радиатор для охлаждения полупроводниковых приборов взят из магнитофона. Для того, чтобы была возможность разместить блок плавного пуска внутри корпуса болгарки, а не как в случае предложенного варианта, разработана плата меньшего размера.

Технология работ по изготовлению блока пуска

Автор следующего видео подробно описывает приемы работ, применяемые комплектующие и вспомогательные технологические материалы для изготовления устройства плавного пуска. Здесь в качестве базового элемента взята микросхема к1182. Технология не рассчитана на применение в качестве основы печатной платы, автор называет такую сборку технологией «навесного монтажа». При таком производстве работ кроме пайки применяется крепление отдельных элементов с помощью крепежных изделий, например, так крепится симистор к теплоотводу. Готовый блок пуска не универсален для всех болгарок. На двух отдельно взятых автором УШМ они выходили на режим за ощутимо разный промежуток времени.

Один из вариантов компоновки самодельного блока пуска

В качестве исходного варианта автор следующего видео выбрал известную в интернете сборку с микросхемой LM358.Так как собранный пусковой блок не поместился внутри корпуса болгарки, автор «упаковал» внутрь лишь симистор с радиатором, по причине хороших условий охлаждения от колеса вентилятора болгарки. Остальную часть блока вместе с микросхемой закрепил на корпусе УШМ.

Использование утюга в качестве дополнительной нагрузки для снижения оборотов болгарки

Этот способ не относится конкретно к теме плавного пуска болгарки. Однако, для понимания принципа действия электронного устройства диммер, который используется для регулировки мощности (или количества оборотов) болгарки вполне приемлем. В следующем видео утюг забирает определенную мощность у УШМ, тем самым снижая ее обороты.

Типовую схему блока пуска следует дорабатывать для каждого отдельного электроинструмента

Автор следующего видео рассказывает как оборудовал свою бытовую болгарку устройством плавного пуска для увеличения срока эксплуатации.

Важно: схема может отлично работать для регулировки яркости лампы, но для необходимого функционирования болгарки при пуске быть неспособной выполнять задачу. Для эффективной работы ее следует «настроить», а именно подобрать нужные величины резисторов, емкостей конденсаторов и возможно изменить характеристики полупроводниковых приборов.

Как приспособить в болгарке штатный диммер для регулировки оборотов

В следующем видео автор доработал кнопку включения (сделал ее подпружиненной) с целью использования возможностей покупного диммера для регулировки оборотов болгарки. После включения болгарки перемещением кнопки устанавливается требуемый режим оборотов. Диммер фиксирует этот режим и при повторном включении производится его установка.

Можно ли сделать из энергосберегающей лампы

В энергосберегающей лампе имеется в наличии электронный блок, который повышает напряжение и частоту тока. При этом лампа загорается при определенном напряжении, при пониженном напряжении электронный блок просто не работает. Поэтому лампа запускается с задержкой, но без плавного пуска. Поэтому использовать данную схему для плавного пуска не стоит.

Как подключить, установка

Для пользователей болгарок, не имеющих навыков электромонтажных работ можно приобрести отдельно продающийся блок плавного пуска. Необходимо будет лишь правильно его установить. Существую два варианта размещения пускового устройства — внутри корпуса болгарки и, в случае невозможности, снаружи.

В следующем видео автор один из приобретенных блоков с помощью небольшой доработки корпуса болгарки разместил внутри его. Два провода блока пуска подсоединяются по следующей схеме: один провод к контакту выключателя, другой к обмотке статора электропривода.

В другом видео автору также удалось поместить приобретенный блок внутри болгарки. Однако схему подключения он выбрал другую — в разрыв сети. При этом не важно учитывать куда подсоединять «ноль», а куда «фазу».

Как убрать и стоит ли

В следующем видео автор убедительно доказывает, что если плавный пуск стоит на болгарке, то не стоит обращать внимание на краткосрочные задержки в работе при ожидании набора рабочих оборотов и нового запуска болгарки после окончательной разрядки конденсатора (совпадает с окончанием вращения рабочего инструмента по инерции). Устройство плавного пуска создает куда больше пользы от долговременной без ремонтов эксплуатации болгарки.

Как подключить напрямую, без плавного пуска

Если во время срочной работы перестало работать устройство плавного пуска, то электрическая схема позволяет его легко обойти. В принципе просто убрать его и затем соединить разорванную цепь. Таких болгарок эксплуатируется достаточно большое количество. Однако лучше восстановить вышедший из строя плавный пуск.

Как проверить

В домашних условиях перед сборкой болгарки с устройством плавного пуска неплохо проверить его на разрыв в цепи. В следующем видео проверяется устройство с тремя выводами. Обычно на корпусе пускового устройства имеется схема подключения. Здесь два провода сетевых, один идет к электроприводу. Если собрать цепь с индикаторной лампочкой, включив в нее устройство пуска, то определить разрыв в нем возможно загоранием/не загоранием индикаторной лампочки.

Ремонт, не работает

Определить разрыв цепи по вине устройства плавного пуска достаточно легко. Для этого необходимо лишь прозвонить цепь по участкам. Заниматься восстановлением платы самостоятельно возможно лишь при наличии сложных приборов для определения характеристик полупроводниковых элементов. Лучшим вариантом будет заменить ее на подобную купленную в магазине или изготовленную своими руками.

Где купить

Для поиска продавца плавного пуска для болгарки рекомендуем перейти в этот раздел нашего сайта.

Разделы: Запчасти, Ремонт болгарок своими руками

Плавный пуск электродвигателя своими руками

Плавный пуск асинхронного двигателя – это всегда трудная задача, потому что для запуска индукционного мотора требуется большой ток и крутящий момент, которые могут сжечь обмотку электродвигателя. Инженеры постоянно предлагают и реализуют интересные технические решения для преодоления этой проблемы, например, использование схемы включения звезда-треугольник, автотрансформатора и т. д.

В настоящее время подобные способы применяются в различных промышленных установках для бесперебойного функционирования электродвигателей.

Зачем нужны УПП?

Из физики известен принцип работы индукционного электродвигателя, вся суть которого заключается в использовании разницы между частотами вращения магнитных полей статора и ротора. Магнитное поле ротора, пытаясь догнать магнитное поле статора, способствует возбуждению большого пускового тока. Мотор работает на полной скорости, при этом значение крутящего момента вслед за током тоже увеличивается. В результате обмотка агрегата может быть повреждена из-за перегрева.

 

 

Таким образом, необходимой становится установка мягкого стартера. УПП для трехфазных асинхронных моторов позволяют защитить агрегаты от первоначального высокого тока и крутящего момента, возникающих вследствие эффекта скольжения при работе индукционного мотора.

Преимущественные особенности применения схемы с устройством плавного пуска (УПП):

  1. снижение стартового тока;
  2. уменьшение затрат на электроэнергию;
  3. повышение эффективности;
  4. сравнительно низкая стоимость;
  5. достижение максимальной скорости без ущерба для агрегата.

Как плавно запустить двигатель?

Существует пять основных методов плавного пуска.

  • Высокий крутящий момент может быть создан путем добавления внешнего сопротивления в цепь ротора, как показано на рисунке.

  • С помощью включения в схему автоматического трансформатора можно поддерживать пусковой ток и крутящий момент за счет уменьшения начального напряжения. Смотрите рисунок ниже.

  • Прямой запуск – это самый простой и дешевый способ, потому что асинхронный двигатель подключен напрямую к источнику питания.
  • Соединения по специальной конфигурации обмоток – способ применим для двигателей, предназначенных для эксплуатации в нормальных условиях.

  • Использование УПП – это наиболее передовой способ из всех перечисленных методов. Здесь полупроводниковые приборы, такие как тиристоры или тринисторы, регулирующие скорость асинхронного двигателя, успешно заменяют механические компоненты.

Регулятор оборотов коллекторного двигателя

Большинство схем бытовых аппаратов и электрических инструментов создано на базе коллекторного электродвигателя 220 В. Такая востребованность объясняется универсальностью. Для агрегатов возможно питание от постоянного либо переменного напряжения. Достоинство схемы обусловлены обеспечением эффективного пускового момента.

Чтобы достичь более плавного пуска и обладать возможностью настройки частоты вращения, применяются регуляторы оборотов.

Пуск электродвигателя своими руками можно сделать, к примеру, таким образом.

Заключение

УПП разработаны и созданы, чтобы ограничить увеличение пусковых технических показателей двигателя. В противном случае нежелательные явления могут привести к повреждению агрегата, сжиганию обмоток или перегреву рабочих цепей. Для длительной же службы, важно чтобы трехфазный мотор работал без скачков напряжения, в режиме плавного пуска.

Как только индукционный мотор наберёт нужные обороты, посылается сигнал к размыканию реле цепи. Агрегат становится готов к работе на полной скорости без перегрева и сбоев системы. Представленные способы могут быть полезными в решении промышленных и бытовых задач.

 

Схема устройства плавного пуска электроинструмента.

Подробности
Категория: Электроника в быту

    Случающиеся иногда отказы ручного электроинструмента — шлифовальных машин, электрических дрелей и лобзиков зачастую бывают связаны с их большим пусковым током и значительными динамическими нагрузками на детали редукторов, возникающими при резком пуске двигателя.
 Устройство плавного пуска коллекторного электродвигателя, описанное в [1], сложно по схеме, в нем имеется несколько прецизионных резисторов и оно требует кропотливого налаживания. Применив микросхему фазового регулятора КР1182ПМ1 [2], удалось изготовить немаловажно более простое устройство аналогичного назначения, не требующее налаживания. К нему можно без всякой доработки подключать любой ручной электроинструмент, питающийся от однофазной сети 220 В, 50 Гц. Пуск и остановка двигателя производятся выключателем электроинструмента, причем в его выключенном состоянии устройство ток не потребляет и может неограниченное пора оставаться подключенным к сети.

 Схема предлагаемого устройства изображена на рисунке. Вилку ХР1 включают в сетевую розетку, а в розетку XS1 вставляют сетевую вилку электроинструмента. Можно установить и соединить параллельно несколько розеток для инструментов, работающих поочередно.
 При замыкании цепи двигателя электроинструмента его собственным выключателем на фазовый регулятор DA1 поступает напряжение. Начинается зарядка конденсатора С2, напряжение на нем постепенно увеличивается. В результате задержка включения внутренних тиристоров регулятора, а с ними и симистора VSI в каждом последующем полупериоде сетевого напряжения уменьшается, что приводит к плавному нарастанию протекающего через мотор тока и, как следствие, подъему его оборотов. При указанной на схеме емкости конденсатора С2 разгон электродвигателя до максимальных оборотов занимает 2…2,5 с, что практически не создает задержки в работе, но полностью исключает тепловые и динамические удары в механизме инструмента.
 После выключения двигателя конденсатор С2 разряжается через резистор R1. и через 2…З сек. все готово к повторному запуску. Заменив постоянный резистор R1 переменным, можно плавно регулировать отдаваемую в нагрузку мощность. Она снижается с уменьшением сопротивления.
 Резистор R2 сдерживает ток управляющего электрода симистора, а конденсаторы С1 и СЗ — элементы типовой схемы включения фазового регулятора DA1.
 Все резисторы и конденсаторы припаяны непосредственно к выводам микросхемы DA1. Вместе с ними она помещена в алюминиевый корпус от стартера люминесцентной лампы и залита эпоксидным компаундом. Наружу выведены лишь два провода, подключаемые к выводам симистора. Перед заливкой в нижней части корпуса просверлено отверстие, в которое вставлен резьбой наружу винт МЗ. Этим винтом узел закреплен на теплоотводе симистора VS1 площадью 100 см». Такая конструкция показала себя довольно надежной при эксплуатации в условиях повышенной влажности и запыленности.
 Какого-либо налаживания устройство не требует. Симистор можно использовать любой, класса по напряжению не менее 4 (то есть с максимальным рабочим напряжением не менее 400 В) и с максимальным током 25 50 А. Благодаря плавному старту двигателя пусковой ток не превышает номинального. Запас необходим лишь на случай заклинивания инструмента.
 Устройство испытано с электроинструментами мощностью до 2,2 кВт. Так как регулятор DA1 обеспечивает протекание тока в цепи управляющего электрода симистора VS1 в течение всей активной части полупериода, нет ограничения на минимальную мощность нагрузки. Автор подключал к изготовленному устройству более того электробритву «Харьков».

  К. Мороз, г. Надым, ЯНАО

ЛИТЕРАТУРА
1. Бирюков С. Автомат плавного пуска коллекторных электродвигателей — Радио 1997, N*8. с 40 42
2. Немич А. Микросхема КР1182ПМ1 — фазовый регулятор мощности — Радио 1999, N» 7, с. 44-46.

Добавить комментарий

Отправить ответ

avatar
  Подписаться  
Уведомление о