Ваз система – Руководства по обслуживанию, устройству и ремонту автомобилей ВАЗ 2108, 2109, 21099, Лада Самара, Приора, Калина, Гранта, Ларгус, Ока

Свежее дыхание: как и почему на ВАЗах появилась система снижения токсичности

Следуя тренду

Уже в конце семидесятых годов в мире всерьез задумались над тем, чтобы сделать выхлоп автомобилей «более чистым». Конструкторы решали этот вопрос «подручными средствами», и еще до эпохи электронного впрыска на автомобилях с классической системой питания появились компоненты, снижающие концентрацию СО и СН в выхлопных газах.

Для АвтоВАЗа объемы экспорта автомобилей были очень важны с самого начала запуска производства, ведь каждая проданная за рубежом машина означала поступление в государственную казну иностранной валюты. Неудивительно, что на ужесточение норм токсичности в Тольятти реагировали незамедлительно. В частности, в КБ автомобильной электроники для автомобилей «шведской комплектации» в начале восьмидесятых годов разработали специальное устройство – механизм, который под управлением электронного блока должен был на принудительном холостом ходу (ПХХ) некоторое время удерживать дроссельную заслонку приоткрытой для того, чтобы топливная смесь сгорала более эффективно.

Однако более серьезным испытанием оказались нормы токсичности США, введённые в 1983 году. По уровню выбросов СО и СН они примерно соответствовали куда более позднему европейскому стандарту Евро 1. То есть, уложиться в их выполнение без каталитического нейтрализатора и «умной» электроники было невозможно даже на «восьмерочном» двигателе, который работал на относительно бедных смесях, а его карбюратор Солекс был оборудован экономайзером принудительного холостого хода.

Два варианта

Первым представителем системы снижения токсичности для автомобилей ВАЗ был комплект производства фирмы OLSON-DINOL (1988-1990 гг.). Он состоял из блока управления смесеобразованием в карбюраторе Air-Fuel ratio controller Model 4/8E (Part no. 314002), микропроцессорного зажигания со специальным коммутатором Ignition control module Model EKE-1A (Part no. 314005) и датчиком детонации, по показаниям которого осуществлялась коррекция угла опережения зажигания.

Система снижения токсичности OLSON-DINOL в заводском каталоге ВАЗ

Система OLSON-DINOL  состояла из блока управления и специального коммутатора (фото – из архивов Александра Подзолкова и Марко Яэтма)

Коммутатор размещался на стандартном для «восьмерки» месте (моторный щит в районе левого «стакана» кузова), а вот для «мозгов» был предусмотрен специальный кронштейн на кузове – на полке за моторным щитом в районе правого «дворника».

снижение токсичности ваз 4

Для крепления дополнительного блока на кузове предусматривался специальный кронштейн (Фото – Евгений Карпунин)

На Самарах с этой системой вместо обычного «восьмерочного» Солекса устанавливалась модификация карбюратора 21083-1107010-61, отличавшаяся наличием пары актюаторов и полуавтоматического пускового устройства — «автоподсоса» вместо классической воздушной заслонки.

снижение токсичности ваз 5 снижение токсичности ваз 6

На машинах с системой снижения токсичности применялся Солекс с «автоподсосом» (Фото — Марко Яэтма)

При этом в системе зажигания оставался стандартный трамблёр! Разумеется, требуемую чистоту выхлопа обеспечивала не только электроника, но и каталитический нейтрализатор.

Более поздний вариант, встречавшийся на экспортных Ладах после 1990 года выпуска, — система снижения токсичности производства фирмы AXTEC, которая состояла из установленного под правым передним сиденьем блока управления AXTEC AFR (Part no. 314012), трехкомпонентного нейтрализатора, карбюратора 21083-1107010-62 с двумя электромагнитными клапанами и «автоподсосом», а также датчика кислорода (лямбда-зонда).

OLYMPUS DIGITAL CAMERA

Система снижения токсичности AXTEC в заводском каталоге ВАЗ

снижение токсичности ваз 8 снижение токсичности ваз 9

Блок управления смесеобразованием AXTEC располагался под сиденьем переднего пассажира (Фото из архива Евгения Карпунина)

Чтобы уложиться в нормы США-83, в системе выпуска предусмотрели каталитический нейтрализатор

снижение токсичности ваз 13

Визуально отличить «экологически чистую» Самару можно было по наклейке на заднем стекле

От первой версии на компонентах OLSON-DINOL система с блоком AXTEC отличалась обычным коммутатором и отсутствием датчика детонации, причем на «жигулёвских» двигателях классическую контактную систему зажигания в любом случае заменяли электронной.

Кроме того, для того, чтобы уложиться в требования по нормам токсичности США-83, автомобили с такими системами оборудовались и рециркуляцией отработавших газов, а также системой улавливания паров топлива.  

В каталогах немецкого импортера Deutsche Lada встречалось два варианта катализаторов – более дешевый нерегулируемый без датчика кислорода (уровень выбросов Евро 0) и обратной связи или трехкомпонентный регулируемый, который как раз и соответствовал американскому стандарту US-Norm’83.

снижение токсичности ваз 14

Катализатор стал неизменной опцией в «дилерском» каталоге немецкого импортёра Deutsche Lada (Фото из архива Евгения Карпунина)

Еще одна интересная деталь – наличие на приборной панели индикатора «cheсk engine». Он выполнял функцию самодиагностики системы, поскольку световое табло загоралось каждый раз при запуске двигателя и гасло сразу после пуска.

снижение-токсичности-ваз-18 снижение-токсичности-ваз-19

Автомобили с системой снижения токсичности можно было отличить по наличию индикатора «Check Engine»

Если же индикатор мигал или горел непрерывно, владельцу автомобиля следовало обратиться на СТО для диагностики неисправностей системы снижения токсичности.

Как это работало

На прогретом двигателе в режиме холостого хода и частичных нагрузок электронный блок управления образованием смеси всегда поддерживал такое соотношение между воздухом и топливом, которое бы обеспечивало наиболее полное её сгорание, а также позволяло бы нейтрализатору эффективно работать. Как и на куда более современном впрыске, для обратной связи в такой системе токсичности использовался датчик концентрации кислорода — так называемый «лямбда-зонд».

снижение токсичности ваз 60

Подобная схема снижения токсичности встречалась на многих европейских малолитражках с карбюраторным двигателем

Обработав информацию, полученную от датчика, контроллер подавал на актюаторы холостого хода и главной дозирующей системы серию электрических импульсов, длительность которых и определяла количество топлива. Кроме того, у электроники были и другие «информаторы» — входная информация в контроллер также поступала с датчика полной нагрузки, системы ЭПХХ и катушки зажигания.

Для снижения содержания азота в отработавших газах была предусмотрена система рециркуляции, которая в зависимости от температуры двигателя и нагрузки на него пускала часть отработавших газов из выпускного коллектора во впускную трубу.

Задача же полуавтоматического пускового устройства заключалась в том, чтобы обеспечить оптимальное положение воздушной и дроссельной заслонок в зависимости от температуры окружающей среды и степени прогрева двигателя.

Загадочный МПСЗ

Многие поклонники переднеприводных автомобилей ВАЗ путаются в системах управления, принимая микропроцессорное зажигание за элемент системы снижения токсичности. Действительно, в вариантном исполнении Самары оснащались двумя вариантами МПСЗ – сделанным в Болгарии МС-4005 и советским МС-2713.

Эти системы микропроцессорного зажигания отличались конструкцией — в болгарском изделии коммутатор был встроен в основной блок управления, а на советском варианте МПСЗ был предусмотрен внешний двухканальный коммутатор серии 3734.

снижение токсичности ваз 67

Блок МС-4005 системы МПСЗ болгарского производства

снижение-токсичности-ваз-72

Блок МС-2713 производства Народной Республики Болгарии (Фото — Александр Подзолков)

снижение-токсичности-ваз-73

Ранние двухканальные коммутаторы 36.3734 и 42.3734 производства СССР

Блоки управления системой микропроцессорного зажигания размещались на полке моторного щита в районе правого стеклоочистителя, для чего на кузове был предусмотрен специальный кронштейн крепления. Интересно, что для установки комплекта снижения токсичности OLSON-DINOL на кузове предусматривалось несколько другое крепление.

снижение-токсичности-ваз-80
снижение-токсичности-ваз-81

Кронштейн для МПСЗ конструктивно отличался от крепления системы снижения токсичности, хотя оба они располагались на полке за моторным щитом (Фото из архива Александра Подзолкова)

снижение-токсичности-ваз-82 снижение-токсичности-ваз-83

Блок управления системы МПСЗ располагался рядом с воздухопритоком «печки» (Фото из архивов Евгения Карпунина и Александра Подзолкова)

Визуально модификацию с МПСЗ проще всего было отличить по отсутствию трамблёра, вместо которого устанавливалась специальная заглушка с катушками зажигания.

снижение-токсичности-ваз-84

Заглушка распределителя зажигания – отличительная особенность системы МПСЗ (Фото из архива Александра Подзолкова)

снижение-токсичности-ваз-89

Дополнительный датчик температуры, который необходим для переключения между прошивками МПСЗ «холодная-горячая» (Фото из архива Александра Подзолкова)

Эта система не имела прямого отношения снижению токсичности отработавших газов, поскольку каждая из них решала свою задачу: «умный трамблёр» заведовал зажиганием, в то время как «электронный карбюратор» регулировал соотношение воздуха и бензина в зависимости от условий эксплуатации. Именно поэтому модификация с микропроцессорным зажиганием оставалась «экологически грязной», в то время как машины с компонентами AXTEC и OLSON-DINOL укладывались в нормы США-83.

Модельный ряд и его судьба

Системами снижения токсичности во второй половине восьмидесятых годов оснащались экспортные модификации задне-, передне- и даже полноприводных ВАЗов, что позволяло им выполнять как нормы США-83, так и вступивший в силу в 1992 году экологический стандарт Евро-1.

«Умная электроника» встречалась под капотом тольяттинских автомобилей до середины девяностых – ведь уже с 1995 года в Евросоюзе вступили в действие нормы токсичности Евро-2, уложиться в которые можно было только при наличии системы электронного впрыска топлива, которая со временем появилась на Самарах, Жигулях и Нивах. Да и финская Lada Baltiс, которую собирали на заводе в Уусикаупунки, была оснащена двигателем не с карбюратором Солекс, а с впрыском топлива на компонентах производства GM.

Система снижения токсичности в начале девяностых годов стоила немецкому покупателю Лады в зависимости от модели 300-800 дойчмарок.

Впоследствии немало экспортных машин вернулось на историческую Родину, благодаря чему российские автомобилисты смогли на практике познакомиться поближе с этим «редким зверем» — системой снижения токсичности. Увы, в большинстве случаев вскоре выходили из строя её отдельные компоненты, например, каталитический нейтрализатор, требовавший использования исключительно неэтилированного бензина, далеко не всегда и не везде встречавшегося в нашей стране на стыке тысячелетий.

снижение-токсичности-ваз-301

Обязательный атрибут: на внутренней стороне лючка бензобака машины с катализатором появлялась наклейка, запрещающая использование этилированного топлива

Усугубляло ситуацию и то, что даже хорошо знакомые с вазовской техникой ремонтники оказывались абсолютно несведущими в вопросах диагностики, обслуживания и регулировки карбюраторов, управляемых малоизвестной электроникой. Итог закономерен: отказавшие компоненты заменялись обычными, а непонятные блоки безжалостно выбрасывались либо оставались в виде бесполезных уже артефактов, намекавших на европейское (и экологически чистое) прошлое автомобиля с ладьей на решетке радиатора.

Опрос

Ваше отношения к системам снижения токсичности ВАЗ?

Всего голосов:

Инъекция молодости: история разработки впрыска ВАЗ

Не хвастовства ради, а пользы для

Да и дело тут было отнюдь не в амбициях или желании пустить пыль в глаза потребителю: классическая система питания никак не соответствовала двум важнейшим критериям – стабильности настроек и нормам токсичности. Даже вполне современный по тем временам Солекс нельзя было сравнить с так называемым «инжектором», ведь он не «умел» готовить одинаково сбалансированную по составу топливно-воздушную смесь при разных условиях работы мотора, да и не отличался особой надежностью, требуя регулярной чистки и настройки. В то время как на Западе негласной нормой считалось хотя бы пять лет и 80 000 км без вмешательства в систему питания, не считая регламентной замены фильтров.

Даже беглый анализ показал, что наивысшей стабильностью характеристик и «чистотой выхлопа» обладает именно система питания с электронным блоком управления двигателем, а не механический или электромеханический инжектор. В мире на тот момент существовало немало разновидностей впрыска, и без должного опыта инженерам было непросто принять решение – на каком же именно варианте остановиться? Однако склонялись они именно к электронному управлению, как наиболее прогрессивному и эффективному.

Перспективную систему питания планировали не только (и не столько) для модернизации еще нестарых автомобилей восьмого семейства, сколько для будущей «десятки». Её выпуск планировали начать на стыке восьмидесятых и девяностых годов, и оставаться с устаревшим карбюратором было просто нельзя – особенно если учитывать планы нацеливаться на западный рынок, где «инжектор» давно перестал быть диковинкой, а стал обычным явлением на товарных автомобилях.

Вдобавок на ВАЗе уже тогда в качестве оптимального решения для ВАЗ-2110 рассматривали многоклапанную головку с четырьмя клапанами на каждый цилиндр, а оптимизировать процессы сгорания в таком моторе при наличии обычной системы питания было практически невозможно. В общем, все сводилось к тому, что внедрение впрыска топлива с электронным управлением при запуске следующей модели является одной из основных задач. Причем было решено не только перевести на «инжектор» версии с 16-клапанной головкой, но и оснастить впрыском обычный восьмиклапанный двигатель объемом 1,5 л, известный под индексом ВАЗ-21083.

Не стоит забывать, что в те «золотые» годы экспорт вазовских автомобилей иногда достигал 40% от общего объема выпуска – а это, как известно, доход в виде такой желанной для завода валюты, и грядущее ужесточение экологических норм в Европе для ВАЗа стало бы просто губительным. Не зря ведь экспортные модификации еще с середины восьмидесятых оборудовались системами снижения токсичности отработавших газов – в том числе и с каталитическим нейтрализатором. Впрочем, «кат» был сам по себе не очень эффективен, ведь даже с учетом дополнительной электроники обычный карбюратор получался «слабым звеном» системы по простой причине – он готовил смесь менее точно и стабильно, чем это требовалось.

Совместная работа

Ведущими игроками на рынке разработки систем впрыска в то время были три компании – Bosch, Siemens и General Motors. Предварительные переговоры закончились заключением контракта с GM по простой причине – «джиэм» имел больше опыта и мог предложить максимальный спектр услуг «под ключ».

Первой впрысковый двигатель 2111 «примерила» Lada Baltic. Компоненты GM выдаёт характерный дизайн ДМРВ между корпусом воздухофильтра и патрубком впуска.

Что же должны были сделать специалисты General Motors в рамках контракта? Во-первых, разработать и адаптировать под вазовские моторы впрыск топлива, который бы отвечал нормам Евро-1 и США-93. Во-вторых, для экспортных автомобилей «джиэмовцы» должны были поставить более полумиллиона (!) комплектов систем питания. И, наконец, итогом работы предполагалось приобретение соответствующих лицензий с последующим выпуском компонентов на советских (а в новых реалиях – российских) заводах.

OLYMPUS DIGITAL CAMERA Baltic-i

Тип системы питания на Lada Baltic подчеркивал оригинальный шильдик «injection», расположенный на задней двери слева под надписью «LADA»

Уже в 1993 году GM начал поставки комплектов центрального впрыска (так называемого моноинжектора) для Жигулей и Нивы, а впоследствии – и систем распределённого впрыска для Лады Самары. Увы, по объективным экономическим причинам в непростое для новой страны время за шесть лет удалось поставить на конвейер лишь 115 тысяч комплектов вместо запланированных изначально 540 тысяч.

В тот момент на ВАЗе поняли, что нельзя опираться лишь на одного зарубежного партнера и решили подписать в 1995-м контракт и с фирмой Bosch. Это позволило освоить как разработку, так и производство еще одной системы питания, известной впоследствии, как «бошевская». Разумеется, работы по принципиально новой системе питания потребовали длительного пребывания в зарубежных командировках ведущих по проекту специалистов ВАЗа, некоторые из которых занимались этой темой в США по три-четыре года подряд.

SAMSUNG

На ранних «инжекторах» стояли контроллеры GM импортного производства

В ходе работы над «инжектором» на новую систему питания пытались перевести и такие экзотичные модификации, как 1,1-литровый двигатель ВАЗ-21081. Однако впоследствии было принято решение о том, что малокубатурные модификации «трогать» не стоит, и вазовские конструкторы вместе с зарубежными специалистами сосредоточились на моторах объемом 1,5-1,6 л – как жигулевских, так и «зубильных». А 16-клапанный мотор 2112 должен был стать первым в истории ВАЗа, конструкция которая изначально была «заточена» лишь под электронную систему питания с распределенным впрыском.

Еще в ходе ранних экспериментов над классическими моторами оказалось, что установка каталитического нейтрализатора сильно ухудшает показатели двигателя по мощности и крутящему моменту, поэтому система питания должна была обеспечивать максимальный КПД, чтобы минимизировать «экологические» потери энерговооруженности, неизбежные в любом случае.

OLYMPUS DIGITAL CAMERA

На Самаре с так называемой низкой панелью контроллер впрыска разместили на полке под «бардачком»

Система впрыска топлива с электронным управлением была вполне распространенной (но при этом современной) концепцией. Электронный блок управления получал информацию от пары десятков датчиков, на основании которых и строилась коррекция топливно-воздушной смеси, а также остальные параметры – время открытия форсунок, угол опережения зажигания, количество подаваемого в цилиндры воздуха, топлива и так далее. Основную «работу» при этом проделывали несколько важнейших датчиков – например, датчик положения коленчатого вала (без него двигатель вообще не заведется!) и датчик массового расхода воздуха.

shema1

Важнейшее преимущество вазовского впрыска, как и большинства подобных систем – «живучесть». Если не отказал электрический бензонасос или «стратегический» датчик ДПКВ и не сгорел контроллер ЭБУ или модуль зажигания, то система худо-бедно, но будет работать даже при отказе нескольких датчиков, перейдя в аварийный режим и работая по альтернативным алгоритмам управления с использованием неких «усредненных» показателей, зашитых в программу.

Сложности

Но гладко было только на бумаге. Освоить столь сложную систему, когда промышленный гигант СССР уже почил в бозе, стало для ВАЗа непростой задачей. Впрочем, при интеллектуальной поддержке зарубежных партнеров с ней вполне справились – по крайней мере, «инжектор» уже к концу девяностых годов стал не просто работоспособной, но и вполне серийной системой питания для ВАЗов.

OLYMPUS DIGITAL CAMERA OLYMPUS DIGITAL CAMERA

Датчик массового расхода воздуха – один из самых дорогих компонентов системы питания с распределённым впрыском

Конечно, многое пошло «не так и не туда». Попытки привлечь к производству «оборонку» так и закончились ничем, да и работа в Штатах была закончена еще в 1994 году – до постановки впрыска на конвейер. Кроме впрысковой версии мотора объемом 1,1 л, в итоге так и не удалось освоить 16-клапанную версию Самары, хотя адаптация агрегата 2112 к кузову 21093 была проведена еще на ранних стадиях работы по впрыску. Лишь намного позднее многоклапанный мотор все же встал под капот Самары в заводском исполнении – точнее, «околозаводском», от компании «Супер-Авто».

OLYMPUS DIGITAL CAMERA

Для поглощения топливных паров предусмотрено специальное устройство – адсорбер

Некоторые компоненты пришлось оставить импортными – например, датчик кислорода, форсунки и ДМРВ. Блоки под заказ выпускали на Bosch, а со временем были освоены и контроллеры отечественного производства. Остальные же компоненты (датчики, впуск, выпуск и система подачи топлива из бака) были освоены почти самостоятельно.

OLYMPUS DIGITAL CAMERA OLYMPUS DIGITAL CAMERA

При наличии некоторых версий БК, считывать ошибки и обнулять их на впрысковом двигателе ВАЗ можно прямо с «бортовика»! Разъем OBD-2 так называемой К-линии: именно сюда нужно подключаться для диганостики «вазоинжектора»

Еще в процессе работы в США вазовские конструкторы поняли, что американский подход к настройке некоторых компонентов (в частности, датчика системы детонации) на малолитражном двигателе ВАЗ, да еще в российских реалиях, не совсем оптимален. Именно поэтому вместо «защитной» функции на него возложили активную борьбу с детонацией путём индивидуального управления углами зажигания на основании показателей датчика.

Первая товарная партия из нескольких тысяч ВАЗ-21082 с российским контроллером Январь-4 и сборной солянкой из компонентов GM и Bosch была выпущена в 1996 году. Она соответствовала действовавшим на тот момент в РФ нормам токсичности, поэтому не имела катализатора и лямбда-зонда.

При практических испытаниях выяснилось, что ресурс отдельных элементов (тех же форсунок, бензонасоса и свечей зажигания) сильно зависит от качества бензина, а хлебнув «этила», можно было гарантированно угробить каталитический нейтрализатор или «нежный» лямбда-зонд. Именно поэтому в конце девяностых – начале двухтысячных годов новомодной системы питания многие российские автомобилисты боялись, как огня. Усугубляло ситуацию то, что на коленке впрыск не продиагностируешь, а загоревшийся на ВАЗе индикатор «проверь двигатель» (check engine) в то время вгонял в ступор даже опытных механиков.

OLYMPUS DIGITAL CAMERA

Еще один «бонус» от электронного управления системой питания – заводская «противоугонка», так называемый иммобилайзер

Благодаря и вопреки

Однако остановить прогресс невозможно. Поскольку концептуально вазовский впрыск на моторах 2111/2112 получился весьма удачным (сказывалось участие таких грандов, как Porsche, Bosch и GM), заводчанам требовалось лишь подтянуть качество изготовления отдельных компонентов у смежников, а потребителям – адаптироваться к новой системе питания, лишенной привычного «подсоса» и прочих «ручных подкачек».

OLYMPUS DIGITAL CAMERA

Двигатель 2111 – не самый экономичный, но тяговитый и практичный

Пример из жизни: в начале двухтысячных на завод обратился владелец Нивы с моновпрыском, у которого износилась центральная форсунка. Как оказалось, к тому моменту он без каких-либо проблем с системой питания проехал на своей машине свыше 200 тысяч километров!

lada_4x4_taiga_1

Распределённый впрыск «сдружили» и с двигателем классики, который ведёт свою родословную еще от ВАЗ-2101 1970 года

Сравнивать 16-клапанный мотор с обычным «восьмерочным» не имело смысла – увеличение числа клапанов в два раза поднимало максимальную мощность при прочих равных условиях как минимум на 10-15%, да и по характеру многоклапанный мотор с высокой степенью сжатия был более «крутильным» и «верховым», то есть приветствовал работу на оборотах в зоне максимальной мощности, а не крутящего момента. Однако оказалось, что с новой системой питания и проверенный временем «восемьдесят третий» мотор стал гораздо тяговитее и эластичнее – ведь максимальный крутящий момент не только вырос со 106 до 116 Нм, но и стал достижим на более низких оборотах (3 000 об/мин против 3 500 об/мин у мотора 21083). Вдобавок оказалось, что с новой системой питания мотор избавился от «температурной зависимости» и «поехал» даже в непрогретом состоянии. Если «зубило» и раньше славилось боевым характером, то с впрысковым мотором оно стало куда более «покладистым», избавившись от непонятной нервозности Солекса.

OLYMPUS DIGITAL CAMERA

На ВАЗах с Евро-2 стоял один катализатор – под днищем. На машинах с Евро-3 и выше к нему прибавился так называемый катколлектор

«Инжектор» открывал ворота в мир «чипованного волшебства» : «поколдовав» с настройками ЭБУ, можно было привить двигателю требуемый характер – сделать его еще более тяговитым на низах или, напротив, ценой «экологии» поддать лошадиных сил. Действительно, всесильная электроника позволила реализовать потенциал всего «железа», заложенный десятилетием ранее еще инженерами Porsche. Но, в отличие от брутально-спортивных вариантов на сдвоенных горизонтальных «веберах», впрысковый мотор Самары при этом оставался «паинькой» по экономичности и экологичности. Для производителя было также очень важно, что разработанные совместно с иностранцами и выпущенные серийно компоненты впрыска после сборки системы на двигателе не требовали тщательной настройки и калибровки «по месту».

Победоносной поступью

Нет ничего удивительного в том, что впрыск стремительно набирал обороты как на переднем приводе, так и на классике. Разумеется, первым архаичный карбюратор исчез из-под капотов «десятки» и Самары, ну а к середине двухтысячных стало ясно, что новые экологические требования (минимум Евро-2) можно выполнить, только полностью отказавшись от прежней системы питания. Свои последние конвейерные дни вазовский карбюратор доживал уже на чужбине – в соседней Украине, где нормы токсичности Евро-2 вступили в силу лишь в 2006 году. Именно в то время выпуск новых автомобилей ВАЗ с «карбом» был полностью прекращен, а уже в следующем, 2007-м, АВТОВАЗ перешел на нормы Евро-3, что, в свою очередь, привело к прекращению выпуска полуторалитрового мотора ВАЗ-2111, соответствующего нормам токсичности Евро-2.

OLYMPUS DIGITAL CAMERA OLYMPUS DIGITAL CAMERA

Двигатель 2111 объемом 1,5 л легко отличить от более поздних модификаций по легкосплавному впускному коллектору. У 1,6-литрового восьмиклапанника модуль впуска выполнен из пластика

OLYMPUS DIGITAL CAMERA

Появившиеся весной 2007 года Самары украинского производства даже с новым двигателем 11183-20 соответствовали старым нормам Евро-2

OLYMPUS DIGITAL CAMERA OLYMPUS DIGITAL CAMERA

Изначально у дроссельной заслонки был обычный механический привод – с помощью тросика

С января 2007 года под капотом российских Самар появился двигатель объемом 1,6 л, соответствовавший более жестким нормам Евро-3, который впоследствии получил такой девайс, как электронную педаль газа без жесткой механической связи с дроссельной заслонкой. Тем не менее концепция системы питания двигателей ВАЗ по сегодняшний день остаётся неизменной – это распределённый впрыск топлива с электронным управлением.

Инжектор двигателей автомобилей ВАЗ | Twokarburators.ru

Подробно о системах впрыска двигателей автомобилей ВАЗ

Электронная система управления двигателем включает в себя следующие функции: включает и выключает топливный насос, контролирует количество воздуха, поступающего в цилиндры двигателя, впрыскивает необходимое количество топлива в впускной коллектор двигателя, изменяет угол опережения зажигания и в зависимости от режима работы двигателя, управляет искрообразованием на свечах зажигания, регулирует обороты холостого хода двигателя и принудительного холостого хода, включает-выключает электровентилятор системы охлаждения двигателем. ЭСУД автомобилей ВАЗ 2108, 2109, 21099 электронная, с распределенным впрыском топлива.

— Порядок работы ЭСУД автомобилей ВАЗ 2108, 2109, 21099

— Виды впрыска на инжекторных двигателях автомобилей ВАЗ 2108, 2109, 21099

— Режим холостого хода инжекторного двигателя

Элементы ЭСУД автомобилей ВАЗ 2108, 2109, 21099

— Применяемость контроллеров (ЭБУ) на автомобилях ВАЗ 2108, 2109, 21099

— Датчик положения коленчатого вала (ДПКВ) ЭСУД автомобилей ВАЗ 2108, 2109, 21099

— Датчик положения распределительного вала (ДПРВ, датчик фаз) ЭСУД автомобилей ВАЗ 2108, 2109, 21099

— Датчик массового расхода воздуха (ДМРВ) ЭСУД автомобилей ВАЗ 2108, 2109, 21099

— Датчик положения дроссельной заслонки (ДПДЗ) ЭСУД автомобилей ВАЗ 2108, 2109, 21099

— Датчик температуры охлаждающей жидкости (ДТОЖ) ЭСУД автомобилей ВАЗ 2108, 2109, 21099

— Датчик кислорода (ДК, Лямбда-зонд) ЭСУД автомобилей ВАЗ 2108, 2109, 21099

— Датчик детонации (ДД) ЭСУД автомобилей ВАЗ 2108, 2109, 21099

— Датчик скорости (ДС) ЭСУД автомобилей ВАЗ 2108, 2109, 21099

— СО-потенциометр ЭСУД автомобилей ВАЗ 2108, 2109, 21099

— Регулятор холостого хода (РХХ) ЭСУД автомобилей ВАЗ 2108, 2109, 21099

— Принцип действия и порядок работы регулятора холостого хода (РХХ)

— Датчик неровной дороги ЭСУД автомобилей ВАЗ 2108, 2109, 21099

— Дроссельный патрубок инжекторного двигателя автомобилей ВАЗ 2108, 2109, 21099

— Реле и предохранители ЭСУД автомобилей ВАЗ 2108, 2109, 21099

— Лампа CHECK ENGINE

Схемы ЭСУД инжекторных двигателей автомобилей ВАЗ

— Схема электронной системы управления двигателем (ЭСУД), нормы токсичности ЕВРО-2, автомобилей ВАЗ 2108, 2109, 21099

— Электрическая схема ЭСУД двигателя 2111 автомобилей ВАЗ 2108, 2109, 21099

— Схема ЭСУД ВАЗ 2108, 2109, 21099 (нормы Россия-83) с СО-потенциометром

Неисправности в работе двигателя связанные с системой впрыска топлива

— Пропал холостой ход на инжекторном двигателе, причины, рекомендации по устранению

Диагностика и устранение неисправностей системы впрыска топлива без специальных приборов

— Диагностика неисправностей инжекторного двигателя по свечам зажигания

— Проверка датчика кислорода (ДК, Лямбда-зонд) ЭСУД автомобилей ВАЗ 2108, 2109, 21099

— Неисправности датчика положения коленчатого вала (ДПКВ)

— Проверка датчика положения коленчатого вала (ДПКВ) ЭСУД автомобилей ВАЗ 2108, 2109, 21099

— Проверка датчика положения распределительного вала (ДПРВ, датчик фаз) ЭСУД автомобилей ВАЗ 2108, 2109, 21099

— Проверка регулятора холостого хода (РХХ) ЭСУД ВАЗ 2108, 2109, 21099

— Регулировка выступания иглы регулятора холостого хода (РХХ)

Определение неисправностей системы впрыска топлива с помощью диагностического оборудования

Система питания инжекторного двигателя

— Справка по топливной системе инжекторного двигателя 2111 автомобилей ВАЗ 21083, 21093, 21099

— Регулятор давления топлива системы подачи топлива автомобилей ВАЗ 2108, 2109, 21099

— Топливная рампа системы подачи топлива инжекторного двигателя автомобилей ВАЗ 2108, 2109, 21099

— Форсунки системы подачи топлива инжекторного двигателя автомобилей ВАЗ 2108, 2109, 21099

— Схема системы питания инжекторного двигателя (нормы токсичности ЕВРО-2) автомобилей ВАЗ 2108, 2109, 21099

— Электробензонасос (топливный модуль) системы подачи топлива автомобилей ВАЗ 2108, 2109, 21099

— Схема подключения электробензонасоса ВАЗ 21083, 21093, 21099 (инжектор)

— Топливный фильтр системы питания инжекторного двигателя автомобилей ВАЗ 2108, 2109, 21099

— Адсорбер

— Как сбросить давление в топливной системе автомобилей ВАЗ 21083, 21093, 21099 с инжекторным двигателем

Система зажигания инжекторного двигателя автомобилей ВАЗ 2108, 2109, 21099

— Модуль зажигания инжекторного двигателя автомобилей ВАЗ 2108, 2109, 21099

— Проверка модуля (катушки) зажигания автомобилей ВАЗ 2108, 2109, 21099 с инжекторным двигателем

— Схема системы зажигания инжекторного двигателя автомобилей ВАЗ 2108, 2109, 21099

Система выпуска отработанных газов инжекторного двигателя автомобилей ВАЗ 2108, 2109, 21099

— Система выпуска отработанных газов инжекторного двигателя автомобилей ВАЗ 2108, 2109, 21099

Система нейтрализации отработанных газов инжекторного двигателя автомобилей ВАЗ 2108, 2109, 21099

— Каталитический нейтрализатор

Система впрыска топлива автомобилей ваз

На автомобилях ВАЗ-2110, ВАЗ-2111 и ВАЗ-2112 электронная система уп­равления двигателем, т.е. система рас­пределенного впрыска топлива. Эта система применяется на двигателях 2111 и 2112. Распределенным впрыск называется потому, что для каждого цилиндра топливо впрыскивается от­дельной форсункой. Система впрыска топлива позволяет снизить токсич­ность отработавших газов при улучше­нии ездовых качеств автомобиля.

Существуют системы распределен­ного впрыска с обратной связью и без нее. Причем обе системы могут быть с импортными комплектующими или отечественными. Контроллеры (элек­тронные блоки управления) тоже могут устанавливаться разных типов. Все эти системы имеют свои особенности в ус­тройстве, диагностике и в ремонте, ко­торые подробно описаны в соответст­вующих отдельных Руководствах по ре­монту конкретных систем впрыска топ­лива с определенным контроллером.

В настоящей подборке дается только краткое описание общих принципов устройства, работы и диагностики сис­тем впрыска топлива на примере сис­темы с контроллером «Январь-4».

Система с обратной связью приме­няется, в основном, на экспортных ав­томобилях. У нее в системе выпуска устанавливается нейтрализатор и дат­чик кислорода, который и обеспечива­ет обратную связь. Датчик отслежива­ет концентрацию кислорода в отрабо­тавших газах, а контроллер по его сиг­налам поддерживает такое соотноше­ние воздух/топливо, которое обеспе­чивает наиболее эффективную работу нейтрализатора.

В системе впрыска без обратной свя­зи не устанавливаются нейтрализатор и датчик кислорода, а для регулировки концентрации СО в отработавших га­зах служит СО-потенциометр. В этой системе не применяется также систе­ма улавливания паров бензина. Возможен вариант системы впрыска и без СО-потенциометра, тогда содержание СО регулируется с помощью диагнос­тического прибора.

Существует еще система последова­тельного распределенного впрыска топлива или фазированного впрыска. Она применяется с двигателем 2112. Здесь дополнительно устанавливается датчик фаз, определяющий момент конца такта сжатия в 1-м цилиндре, а топливо подается форсунками по ци­линдрам в последовательности, соот­ветствующей порядку зажигания в ци­линдрах (1 -3-4-2).

2.1 Устройство системы

2.1.1 Датчики

  • Датчик температуры охлаждаю­щей жидкостипредставляет собой термистор (резистор, сопротивление которого изменяется от температуры). Датчик завернут в выпускной патрубок охлаждающей жидкости на головке ци­линдров. При низкой температуре дат­чик имеет высокое сопротивление (при -40 °С — 100 кОм), а при высокой темпе­ратуре — низкое (при 100 °С — 177 Ом).

Температуру охлаждающей жидкости контроллер рассчитывает по падению напряжения на датчике. Падение на­пряжения высокое на холодном двига­теле и низкое на прогретом. Темпера­тура охлаждающей жидкости влияет на большинство характеристик, которы­ми управляет контроллер.

  • Датчик детонации заворачивается в верхнюю часть блока цилиндров (рис. 2.2) и улавливает аномальные вибрации (детонационные удары) в двигателе. Чувствительным элементом датчика является пьезокристаллическая плас­тинка. При детонации на выходе датчи­ка генерируются импульсы напряже­ния, которые увеличиваются с возрас­танием интенсивности детонационных ударов. Контроллер по сигналу датчи­ка регулирует опережение зажигания для устранения детонационных вспы­шек топлива.

Рисунок 2.5 Схема системы впрыска топлива: 1 — воздушный фильтр; 2 — датчик массового расхода воздуха; 3 — шланг впускной трубы; 4 — шланг подвода охлаждающей жидкости; 5 — дроссельный патру­бок; 6 — регулятор холостого хода; 7 — датчик положения дроссельной заслонки; 8 — канал подогрева си­стемы холостого хода; 9 — ресивер; 10 — шланг регулятора давления; 11 -контроллер; 12 — реле включе­ния электробензонасоса; 13 — топливный фильтр; 14 — топливный бак; 15 — электробензонасос с датчи­ком уровня топлива; 16 — сливная магистраль; 17 — подающая магистраль; 18 — регулятор давления; 19 — впускная труба; 20 — рампа форсунок; 21 — форсунка; 22 — датчик скорости; 23 — датчик концентра­ции кислорода; 24 — газоприемник приемной трубы глушителей; 25 — коробка передач; 26 — головка ци­линдров; 27 — выпускной патрубок системы охлаждения; 28 — датчик температуры охлаждающей жидко­сти; А — к подводящей трубе насоса охлаждающей жидкости.

Рисунок 2.6 Расположение датчика детонации на двигателе:

1 — датчик детонации.

  • Датчик концентрации кислорода (λ-зонд) применяется в системе впрыска с об­ратной связью и устанавливается на приемной трубе глушителей. Кисло­род, содержащийся в отработавших га­зах, реагирует с датчиком кислорода, создавая разность потенциалов на вы­ходе датчика. Она изменяется прибли­зительно от 0,1 В (высокое содержание кислорода — бедная смесь) до 0,9 В (мало кислорода — богатая смесь). Для нормальной работы датчик дол­жен иметь температуру не ниже 360 °С. Поэтому для быстрого прогрева после пуска двигателя в датчик встроен на­гревательный элемент. Отслеживая выходное напряжение датчика концентрации кислорода, контроллер определяет, какую коман­ду по корректировке состава рабочей смеси подавать на форсунки. Если смесь бедная (низкая разность потен­циалов на выходе датчика), то дается команда на обогащение смеси. Если смесь богатая (высокая разность потенциалов) — дается команда на обед­нение смеси.

  • Датчик массового расхода возду­ха расположен между воздушным фильтром и шлангом впускной трубы. В нем находятся температурные дат­чики и нагревательный резистор. Про­ходящий воздух охлаждает один из датчиков, а электронный модуль дат­чика преобразует эту разность темпе­ратур датчиков в выходной сигнал для контроллера. В разных вариантах систем впрыска топлива могут применяться датчики массового расхода воздуха двух типов. Они отличаются по устройству и по ха­рактеру выдаваемого сигнала, кото­рый может быть частотным или анало­говым. В первом случае в зависимости от расхода воздуха меняется частота сигнала, а во втором случае — напря­жение. Контроллер использует информацию от датчика массового расхода воздуха для определения длительности им­пульса открытия форсунок.

  • СО-потенциометр уста­новлен в моторном отсеке на стенке коробки воздухопритока и представля­ет собой переменный резистор. Он вы­дает в контроллер сигнал, который ис­пользуется для регулировки состава топливо-воздушной смеси с целью по­лучения нормированного уровня кон­центрации окиси углерода (СО) в отра­ботавших газах на холостом ходу. СО-потенциометр подобен винту качества смеси в карбюраторах. Регулировка содержания СО с помощью СО-потен­циометра выполняется только на стан­ции технического обслуживания с при­менением газоанализатора.

  • Датчик скорости автомобиля уста­навливается на коробке передач между приводом спидометра и наконечником гибкого вала привода спидометра. Принцип действия датчика основан на эффекте Холла. Датчик выдает на кон­троллер прямоугольные импульсы на­пряжения с частотой, пропорциональ­ной скорости вращения ведущих колес.

  • Датчик положения дроссельной заслонки установлен сбоку на дрос­сельном патрубке и связан с осью дроссельной заслонки. Датчик представляет собой потенци­ометр, на один конец которого подаётся плюс напряжения питания (5 В), а другой конец соединен с массой. С третьего вывода потенциометра (от ползунка) идет выходной сигнал к кон­троллеру. Когда дроссельная заслонка повора­чивается (от воздействия на педаль уп­равления), изменяется напряжение на выходе датчика. При закрытой дрос­сельной заслонке оно ниже 0,7 В. Ког­да заслонка открывается, напряжение на выходе датчика растет и при полно­стью открытой заслонке должно быть более 4 В.

Отслеживая выходное напряжение датчика контроллер корректирует по­дачу топлива в зависимости от угла от­крытия дроссельной заслонки (т.е. по желанию водителя).

Датчик положения дроссельной за­слонки не требует никакой регулиров­ки, т.к. контроллер воспринимает холо­стой ход (т.е. полное закрытие дрос­сельной заслонки) как нулевую отметку.

  • Датчик положения коленчатого вала — индуктивного типа, предназна­чен для синхронизации работы кон­троллера с верхней мертвой точкой поршней 1-го и 4-го цилиндров и угло­вым положением коленчатого вала. Датчик установлен на крышке мас­ляного насоса напротив задающего диска на шкиве привода генератора. Задающий диск представляет собой зубчатое колесо с 58 равноудаленны­ми (6°) впадинами. При таком шаге на диске помещается 60 зубьев, но два зуба срезаны для создания импульса «в» (рис. 2.3) синхронизации («Опорного» импульса), который не­обходим для согласования работы контроллера с ВМТ поршней в 1-ом и 4-ом цилиндрах.

Рисунок 2.7 Осциллограмма импульсов напря­жения датчика положения коленчатого вала: а — угловые импульсы; б — опорный импульс.

При вращении коленчатого вала зу­бья изменяют магнитное поле датчика, наводя импульсы напряжения пере­менного тока. Установочный зазор между сердечником датчика и зубом диска должен находиться в пределах (1+0,2) мм.

Контроллер по сигналам датчика оп­ределяет частоту вращения коленча­того вала и выдает импульсы на фор­сунки.

  • Датчик фаз применяется в системе с последовательным впрыском топли­ва и устанавливается с левой передней стороны головки цилиндров. Принцип его действия основан на эффекте Хол­ла. В пазу датчика находится обод стального диска с прорезью. Этот диск закреплен на шкиве впускного распре­делительного вала. Когда прорезь дис­ка проходит через паз датчика фаз, он выдает на контроллер отрицательный импульс, соответствующий положе­нию поршня 1-го цилиндра в ВМТ в конце такта сжатия.

  • Сигнал запроса на включение кон­диционера. Если на автомобиле уста­новлен кондиционер, то сигнал посту­пает от выключателя кондиционера на панели приборов. В данном случае контроллер получает информацию о том, что водитель желает включить кондиционер. Получив такой сигнал, контроллер сначала подстраивает регулятор холо­стого хода, чтобы компенсировать до­полнительную нагрузку на двигатель от компрессора кондиционера, а затем включает реле, управляющее работой компрессора кондиционера.

Система охлаждения ВАЗ 2107: устройство и схема

Движение – это жизнь, но движение – это тепло. Попробуйте потереть ладошки друг об друга, и убедитесь в этом сами. Тепло – это финал превращений всех энергий, друг в друга. В теле человека происходят взаимные превращения белков, жиров, углеводов, которые  в результате  распадаются путём многостадийного ферментативного окисления с выделением тепла. В сердце автомобильного двигателя происходят также химические превращения топлива в выхлопные газы и воду, с выделением большого количества энергии, которая преобразуется в механическую, а часть рассеивается в виде тепла. Более того, это тепло нужно целенаправленно собирать и  отводить, сколько бы его не образовалось.  Именно для этого служит система охлаждения у автомобиля  ВАЗ 2107.

Если вспомнить, что КПД бензинового двигателя составляет в идеале 25%, а по городским пробкам – около 7%, то это значит, что из 40 литров полностью заправленного бака ВАЗ 2107 в условиях города вы на движение автомобиля потратили всего три литра! Сколько? Повторяем, три литра, мы не ошиблись. Куда девались остальные тридцать семь? Правильно, они сгорели бесполезным огнём, загрязняя воздух и изнашивая автомобиль. Карбюратор и инжектор улучшают КПД, но ненамного. Отведением этого тепла и занимается система охлаждения автомашины ВАЗ 2107.

Схема системы охлаждения двигателя следующая:

Устройство главных частей системы: (на рисунке двигатель ВАЗ 2106, на котором установлен карбюратор).

  • Собственно рубашка системы охлаждения двигателя (7), ходы и отверстия в блоке цилиндров, с её выпускным патрубком (4).
  • Насос системы охлаждения, или помпа (16), при работе которой возникает циркуляция охлаждающей жидкости (тосола, антифриза). Его устройство – на манер крыльчатки. Он находится в едином соединении с генератором, единым ремнём (15).
  • Термостат (18) разделяющий малый (при холодном двигателе) и большой (при горячем) круги циркуляции жидкости. Устройство термостата несложно, его задача открывать или закрывать клапан перепуска жидкости.
  • Шланги системы охлаждения (отводящие охлаждённую жидкость от радиатора и подводящую горячую жидкость в радиатор, шланги термостата, шланги к помпе и др.).
  • Радиатор – основной теплообменник, несущий охлаждающую функцию. Устройство радиатора может быть различным, сейчас используется алюминиевый, но медный радиатор гораздо эффективнее, но менее стоек.
  • Вентилятор радиатора, в обиходе – «карлсон» (11) , включающийся при необходимости при повышении температуры двигателя.
  • Расширительный бачок, доступный для визуального контроля качества жидкости и её долива. От расширительного бачка к горловине радиатора идёт прочный шланг. Некоторые считают, что это шланг системы охлаждения, но это неправильно. Его функция – просто держать радиатор заполненным.

Полная схема системы охлаждения включает в себя дополнительные детали, такие как сливные пробки, датчик включения вентилятора, предохранитель вентилятора и другие. Напомним, что на ВАЗ 2107 устройство электрической цепи таково, что предохранитель вентилятора и звукового сигнала один общий, на 10 А. Это значит, что если вы будете чересчур сигналить при работающем вентиляторе (а это легко можно заметить по лёгкому шуму и увеличению расхода заряда), то рискуете остаться с перегретым двигателем.

Полный объём системы охлаждения на ВАЗ 2107 составляет 9,85 л. Неопытным водителям иногда кажется невозможным залить более 3-5 л, этому мешают воздушные пробки, которые нужно удалять. Объём пробок может составлять половину объёма всей системы! Емкость рассчитана на целиком заполненную рубашку, шланги, радиатор, и расширительный бачок.

В системе охлаждения температура замерзания антифриза должна быть не выше -40градусов по Цельсию.

Часто спрашивают: инжектор и карбюратор – есть ли разница в системе охлаждения? Да, есть, но незначительная.

Верхний рисунок – карбюратор, нижний – двигатель, на котором установлен инжектор. Разница в установке датчика системы управления температуры охлаждающей жидкости (5) если установлен инжектор, а также наличием узла подогрева корпуса дроссельной заслонки (4), на рисунке справа (инжектор). Двигатель, на котором установлен карбюратор, имеет более простую систему охлаждения.

Промывка системы охлаждения рекомендуется специальными жидкостями, но можно их подготовить самому на примере смеси для двигателя ЯМЗ 236 (двигатель ЯМЗ 236 дизельный, устанавливается на отечественные грузовые автомобили КАМАЗ, Урал).

В её состав входит соляная техническая кислота 30%, ингибитор ПБ-5, уротропин технический, пеногаситель, вода. Так как двигатель ЯМЗ 236 является дизельным, хорошо работающим на низких оборотах, то указанные компоненты хорошо промывают систему.

Упрощённая промывка системы охлаждения включает чистую воду, с добавлением ортофосфорной кислоты, которая хорошо убирает накипь как в ЯМЗ 236, так и в двигателях «классики».

На «Жигулях» можно купить 10 литров «Кока-Колы» и очистить систему охлаждения, до полного прогрева двигателя, главное —  выпустить газ из напитка. Так как объём системы охлаждения ЯМЗ-236 значительно больше, то «Кока-колы» уйдёт тоже много

🚘 Топливная система ВАЗ 2110 (инжектор, 8 и 16 клапанов): схема и фото

Топливная система автомобиля – это узел, обеспечивающий подачу топливно-воздушной смеси в камеры сгорания двигателя. От данного узла очень многое зависит, ведь вся электроника и механика автомобиля используют энергию сгоревшего топлива. В системе множество деталей, каждый из которых отвечает за свой участок, поэтому стабильная и безотказная работа напрямую связана с исправностью следующих элементов:

  • топливный бак
  • погружной насос (или диафрагменный в карбюраторных двигателях)
  • датчик уровня топлива и датчик мгновенного расхода топлива
  • топливные каналы и фильтры
  • впускной коллектор
  • воздушная заслонка и регулятор холостого хода
  • рампа и форсунки
  • карбюратор (двигатель ВАЗ-21100)

Топливная система на ВАЗ-2110 карбюратор

Топливная система ваз 2110 (фото 1)

С 1996 по 2000 год на «десятки» устанавливались карбюраторные двигатели. В этой серии автомобилей за перекачку топлива от бака до карбюратора отвечал насос диафрагменного типа, устанавливаемый под карбюратором и приводимый в движение распределительным валом (через эксцентрик). Перед насосом установлен топливный фильтр, а после – карбюратор.

Карбюратор представляет собой устройство, смешивающее поступающий воздух и топливо в зависимости от множества факторов (положение педали акселератора, обороты, температура и т.п.). Готовая топливно-воздушная смесь поступает во впускной коллектор и воспламеняется при помощи свечей зажигания.

Температурой подаваемого воздуха управляет терморегулятор, установленный перед воздушным фильтром. Один воздушный канал забирает холодный воздух, а другой – проходит через выпускной коллектор и разогревается. Горячий воздух нужен для предотвращения замерзания карбюратора.

Топливная система на ВАЗ-2110 инжектор

Топливная система ваз 2110 (фото 2)

Схема топливной системы ВАЗ 2110 инжектор в корне отличается от вышеописанного карбюраторного варианта. Бензонасос располагается в бензобаке и качает бензин через топливный фильтр напрямую в рампу. Рампа имеет механический клапан (регулятор давления топлива), удерживающий определённое давление. Далее в работу включаются форсунки, открывающиеся по команде блока управления двигателем на определённое время, которое зависит от ряда факторов.

Воздух подаётся через воздушный фильтр и дроссельный узел. Дроссельный узел состоит из управляемой педалью газа заслонки, а также регулятора оборотов холостого хода. Воздух подаётся напрямую во впускной коллектор и перемешивается с распыляемым форсункой топливом.

Вышеописанная система питания используется на большинстве ВАЗ-овских двигателей. Топливная система ВАЗ 2110 инжектор 8 клапанов практически не отличается от схемы питания 16-клапанного двигателя.

Признаки неисправности системы питания ВАЗ-2110

Учитывая количество узлов системы питания, однозначно определить причину неисправности довольно сложно. Но, если знать основные «симптомы» поломки, то процесс поиска причины многократно ускорится. Итак, перечислим основные признаки выхода из строя узлов системы питания:

  • Автомобиль глохнет (не запускается). Проверьте работоспособность бензонасоса, послушав звук из-под заднего сиденья (при включенном зажигании).
  • Обороты «плавают». Это может быть связано с неисправностью регулятора холостого хода или регулятора давления топлива в рампе.
  • Двигатель «троит». Как правило, причиной являются неисправные форсунки.

Топливная система ВАЗ 2110 инжектор 16 клапанов имеет точно такие же признаки, как и 8-клапанный инжектор.

Спасибо за подписку!

Замена топливной системы ВАЗ 2110

Речь пойдёт о переходе с карбюраторного впрыска на инжекторный. Очень кратко опишем этот процесс.

В первую очередь производится замена карбюраторных магистралей на инжекторные, а также замена бензобака. Далее демонтируются катушка зажигания, трамблер и бензонасос. Демонтируется карбюратор вместе с впускным коллектором, на место последнего устанавливается инжекторный коллектор вместе с рампой и форсунками. Следующий этап подразумевает замену генератора на более мощный, установку электронного блока управления и соединение всех проводов и датчиков.

Но всё не так просто — помимо всего перечисленного, вам придётся заменять ещё много сопутствующих деталей (тросик газа, модуль зажигания, датчики, воздушный фильтр и т.д.). Для более глубокого понимания процесса замены воспользуйтесь разнообразными фото и видео по ремонту, которые всегда можно найти в интернете.

Рекомендации

Каждый автолюбитель может сделать многое для продления цикла жизни всех элементов рассматриваемого узла. Для того чтобы система питания вашего автомобиля работала безотказно, используйте следующие рекомендации:

  • Заправляйтесь только на проверенных автозаправочных станциях.
  • Своевременно производите замену топливного и воздушного фильтров.
  • С осторожностью применяйте чистящие присадки.
  • Старайтесь не ездить на полупустом бензобаке, особенно зимой.

Схемы автомобилей ВАЗ | 2 Схемы

Сборник качественных цветных электрических схем проводки авто ваз (карбюратор, инжектор) с описанием элементов электрооборудования.

В большинстве автомобилей нет контроля потребления жидкости омывателя ветрового стекла, а если такой контроль есть, он лишь в виде индикатора, указывающего на почти пустой бачок. …

На основе сигнала с датчика массового расхода воздуха (ДМРВ) производится расчет циклового наполнение цилиндра, пересчитываемого в конечном итоге в длительность импульса открытия форсунок. Если он …

Первым автомобилем из семейства «Жигули», оборудованным тахометром, стал ВАЗ 2103. Ни 2101, ни 2102 такого прибора не имели. Тахометр служит для измерения частоты вращения коленвала. …

Приводятся все основные электросхемы и модификации подключения вентилятора охлаждения (ВО) жидкости в автомобилях ВАЗ различных моделей. В чём суть работы ВО? Электрический двигатель с крыльчаткой …

Справочник по схемам «копейки» предназначен для самостоятельного ремонта авто при небольших неполадках электрооборудования. Ремонт начинайте с проверки предохранителей и реле (описание и обозначение будет далее). …

Справочник по схемам «восьмёрки» предназначен для самостоятельного ремонта авто при небольших неполадках электрооборудования. Электросхемы разделены на несколько блоков (для удобства просмотра через компьютер или телефон), …

Информация по схемам «пятёрки» предназначена для самостоятельного ремонта автомобиля при небольших неполадках электрооборудования. Электросхемы разделены на несколько блоков (для удобства просмотра через компьютер или телефон), …

ВАЗ 2104 с задним приводом и кузовом «универсал» выпускался с 1983 по 2012 год. Модель постоянно совершенствовалась: менялось электрооборудование, появилась система впрыска топлива, пятиступенчатая КПП …

Автомобиль ВАЗ-2106 выпускался с 1976 по 2008 год. В этом справочнике приводятся цветные схемы проводки (на инжектор и карбюратор) с описанием всех элементов для различных …

Автомобиль ВАЗ-2107 выпускался с 1982 по 2014 год. Здесь приводятся цветные схемы проводки (на инжектор и карбюратор) с описанием всех элементов для различных модификаций. Информация …

Автомобиль ВАЗ-2109 выпускался на АвтоВАЗе с 1987 по 1997 год. Годы производства 21099: 1990—2004 — в России, 2004—2011 — на Украине. Здесь приводятся цветные схемы …

Авто ВАЗ-2112 выпускался на АвтоВАЗе с 1998 по 2009 год, На Украине с 2009 по 2014 год. Далее приводятся цветные схемы проводки (инжектор и карбюратор) …

Приводятся цветные схемы электропроводки ВАЗ 2110 (инжектор и с карбюраторным двигателем) с описанием всех элементов для различных модификаций. Информация предназначена для самостоятельного ремонта автомобиля. Электрические …

Приводятся подробные цветные схемы проводки ВАЗ 2114 (карбюратор, инжектор) с описанием электрооборудования для различных модификаций. Информация предназначена для самостоятельного ремонта авто. Многие электросхемы разделены на …

Приводятся подробные цветные схемы проводки ВАЗ 2115 (карбюратор, инжектор) с описанием электрооборудования для различных модификаций. Информация предназначена для самостоятельного ремонта авто. Многие электросхемы разделены на …

Сегодня мы рассмотрим устройство и схемы систем зажигания на автомобили ВАЗ всех основных моделей. Поскольку карбюраторные версии ВАЗ это уже практически история, остановимся подробно на …

Датчик скорости – элемент электронной системы управления автомобиля. Именно от его показаний зависит, сколько топлива будет подаваться, сколько воздуха пойдет в обход дроссельной заслонки при …

Бензонасос на автомобиле предназначен для подачи топлива в камеру сгорания. Контролируется его работа при помощи реле. На ВАЗ (в зависимости от модели) агрегат для подачи …

Электрические стеклоподъемники (ЭСП) это удобные устройства для управления боковыми стёклами авто, которые контролируются специальной кнопкой и дают возможность опускать или поднимать боковые стекла без вращения …

При ремонте или замене приборной панели (щитка приборов) автомобилей ВАЗ на более удобную и современную версию VDO, выполненную на светодиодах, вам потребуются схемы подключения и …

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *