Двс 4 такта – Что лучше двухтактный двигатель или четырехтактный. Чем отличается двухтактный двигатель от четырехтактного

Содержание

4 тактный двигатель: принцип работы

4 тактный двигатель является поршневым мотором внутреннего сгорания. В этих агрегатах рабочий процесс всех цилиндров занимает два кругооборота коленчатого вала. Два кругооборота коленчатого вала также можно охарактеризовать как четыре поршневых такта, от чего и произошло название четырехтактный двигатель.

Начиная с середины двадцатого века четырехтактный двигатель является самым распространенным видом поршневых моторов внутреннего сгорания.

Основные характеристики 4 тактного двигателя

  1. Обмен газов происходит за счет движения рабочего поршня;
  2. 4 тактный двигатель обладает газораспределительным механизмом, который позволяет переключить цилиндровую полость на впуск и выпуск;
  3. Обмен газов происходит в момент отдельного полуоборота коленвала;
  4. Цепная, ременная передача и шестеренчатые редукторы позволяют изменить моменты зажигания, впрыскивания бензина и привода газораспределительного механизма относительно частоты верчения коленвала.

История

Примерно 1854-1857 годов итальянцы Евгенио Барсанти и Феличче Матоци создали устройство, которое, согласно существующим сведениям, походило на 4 тактный мотор. Несмотря на это, 4 тактный мотор был запатентован только в 1861 Алфоном де Роше, поскольку изобретение итальянцев было потеряно.

В первый раз пригодный к работе 4 тактный мотор был создан немецким инженером Николаусом Отто, в честь которого четырехтактный цикл назвали циклом Отто, а применяющий свечи зажигания 4 тактный мотор – двигателем Отто.

 

первый поршневой четырехтактный двигатель

 

 

4 тактный двигатель принцип работы

В двухтактном моторе смазывание коленвала, цилиндровых и поршневых пальцев, подшипника коленвала, поршня и компрессионных колец происходит путем заливки масла в бензин. 4 тактный мотор отличается тем, что в нем коленчатый вал расположен в масляной ванне. За счет этой особенности необходимость в добавлении масла или смешивании топлива попросту отсутствует. Все, что нужно сделать владельцу транспортного средства – это наполнить топливный бак бензином, после чего можно продолжать пользоваться транспортом.

Таким образом, автовладельцу становится незачем приобретать специальное масло, которое нужно для функционирования двухтактных моторов. Помимо этого, 4 тактный мотор отличается уменьшенным количеством нагара на стенах глушителя и поршневом зеркале. Еще одним важным отличием является то, что при двухтактном моторе совершается выплеск горючей смеси в выхлопную трубу – это обусловлено его устройством.

Стоит признать, что четырехтактные двигатели также обладают небольшими недостатками. К примеру, у таких двигателей повышенная длительность старта скутера с места. Также не особо качественными являются работы по регулированию клапанного теплового зазора. При этом следует отметить, что проблему с повышенной длительностью старта скутера можно решить оптимизацией опций центробежного сцепления и передачи.

 

4 Тактный двигатель: принцип работы

 

 

Конструкция агрегата

Устройство 4 тактного двигателя выглядит таким образом: распредвал размещен в крышке цилиндра и приводится в действие с помощью ведущего колеса, вмонтированного на коленчатом вале. В устройстве 4 тактного двигателя распределительный вал способен открывать и закрывать впускной и выпускной клапан, но лишь один из них, а какой конкретно – зависит от расположения поршня. Помимо этого, на распределительном вале расположены кулачки, с помощью которых приводятся в действие коромысла клапанов.

После своего срабатывания коромысла начинают воздействовать на один из двух клапанов, что приводит к его открытию. Стоит отметить, что между клапаном и регулировочным винтом должен быть узкий промежуток (его еще называют тепловым зазором) – во время нагрева происходит расширение металла, поэтому в случае неимения или слишком маленького размера зазора клапаны не смогут полностью закрыть каналы впуска и выпуска. Зазор при клапане выпуска должен быть большего размера, чем у клапана впуска, поскольку газы выхлопа более горячие, нежели горючая смесь, и, соответственно, это приводит к тому, что клапан выпуска нагревается больше клапана впуска.

Вот и все описание устройства 4 тактного двигателя.

Работа 4 тактного двигателя

Как уже было сказано, работа 4 тактного двигателя состоит из двух оборотов коленвала или, еще можно сказать, четырех тактов поршня.

Работа 4 тактного двигателя происходит таким образом:

  1. (впуск). Поршень продвигается в нижнюю сторону, что приводит к открытию клапана впуска. В итоге горючая смесь оказывается в цилиндре, куда она попадает из карбюратора. По достижению поршнем нижнего положения совершается закрытие клапана впуска.
  2. (сжатие). Поршень передвигается в верхнюю сторону, что провоцирует сжимание горючей смеси. После того, как поршень приближается к верхней мертвой точке, совершается возгорание сжатого поршнем бензина.
  3. (расширение). Происходит возгорание бензина, в результате которого он сгорает – это приводит к растяжению горючих газов и, соответственно, к движению поршня вниз (два клапана оказываются закрытыми).
  4. (выпуск). По инерции коленчатый вал продолжает кругооборот вокруг своей оси, а поршень – продвигаться вверх. Вместе с этим происходит открытие клапана выпуска, откуда выхлопные газы попадают в трубу. Когда поршень доходит до верхней мертвой точки, совершается закрытие клапана впуска.

По окончанию работы 4 тактного двигателя четыре такта проходят заново.

Функционирование двухтактного агрегата

Хоть и статья не об этом, однако стоит коротко описать функционирование двухтактного двигателя с целью сравнить их. Как становится понятно из наименования, функционирование такого мотора проходит только через два такта.

 

работа 4 тактного двигателя

 

  1. Поршень продвигается наверх, что приводит к сжатию горючей смеси, после которого (без достижения верхней мертвой точки) она воспламеняется. По достижению поршнем верхней мертвой точки открываются окна впуска в стене цилиндра, из-за чего горючая смесь перетекает в кривошипную камеру.
  2. Под действием растягивающихся газов поршень продвигается в нижнюю сторону. Пребывая в нижнем положении, поршень открывает окна впуска и выпуска. Газы попадают в трубу выхлопа, а на их месте оказывается горючая смесь.

Четырехтактный двигатель: принцип работы, основные отличия

Как работает двигательЧетырехтактный двигатель представляет собой поршневой мотор внутреннего сгорания. Рабочий процесс всех цилиндров в этих агрегатах занимает 2 кругооборота коленчатого вала или четыре поршневых такта. С середины ХХ века 4 тактный двигатель — самый распространенный вид поршневых моторов.

Принцип работы и основная характеристика

Рабочий цикл ДВС (двигателя внутреннего сгорания) состоит из ряда процессов, при которых усиливается мощность двигателя, воздействующего на коленчатый вал. Состоит рабочий цикл из нескольких этапов:

  • цилиндр заполняется топливной смесью;
  • смесь сжимается;
  • топливная смесь воспламеняется;
  • газы расширяются и цилиндр очищается.

В ДВС поршень двигается в одном направлении (вниз или вверх). Коленчатый вал совершает один оборот в два такта. Рабочим ходом поршня называют тот, при котором совершается полезная работа, и расширяются сгоревшие газы.

Двухтактный двигательДвухтактными называют двигатели, в которых цикл совершается в один оборот коленчатого вала или за два такта. Четырехтактные агрегаты характеризуются совершением рабочего цикла за

два оборота коленвала или за четыре такта.

Основные характерные показатели 4 тактного двигателя:

  1. За счет движения рабочего поршня происходит обмен газов.
  2. Агрегат оснащен газораспределительным механизмом, позволяющим цилиндровую полость переключать на впуск и выпуск.
  3. Происходит обмен газов в момент отдельного полуоборота коленвала.
  4. Шестерные редукторы и ременная цепная передача дают возможность изменить моменты впрыскивания бензина, зажигания и привода газораспределительного механизма по отношению к частоте вращения коленвала.

История

Развитие двигателей внутреннего сгорания

Приблизительно в 1854—1857 годах итальянцами Феличче Матоци и Евгением Барсанти было создано устройство, которое по имеющимся сегодня сведениям было похоже на четырехтактный мотор. Изобретение итальянцев было утеряно и только в 1861 году. Алфоном де Роше был запатентован двигатель такого типа.

Впервые пригодный к работе четырехтактный мотор создал немецкий инженер Николаус Отто. В его честь был назван четырехтактный цикл работы циклом Отто, а 4-тактный мотор, применяющий свечи зажигания, называют двигателем Отто.

Особенности работы 4-х тактного двигателя

4-х тактный двигатель

В двухтактном моторе смазывание поршневых и цилиндровых пальцев, коленвала, поршня, подшипника и компрессорных колец проводят, заливая масло в бензин. Коленчатый вал 4тактного мотора располагается в масляной ванне, что является существенным отличием. Именно поэтому отсутствует необходимость смешивать топливо и добавлять масло. Все, что необходимо сделать владельцу автомобиля — наполнить бензином топливный бак.

Автовладельцу, таким образом, незачем приобретать специальное масло, без которого не может функционировать двухтактный мотор. Кроме того, при наличии четырехтактного мотора на поршневом зеркале и на стенах глушителя уменьшается количество нагара. Еще одно важное отличие — в двухтактном моторе в выхлопную трубу выплескивается горючая смесь, что обусловлено его устройством.

Следует признать, что у четырехтактных двигателей также имеются небольшие недостатки. Например, у них не особо качественными являются рабочие моменты по регулированию теплового клапанного зазора.

Конструкция агрегата

Детали двигателяРаспредвал четырехтактного мотора размещается в крышке цилиндра. Он приводится в действие ведущим колесом, вмонтированном в коленчатый вал. Распределительный вал открывает и закрывает один из клапанов: выпускной или впускной, в зависимости от расположения поршня. На распределительном вале также расположены кулачки, которые приводят в действие клапанные коромысла.

Коромысла после срабатывания, начинают воздействовать на определенный клапан и открывают его. Важно, что между регулировочным винтом и клапаном должен быть тепловой зазор (узкий промежуток). При нагреве металл расширяется, поэтому, если зазор слишком маленький или его нет вообще,

клапаны не могут закрыть полностью каналы выпуска и впуска.

У клапана впуска зазор должен быть меньше, чем у клапана выпуска, потому как газы выхлопа горячее, чем смесь. Соответственно клапан впуска нагревается меньше, чем клапаны выпуска.

Работа двигателя

Как уже было отмечено работа четырехтактного мотора состоит из четырех тактов поршня или из двух оборотов коленвала.

Этапы работы :

  1. Впуск. Поршень движется в нижнюю сторону, открывая клапан впуска. Из карбюратора горючая смесь поступает в цилиндр. Когда поршень достигает нижнего положения, клапан впуска закрывается.
  2. Сжатие. Поршень движется вверх, провоцируя сживание горючей смеси. Когда он приближается к верхней точке, сжатый бензин возгорается.
  3. Расширение. Бензин возгорается и сгорает. В результате чего происходит растяжение горючих газов, и поршень движется вниз. При этом два клапана оказываются закрытыми.
  4. Выпуск. Коленчатый вал по инерции продолжает двигаться вокруг своей оси, а поршень движется вверх. Вместе с этим открывается клапан выпуска, и выхлопные газы поступают в трубу. При прохождении клапаном мертвой точки, клапан впуска закрывается.

Конструктивные и эксплуатационные отличия четырехтактных двухтактных бензиновых двигателей

Главное отличие четырехтактного двигателя от двухтактного обусловлено разными механизмами газообмена, а именно: удалением отработанных газов и подачей топливно-воздушной смеси в цилиндр.

Процессы заполнения цилиндра и его очистки в четырехтактном двигателе происходят с помощью газораспределительного специального механизма, который в определенное время открывает и закрывает рабочий цикл.

Очистка цилиндра и его заполнение в двухтактном двигателе выполняется в одно время с с расширением и сжатием при нахождении поршня поблизости мертвой нижней точки. В стенках цилиндра для этого имеется два отверстия: продувочное или впускное и выпускное. Через выпускное отверстие поступает топливная смесь, и выходят отработанные газы.

Основные отличия двухтактных и четырехтактных двигателей:

  1. Литровая мощность. В четырехтактном двигателе на два оборота коленчатого вала приходится один рабочий ход. Поэтому теоретически двухтактный двигатель должен иметь литровую мощность вдвое больше, чем четырехтактный. Но на практике превышение составляет около 1,8 раза, благодаря использованию поршня при расширении хода, а также наличия худшего механизма освобождения цилиндра от отработанных газов и больших затрат на продувку части мощности.
  2. Потребление топлива. Двухтактный двигатель превосходит четырехтактный в удельной и литровой мощности, но уступает в экономичности. Отработанные газы вытесняются воздушно — топливной смесью, которая поступает в цилиндр из шатунно-кривошипной камеры. Часть топливной смеси при этом поступает в выхлопные каналы и удаляется с отработанными газами.
  3. У двухтактного и четырехтактного двигателей принцип смазки двигателя существенно отличается. Двухтактные модели характеризуются необходимостью смешивания бензина с моторным маслом в определенных пропорциях. Масляная воздушно-топливная смесь циркулирует в поршневой и кривошипной камерах, смазывая подшипники коленчатого вала и шатуна. Мельчайшие капли масла при возгорании топливной смеси сгорают вместе с бензином. Продукты сгорания уходят вместе с отработанными газами.

Смешивают бензин с маслом двумя способами. Это может быть простое перемешивание, которое проводится перед тем, как залить в бак топливо и раздельная передача. Во втором случае масляно-топливная смесь образуется во впускном патрубке, расположенном между цилиндром и карбюратором.

Двигатель автомобиляДвигатель в последнем случае оснащен масляным бачком с трубопроводом, соединенным с плунжерным насосом. Насос подает масло во впускной патрубок в том количестве, которое необходимо. Производительность насоса зависит от того, как расположена ручка подачи «газа». Поступление масла тем больше, чем больше подается топливо. Более совершенной является раздельная система смазки двухтактного двигателя. Отношение бензина к маслу при ней может достигать 200:1. Это приводит к снижению расхода масла и к уменьшению дымности. Такую систему используют, например, на современных скутерах.

В четырехтактных двигателях бензин с маслом не смешивают, а подают отдельно, для чего двигатели имеют классическую систему смазки, которая состоит из фильтра, масляного насоса, трубопроводной магистрали и клапанов. В качестве масляного бачка может выступать картер двигателя (смазка с «мокрым «картером) либо отдельный бачок («сухой» картер).

В первом случае насос всасывает из поддона масло, направляет его во входную полость, а затем по каналам -к деталям шатунно-кривошипной группы, к подшипникам коленвала и газораспределительному механизму.

В случае смазки с «сухим» картером масло заливают в бочок. Оттуда оно при помощи насоса попадает к трущимся поверхностям. Стекающую в картер часть масла откачивают дополнительным насосом и возвращают в бачок.

Для очищения масла от разных продуктов износа двигатель имеет фильтр. Кроме того при необходимости устанавливают охлаждающие фильтра, потому как температура масла в процессе работы может очень сильно подниматься.

Четырёхтактный двигатель — это… Что такое Четырёхтактный двигатель?

Работа четырёхтактного двигателя в разрезе. Цифрами обозначены такты

Четырёхтактный двигатель — поршневой двигатель внутреннего сгорания, в котором рабочий процесс в каждом из цилиндров совершается за два оборота коленчатого вала, то есть за четыре хода поршня (такта). Этими тактами являются:

  1. Впуск — (такт впуска, поршень идёт вниз) свежая порция топливо-воздушной смеси всасывается в цилиндр через открытый впускной клапан.
  2. Сжатие (такт сжатия, поршень идёт вверх) впускной и выпускной клапаны закрыты, и топливо-воздушная смесь сжимается в объёме.
  3. Рабочий ход (такт рабочего хода, поршень идёт вниз) сжатое топливо воспламеняется свечой зажигания, расположенной над поршнем, при сгорании высвобождается энергия, которая воздействует на поршень, заставляя его двигаться вниз. Фактически на такте рабочего хода происходит работа двигателя.
  4. Выпуск (такт выпуска, поршень идёт вверх) на этом такте открываются выпускные клапаны, и выхлопные газы, проходя через них, очищают цилиндр.

По окончании 4-го такта всё повторяется в том же порядке.

История

Цикл Отто

Идеализированный цикл Отто, показанный в координатах давление (Р) и объём (V):  такт впуска(A) , представляющий собой изобарическое расширение; за ним следует  такт сжатия (B) , представляющий собой адиабатический процесс. Далее следуют сжигание топлива, которое является изохорическим процессом, и адиабатическое расширение, характеризующие  такт рабочего хода (C) . Цикл завершается изохорическим процессом и изобарическим сжатием, характеризующими
 такт выпуска (D) . TDC — верхняя мёртвая точка; BDC — нижняя мёртвая точка

Четырёхтактный двигатель впервые был запатентован Алфоном де Роше (англ.) в 1861 году. До этого около 1854—1857 годов два итальянца (Евгенио Барсанти и Феличе Матоцци) изобрели двигатель, который, по имеющейся информации, мог быть очень похож на четырёхтактный двигатель, однако тот патент был утерян.

Первым человеком, реально построившим четырёхтактный двигатель, был немецкий инженер Николаус Отто. Вот почему четырёхтактный принцип сегодня известен, в основном, как цикл Отто, а четырёхтактный двигатель, использующий свечи зажигания, часто называется двигателем Отто.

Цикл Отто состоит из адиабатического сжатия, сообщения теплоты при постоянном объёме, адиабатического расширения и отдачи теплоты при постоянном объёме. В случае четырёхтактного цикла Отто имеется также изобарическое сжатие и изобарическое расширение, которые обычно не рассматриваются, так как в идеализированном процессе они не играют роли в сообщении рабочему газу теплоты или в совершении газом работы.

Это видеоролик о работе двигателя Отто. (2 мин 16 сек, 320×240, 340 кбит/с)

Октановое число топлива

Мощность на коленчатый вал двигателя внутреннего сгорания передаётся на вал от расширяющихся газов, в основном, во время такта рабочего хода. Сжатие топливо-воздушной смеси до очень малого объёма повышает эффективность рабочего хода, но увеличение степени сжатия в цилиндре также сильнее нагревает сжимающуюся топливо-воздушную смесь (согласно закону Шарля).

Если топливо легковоспламеняемое, с низкой температурой вспышки, то это может привести к возгоранию топливо-воздушной смеси до того, как поршень достигнет верхней мёртвой точки. Это, в свою очередь, будет заставлять поршень двигаться в сторону, противоположную требуемому направлению вращения коленчатого вала. Топливо, которое воспламеняется в верхней мёртвой точке, но до того, как поршень начнёт двигаться вниз, может повредить поршень и цилиндр из-за наличия в малом объёме очень большого количества тепловой энергии, не имеющей возможности выхода. Это повреждение часто проявляет себя как стук двигателя, и оно ведёт к перманентному повреждению двигателя, если случается постоянно.

Октановое число является мерой сопротивления топлива к самовоспламенению под воздействием возрастающих температур. Топлива с более высокими октановыми числами позволяют осуществлять более высокую степень сжатия без риска повреждения двигателя вследствие самовоспламенения.

Для работы дизельных двигателей самовоспламенение необходимо. Они предотвращают возможное повреждение двигателей путём раздельного впрыска топлива под большим давлением в цилиндр очень незадолго до того, как поршень достигнет верхней мёртвой точки. Воздух без топлива может быть сжат очень сильно без опасности самовоспламенения, и в то же время, находящееся под высоким давлением топливо в системе подачи топлива не может самовоспламениться без присутствия воздуха.

Факторы, ограничивающие мощность двигателя

Четырёхтактный цикл
1=верхняя мёртвая точка
2=нижняя мёртвая точка
 A: такт впуска 
 B: такт сжатия 
 C: такт рабочего хода 
  D: такт выпуска 

Максимальная мощность двигателя вырабатывается при максимальном количестве всасываемого воздуха. Мощность, вырабатываемая поршневым двигателем, связана с его размерами (объёмом цилиндра), объёмным КПД, потерь энергии, степени сжатия топливо-воздушной смеси, содержания кислорода в воздухе и частоты вращения. Это справедливо как для двухтактных, так и для четырёхтактных двигателей. Частота вращения в конечном счёте ограничена прочностью материалов и свойствами смазки. Клапана, поршни и коленчатые валы испытывают больши́е динамические нагрузки. На слишком высоких оборотах двигателя могут происходить физические повреждения и дрожание поршневых колец, и это приводит к потерям энергии и даже разрушению двигателя. Поршневые кольца колеблются вертикально в каналах, в которых они находятся. Эти колебания колец ухудшают уплотнение между кольцами и стенками цилиндра, что приводит к потерям давления в цилиндре и мощности. Если вал двигателя вращается слишком быстро, то пружины клапанов не успевают достаточно быстро срабатывать, и клапана не успевают закрываться. Эта ситуация называется «плаванием клапанов» (англ.), и она может привести к контакту поршня и клапанов, вызвав серьёзные повреждения. На высоких скоростях условия смазки на границе поверхностей поршня и цилиндра ухудшаются. Это ограничивает скорость поршней промышленных двигателей величиной около 10 м/с.

Потоки через впускной и выпускной каналы

Выходная мощность двигателя зависит от всасывающей способности, и от возможностей выхлопных газов быстро перемещаться через клапанные каналы, как правило расположенные в головках цилиндров (англ.). Для увеличения выходной мощности можно минимизировать количество изгибов тех каналов, по которым движутся всасываемые и выхлопные потоки, а также сделать их более плавными, благодаря чему уменьшится сопротивление этим потокам. Для этого радиусы поворотов клапанных каналов и сёдла клапанов можно модифицировать таким образом, чтобы их аэродинамическое сопротивление было минимальным. Можно, кроме того, использовать разделение потока на несколько частей.

Принудительное нагнетание воздуха в цилиндры

Один из путей увеличения мощности — это принудительное нагнетание дополнительного количества воздуха в цилиндры, благодаря чему при каждом рабочем ходе может вырабатываться больше мощности. Такое принудительное нагнетание может производиться некоторыми типами компрессорных устройств, называемых нагнетателями. Последние могут приводиться в движение от коленчатого вала или выхлопных газов.

Нагнетание повышает предел мощности двигателя внутреннего сгорания при том же самом объёме цилиндра. В общем случае, нагнетатель всегда работает, но есть конструкции, позволяющие отключать его, или позволяющие ему работать с разными скоростями (относительно скорости двигателя).

Недостатком механически осуществляемого нагнетания является то, что часть выходной мощности расходуется на приведение в движение нагнетателя. Воздух в цилиндре сжимается дважды, но расширяется только в один этап. Поэтому часть мощности понапрасну расходуется с выхлопами высокого давления.

Турбонагнетание

Турбонагнетатель или турбокомпрессор (ТК, ТН) — это такой нагнетатель, который приводится в движение выхлопными газами. Получил своё название от слова «турбина» (фр. turbine от лат. turbo — вихрь, вращение). Это устройство состоит из двух частей: роторного колеса турбины, приводимого в движение выхлопными газами, и центробежного компрессора, закреплённых на противоположных концах общего вала. Струя рабочего тела (в данном случае, выхлопных газов) воздействует на лопатки, закреплённые по окружности ротора, и приводит их в движение вместе с валом, который изготовляется единым целым с ротором турбины из сплава, близкого к легированной стали. На вале, помимо ротора турбины, закреплён ротор компрессора, изготовленный из алюминиевых сплавов, который при вращении вала позволяет «закачивать» под давлением воздух в цилиндры ДВС. Таким образом, в результате действия выхлопных газов на лопатки турбины одновременно раскручиваются ротор турбины, вал и ротор компрессора. Применение турбокомпрессора совместно с промежуточным охладителем (интеркулером) позволяет обеспечивать подачу более плотного воздуха в цилиндры ДВС (в современных турбированных двигателях используется именно такая схема). Часто при применении в двигателе турбокомпрессора говорят о турбине, не упоминая компрессора. Турбокомпрессор — это одно целое. Нельзя использовать энергию выхлопных газов для подачи воздушной смеси под давлением в цилиндры ДВС при помощи только турбины. Нагнетание воздуха обеспечивает именно та часть турбокомпрессора, которая именуется компрессором.

На холостом ходу, при небольших оборотах, турбокомпрессор вырабатывает небольшую мощность и приводится в движение малым количеством выхлопных газов. В этом случае турбонагнетатель малоэффективен, и двигатель работает примерно так же, как без нагнетания. Когда от двигателя требуется намного большая выходная мощность, то его обороты, а также зазор дросселя, увеличиваются. Пока количества выхлопных газов достаточно для вращения турбины, по впускному трубопроводу подаётся намного больше воздуха.

Турбонагнетание позволяет двигателю работать более эффективно, потому что турбонагнетатель использует энергию выхлопных газов, которая, в противном случае, была бы (большей частью) потеряна.

Однако существует технологическое ограничение, известное как «турбояма» («турбозадержка») (за исключением моторов с двумя турбокомпрессорами — маленьким и большим, когда на малых оборотах работает маленький ТК, а на больших — большой, совместно обеспечивая подачу необходимого количества воздушной смеси в цилиндры). Мощность двигателя увеличивается не мгновенно из-за того, что на изменение частоты вращения двигателя, обладающего некоторой инерцией, будет затрачено определённое время, а также из-за того, что чем больше масса турбины, тем больше времени потребуется на её раскручивание и создание давления, достаточного для увеличения мощности двигателя. Кроме того, повышенное выпускное давление приводит к тому, что выхлопные газы передают часть своего тепла механическим частям двигателя (эта проблема частично решается заводами-изготовителями японских и корейских ДВС путём установки системы дополнительного охлаждения турбокомпрессора антифризом).

Отношение длины шатуна к длине хода поршня

Более длинный шатун уменьшает боковые нагрузки со стороны поршня на стенки цилиндра, и уменьшает ударные нагрузки. Как следствие двигатель с длинным шатуном служит дольше, и он надёжнее. Однако увеличение длины шатуна ведёт к увеличению габаритов двигателя, его массы и стоимости. Кроме того, при возрастании длины шатуна увеличивается время нахождения поршня в верхней мёртвой точке. Как следствие, увеличивается время, в течение которого газ в цилиндре находится при высокой температуре, что ведёт к повышенному нагреву двигателя.

В настоящее время более актуальным параметром оценки ДВС является отношение хода поршня к диаметру цилиндра или наоборот. Для более быстроходных бензиновых двигателей это отношение близко к 1, на дизельных моторах ход поршня, как правило, чуть больше диаметра цилиндра.

Газораспределительный механизм

Клапаны обычно управляются через распределительный вал, вращающийся со скоростью, равной половине скорости коленчатого вала. Распределительный вал имеет несколько кулачковых механизмов, каждый из которых рассчитан так, чтобы открывать и закрывать «свой» клапан в определённое время цикла.

Во многих двигателях используются один или несколько распределительных валов, расположенных над рядом цилиндров (или над каждым рядом цилиндров). Помимо верхнего расположения распредвала часто встречается, казалось бы, забытое на легковых авто нижнее положение распредвала в блоке цилиндров. При этом кинематическая цепочка включает (снизу вверх) толкатели штанги и коромысла. Эта система, применение которой обусловлено простотой, надёжностью и компактностью, успешно себя зарекомендовала на грузовых автомобилях. Эта схема позволяет конструировать моторы с более низким центром тяжести.

Первая из описанных выше конструкций газораспределительного механизма обычно позволяет двигателям работать с бо́льшими скоростями, поскольку в этом случае имеется более короткая кинематическая цепь от кулачка к клапану.

Баланс энергии

Двигатели Отто имеют КПД около 35 % — иными словами, 35 % энергии, генерируемой при сжигании топлива, преобразуется в энергию вращательного движения выходного вала двигателя, а остальное теряется в виде тепла. Для сравнения: шеститактный двигатель может преобразовывать в полезную вращательную энергию более 50 % энергии, высвобождаемой при горении топлива.

Современные двигатели часто конструктивно имеют намеренно меньший КПД, чем они могли бы иметь. Это необходимо для уменьшения выбросов с помощью таких средств как система рециркуляции выхлопных газов и каталитический конвертер.

Уменьшению КПД можно препятствовать с помощью системы контроля двигателя (англ.), использующей технологии эффективного сжигания топлива.[1]

Применение

Сегодня двигатели внутреннего сгорания в легковых и грузовых автомобилях, самолётах и во многих других машинах в большинстве случаев используют четырёхтактный цикл. Четырёхтактные двигатели могут быть как бензиновыми, так и дизельными.

Примечания

  1. Air pollution from motor vehicles By Asif Faiz, Christopher S. Weaver, Michael P. Walsh

Что значит четырехтактный двигатель и почему четыре такта?

Дорогой друг, сегодня поговорим о том, что значит четырехтактный двигатель. О истории его изобретения, принципе работы, особенностях, технических характеристиках и сферах применения.

Конечно, если у вас есть водительское удостоверение, то вы по крайней мере слышали этот термин, когда учились в автошколе. Но вряд ли тогда стали вникать во все тонкости, поэтому сейчас самое время разобраться, что же там происходит под капотом вашего железного коня.

chet_dv

Как всё начиналось

В 19 веке уже были двигатели, но это были в основном большие механизмы, работающие на пару. Они конечно частично обеспечивали развивающуюся промышленность, но имели много недостатков.

Были тяжелые, имели низкий КПД, большие габариты, требовалось много времени на запуск и остановку, для эксплуатации нужны были квалифицированные рабочие.

Промышленникам нужен был новый агрегат без перечисленных недостатков они уже поняли что значит четырехтактный двигатель. И как при определенных условиях с его помощью можно повысить прибыль.

Его и разработал изобретатель Эжен-Альфонс Бо де Роша, а в 1867 году воплотил в металл Николаус Август Отто.

Эжен-Альфонс Бо де Роша и Николаус Август Отто

В то время это было чудо техники. Двигатель внутреннего сгорания отличался низкими эксплуатационными расходами, небольшими размерами и не требовал постоянного присутствия обслуживающего персонала.

Работало устройство по особому алгоритму, который и сейчас называют «цикл Отто». Спустя 8 лет, после запуска первого экземпляра, компания Отто выпускала уже более 600 силовых установок в год.

Очень быстро, из-за автономности и компактности, двигатели внутреннего сгорания получили широкое распространение.

Из чего состоит двигатель

Чтобы понять принцип работы, познакомимся с основными составляющими движка:

  • блок цилиндров;
  • кривошипно-шатунный механизм (включает коленвал, поршни, шатуны) ‒ он необходим для преобразования поступательно-возвратных движений поршня во вращательное движение коленвала;
  • головка блока вместе с газораспределительным механизмом, который открывает впускные и выпускные клапаны, для того чтобы поступала рабочая смесь и выходили отработавшие газы. ГРМ может включать один или более распредвалов, которые состоят из кулачков для толкания клапанов, самих клапанов и клапанных пружин. Для стабильной работы четырехтактного движка существует ряд вспомогательных систем:
  • система зажигания ‒ для поджига горючей смеси в цилиндрах;
  • впускная система ‒ для подачи воздуха и рабочей смеси в цилиндр;
  • топливная система ‒ для непрерывной подачи топлива, получения смеси воздуха и горючего;
  • система смазки – для смазки трущихся деталей, а также одновременного удаления продуктов износа;
  • выхлопная система – для удаления отработанных газов из цилиндров, снижения токсичности выхлопа;
  • система охлаждения – для поддержки оптимальной температуры движка.

Что значит четырехтактный двигатель и почему четыре такта

  1. Теперь, когда вы более-менее представляете устройство четырехтактного двигателя, можно рассмотреть рабочий процесс.
    Он состоит из следующих этапов:впуск – поршень движется вниз, цилиндр заполняется горючей смесью из карбюратора через впускной клапан, который открываются кулачком распределительного вала.При движении поршня вниз, создается отрицательное давление в цилиндре, тем самым происходит всасывание рабочей смеси, а именно воздуха с парами топлива. Впуск продолжается пока поршень не достигнет НМТ (нижняя мертвая точка). В этот момент закрывается впускной клапан;
  2. сжатие или компрессия – после того как будет достигнута НМТ поршень начинает двигаться вверх к ВМТ (верхняя мертвая точка). При движении поршня вверх происходит сжатие, рабочая топливо-воздушная смесь сжимается, давление внутри цилиндра возрастает. Впускной и выпускной клапан закрыты;
  3. рабочий ход или расширение – в конце цикла сжатия (в ВМТ), рабочая смесь воспламеняется от искры в свече зажигания. Поршень от микровзрыва устремляется к НМТ.В процессе движения поршня от ВМТ к НМТ смесь сгорает, а увеличивающиеся в объеме газы толкают поршень, выполняя полезную работу. Именно по этой причине движение поршня в этом такте назвали рабочий ход. Впускной и выпускной клапан закрыты;
  4. выпуск выхлопных газов – в заключительном четвертом такте открывается выпускной клапан, поршень поднимается в верхнюю точку и выталкивает продукты сгорания из цилиндра в выхлопную систему, пройдя через глушитель, они попадают в атмосферу. После достижения поршнем ВМТ выпускной клапан закрывается, затем цикл повторяется. Эти четыре такта представляют собой рабочий цикл мотора. Тактом же именуется движение поршня вверх или вниз. Один оборот коленчатого вала соответствует двум тактам, а два оборота – 4 тактам. Отсюда пошло название четырёхтактного двигателя.

Работа четырехтактного двигателя

 

От чего зависит мощность четырехтактного ДВС

Тут вроде бы всё ясно — мощность поршневого двигателя в основном определяется:

  1. объёмом цилиндров;
  2. степенью сжатия рабочей смеси;
  3. частотой вращения.

Поднять мощность четырехтактного двигателя также можно повысив пропускную способность тактов всасывания и выхлопа, увеличив диаметр клапанов (особенно впускных).

Так же максимальная мощность получается при максимальном заполнении цилиндров, для этого используют турбины принудительной подкачки воздуха в цилиндр. В следствии чего повышается давление в цилиндре и соответственно КПД двигателя значительно возрастает.

Применение в настоящее время

Четырёхтактные двигатели бывают бензиновыми и дизельными. Применяются эти двигатели на транспортных или стационарных энергоустановках. Использовать такой двигатель рекомендуется в случаях, когда есть возможность регулировать соотношение оборотов, мощности и крутящего момента.

Например, если двигатель, работает в паре с электрогенератором, то нужно выдерживать нужный диапазон оборотов. А при использование промежуточных передач, четырёхтактный двигатель можно адаптировать к нагрузкам в достаточно широких пределах. То есть использовать в автомобилях.

Вернёмся к истокам его создания. В группе изобретателя Отто работал очень талантливый инженер Готлиб Даймлер, он понял что значит четырехтактный двигатель, его перспективы развития, и предложил на базе четырёхтактного двигателя построить автомобиль. Но шеф не посчитал нужным что-то менять в двигателе, и Даймлер, увлеченный своей идеей, покинул мэтра.

И через некоторое время, вместе с другим энтузиастом Карлом Бенцом в 1889 году создали автомобиль, который приводился в движение именно бензиновым четырехтактным двигателем внутреннего сгорания изобретателя Отто.

Готлиб Даймблер и Карл Бенц

Эта технология с успехом используется и сегодня. В случаях, когда силовая установка работает на переходных режимах или режимах со снятием частичной мощности ‒ она незаменима, так как обеспечивает стабильную устойчивость процесса.

Теперь, дорогой друг, ты в общих чертах знаешь что значит четырехтактный двигатель, где он используется. Теперь ты стал на голову выше. Но не скупись полученой информацией, поделись с друзьями. К твоим услугам кнопки социальных сетей.

Да и подписаться можно на наш блог, чтобы всегда быть в курсе интересного материала, а его всегда много и будет еще больше.

До новых встреч!

Четырехтактный двигатель | Мото вики

в то время как четырехтактный двигатель может устранить многие из недостатков, свойственных двухтактному, у него есть свои собственные недостатки. В итоге нельзя сказать, какой из них лучше другого, все зависит от предназначения двигателя. У каждого двигателя есть свое место в мире мотоциклов, где он работает наилучшим образом и идеально подходит для этого, как ни один другой.

Пока сложно оспаривать достоинство четырехтактных двигателей с точки зрения расхода топлива и уровней выбросов, однако их повышенная сложность означает удорожание производства, что приводит к сложившейся ситуации, благодаря которой двухтактные двигатели идеальны для небольших мотоциклов серийного производства и скутеров, стоимость которых относительно невысока (хотя по-прежнему они занимают свое место среди спортивных машин с высокими показателями, по крайней мере, в настоящее время). Четырехтактные двигатели идеальны для большинства мотоциклов от 125 куб.см. и выше, от учебного мотоцикла до спортивных машин большой кубатуры с отличными, характеристиками. В свое время были распространены двухтактные двигатели среднего объема (от 250 до 750 куб см.), которые очень активно противостояли четырехтактным двигателям равного или большего объема, но те дни прошли, и теперь редко встретишь на дороге двухтактник объемом больше 250 куб, см.

    Впуск, сжатие, воспламенение, выпускПравить

    1. Впуск 2. Сжатие 3. Рабочий ход 4. Выпуск

    В двухтактных двигателях внутреннего сгорания четыре процесса (наполнение, сжатие.рабочий ход и выпуск.или каких иногда называют: впуск, сжатие, воспламенение, выпуск) взаимопереплетены, в четырехтактном двигателе границы между процессами более четкие, и в принципе каждому процессу отведен свой такт в цикле (хотя на практике, это не совсем так).

    Конструктивно четырехтактный двигатель подобен двухтактному и состоит из основных узлов, а именно: поршня, цилиндра, шатуна и коленчатого вала. Однако у него есть множество дополнительных узлов и деталей, в совокупности известных как клапанный механизм, который служит для управления и задания фаз впуска и выпуска. Управление наполнением происходит при помощи впускного клапана, а выпуском управляет выпускной клапан, в принципе в четырехтактном двигателе они заменяют поршень и дисковый или лепестковый клапан. Можно рассмотреть множество различных схем, но все они отражают различные подходы к достижению одного и того же конечного результата.

    В четырехтактном двигателе поступающая смесь попадает непосредственно в камеру сгорания, и картер больше не участвует в процессе наполнения. Несмотря на усложнение конструкции и уменьшение числа рабочих тактов вдвое, появляется возможность точнее управлять процессами впуска и выпуска и, таким образом, обеспечивать достаточно высокую эффективность двигателя.

    КлапанаПравить

    Тарельчатые клапана

    Детали клапанного механизма

    Отличительной особенностью всех четырехтактных двигателей являются клапана, если говорить точнее — тарельчатые клапана, через которые смесь попадает в камеру сгорания, а иные газы отводятся из нее. Во всех современных конструкциях клапана спроектированы исходя из формы головки цилиндра. До 50-х годов прошлого века существовало много машин, у которых клапана открывались вверх в полость камеры сгорания, расположенную сбоку от цилиндра. Такие двигатели носят название нижнеклапанных или двигателей с боковым расположением клапанов, Хотя они проще в изготовлении, их эффективность ниже по сравнению с двигателями с верхним расположением клапанного механизма. Тарельчатый клапан состоит из круглой тарелки, прикрепленной к длинному стержню, и похож на гвоздь с большой шляпкой. У тарелки клапана есть коническая уплотняющая поверхность, переходящая в стержень клапана.которая предназначена для уплотнения по соответствующей поверхности седла, расположенного в головке цилиндра (или полости камеры сгорания на нижнеклапанных двигателях). Стержень клапана проходит через направляющую в головке цилиндра и выступает снаружи.

    Клапан самостоятельно закрывается и удерживается в закрытом положении сильной пружиной (иногда применяются две пружины), которая зафиксирована упором пружины, в свою очередь, закрепленном при помощи двух сухарей, установленных в канавку в верхней части стержня клапана. Привод клапанов может быть различным, но принцип один и тот же, вне зависимости от схемы газораспределительного механизма, однако за исключением распредвала используемые при этом детали сильно отличаются.

    РаспредвалыПравить

    Компьютерная анимация распределительного вала, управляющего движением клапанов

    Распредвал можно обнаружить на всех традиционных четырехтактных двигателях с тарельчатыми клапанами. Непосредственно или косвенно он используется для открытия и закрытия каждого клапана в заданной точке четырехтактного цикла. В связи стем, что цикл занимает четыре хода поршня (которые соответствуют двум полным оборотам коленчатого вала) и тем, что каждый клапан необходимо открыть один раз за цикл, частота вращения распредвала вдвое меньше частоты вращения коленчатого вала. Это означает, что за время двух полных оборотов коленчатого вала распредвал совершает один оборот, Это осуществляется за счет простого шестеренчатого, цепного или ременного привода между этими валами, при этом у шестерни или звездочки,установленной на коленчатом валу, вдвое меньшее число зубьев по сравнению с ответной деталью, установленной на распредвале.

    По длине распредвала выполнены выступы механизма и открытия в заданный момент называемые кулачками, которые служат для времени соответствующего клапана.

    Конструкция четырехтактного двигателя — клапанный механизмПравить

    Основная статья: Четырехтактный двигатель: Клапанный механизм

    В принципе, все четырехтактные двигатели похожи, они отличаются только расположением и приводом впускных и выпускных клапанов. Как и многое другое в мотоцикле, стремление достичь высоких скоростей и мощностей привело к существенному усовершенствованию четырехтактного двигателя.

    Системы впуска четырехтактных двигателей — альтернативы таральчатым клапанамПравить

    Развитие четырехтактной системы впуска шло по пути устранения, насколько это возможно, поступательно движущихся узлов клапанного механизма. В то время, как схема DOHC максимально приблизилась к этой цели, сам тарельчатый клапан остается ограничивающим фактором. Тарельчатый клапан успешно работает, но обладает очевидными недостатками. Кроме того, что он относится к возвратно-поступательно движущимся массам, он также представляет собой значительную преграду для поступающей смеси, тем самым порождая нежелательную турбулентность и сопротивление, которые препятствуют наполнению цилиндра. При разработке современных конструкций прилагается множество усилий для компенсации этих недостатков, но основные проблемы по прежнему остаются. За последние годы было предпринято бесчисленное количество попыток заменить тарельчатый клапан альтернативной системой клапанов, среди них наиболее обнадеживающим выглядит схема с вращающимся крестообразным клапаном. Он представляет собой полый цилиндр, установленный поперек головки цилиндра в специальной камере. Цилиндр клапана вращается с частотой, вдвое меньшей частоты вращения коленчатого вала двигателя, при этом прорезь в его стенке совпадает с впускным или выпускным отверстием в соответствующей точке цикла двигателя. Таким образом, клапанный механизм приводится в действие аналогично дисковому клапану двухтактных двигателей и обеспечивает свободное поступление газа в камеру сгорания. Компания Norton опробовала такие клапана на своих спортивных двигателях в начале 50-х годов XX века, но, столкнувшись с проблемой уплотнений, впоследствии вернулась к тарельчатым клапанам.


    Наряду с золотниковым клапаном и клапаном типа Aspin, вращающийся крестообразный клапан был отвергнут,главным образом, из-за свойственных ему проблем герметизации, а тарельчатый клапан занимал достаточно прочные позиции для того, чтобы заставить изготовителей отказаться от дальнейших исследований. Однако концепция вращающегося клапана не забыта, и уже существует четырехтактный двигатель, в котором не используются тарельчатые клапана. Он представляет собой вращающийся цилиндр с окнами. Привод цилиндра осуществляется от коленчатого вала при помощи шестеренчатой передачи, частота вращения цилиндра ниже скорости коленчатого вала вдвое.

    Существенная особенность этого двигателя — поршень, поступательно движущийся в том же самом цилиндре, то есть герметизацию обеспечивает стандартный поршень и его кольца. Посути это совмещение конструкций вращающихся клапанов, упомянутых выше, и систе

    Четырёхтактный двигатель — Википедия. Что такое Четырёхтактный двигатель

    Работа четырёхтактного двигателя в разрезе. Цифрами обозначены такты

    Четырёхтактный двигатель — поршневой двигатель внутреннего сгорания, в котором рабочий процесс в каждом

    из цилиндров совершается за два оборота коленчатого вала, то есть за четыре хода поршня (такта). Начиная с середины XX века — наиболее распространённая разновидность поршневого ДВС, особенно в двигателях средней и большой мощности.
    

    Порядок работы

    Рабочий цикл четырёхтактного двигателя происходит за четыре такта, каждый из которых составляет один ход поршня между мертвыми точками, при этом двигатель проходит следующие фазы:

    • Впуск. Длится от 0 до 180° поворота кривошипа. При впуске поршень движется вниз от верхней мертвой точки, открыт впускной клапан. В цилиндре образуется разрежение, за счёт которого в него засасывается свежий заряд. При наличии нагнетателя смесь нагнетается в цилиндр под давлением.
    • Такт сжатия. 180—360° поворота кривошипа. Поршень движется к ВМТ, при этом заряд сжимается поршнем до давления степени сжатия. За счёт сжатия достигается бо́льшая удельная мощность, чем могла бы быть у двигателя, работающего при атмосферном давлении (такого как двигатель Ленуара), за счёт того, что в небольшом объёме заключен весь заряд рабочей смеси. Кроме того, повышение степени сжатия позволяет увеличить КПД двигателя. В двигателях Отто любой конструкции сжимается горючая смесь, в дизелях — чистый воздух.

    В конце такта сжатия происходит зажигание заряда в двигателях Отто или начало впрыска топлива в двигателях Дизеля.

    • Рабочий ход 360—540° кривошипа — движение поршня в сторону нижней мёртвой точки под давлением горячих газов, передаваемого поршнем через шатун коленчатому валу. В двигателе Отто при этом происходит процесс изохорного расширения, в дизеле за счёт продолжающегося горения рабочей смеси подвод теплоты продолжается столько, сколько длится впрыск порции топлива. Поэтому сгорание в дизеле обеспечивает процесс, близкий к адиабатному, расширение происходит при одинаковом давлении.
    • Выпуск. 540—720° поворота кривошипа — очистка цилиндра от отработавшей смеси. Выпускной клапан открыт, поршень движется в сторону верхней мёртвой точки, вытесняя выхлопные газы.

    В реальных двигателях фазы газораспределения подбираются таким образом, чтобы учитывалась инерция газовых потоков и геометрия трактов впуска и выпуска. Как правило, начало впуска опережает ВМТ от 15 до 25°, конец впуска отстает примерно на столько же от НМТ, так как инерция потока газов обеспечивает лучшее заполнение цилиндра. Выхлопной клапан опережает НМТ рабочего хода на 40 — 60°, при этом давление сгоревших газов к НМТ падает и противодавление на поршень при выхлопе оказывается ниже, что повышает КПД. Закрытие выхлопного клапана также относится за ВМТ впуска для более полного удаления выхлопных газов.

    Так как процесс горения и распространение фронта пламени в двигателях Отто требуют определенного времени, зависящего от режима работы двигателя, а максимальное давление из соображений геометрии кривошипно-шатунного механизма желательно иметь от 40 до 45° от ВМТ начала рабочего хода, зажигание осуществляется с опережением — от 2 — 8° на холостом ходу до 25 — 30° на режимах полной нагрузки.

    Рабочий процесс дизельного двигателя отличается от описанного выше тем, что заряд в камере сгорания — чистый воздух, нагретый от сжатия до температуры воспламенения. За некоторое время до ВМТ, называемое временем инициации, в камеру сгорания начинает впрыскиваться жидкое топливо, распыленное до капель, каждая из которых подвергается инициации, то есть нагревается, испаряясь с поверхности, при испарении вокруг каждой из капель образуется и воспламеняется в горячем воздухе горючая смесь. Время инициации для каждого дизеля стабильно, зависит от особенностей конструкции и изменяется только с его изнашиванием, поэтому, в отличие от момента зажигания, момент впрыска в дизеле задается раз и навсегда при его конструировании и изготовлении. Так как смесь во всем объёме камеры сгорания в дизеле не образуется, а факел распыла форсунки занимает небольшой объём камеры, количество воздуха на каждый объём впрыснутого топлива должно быть избыточным, в противном случае процесс горения протекает не до конца, а выхлопные газы содержат большое количество недогоревшего углерода в виде сажи. Само горение длится столько времени, сколько длится впрыскивание данной конкретной порции топлива — от нескольких градусов после ВМТ на холостом ходу до 45-50° на режимах полной мощности. В мощных дизелях цилиндр может снабжаться несколькими форсунками.

    Главные особенности четырёхтактного двигателя

    • Газообмен в цилиндре практически полностью обеспечивается перемещением рабочего поршня;
    • Для переключения полости цилиндра на впуск и на выхлоп используется отдельный газораспределительный механизм;
    • Каждая фаза газообмена выполняется во время отдельного полуоборота коленчатого вала;
    • Привод систем газораспределения, зажигания и впрыска топлива должен вращаться с частотой вдвое меньшей, чем частота вращения коленчатого вала двигателя. Для этого могут применяться как шестерёнчатые редукторы, так цепная или ременная передача.

    История

    Цикл Отто

    Идеализированный цикл Отто, показанный в координатах давление (Р) и объём (V): такт впуска(A) , представляющий собой изобарическое расширение; за ним следует такт сжатия (B) , представляющий собой адиабатический процесс. Далее следуют сжигание топлива, которое является изохорическим процессом, и адиабатическое расширение, характеризующие такт рабочего хода (C) . Цикл завершается изохорическим процессом и изобарическим сжатием, характеризующими
    такт выпуска (D) . TDC — верхняя мёртвая точка; BDC — нижняя мёртвая точка

    Четырёхтактный двигатель впервые был запатентован Алфоном де Роше (англ.) в 1861 году. До этого около 1854—1857 годов два итальянца (Евгенио Барсанти и Феличе Матоцци) изобрели двигатель, который, по имеющейся информации, мог быть очень похож на четырёхтактный двигатель, однако тот патент был утерян.

    Первым человеком, построившим первый практически используемый четырёхтактный двигатель, был немецкий инженер Николаус Отто. Поэтому четырёхтактный цикл известен как цикл Отто, а четырёхтактный двигатель, использующий свечи зажигания, называется двигателем Отто.

    Идеальный цикл Отто состоит из адиабатического сжатия, сообщения теплоты при постоянном объёме, адиабатического расширения и отдачи теплоты при постоянном объёме. В практическом четырёхтактном цикле Отто имеются также изобарическое сжатие (выхлоп) и изобарическое расширение (впуск), которые обычно не рассматриваются, так как в идеализированном процессе они не играют роли ни в сообщении рабочему газу теплоты, ни в совершении газом работы.

    Это видеоролик о работе двигателя Отто. (2 мин 16 сек, 320×240, 340 кбит/с)

    Газораспределительный механизм

    Атрибутивный агрегат четырёхтактного двигателя, управляет газообменом при смене тактов, обеспечивая поочередное подключение полости цилиндра к впускному и выхлопному коллекторам.

    Управление газораспределением может осуществляться:

    МЕХАНИЧЕСКИ:
     — распределительным кулачковым валом или валами с клапанами;
     — цилиндрическими гильзовыми золотниками, движущимися возвратно-поступательно либо вращающимися в головке цилиндров;
    МИКРОПРОЦЕССОРОМ. В этом случае привод клапанов осуществляется непосредственно мощными быстродействующими электромагнитами (БМВ) или с использованием гидропривода (ФИАТ).

    В первом случае клапанами управляет распределительный вал, вращающийся вдвое медленнее коленчатого вала. Распределительный вал имеет несколько кулачков, каждый из которых управляет одним впускным или выхлопным клапаном. От распредвалов часто приводятся дополнительные сервисные устройства двигателя — масляные, топливные насосы, распределитель зажигания, ТНВД, иногда — механические нагнетатели и др.

    В разных двигателях используются один или несколько распределительных валов, расположенных возле коленвала, над рядом цилиндров или даже над каждым рядом клапанов. Привод распредвалов осуществляется от коленвала либо распределительными шестернями, либо пластинчато-роликовой цепью, либо зубчатым ремнем. В некоторых старых конструкциях использовались валики с коническими шестернями (В-2). В любом случае валы синхронизированы с частотами вращения 1 : 2.

    В любом случае вал, расположенный рядом с коленчатым, называется нижним, в головке над или рядом с клапанами — верхним. Клапаны по расположению относительно камеры сгорания также могут быть верхними — расположенными над донышком поршня, или нижними — расположены рядом с цилиндрами сбоку. Нижние клапаны приводятся от нижнего вала через короткие стаканообразные толкатели. Привод верхних клапанов от нижнего вала осуществляется, как правило, штанговым механизмом, от верхнего либо через рокеры (коромысла), либо через стаканообразные толкатели. Во многих двигателях используются гидравлические толкатели, автоматически выбирающие зазоры в клапанных парах и делающие механизм газораспределения необслуживаемым.

    Клапан представляет собой стержень с тарелкой, выполненной из жаростойких материалов. Стержень клапана совершает возвратно-поступательные движения в направляющей втулке, тарелка коническим герметизирующим пояском ложится на клапанное седло, также выполняемое из жаростойких материалов. И седло, и направляющая втулка являются контактными поверхностями, через которые осуществляется охлаждение клапана. Особено важно это положение для выхлопных клапанов, которые постоянно работают в потоках горячих газов (а при неправильной установке зажигания или момента впрыска — в потоке пламени) и нуждаются в интенсивном теплоотводе. Поэтому для улучшения охлаждения внутри стержня клапана может располагаться полость с теплопроводным материалом — с натрием, с медью. А сами контактирующие поверхности должны быть гладкими и иметь минимально возможные зазоры. Многие клапаны имеют механизмы поворота, обеспечивающие принудительное вращение вокруг продольной оси в процессе работы.

    Открытие клапана осуществляет соответствующий кулачок, закрытие — либо возвратна клапанная пружина/пружины, либо особый десмодромный механизм (Даймлер-Бенц), позволяющий из-за отсутствия пружин достичь очень высоких скоростей перемещения клапанов и, соответственно, существенно поднять обороты двигателя без существенного повышения усилий в механизме распределения. Дело в том, что чем слабее клапанная пружина, тем медленнее возврат клапана в седло. Уже при работе на относительно невысоких оборотах слабые пружины позволяют клапанам «зависать» и соприкасаться с поршнями (двигатели ВАЗ без внутреннего ряда клапанных пружин — на 5500-6000 об/мин). Чем сильнее клапанные пружины, тем большие напряжения испытывают детали ГРМ и тем более качественное масло должно использоваться для его смазки. Десмодромный механизм позволяет перемещать клапана с такой скоростью, которая ограничена только моментом их инерции, то есть, существенно более высокой, чем достижимые для клапанов скорости в реальных двигателях.

    Электромагнитное или электрогидравлическое управление с микропроцессором, сверх этого, позволяет легко корректировать фазы газораспределения двигателя, добиваясь наивыгоднейшей характеристики распределения на каждом режиме.

    Некоторые ранние модели двигателей («Харлей-Дэвидсон», «Пежо») имели впускные клапаны со слабыми пружинами, обеспечивавшими «автоматическое» открывание клапана после начала впуска под действием вакуума над поршнем.

    Для коррекции фаз газораспределения в ГРМ с распредвалами используются разного рода дифференцирующие механизмы, их конструкция зависит от компоновки двигателя и ГРМ (которая во многом определяет компоновку всего ДВС).

    Системы смазки и охлаждения

    Работа ДВС сопровождается выделением значительного количества теплоты из-за высоких температур рабочих газов и существенных контактных напряжений в трущихся деталях. Поэтому для обеспечения работы двигателя детали, образующие пары трения, необходимо охлаждать и смазывать, а из зазоров между ними вымывать продукты механического износа. Смазывающее масло, помимо обеспечения масляного клина в зазорах, отводит значительное количество тепла от нагруженных трущихся поверхностей. Для охлаждения гильз цилиндров и элементов головки двигателя дополнительно используется система принудительного охлаждения, которая может быть жидкостной и воздушной.

    Система смазки двигателя состоит из ёмкости с маслом, в таком качестве часто используется поддон картера — в системе с масляным картером или отдельный масляный бак — в системе с сухим картером. Из ёмкости масло засасывается масляным насосом, шестерёнчатым или, реже, коловратным, и по каналам поступает под давлением к пáрам трения. В системе с масляным картером гильзы цилиндров и некоторые второстепенные детали смазываются разбрызгиванием, системы с сухим картером предусматривают наличие специальных лубрикаторов, обеспечивающих смазку и охлаждение этих же деталей. В двигателях средней и большой мощности в систему смазки включаются элементы масляного охлаждения поршней в виде залитых в донышки змеевиков или специальных форсунок, обливающих днище поршня со стороны картера. Как правило, система смазки содержит один или несколько фильтров для очистки масла от продуктов износа пар трения и осмоления собственно масла. Фильтры используются либо с картонной шторкой с определённой степенью пористости, либо центробежные. Для охлаждения масла часто применяют воздушно-масляные радиаторы или водомасляные теплообменники.

    Система воздушного охлаждения в простейшем случае представлена просто массивным оребрением цилиндров и головок. Набегающий поток воздуха снаружи и масло изнутри охлаждает двигатель. Если обеспечить теплоотвод набегающим потоком невозможно, в систему включается вентилятор с воздуховодами. Наряду с таким неоспоримыми достоинствами, как простота двигателя и относительно высокая живучесть в неблагоприятных условиях, а также относительно меньшая масса, воздушное охлаждение имеет серьёзные недостатки:

    — большое количество воздуха, продувающего двигатель, несёт большое количество пыли, которая оседает на оребрении, особенно при подтекании масла, неизбежном в эксплуатации, в результате эффективность охлаждения резко снижается;

    — невысокая теплоёмкость воздуха заставляет продувать через двигатель существенные его объёмы, для чего требуется существенный отбор мощности для работы вентилятора охлаждения;

    — форма деталей двигателя плохо соответствует условиям хорошего обтекания воздушным потоком, в связи с чем добиться равномерного охлаждения элементов двигателя очень трудно; из-за разницы рабочих температур в отдельных элементах конструкции возможны большие термические напряжения, что снижает долговечность конструкции.

    Поэтому воздушное охлаждение применяется в ДВС нечасто и, как правило, либо на дешевых конструкциях, либо в тех случаях, когда работа двигателя протекает в особых условиях. Так, на транспортёре переднего края ЗАЗ-967 используется двигатель с воздушным охлаждением МеМЗ-968, отсутствие водяной рубашки, рукавов и радиатора охлаждения повышает живучесть транспортёра в условиях поля боя.

    Жидкостное охлаждение имеет ряд преимуществ и применяется на ДВС в большинстве случаев. Преимущества:

    — высокая теплоёмкость жидкости способствует быстрому и эффективному отводу тепла из зон теплообразования;

    — гораздо более равномерное теплораспределение в элементах конструкции двигателя, что существенно снижает тепловые напряжения;

    — использование жидкостного охлаждения позволяет быстро и эффективно регулировать поток тепла в системе охлаждения и, стало быть, быстрее и гораздо равномернее, чем в случае с воздушным охлаждением, прогревать двигатель до температур рабочего диапазона;

    — жидкостное охлаждение позволяет увеличивать как линейные размеры деталей двигателя, так и его теплонапряжённость за счёт высокой эффективности теплоотведения; поэтому все средние и крупные двигатели имеют жидкостное охлаждение, за исключением ПДП-двухтактных двигателей, у которых зона продувочных окон гильз охлаждается продувочным воздухом из соображений компоновки;

    — специальная форма водо-воздушного или водо-водяного теплообменника позволяет максимально эффективно передавать тепло двигателя в окружающую среду.

    Недостатки водяного охлаждения:

    — повышение веса и сложность конструкции двигателя из-за наличия водяной рубашки;

    — наличие теплообменника/радиатора;

    — снижение надёжности агрегата из-за наличия стыков рукавов, шлангов и патрубков с возможными течами жидкости;

    — обязательное прекращение работы двигателя при потере хотя бы части охлаждающей жидкости.

    Современные системы жидкостного охлаждения используют в качестве теплоносителя специальные антифризы, замерзающие при низких температурах и содержащие пакеты присадок разного назначения — ингибиторы коррозии, моющие, смазывающие, антипенные, а иногда и герметизирующие места возможных течей. С целью повышения КПД двигателя системы герметизируют, при этом повышая рабочий диапазон температур к области кипения воды. Такие системы охлаждения работают при давлении выше атмосферного, их элементы рассчитаны на поддержание повышенного давления. Этиленгликолевые антифризы имеют высокий коэффициент объёмного расширения. Поэтому в таких системах часто применяются отдельные расширительные бачки или радиаторы с увеличенными верхними бачками.

    С целью стабилизации рабочей температуры и для ускорения прогрева двигателя в системы охлаждения устанавливают термостаты. Для воздушного охлаждения термостат — сильфон, заполненный церезином или этиловым спиртом в сочетании с обоймой и системой рычагов, поворачивающих заслонки, обеспечивающие переключение и распределение воздушных потоков. В системах жидкостного охлаждения точно такой же термоэлемент осуществляет открытие клапана или переключение системы клапанов, направляющих жидкость либо в радиатор, либо в специальный канал, обеспечивающий циркуляцию нагреваемой жидкости и равномерное прогревание двигателя.

    Радиатор или теплообменник охлаждения имеет вентилятор, продувающий через него поток атмосферного воздуха, с гидростатическим или электрическим приводом.

    Баланс энергии

    Двигатели Отто имеют термический КПД около 40 %, что с механическими потерями дает фактический КПД от 25 до 33%.

    Современные двигатели могут иметь уменьшенный КПД для удовлетворения высоких экологических требований.

    КПД ДВС можно повысить с помощью современных систем процессорного управления топливоподачей, зажиганием и фазами газораспределения. Степень сжатия современных двигателей, как правило, имеет значения, близкие к предельным (спорный момент, см. Цикл Миллера).

    Факторы, влияющие на мощность двигателя

    Четырёхтактный цикл
    1=верхняя мёртвая точка
    2=нижняя мёртвая точка
    A: такт впуска
    B: такт сжатия
    C: такт рабочего хода
    D: такт выпуска

    Мощность поршневого двигателя зависит от объёма цилиндров, объёмным КПД, потерь энергии — газодинамических, тепловых и механических, степени сжатия топливо-воздушной смеси, содержания кислорода в воздухе и частоты вращения. Мощность двигателя зависит также от пропускной способности тактов всасывания и выхлопа, а значит, от их проходных сечений, длины и конфигурации каналов, а также от диаметров клапанов, больше впускных. Это справедливо для любых поршневых двигателей. Максимальная мощность ДВС достигается при наивысшем наполнении цилиндров. Частота вращения коленвала в конечном счёте ограничена прочностью материалов и свойствами смазки. Клапана, поршни и коленчатые валы испытывают больши́е динамические нагрузки. На высоких оборотах двигателя могут происходить физические повреждения поршневых колец, механический контакт клапанов с поршнями, что приводит к разрушению двигателя. Поршневые кольца вертикально колеблются в канавках поршней. Эти колебания ухудшают уплотнение между поршнем и гильзой, что приводит к потере компрессии, падении мощности и КПД в целом. Если коленвал вращается слишком быстро, клапанные пружины не успевают достаточно быстро закрывать клапана. Это может привести к контакту поршней с клапанами и вызывать серьёзные повреждения, поэтому на скоростных спортивных двигателях используют привод клапанов без возвратных пружин. Так, «Даймлер-Бенц» серийно выпускает моторы с десмодромным управлением клапанами (с двойными кулачками, один открывает клапан, другой прижимает его к седлу), БМВ использует электромагнитное управление клапанами. На высоких скоростях ухудшаются условия работы смазки во всех парах трения.

    Совокупно с потерями на преодоление инерции возвратно-поступательно движущихся элементов ЦПГ, это ограничивает среднюю скорость поршней большинства серийных двигателей 10 м/с.

    Применение

    Четырёхтактные двигатели могут быть как бензиновыми, так и дизельными. Они находят самое широкое применение в качестве первичных двигателей на стационарных и транспортных энергоустановках.

    Как правило, четырёхтактные двигатели используются в тех случаях, когда имеется возможность более или менее широко варьировать соотношение оборотов вала со снимаемой мощностью и крутящим моментом либо тогда, когда это соотношение не играет роли при работе машины. Например, двигатель, нагруженный электрогенератором, в принципе может иметь любую рабочую характеристику и согласуется с нагрузкой только по рабочему диапазону оборотов, которые в принципе могут быть любыми, приемлемыми для генератора. Использование промежуточных передач вообще делает четырёхтактный двигатель более адаптированным к нагрузкам в самых широких пределах. Они же являются более предпочтительными в тех случаях, когда установка длительное время работает вне установившегося режима — благодаря более совершенной газодинамике их работа в переходных режимах и режимах со снятием частичной мощности оказывается более устойчивой.

    При работе на вал в заданном диапазоне оборотов, особенно тихоходный (гребной вал теплохода), предпочтительнее использование двухтактных двигателей, как имеющих более выгодные массово-мощностные характеристики на низких оборотах.

    Примечания

    Ссылки

    • Рикардо Г.Р. Быстроходные двигатели внутреннего сгорания. — М.: ГНТИ Машиностроительной литературы, 1960.

    принцип работы, ремонт :: SYL.ru

    Двигатели внутреннего сгорания должны были заменить промышленную паровую машину. Однако энтузиасты, которые работали над созданием мотора, смогли ощутить потенциал, который заложен в него. Изобретателям удалось отыскать способы, которые позволили в значительных пределах увеличить мощность агрегата без существенного увеличения массы. Так, Николаус Отто сыграл одну из главных ролей в этом проекте.

    работа четырехтактного двигателя Он создал самый первый четырехтактный двигатель внутреннего сгорания.

    Как Отто двигатель разрабатывал

    Агрегат, изобретенный ученым по имени Альфонс Бо де Роша, а затем построенный немецким инженером Николаусом Отто в 1867 году, в те годы считался максимумом технологичности и практически совершенством. Аналогов для него просто не существовало. Мотор был очень недорогим в эксплуатации, имел компактные размеры, а также ему не нужно было частое обслуживание.

    Работа четырехтактного двигателя была построена по четкому алгоритму. Сегодня его называют «циклом Отто». В 1875 г. Николаус Отто в своей компании выпускал больше, чем 600 двигателей за год.

    От четырехтактного ДВС до автомобиля

    В команде инженеров, которые работали над созданием агрегата, был один талантливый парень – Готлиб Даймлер.

    четырехтактный двигатель

    Он тогда горел идеей создания на базе этого мотора настоящего автомобиля. Но Отто не желал модернизировать уже имевшийся успешный мотор. Даймлер был вынужден уйти из проекта, но желание построить автомобиль никуда не делось.

    В итоге вместе со своим другом и единомышленником в 1889 году Даймлер таки собирает автомобиль, в основе которого лежит бензиновый четырехтактный двигатель, функционирующий по алгоритму Отто.

    Отличие 4-тактного двигателя от 2-тактного

    Цикл работы ДВС – это несколько процессов, которые направлены на получение порции силы, которая будет воздействовать на коленвал. Цикл этот состоит из впрыска топлива, сжатия, зажигания топливной смеси, расширения газов, выпуска.

    Такт в двигателе внутреннего сгорания – это один ход поршня либо вверх, либо вниз. В двухтактном моторе за один оборот коленвала совершается два такта. Когда газы расширяются, поршень совершает полезную работу.

    Агрегаты, где рабочий ход происходит в два такта, называют двухтактными. А если за два оборота коленчатого вала совершается четыре такта, то это уже четырехтактный двигатель.

    И те, и другие могут быть как бензиновыми, так и для дизельного топлива. Чтобы понять особенности конструкции и эксплуатации, различия между разными моторами, нужно рассмотреть принципы их работы.

    Принцип работы четырехтактного двигателя

    Главное отличие 4-тактного ДВС от 2-тактного — в работе газораспределения.

    одноцилиндровый четырехтактный двигатель Так, имеются отдельные фазы для впуска и выпуска. Этими фазами заведуют впускные и выпускные клапаны, которые располагаются в головке блока цилиндров. Открываются и закрываются клапаны при помощи распределительного вала, который приводится в действие от вращения коленчатого вала.

    Такт впуска

    На первом такте осуществляется впуск. В этот самый момент поршень начинает свое движение вниз из своей верхней мертвой точки. В цилиндре вследствие этого создается разряжение. Тем временем открывается впускной клапан. Топливная смесь всасывается в полость цилиндра. Когда поршень достигает своего крайнего нижнего положения, клапан впуска закрыватся и впускная фаза полностью завершается.

    Сжатие топливной смеси

    Это второй такт. Здесь поршень движется вверх, а клапаны полностью закрыты. В этот момент топливно-воздушная смесь сжимается, тем самым нагреваясь. Это нужно для более эффективного сгорания смеси.

    Рабочий ход поршня

    Поршень не доходит до своего крайнего верхнего положения. В бензиновых агрегатах – от свечи, а в дизельных – от сжатия топливная смесь загорается. Газы от сгорания очень резко расширяются, сила воздействует на поршень, и он идет вниз. Так четырехтактный двигатель совершает работу.

    Выпуск отработанных газов

    После того как поршень совершил свою полезную работу, он находится в крайнем нижнем положении. Теперь нужно удалить из полости цилиндра отработанные газы. Это выполняется через выпускной клапан. Газы выталкиваются из цилиндра в тот момент, когда поршень идет вверх.

    Такты в дизельных ДВС

    Порядок или алгоритм в дизельных двигателях отличается только тем, что в момент сжатия в полость цилиндра подается лишь воздух. Дизельное топливо подается в камеру только в конце такта сжатия топлива при помощи форсунок.

    Отличия двухтактного и четырехтактного двигателя

    Среди основных отличий, как уже говорилось, выделяется разная система газообмена.

    четырехтактный двигатель внутреннего сгорания Двигатель внутреннего сгорания имеет для этого специальный газораспределительный механизм, который отвечает за открытие и закрытие клапанов в нужный момент цикла.

    В двухтактном же моторе и процесс заполнения камеры сгорания, и ее очистка осуществляются вместе с тактом сжатия и расширения. Для этого в цилиндре имеются специальные технологические отверстия для впуска смеси и выброса газов. В агрегатах с такой конструкцией нет механизма ГРМ, что делает эти моторы гораздо проще и легче.

    Одноцилиндровый четырехтактный двигатель

    Моторы этой конструкции очень распространены. Их можно найти не только в автомобилях, но и в мотоциклах, скутерах, тракторах, мотоблоках. В Китае производят литровые двигатели, которые используются для работы с мотоблоками.

    Одно из главных достоинств таких ДВС — это очень маленькое отношение площади камеры сгорания к объему. Это дает минимальные потери тепловой энергии. КПД в таких двигателях очень высокий.

    Устройство аналогично многоцилиндровым двигателям. Ничего нового здесь нет.

    бензиновый четырехтактный двигатель Все те же четыре рабочих такта.

    Этот четырехтактный двигатель предназначен для применения в утилитарных мотоциклах, мопедах, скутерах.

    Капризы одноцилиндровых моторов

    Во время работы двигателя создаются очень высокие температуры. Детали, которые работают в парах трения, должны периодически охлаждаться и хорошо смазываться. Зазоры между узлами нужно промывать, чтобы удалить продукты износа. Также хорошее масло отлично отводит тепло от поверхностей, которые работают наиболее интенсивно.

    Также нужно позаботиться о хорошей дополнительной системе охлаждения. В мотоциклах и скутерах охлаждение зачастую воздушное.

    Четырехтактники на мотоциклах

    Да, эти моторы очень популярны среди производителей хороших, серьезных мотоциклов. Основное отличие – это дизайн. Если в автомобилях двигатель спрятан под капотом и дизайн его особо не разрабатывали, то в мире мотоциклов внешний вид силового агрегата имеет серьезное значение.

    Вот уже более 15 лет в моде двухцилиндровый четырехтактный двигатель мотоцикла, представленный сегодня множеством моделей с самым разным объемом. Отличить такие двигатели можно по характерному звуку.

    Однако среди мотоциклистов особой популярностью пользуются рядные четырехцилиндровые агрегаты. Эти моторы лишь немного опережают автомобильные ДВС. К примеру, схема на четырех клапанах лишь недавно получила признание в строительстве автомобилей. А на мотоциклах она использовалась еще с 70-х.

    Для мотоцикла четырехтактник является более актуальным. Так, эти ДВС более экономичны, эффективны, экологичны, чем двухтактные агрегаты. Это – преимущества данных двигателей на мотоциклах. Также двигатели для мотоциклов сделаны таким образом, чтобы работать на высоких оборотах. Максимальная мощность выдается на оборотах до 14-16 тысяч на современных моделях.

    Новые технологии по старому принципу

    С того самого момента, как изобрели четырехтактный двигатель, он постоянно совершенствовался.

    принцип работы четырехтактного двигателя Много новинок пришлось на механизм ГРМ. К примеру, сейчас число клапанов на цилиндр может доходить и до 5-ти. Современные производители также применяют особые системы изменения фаз распределения газов.

    Произошли изменения и в системе питания. Современные моторы больше не используют карбюратор – везде инжекторы и электроника.

    Чтобы улучшить наполняемость камер сгорания воздухом, применяют системы наддува. Это позволяет увеличить мощность при малом объеме, а также снизить расход топлива.

    Но при всем этом принцип действия ДВС остается все тем же, каким и был.

    Четыре такта: недостатки и достоинства

    Основной и «жирный» плюс таких агрегатов – это экономичность. К тому же они не слишком шумные.

    четырехтактный двигатель мотоцикла Применение вместе с ними катализаторов позволяет снизить токсичность выброса отработанных газов.

    Еще одно преимущество — это, конечно же, высокая надежность. Ресурс может доходить до миллиона километров, и это далеко не предел. Ремонт четырехтактного двигателя нужно делать не так часто.

    Среди недостатков – сложная конструкция, дорогое производство, требовательность в эксплуатации. Этим агрегатам обязательно нужно качественное топливо и масло. Осуществить ремонт самостоятельно практически невозможно.

    Чтобы с этими моторами никогда не было проблем, «кормите» их только качественным бензином. И тогда они будут работать долго, надежно и исправно. Конструкция, которая столько лет не меняется, – это показатель надежности и эффективности.

Отправить ответ

avatar
  Подписаться  
Уведомление о