Двс это что – Двигатель внутреннего сгорания — Википедия. Что такое Двигатель внутреннего сгорания

Содержание

Двигатель внутреннего сгорания — Википедия. Что такое Двигатель внутреннего сгорания

ДВС, работающий по циклу Отто: 1 — такт впуска топливо-воздушной смеси; 2 — такт сжатия и воспламенения смеси; 3 — такт расширения сгорающей смеси; 4 — такт выпуска продуктов горения

Дви́гатель вну́треннего сгора́ния (ДВС) — двигатель, в котором топливо сгорает непосредственно в рабочей камере (внутри) двигателя. ДВС преобразует тепловую энергию от сгорания топлива в механическую работу.

По сравнению с двигателями внешнего сгорания ДВС:

  • не имеет дополнительных элементов теплопередачи — топливо само образует рабочее тело;
  • компактнее, так как не имеет целого ряда дополнительных агрегатов;
  • легче;
  • экономичнее;
  • потребляет топливо, обладающее весьма жёстко заданными параметрами (испаряемостью, температурой вспышки паров, плотностью, теплотой сгорания, октановым или цетановым числом), так как от этих свойств зависит сама работоспособность ДВС.

История создания

В 1807 г. французско-швейцарский изобретатель Франсуа Исаак де Риваз построил первый поршневой двигатель, называемый часто двигателем де Риваза[en]. Двигатель работал на газообразном водороде, имея элементы конструкции, с тех пор вошедшие в последующие прототипы ДВС: поршневую группу и искровое зажигание. Кривошипно-шатунного механизма в конструкции двигателя ещё не было.

Первый практически пригодный двухтактный газовый ДВС был сконструирован французским механиком Этьеном Ленуаром в 1860 году. Мощность составляла 8,8 кВт (11,97 л. с.). Двигатель представлял собой одноцилиндровую горизонтальную машину двойного действия, работавшую на смеси воздуха и светильного газа с электрическим искровым зажиганием от постороннего источника. В конструкции двигателя появился кривошипно-шатунный механизм. КПД двигателя не превышал 4,65 %. Несмотря на недостатки, двигатель Ленуара получил некоторое распространение. Использовался как лодочный двигатель.

Познакомившись с двигателем Ленуара, осенью 1860 года выдающийся немецкий конструктор Николаус Аугуст Отто с братом построили копию газового двигателя Ленуара и в январе 1861 года подали заявку на патент на двигатель с жидким топливом на основе газового двигателя Ленуара в Министерство коммерции Пруссии, но заявка была отклонена. В 1863 году создал двухтактный атмосферный двигатель внутреннего сгорания. Двигатель имел вертикальное расположение цилиндра, зажигание открытым пламенем и КПД до 15 %. Вытеснил двигатель Ленуара.

В 1876 г. Николаус Август Отто построил более совершенный четырёхтактный газовый двигатель внутреннего сгорания.

В 1880-х годах Огнеслав Степанович Костович в России построил первый бензиновый карбюраторный двигатель.

Мотоцикл Даймлера с ДВС 1885 года

В 1885 году немецкие инженеры Готтлиб Даймлер и Вильгельм Майбах разработали лёгкий бензиновый карбюраторный двигатель. Даймлер и Майбах использовали его для создания первого мотоцикла в 1885, а в 1886 году — на первом автомобиле.

Немецкий инженер Рудольф Дизель стремился повысить эффективность двигателя внутреннего сгорания и в 1897 предложил двигатель с воспламенением от сжатия. На заводе «Людвиг Нобель» Эммануила Людвиговича Нобеля в Петербурге в 1898—1899 Густав Васильевич Тринклер усовершенствовал этот двигатель, использовав бескомпрессорное распыливание топлива, что позволило применить в качестве топлива нефть. В результате бескомпрессорный двигатель внутреннего сгорания высокого сжатия с самовоспламенением стал наиболее экономичным стационарным тепловым двигателем. В 1899 на заводе «Людвиг Нобель» построили первый дизель в России и развернули массовое производство дизелей. Этот первый дизель имел мощность 20 л. с., один цилиндр диаметром 260 мм, ход поршня 410 мм и частоту вращения 180 об/мин. В Европе дизельный двигатель, усовершенствованный Густавом Васильевичем Тринклером, получил название «русский дизель» или «Тринклер-мотор». На всемирной выставке в Париже в 1900 двигатель Дизеля получил главный приз. В 1902 Коломенский завод купил у Эммануила Людвиговича Нобеля лицензию на производство дизелей и вскоре наладил массовое производство.

В 1908 году главный инженер Коломенского завода Р. А. Корейво строит и патентует во Франции двухтактный дизель с противоположно-движущимися поршнями и двумя коленвалами. Дизели Корейво стали широко использоваться на теплоходах Коломенского завода. Выпускались они и на заводах Нобелей.

В 1896 году Чарльз В. Харт и Чарльз Парр разработали двухцилиндровый бензиновый двигатель. В 1903 году их фирма построила 15 тракторов. Их шеститонный #3 является старейшим трактором с двигателем внутреннего сгорания в Соединенных Штатах и хранится в Смитсоновском Национальном музее американской истории в Вашингтоне, округ Колумбия. Бензиновый двухцилиндровый двигатель имел совершенно ненадёжную систему зажигания и мощность 30 л. с. на холостом ходу и 18 л. с. под нагрузкой

[1].

Дэн Элбон с его прототипом сельскохозяйственного трактора Ivel

Первым практически пригодным трактором с двигателем внутреннего сгорания был американский трёхколёсный трактор lvel Дэна Элборна 1902 года. Было построено около 500 таких лёгких и мощных машин.

В 1903 году состоялся полёт первого самолёта братьев Орвила и Уилбура Райт. Двигатель самолёта изготовил механик Чарли Тэйлор. Основные части двигателя сделали из алюминия. Двигатель Райт-Тэйлора был примитивным вариантом бензинового инжекторного двигателя.

На первом в мире теплоходе — нефтеналивной барже «Вандал», построенной в 1903 году в России на Сормовском заводе для «Товарищества Братьев Нобель», были установлены три четырёхтактных двигателя Дизеля мощностью по 120 л. с. каждый. В 1904 году был построен теплоход «Сармат».

В 1924 по проекту Якова Модестовича Гаккеля на Балтийском судостроительном заводе в Ленинграде был создан тепловоз Ю

Э2 (ЩЭЛ1).

Практически одновременно в Германии по заказу СССР и по проекту профессора Ю. В. Ломоносова по личному указанию В. И. Ленина в 1924 году на немецком заводе Эсслинген (бывш. Кесслер) близ Штутгарта построен тепловоз Ээл2 (первоначально Юэ001).

Виды двигателей внутреннего сгорания

Поршневой ДВС
Газотурбинный ДВС
  • Газовая турбина — преобразование энергии осуществляется ротором с клиновидными лопатками.
  • Роторно-поршневые двигатели — в них преобразование энергии осуществляется за счёт вращения рабочими газами ротора специального профиля (двигатель Ванкеля).

ДВС классифицируют:

  • по назначению — на транспортные, стационарные и специальные.
  • по роду применяемого топлива — лёгкие жидкие (бензин, газ), тяжёлые жидкие (дизельное топливо, судовые мазуты).
  • по способу образования горючей смеси — внешнее (карбюратор) и внутреннее (в цилиндре ДВС).
  • по объёму рабочих полостей и весогабаритным характеристикам — лёгкие, средние, тяжёлые, специальные.

Помимо приведённых выше общих для всех ДВС критериев классификации существуют критерии, по которым классифицируются отдельные типы двигателей. Так, поршневые двигатели можно классифицировать по количеству и расположению цилиндров, коленчатых и распределительных валов, по типу охлаждения, по наличию или отсутствию крейцкопфа, наддува (и по типу наддува), по способу смесеобразования и по типу зажигания, по количеству карбюраторов, по типу газораспределительного механизма, по направлению и частоте вращения коленчатого вала, по отношению диаметра цилиндра к ходу поршня, по степени быстроходности (средней скорости поршня).

Октановое число топлива

Энергия передаётся на коленчатый вал двигателя от расширяющихся газов во время рабочего хода. Сжатие топливо-воздушной смеси до объёма камеры сгорания повышает эффективность работы двигателя и увеличивает его КПД, но увеличение степени сжатия также увеличивает вызываемое сжатием нагревание рабочей смеси согласно закону Шарля.

Если топливо легковоспламеняемое, вспышка происходит до достижения поршнем ВМТ. Это, в свою очередь, заставит поршень провернуть коленвал в обратном направлении — такое явление называют обратной вспышкой.

Октановое число является мерой процентного содержания изооктана в гептан-октановой смеси и отражает способность топлива противостоять самовоспламенению под воздействием температуры.

Топливо с более высокими октановыми числами позволяют двигателю с высокой степенью сжатия работать без склонности к самовоспламенению и детонации и, стало быть, иметь более высокую степень сжатия и более высокий КПД.

Работа дизельных двигателей обеспечивается самовоспламенением от сжатия в цилиндре чистого воздуха или бедной газовоздушной смеси, неспособной к самостоятельному горению (газодизель) и отсутствия в заряде топлива до последнего момента.

Отношение диаметра цилиндра к ходу поршня

Одним из основополагающих конструктивных параметров ДВС является отношение хода поршня к диаметру цилиндра (или наоборот). Для более быстроходных бензиновых двигателей это отношение близко к 1, на дизельных моторах ход поршня, как правило, тем больше диаметра цилиндра, чем больше двигатель. Оптимальным с точки зрения газодинамики и охлаждения поршня является соотношение 1 : 1. Чем больше ход поршня, тем больший крутящий момент развивает двигатель и тем ниже его рабочий диапазон оборотов. Наоборот, чем больше диаметр цилиндра, тем выше рабочие обороты двигателя и тем ниже его крутящий момент на низких оборотах. Как правило, короткоходные ДВС (особенно гоночные) имеют больший крутящий момент на единицу рабочего объема, но на относительно высоких оборотах (больше 5000 об/мин.). При большем диаметре цилиндра/поршня сложнее обеспечить должный теплоотвод от донышка поршня ввиду его больших линейных размеров, но при высоких рабочих оборотах скорость поршня в цилиндре не превышает скорости поршня более длинноходного на его рабочих оборотах.

Бензиновые

Бензиновые карбюраторные

Смесь топлива с воздухом готовится в карбюраторе, далее смесь подаётся в цилиндр, сжимается, а затем поджигается при помощи искры, проскакивающей между электродами свечи. Основная характерная особенность топливо-воздушной смеси в этом случае — гомогенность.

Бензиновые инжекторные

Также, существует способ смесеобразования путём впрыска бензина во впускной коллектор или непосредственно в цилиндр при помощи распыляющих форсунок (инжектор). Существуют системы одноточечного (моновпрыск), и распределённого впрыска различных механических и электронных систем. В механических системах впрыска дозация топлива осуществляется плунжерно-рычажным механизмом с возможностью электронной корректировки состава смеси. В электронных системах смесеобразование осуществляется с помощью электронного блока управления (ЭБУ), управляющего электрическими бензиновыми форсунками.

Дизельные, с воспламенением от сжатия

Дизельный двигатель характеризуется воспламенением топлива без использования свечи зажигания. В разогретый в цилиндре воздух от адиабатического сжатия (до температуры, превышающей температуру воспламенения топлива) через форсунку впрыскивается порция топлива. В процессе впрыскивания топливной смеси происходит его распыление, а затем вокруг отдельных капель топливной смеси возникают очаги сгорания, по мере впрыскивания топливная смесь сгорает в виде факела. Так как дизельные двигатели не подвержены явлению детонации, характерному для двигателей с принудительным воспламенением, в них допустимо использование более высоких степеней сжатия (до 26), что, в сочетании с длительным горением, обеспечивающим постоянное давление рабочего тела, благотворно сказывается на КПД данного типа двигателей, который может превышать 50 % в случае с крупными судовыми двигателями.

Дизельные двигатели являются менее быстроходными и характеризуются большим крутящим моментом на валу. Также некоторые крупные дизельные двигатели приспособлены для работы на тяжёлых топливах, например, мазутах. Запуск крупных дизельных двигателей осуществляется, как правило, за счёт пневматической схемы с запасом сжатого воздуха, либо, в случае с дизель-генераторными установками, от присоединённого электрического генератора, который при запуске выполняет роль стартера.

Вопреки расхожему мнению, современные двигатели, традиционно называемые дизельными, работают не по циклу Дизеля, а по циклу Тринклера — Сабатэ со смешанным подводом теплоты.

Недостатки дизельных двигателей обусловлены особенностями рабочего цикла — более высокой механической напряжённостью, требующей повышенной прочности конструкции и, как следствие, увеличения её габаритов, веса и увеличения стоимости за счёт усложнённой конструкции и использования более дорогих материалов. Также дизельные двигатели за счет гетерогенного сгорания характеризуются неизбежными выбросами сажи и повышенным содержанием оксидов азота в выхлопных газах.

Газовые двигатели

Двигатель, сжигающий в качестве топлива углеводороды, находящиеся в газообразном состоянии при нормальных условиях:

  • смеси сжиженных газов — хранятся в баллоне под давлением насыщенных паров (до 16 атм). Испарённая в испарителе жидкая фаза или паровая фаза смеси ступенчато теряет давление в газовом редукторе до близкого атмосферному, и всасывается двигателем во впускной коллектор через воздушно-газовый смеситель или впрыскивается во впускной коллектор посредством электрических форсунок. Зажигание осуществляется при помощи искры, проскакивающей между электродами свечи.
  • сжатые природные газы — хранятся в баллоне под давлением 150—200 атм. Устройство систем питания аналогично системам питания сжиженным газом, отличие — отсутствие испарителя.
  • генераторный газ — газ, полученный превращением твёрдого топлива в газообразное. В качестве твёрдого топлива используются:

Газодизельные

Основная порция топлива приготавливается, как в одной из разновидностей газовых двигателей, но зажигается не электрической свечой, а запальной порцией дизтоплива, впрыскиваемого в цилиндр аналогично дизельному двигателю.

Роторно-поршневой

Предложен изобретателем Ванкелем в начале XX века. Основа двигателя — треугольный ротор (поршень), вращающийся в камере особой 8-образной формы, исполняющий функции поршня, коленвала и газораспределителя. Такая конструкция позволяет осуществить любой 4-тактный цикл Дизеля, Стирлинга или Отто без применения специального механизма газораспределения. За один оборот двигатель выполняет три полных рабочих цикла, что эквивалентно работе шестицилиндрового поршневого двигателя. Строился серийно фирмой НСУ в Германии (автомобиль RO-80), ВАЗом в СССР (ВАЗ-21018 «Жигули», ВАЗ-416, ВАЗ-426, ВАЗ-526), Маздой в Японии (Mazda RX-7, Mazda RX-8). При своей принципиальной простоте имеет ряд существенных конструктивных сложностей, делающих его широкое внедрение весьма затруднительным. Основные трудности связаны с созданием долговечных работоспособных уплотнений между ротором и камерой и с построением системы смазки.

В Германии в конце 70-х годов XX века существовал анекдот: «Продам НСУ, дам в придачу два колеса, фару и 18 запасных моторов в хорошем состоянии».

  • RCV — двигатель внутреннего сгорания, система газораспределения которого реализована за счёт движения поршня, который совершает возвратно-поступательные движения, попеременно проходя впускной и выпускной патрубок.

Комбинированный двигатель внутреннего сгорания

  •  — двигатель внутреннего сгорания, представляющий собой комбинацию из поршневой и лопаточной машин (турбина, компрессор), в котором обе машины в соотносимой мере участвуют в осуществлении рабочего процесса. Примером комбинированного ДВС служит поршневой двигатель с газотурбинным наддувом (турбонаддув). Большой вклад в теорию комбинированных двигателей внёс советский инженер, профессор А. Н. Шелест.

Турбонагнетание

Наиболее распространённым типом комбинированных двигателей является поршневой с турбонагнетателем. Турбонагнетатель или турбокомпрессор (ТК, ТН) — это нагнетатель, который приводится в движение выхлопными газами. Получил своё название от слова «турбина» (фр. turbine от лат. turbo — вихрь, вращение). Это устройство состоит из двух частей: роторного колеса турбины, приводимого в движение выхлопными газами, и центробежного компрессора, закреплённых на противоположных концах общего вала. Струя рабочего тела (в данном случае, выхлопных газов) воздействует на лопатки, закреплённые по окружности ротора, и приводит их в движение вместе с валом, который изготовляется единым целым с ротором турбины из сплава, близкого к легированной стали. На валу, помимо ротора турбины, закреплён ротор компрессора, изготовленный из алюминиевых сплавов, который при вращении вала позволяет нагнетать воздух в цилиндры ДВС. Таким образом, в результате действия выхлопных газов на лопатки турбины одновременно раскручиваются ротор турбины, вал и ротор компрессора. Применение турбокомпрессора совместно с промежуточным охладителем воздуха (интеркулером) позволяет обеспечивать подачу более плотного воздуха в цилиндры ДВС (в современных турбированных двигателях используется именно такая схема). Часто при применении в двигателе турбокомпрессора говорят о турбине, не упоминая компрессора. Турбокомпрессор — это одно целое. Нельзя использовать энергию выхлопных газов для подачи воздушной смеси под давлением в цилиндры ДВС при помощи только турбины. Нагнетание обеспечивает именно та часть турбокомпрессора, которая именуется компрессором.

На холостом ходу, при небольших оборотах, турбокомпрессор вырабатывает небольшую мощность и приводится в движение малым количеством выхлопных газов. В этом случае турбонагнетатель малоэффективен, и двигатель работает примерно так же, как без нагнетания. Когда от двигателя требуется намного большая выходная мощность, то его обороты, а также зазор дросселя, увеличиваются. Пока количества выхлопных газов достаточно для вращения турбины, по впускному трубопроводу подаётся намного больше воздуха.

Турбонагнетание позволяет двигателю работать более эффективно, поскольку тому что турбонагнетатель использует энергию выхлопных газов, которая, в противном случае, была бы (большей частью) потеряна.

Однако существует технологическое ограничение, известное как «турбояма» («турбозадержка») (за исключением моторов с двумя турбокомпрессорами — маленьким и большим, когда на малых оборотах работает маленький ТК, а на больших — большой, совместно обеспечивая подачу необходимого количества воздушной смеси в цилиндры или при использованием турбины с изменяемой геометрией, в автоспорте также применяется принудительный разгон турбины с помощью системы рекуперации энергии[2]). Мощность двигателя увеличивается не мгновенно из-за того, что на изменение частоты вращения двигателя, обладающего некоторой инерцией, будет затрачено определённое время, а также из-за того, что чем больше масса турбины, тем больше времени потребуется на её раскручивание и создание давления, достаточного для увеличения мощности двигателя. Кроме того, повышенное выпускное давление приводит к тому, что выхлопные газы передают часть своего тепла механическим частям двигателя (эта проблема частично решается заводами-изготовителями японских и корейских ДВС путём установки системы дополнительного охлаждения турбокомпрессора антифризом).

Циклы работы поршневых ДВС

Двухтактный цикл Схема работы четырёхтактного двигателя, цикл Отто
1. впуск
2. сжатие
3. рабочий ход
4. выпуск

Поршневые двигатели внутреннего сгорания классифицируются по количеству тактов в рабочем цикле на двухтактные и четырёхтактные.

Рабочий цикл четырёхтактных двигателей внутреннего сгорания занимает два полных оборота кривошипа или 720 градусов поворота коленчатого вала (ПКВ), состоящий из четырёх отдельных тактов:

  1. впуска,
  2. сжатия заряда,
  3. рабочего хода и
  4. выпуска (выхлопа).

Изменение рабочих тактов обеспечивается специальным газораспределительным механизмом, чаще всего он представлен одним или двумя распределительными валами, системой толкателей и клапанами, непосредственно обеспечивающими смену фазы. Некоторые двигатели внутреннего сгорания использовали для этой цели золотниковые гильзы (Рикардо), имеющие впускные и/или выхлопные окна. Сообщение полости цилиндра с коллекторами в этом случае обеспечивалось радиальным и вращательным движениями золотниковой гильзы, окнами открывающей нужный канал. Ввиду особенностей газодинамики — инерционности газов, времени возникновения газового ветра такты впуска, рабочего хода и выпуска в реальном четырёхтактном цикле перекрываются, это называется перекрытием фаз газораспределения. Чем выше рабочие обороты двигателя, тем больше перекрытие фаз и чем оно больше, тем меньше крутящий момент двигателя внутреннего сгорания на низких оборотах. Поэтому в современных двигателях внутреннего сгорания всё шире используются устройства, позволяющие изменять фазы газораспределения в процессе работы. Особенно пригодны для этой цели двигатели с электромагнитным управлением клапанами (BMW, Mazda). Имеются также двигатели с переменной степенью сжатия (SAAB AB), обладающие большей гибкостью характеристики.

Двухтактные двигатели имеют множество вариантов компоновки и большое разнообразие конструктивных систем. Основной принцип любого двухтактного двигателя — исполнение поршнем функций элемента газораспределения. Рабочий цикл складывается, строго говоря, из трёх тактов: рабочего хода, длящегося от верхней мёртвой точки (ВМТ) до 20—30 градусов до нижней мёртвой точки (НМТ), продувки, фактически совмещающей впуск и выхлоп, и сжатия, длящегося от 20—30 градусов после НМТ до ВМТ. Продувка, с точки зрения газодинамики, слабое звено двухтактного цикла. С одной стороны, невозможно обеспечить полное разделение свежего заряда и выхлопных газов, поэтому неизбежны либо потери свежей смеси, буквально вылетающей в выхлопную трубу (если двигатель внутреннего сгорания — дизель, речь идёт о потере воздуха), с другой стороны, рабочий ход длится не половину оборота, а меньше, что само по себе снижает КПД. В то же время длительность чрезвычайно важного процесса газообмена, в четырёхтактном двигателе занимающего половину рабочего цикла, не может быть увеличена. Двухтактные двигатели могут вообще не иметь системы газораспределения. Однако, если речь не идёт об упрощённых дешёвых двигателях, двухтактный двигатель сложнее и дороже за счёт обязательного применения воздуходувки или системы наддува, повышенная теплонапряжённость ЦПГ требует более дорогих материалов для поршней, колец, втулок цилиндров. Исполнение поршнем функций элемента газораспределения обязывает иметь его высоту не менее ход поршня + высота продувочных окон, что некритично в мопеде, но существенно утяжеляет поршень уже при относительно небольших мощностях. Когда же мощность измеряется сотнями лошадиных сил, увеличение массы поршня становится очень серьёзным фактором. Введение распределительных гильз с вертикальным ходом в двигателях Рикардо было попыткой сделать возможным уменьшение габаритов и массы поршня. Система оказалась сложной и дорогой в исполнении, кроме авиации, такие двигатели нигде больше не использовались. Выхлопные клапаны (при прямоточной клапанной продувке) имеют вдвое большую теплонапряжённость в сравнении с выхлопными клапанами четырёхтактных двигателей и худшие условия для теплоотвода, а их сёдла имеют более длительный прямой контакт с выхлопными газами.

Самой простой с точки зрения порядка работы и самой сложной с точки зрения конструкции является система Корейво, представленная в СССР и в России, в основном, тепловозными дизелями серий Д100 и танковыми дизелями ХЗТМ. Такой двигатель представляет собой симметричную двухвальную систему с расходящимися поршнями, каждый из которых связан со своим коленвалом. Таким образом, этот двигатель имеет два коленвала, механически синхронизированные; тот, который связан с выхлопными поршнями, опережает впускной на 20—30 градусов. За счёт этого опережения улучшается качество продувки, которая в этом случае является прямоточной, и улучшается наполнение цилиндра, так как в конце продувки выхлопные окна уже закрыты. В 30х — 40х годах XX века были предложены схемы с парами расходящихся поршней — ромбовидная, треугольная; существовали авиационные дизели с тремя звездообразно расходящимися поршнями, из которых два были впускными и один — выхлопным. В 20-х годах Юнкерс предложил одновальную систему с длинными шатунами, связанными с пальцами верхних поршней специальными коромыслами; верхний поршень передавал усилия на коленвал парой длинных шатунов, и на один цилиндр приходилось три колена вала. На коромыслах стояли также квадратные поршни продувочных полостей. Двухтактные двигатели с расходящимися поршнями любой системы имеют, в основном, два недостатка: во-первых, они весьма сложны и габаритны, во-вторых, выхлопные поршни и гильзы в зоне выхлопных окон имеют значительную температурную напряжённость и склонность к перегреву. Кольца выхлопных поршней также являются термически нагруженными, склонны к закоксовыванию и потере упругости. Эти особенности делают конструктивное исполнение таких двигателей нетривиальной задачей.

Двигатели с прямоточной клапанной продувкой оснащены распределительным валом и выхлопными клапанами. Это значительно снижает требования к материалам и исполнению ЦПГ. Впуск осуществляется через окна в гильзе цилиндра, открываемые поршнем. Именно так компонуется большинство современных двухтактных дизелей. Зона окон и гильза в нижней части во многих случаях охлаждаются наддувочным воздухом.

В случаях, когда одним из основных требований к двигателю является его удешевление, используются разные виды кривошипно-камерной контурной оконно-оконной продувки — петлевая, возвратно-петлевая (дефлекторная) в разнообразных модификациях. Для улучшения параметров двигателя применяются разнообразные конструктивные приёмы — изменяемая длина впускного и выхлопного каналов, может варьироваться количество и расположение перепускных каналов, используются золотники, вращающиеся отсекатели газов, гильзы и шторки,, изменяющие высоту окон (и, соответственно, моменты начала впуска и выхлопа). Большинство таких двигателей имеет воздушное пассивное охлаждение. Их недостатки — относительно невысокое качество газообмена и потери горючей смеси при продувке, при наличии нескольких цилиндров секции кривошипных камер приходится разделять и герметизировать, усложняется и удорожается конструкция коленвала.

Дополнительные агрегаты, требующиеся для ДВС

Недостатком двигателя внутреннего сгорания является то, что он развивает наивысшую мощность только в узком диапазоне оборотов. Поэтому неотъемлемым атрибутом двигателя внутреннего сгорания является трансмиссия. Лишь в отдельных случаях (например, в самолётах) можно обойтись без сложной трансмиссии. Постепенно завоёвывает мир идея гибридного автомобиля, в котором мотор всегда работает в оптимальном режиме.

Кроме того, двигателю внутреннего сгорания необходимы система питания (для подачи топлива и воздуха — приготовления топливо-воздушной смеси), выхлопная система (для отвода выхлопных газов), также не обойтись без системы смазки (предназначена для уменьшения сил трения в механизмах двигателя, защиты деталей двигателя от коррозии, а также совместно с системой охлаждения для поддержания оптимального теплового режима), системы охлаждения (для поддержания оптимального теплового режима двигателя), система запуска (применяются способы запуска: электростартерный, с помощью вспомогательного пускового двигателя, пневматический, с помощью мускульной силы человека), система зажигания (для воспламенения топливо-воздушной смеси, применяется у двигателей с принудительным воспламенением).

Технологические особенности изготовления

К обработке отверстий в различных деталях, в том числе в деталях двигателя (отверстий головки блоков цилиндров (ГБЦ), гильз цилиндров, отверстий кривошипной и поршневой головок шатунов, отверстий шестерён) и т. д., предъявляются высокие требования. Используются высокоточные технологии шлифования и хонингования.

См. также

Примечания

Ссылки

ДВИГАТЕЛЬ — это… Что такое ДВИГАТЕЛЬ?

  • двигатель — мотор, движок; движущая сила; болиндер, ветряк, пружина, рычаг, сердце, нефтянка Словарь русских синонимов. двигатель 1. мотор 2. см. рычаг Словарь синонимов русского языка. Практический справочник. М.: Русский язык …   Словарь синонимов

  • ДВИГАТЕЛЬ — устройство, преобразующее один вид энергии в др. вид или механическую работу; (1) Д. внутреннего сгорания тепловой двигатель, внутри которого происходит сжигание топлива и часть выделившейся при этом теплоты преобразуется в механическую работу.… …   Большая политехническая энциклопедия

  • ДВИГАТЕЛЬ — ДВИГАТЕЛЬ, двигателя, муж. 1. Машина, приводящая что нибудь в движение; механизм, преобразующий какой нибудь вид энергии в механическую работу (тех.). Двигатель внутреннего сгорания. Электрический двигатель. 2. Сила, способствующая прогрессу в… …   Толковый словарь Ушакова

  • ДВИГАТЕЛЬ — энергосиловая машина, преобразующая какую либо энергию в механическую работу. Подразделяют на первичные и вторичные. Первичные (гидротурбины, двигатель внутреннего сгорания и др.) непосредственно преобразуют энергию природных ресурсов (воды,… …   Большой Энциклопедический словарь

  • Двигатель — энергосиловая машина, преобразующая какую либо энергию в механическую работу. Двигатели подразделяются на первичные и вторичные. Первичные (гидротурбины, двигатель внутреннего сгорания и др.) непосредственно преобразуют энергию природных ресурсов …   Официальная терминология

  • ДВИГАТЕЛЬ — ДВИГАТЕЛЬ, машина, преобразующая различные виды энергии в механическую работу. Работа может быть получена от вращающегося ротора, возвратно поступательно движущегося поршня или от реактивного аппарата. Различают первичные и вторичные двигатели.… …   Современная энциклопедия

  • ДВИГАТЕЛЬ — ДВИГАТЕЛЬ, я, муж. 1. Машина, преобразующая какой н. вид энергии в механическую работу. Д. внутреннего сгорания. Ракетный д. 2. перен., чего. О силе, содействующей росту, развитию в какой н. области (высок.) Труд д. прогресса. Толковый словарь… …   Толковый словарь Ожегова

  • ДВИГАТЕЛЬ — (Engine) машина, работающая по прямому замкнутому циклу и превращающая какой нибудь вид энергии в механическую работу. Самойлов К. И. Морской словарь. М. Л.: Государственное Военно морское Издательство НКВМФ Союза ССР, 1941 …   Морской словарь

  • двигатель — – машина, преобразующая энергию сгорания горючки в механическую энергию – сердце любого авто. EdwART. Словарь автомобильного жаргона, 2009 …   Автомобильный словарь

  • двигатель — Машина, преобразующая какой либо вид энергии в механическую работу [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)] Синонимы мотор EN enginemotor DE Motor FR moteur …   Справочник технического переводчика

  • Обсуждение:Двигатель внутреннего сгорания — Википедия

    Вообще-то про дизельный двигатель написан полнейший бред! Никакого воспламенения СМЕСИ в цилиндре нет, так как смесь топлива с воздухом не образуется. В цилиндре сжимается чистый ВОЗДУХ, распыливание толива происходит в конце такта сжатия через форсунки, при этом струя топлива загорается от воздействия температуры сжатого в цилинре воздуха. Это классический дизель (как 2-х тактный, так и 4-х тактный). В предкамерных дизелях сгорание топлива происходит аналогично, только не в самом цилиндре, а в камере, установленной перед цилиндром.

    Воздух, знаете ли, не горит. Он-то перед рабочим тактом сжимается, а вот горит всё же смесь (топливо само по себе тоже гореть бы не стало, без воздуха). DL24 06:24, 28 ноября 2009 (UTC)

    Специально для DL24. Разумеется, любое топливо в любых условиях сгорает при взаимодействии с окислителем. Но это совсем не означает, что они должны смешиваться. Отнюдь! Кусок угла сгорает, даже не переставая быть твердым, то же самое можно сказать о сгорании куска серы, цум байшпиль. В дизеле топливо впрыскивается в нагретый до ТИ воздух в виде более или менее крупных капель, чем мельче, разумеется, тем лучше, каждая капля, инициируясь, сгорает в воздухе, ни с чем не смешиваясь. Заряд топлива горит постепенно по мере впрыскивания, поэтому, кстати, так важно для качества работы дизеля качество исполнения ТНВД — именно он обеспечивает плавность и равномерность впрыска и, стало быть, качество работы дизеля. Известно, что при проектировании В-2 обеспечить нормальную работу в целом весьма удачного двигателя удалось только после переработки некоторых элементов конструкции ТНВД. Насосы Аршаулова в итоге сошли со сцены и потому, в частности, что не могли обеспечить стабильности топливоподачи. 31.181.110.152 19:01, 2 июля 2012 (UTC)мАлекс Кстати, любое пламменное горение возникает именно там, где происходит горение газа или паровой фракции топлива в виде струи, выходящей в среду окислителя. Вспомните: химия, 7 класс, зонирование пламени и его происхождение. Факел горения в дизеле — типичное пламя со всеми атрибутами. Сгорание же топливо-воздушной смеси имеет в принципе иную и физику, и химию — оно ближе к цепным реакциям, протекает гораздо быстрее, фронт прохождения горения скорее похож на фронт объемного взрыва (а при детонации таковым и является). 31.181.110.152 19:12, 2 июля 2012 (UTC)мАлекс

    Почитал, знаете ли, этот бред и решил исправить. Ссылок, извиняюсь, не привел, но то, что я написал, содержится в любом букваре по ДВС. Описывать калоризаторный дизель я не стал, тк это по нашим временам полная экзотика.46.158.162.204 10:15, 26 мая 2012 (UTC)мАлекс

    Господа, тем не менее в разделе про дизельный двигатель по-прежнему был написан бред.

    1. Топливо-воздушная смесь, разумеется, образуется, т. к. иначе горение невозможно. Другой вопрос — что она образуется локально, и в каждом очаге сгорания присутствует свой градиент концентрации воздуха.
    2. Я не знаю, откуда были взяты термины «время инициации топлива» и подобные. В общей теории ДВС это называется «время задержки воспламенения».
    3. Позволю себе в ближайшее время переписать по крайней мере раздел этой статьи про дизели, т. к. написанное в нем сейчас только вводит в заблуждение тех, кто пытается что-либо понять.

    Alexander.a.denisov 07:11, 8 сентября 2012 (UTC)

    Горит только твёрдое топливо и смесь топлива с воздухом, отдельно ни воздух, ни жидкое топливо не горят. И смесь там образуется, но не в карбюраторе, или инжекторе, а непосредственно в цилиндре. В цилиндр с горячим воздухом впрыскивается жидкое топливо, потом оно испаряется, смешиваясь с воздухом. А бред несёшь ты. Не всякое взаимодействие с воздухом – химический процесс. Взаимодействие жидкости с газом может приводить к её окислению, но медленному. Например, маляныая краска «сохнет» в результате окисления жидкого масла кислородом воздуха. Но в двигателе толиво должно сгореть, а не полимеризоваться с участием кислорода и не истлеть. 31.135.45.53 09:46, 14 октября 2018 (UTC)

    Двигатель внутреннего сгорания[править код]

    Предлагаю идею ДВС роторного типа- в отличие от существующих-может работать на нескольких видах топлива и имеет ряд неоспоримых преимуществ… Смотреть на сайте http://iturup.okis.ru/195.39.233.21 09:08, 9 августа 2008 (UTC)

    «На рисунке 4-тактного двигателя впускной клапан больше выпускного, на самом деле всё с точностью до наоборот — выпускной больше впускного, т. к. объём и давление отработанных газов гораздо выше, чем рабочей смеси (исходя из рисунка — это карбюраторный ДВС).» — чушь полная! —79.104.194.49 11:07, 26 февраля 2009 (UTC)

    Четырехтактный поршневой ДВС ВСЕГДА имеет большую пропускную способность именно ВПУСКНОГО (и, как следствие, больший диаметр ВПУСКНОГО клапана) канала. Это делается потому, что насосные потери на впуске намного выше чем на выпуске, и скорость протекаия смеси (воздуха) через впускной канал ниже, к тому же покинуть цилиндр отработанным газам помогает поршень, двигаясь вверх. Поэтому впускной клапан имеет больший диаметр. Исключением является только ПЯТИКЛАПАННЫЙ двигатель: в нем впускные клапана почти такого же диаметра как и выпускные, но при этом их(впускных) ТРИ, т.е. закон большей пропускной способности впускного тракта сохраняется.
    P.S. Нет никакой разницы по клапанам в карбюраторном или инжекторном двигателях. —Александр Красноярск—79.104.194.49 11:02, 26 февраля 2009 (UTC)
    А в некоторых конструкциях и два впускных клапана с одним выхлопным.46.158.162.204 10:17, 26 мая 2012 (UTC)мАлекс

    Слушайте, это просто несерьёзно. Турбина отродясь считалась разновидностью ДВС. Вот хотя бы навскидку — выдержка из учебника какого-то:

    Двигатели внутреннего сгорания условно классифицируются по месту установки, конструктивным и иным признакам. Так, по способу установки на маломерном судне они подразделяются на стационарные двигатели (на катерах) и подвесные лодочные моторы (на мотолодках), по способу преобразования энергии они могут быть поршневыми и беспоршневыми (газотурбинными, реактивными, комбинированными).

    И никого не трогает где там происходит сгорание. Если внутри двигателя — значит двигатель внутреннего сгорания. Если в отдельной топке — то внешнего. Аноним, вы считаете что вы умнее всех ? В том числе авторов учебников для ВУЗов и техникумов, а т.ж. справочной литературы ?

    Есть правда такие газовые турбины внешнего сгорания, например — в автомашине, которая наддув делает. Но это ж редкая экзотика. —DL24 09:37, 3 сентября 2010 (UTC)

    • К слову, на наддуве, не «газовая турбина», а просто турбина, как и паровая, и водяная. Газовой по-русски, называют ту, что сама в себе жжёт, то есть тот же ДВС. —Bilderling 09:44, 3 сентября 2010 (UTC)
    Ну а что тогда такое газовые турбины внешнего сгорания ? Это из соответствующей статьи взята между прочим фраза. Понимаю конечно — не АИ. Но там вроде ссылка на академический.DL24 09:47, 3 сентября 2010 (UTC)
    Значит, я ошибся. ОК, в любом случае консенсус есть, а аноним неправ. Не продолжил бы откатывать… —Bilderling 09:49, 3 сентября 2010 (UTC)
    Да он мне уже вроде отписал на СО, извинился. DL24 09:51, 3 сентября 2010 (UTC)

    ДВС без кривошипно-шатунного механизма.[править код]

    Сделаю. Nechi 1 Rambler. И автомобиль без коробки передач.

    А мощность как снимается? Зубчатой рейкой? Или использующей поставляемый двигателем со свободными поршнями горячий газ турбиной? С линейного синхронного генератора со свободными поршнями? Или там вообще турбовальный двигатель вместо поршневого? 31.135.45.53 10:04, 14 октября 2018 (UTC)

    Мощность на холостом ходу[править код]

    «Бензиновый двухцилиндровый двигатель имел совершенно ненадежную систему зажигания и мощность 30 л. с. на холостом ходу и 18 л. с. под нагрузкой.[1]«
    Мощность на холостом ходу, кажется, по определению нулевая, поскольку механическая работа не совершается.
    «The two-cylinder engine has a unique hit-and-miss firing cycle that produced 30 horsepower at the belt and 18 at the drawbar»
    Если не путаю, речь о мощности на валу и на крюке. Т.е. 12 л.с. терялось в трансмиссии. (Сам не правлю, поскольку не до конца уверен в техническом английском, а в общеязыковых словарях навскидку ‘at the belt’ не нашёл.)
    37.190.63.23 10:30, 12 апреля 2013 (UTC)MichaelMM

    Если нечто движется само, имея трение, то механическая работа совершается. По преодолению трения в самом двигателе. Но если на преодоление трения расходуется некоторая мощность, то при меньшей мощности двигатель гарантировано заглохнет, так как эту мощность надо расходовать до самой остановки. Более того, под нагрузкой двигатель по той же причине гарантированно заглохнет при не большей мощности, чем мощность на холостом ходу. Единственно, во что можно поверить при таком соотношении, так это в то, что 30 лошадиных сил – полная мощность на холостом ходу, а 18 лошадиных сил – полезная мощность под нагрузкой (полная не менее 48-ми). 31.135.45.53 10:10, 14 октября 2018 (UTC)

    КПД поршневого ДВС и автомобиля[править код]

    «КПД двигателя не превышал 4,65 %. Несмотря на недостатки получил некоторое распространение… и КПД до 15 %» — Как указано в статье, именно эти цифры до сих пор остаются правильными, если не для поршневого ДВС, то для всего автомобиля в целом. Чтобы понять достаточно сравнить мощность лобового сопротивления с мощностью из расхода топлива. Невероятно, но факт. 93.181.255.20 13:26, 24 октября 2015 (UTC)

    недостатки (общие)
    • для запуска двигателя обязательно нужен стартер
    • для охлаждения двигателя нужна система охлаждения
    • для трогания с места нужен механизм сцепления
    • для разных режимов движения нужна коробка передач,
    • для понижения шума от выхлопа отработанных газов нужна система шумопонижения
    • высокие обороты двигателя приводят к недолговечности конструкции
    • во время остановок двигатель продолжает работать, что также сказывается на долговечности.
    • самые эффективные легковые электромобили тратят из разных источников 0.55 МДж на километр пути.Легковой автомобиль с ДВС тратит 10л бензина на 100км это 3.3 МДж на километр. Отсюда видно что бензиновый двигатель в шесть раз менее эффективен чем электрический. Если принять кпд электромобиля 95 процентов, то кпд машины с ДВС будет 16 процентов, не 20-30 как пишут в разных источниках. 109.161.12.15 13:19, 15 ноября 2017 (UTC)Tmaker

    Можно добавить. О возможностях ДВС.[править код]

    Повышение удельной мощности (макс. мощности при том же весе)[править код]

    1. Удвоение количества рабочих тактов.

    Т.к. вам известны 2х-тактные двигатели — вы знаете, что подавать ТВС можно одновременно с выпуском отработавших газов. Минусом 2х-тактников является то, что сложно вытолкать впускными газами выпускные так, чтобы и выпускных вытолкалось побольше, и впускных с ними вылетело поменьше. Я полагаю, что лучшим расположением впускных и выпускных отверстий является круговое, в разных концах камеры сгорания: как в анимации. — Думаю, что при этом достижим уровень снижения удельного расхода топлива по сравнению с 4х-тактниками менее чем на 10%.
    Минусом наличия таких отверстий является более быстрый износ поршневых колец.
    Кроме цилиндрических существуют ещё роторные ДВС — их суть заключается в непосредственном вращении вала самим поршнем, вместо толкания им коленвала. — В них реализовано одновременное осуществление четырёх тактов: анимация с 1:53 (2 такта по мере хода одной половины поршня в другую треть камеры, 2 такта по мере вращения другой половины поршня внутри своей трети камеры) — и эти 4 такта осуществляются за треть оборота ротора.

    2. Сжигание большего количества ТВС.

    Для сгорания большего количества ТВС нужно больше кислорода, его можно впихнуть под давлением — для этого используются нагнетатели.
    Также используют кислородосодержащих смеси — например, закись азота, которая при сгорании ТВС распадается на кислород и азот (чтоб кислорода не было слишком много). Азота и кислорода, из которых состоит закись азота, полно в воздухе, вопрос о безотходном получении её из воздуха пока открыт.
    Чистый кислород в ТВС не используется, вроде, только потому, что это слишком сильно повышает темп. сгорания, что устранимо внутр. охлаждением (см. пункт про КПД).
    Обычно воздуха в ТВС в 15 раз больше, чем топлива, т.е. потенциал для увеличение кислорода в ТВС весьма велик.

    3. Отказ от коленвала (и, соответственно, всего, что с ним связано).

    Он имеет смысл когда от ДВС нужна только выработка электричества. А этом случае можно использовать магнитный поршень в качестве ротора, а вокруг камеры сгорания сделать обмотку. Поршень должен ходить от одного конца камеры к другому, сжимая ТВС в их концах от её взрыва в другом конце.

    4. Отказ от стартера.

    Предложенный в предыдущем пункте ДВС мог бы разгонятся в режиме электродвигателя.
    В двигателе с коленвалом можно объединить функции стартера и генератора в одном агрегате. В режиме электродвигателя он и играл бы функцию стартера, и помогал бы разгонятся (от конденсаторов, которые заряжались бы от ДВС на крейсерской скорости и светофорах, и, возможно, торможением).

    5. Овальность поршней.

    Если сделать поршень овальным, с прежней шириной но такой длиной, при которой площадь в 2 раза больше — объём «цилиндра» удвоится, но размер двигателя — нет.
    Минусом овальных поршней является то, что при расширении металла (от нагрева) длина цилиндра будет увеличиваться больше, чем ширина, что плохо скажется на кольцах, но нагрев можно существенно снизить — см. пункт про КПД.

    6. Повышение макс. оборотов.

    Главным ограничивающим обороты фактором является количество вырабатываемого тепла, которое при большом уровне приводит к прогоранию деталей. Охлаждать цилиндры можно изнутри после каждого рабочего такта — см. пункт про КПД.
    Повышение КПД.[править код]

    1. Тепло нагретой камеры сгорания можно превращать в энергию движения путём подачи капель воды в камеру после 4го такта — она испарится (расширяясь в 1600 раз) и пар будет толкать поршень, а на следующем такте пар можно выпустить как отработанный газ. — Такой 6-тактный двигатель описан по ссылке. Испарение (5й такт) существенно охлаждает двигатель.
    2. Хорошо охлаждаемая камера сгорания позволяет сжимать топливо сильней (не будет рано детонировать), что также повышает КПД.

    Снижение уровня шума.[править код]

    Шум — «вибрационные» волны воздуха, образуются они от вибрации от взрывов ТВС, и больше всего ей подвержена головка блока цилиндров. От взрыва у головки можно избавиться разместив ещё один оппозитный тянущий поршень (ОТП) (сверху), т.о. взрыв двигал бы 1 поршень вниз, а другой вверх, 1й толкал бы коленвал, а второй (верхний) тянул бы его на себя. (см. анимацию)
    Минусом такого дополнительного поршня является дополнительный вес двух его шатунов, но если двигатель 2х-тактный (см. анимацию) — их вес существенно ниже, т.к. они не подвергаются нагрузке на сжатие (только на растяг). К тому же, коленвал, который не только толкается, но и тянется весит меньше, чем обычный (только толкаемый).

    Roma.rr (обс) 11:26, 19 сентября 2016 (UTC)
    

    Оппозитное расположение поршней[править код]

    Оно пример даёт:
    1. Уменьшение размеров за счёт общего для для пар(ы) цилиндров пространства для коленвала, которое
    2. Снижение веса за счёт общей для для пар(ы) цилиндров части коленвала, пространства для него, а также отсутствия нижнего крепления каждого шатуна к коленвалу (там противоположный шатун) и общего подшипника.
    3. Снижение центра тяжести: с оппозитным расположением поршней двигатель предлагается располагать лёжа, его центр тяжести в таком случае на много ниже обычного двигателя.
    4. В лежачем положении низ двигателя (т.е. одну из сторон всех поршней) можно охлаждать потоком воздуха под машиной.
    5. Отсутствие нагрузки на шейку, которая в обычном двигателе создаётся разогнанным вниз поршнем с шатуном. В оппозитном двигателе энергия разгона поршня от толчка поршень преобразуется в сжатие ТВС другим поршнем (если двигатель 2-тактный, хотя это возможно и при 4х-тактности) и лишь немного этой энергии разгона направляется в стороны от противоположного поршня. — При этом, в некоторых оппозитных двигателях (как в анимации по ссылке) оппозитные поршни движутся на встречу друг другу, а шатуны помимо движения навстречу друг другу движутся в противоположные стороны (один вверх, другой вниз), что исключает вибрации, которые являются главной причиной ограничения макс. оборотов (помимо нагрева, который устраним 6-тактностью).

    Roma.rr (обс) 15:49, 11 октября 2016 (UTC)
    

    Косноязычно местами до бессмыслицы («Турбонагнетание позволяет двигателю работать более эффективно, поскольку тому что турбонагнетатель использует энергию выхлопных газов»). А прежде всего — НЕТ ТЕРМИНА «турбонагнетание», есть турбонаддув. —KVK2005 (обс.) 09:00, 7 мая 2018 (UTC)

    Переведите «поскольку тому что турбонагнетатель использует энергию выхлопных газов» на русский. 31.135.45.53 09:41, 14 октября 2018 (UTC)

    Двигатель внешнего сгорания — это… Что такое Двигатель внешнего сгорания?

    Проблемы с содержанием статьиСтатья состоит из словарного определения термина. Пожалуйста, доработайте статью, приведя ее в соответствие с правилами. Подробности могут быть на странице обсуждения. В Википедии статьи, состоящие только из словарного определения, не приветствуются, их следует попытаться улучшить или выставить к удалению.
    Кроме того, статью можно перенести в Викисловарь. Информация о самом слове, его значении, этимологии и употреблении, будет весьма ценным дополнением для Викисловаря.

    Дви́гатели вне́шнего сгора́ния — класс двигателей, где источник тепла или процесс сгорания топлива отделены от рабочего тела.

    К этому классу относятся паровые машины, паровые турбины, двигатели Стирлинга, газовые турбины внешнего сгорания, а также другие типы двигателей. Двигатели внешнего сгорания были изобретены почти 200 лет тому назад, в 1816 году. Вместе с паровым двигателем, двух- и четырехтактным двигателем внутреннего сгорания, двигатели внешнего сгорания считаются одними из основных типов двигателей. Они были разработаны с целью создания двигателей, которые были бы более безопасными и производительными, чем паровой двигатель. В самом начале 19-го века отсутствие подходящих материалов приводило к многочисленным случаям со смертельным исходом в связи со взрывами паровых двигателей, находящихся под давлением.

    Значительный рынок для двигателей внешнего сгорания сформировался во второй половине 19-го века, в частности, в связи с более мелкими сферами применения, где их можно было безопасно эксплуатировать без необходимости в услугах квалифицированных операторов.

    После изобретения двигателя внутреннего сгорания в конце 19-го века рынок для двигателей внешнего сгорания исчез. Стоимость производства двигателя внутреннего сгорания в сравнении со стоимостью производства внешнего сгорания ниже. Основной недостаток двигателей внутреннего сгорания заключается в том, что для их работы необходимо чистое, ископаемое топливо, увеличивающее выбросы СО2, топливо. Однако, до недавнего времени стоимость ископаемого топлива была низкой, а выбросам СО2 не уделялось должного внимания. Принцип работы двигателя внешнего сгорания

    В отличие от широко известного процесса внутреннего сгорания, при котором топливо сжигается внутри двигателя, двигатель внешнего сгорания, приводится в действие внешним источником тепла. Или, точнее говоря, она приводится в действие разностями температур, создаваемыми внешними источниками нагревания и охлаждения.

    Этими внешними источниками нагревания и охлаждения могут служить отработанные газы биомассы и охлаждающая вода соответственно. Процесс приводит к вращению генератора, монтированного на двигателе, посредством чего производится энергия.

    Все двигатели внутреннего сгорания приводятся в действие разностями температур. Бензиновые, дизельные двигатели и двигатели внешнего сгорания основаны на той особенности, что для сжатия холодного воздуха необходимо меньше усилий, чем для сжатия горячего воздуха.

    Бензиновые и дизельные двигатели всасывают холодный воздух и сжимают этот воздух, прежде чем он подогревается в процессе внутреннего сгорания, который происходит внутри цилиндра. После подогревания воздуха над поршнем поршень перемещается вниз, посредством чего воздух расширяется. Так как воздух горячий, сила, действующая на шток поршня, велика. Когда поршень доходит до низа, клапаны открываются и горячие выхлопы заменяются новым, свежим, холодным воздухом. При движении поршня вверх холодный воздух сжимается, причем сила, действующая на шток поршня, меньше, чем при его движении вниз.

    Двигатель внешнего сгорания работает в соответствии с немного другим принципом. В нем нет клапанов, он герметически запаян, а воздух подогревается и охлаждается при помощи теплообменных аппаратов горячего и холодного контура. Встроенный насос, приводимый в действие движением поршня, обеспечивает движение воздуха туда и обратно между этими двумя теплообменными аппаратами. Во время охлаждения воздуха в теплообменном аппарате холодного контура поршень сжимает воздух.

    После сжатия воздух затем подогревается в теплообменном аппарате горячего контура, прежде чем поршень начинает двигаться в обратном направлении и использовать расширение горячего воздуха для приведения в действие двигателя.

    Литература

    • «Двигатели внешнего сгорания», Г. В. Смирнов. Новое в жизни, науке, технике: Серия: Промышленность, 1967, М. — Знание. [1]

    Двигатель внутреннего сгорания — это… Что такое Двигатель внутреннего сгорания?

    Дви́гатель вну́треннего сгора́ния (сокращённо ДВС) — это тип двигателя, тепловой машины, в которой химическая энергия топлива (обычно применяется жидкое или газообразное углеводородное топливо), сгорающего в рабочей зоне, преобразуется в механическую энергию.

    Несмотря на то, что двигатель внутреннего сгорания относится к относительно несовершенному типу тепловых машин (громоздкость, сильный шум, токсичные выбросы и необходимость системы их отвода, относительно небольшой ресурс, необходимость охлаждения и смазки, высокая сложность в проектировании, изготовлении и обслуживании, сложная система зажигания, большое количество изнашиваемых частей, высокое потребление горючего и так далее), благодаря своей автономности (используемое топливо содержит гораздо больше энергии, чем лучшие электрические аккумуляторы), ДВС очень широко распространены, — например, на транспорте.

    История создания

    В 1799 году французский инженер Филипп Лебон открыл светильный газ. В 1799 году он получил патент на использование и способ получения светильного газа путём сухой перегонки древесины или угля, однако светильный газ годился не только для освещения.

    В 1801 году Лебон взял патент на конструкцию газового двигателя. Принцип действия этой машины основывался на известном свойстве открытого им газа: его смесь с воздухом взрывалась при воспламенении с выделением большого количества теплоты. Продукты горения, стремительно расширяясь, оказывали сильное давление на окружающую среду — таким образом, оставалось только найти способ использования выделившейся энергии. В двигателе Лебона были предусмотрены два компрессора и камера смешивания. Один компрессор должен был накачивать в камеру сжатый воздух, а другой — сжатый светильный газ из газогенератора. Затем газовоздушная смесь поступала в рабочий цилиндр, где воспламенялась. Двигатель был двойного действия, то есть попеременно действовавшие рабочие камеры находились по обе стороны поршня. По существу, Лебон вынашивал мысль о двигателе внутреннего сгорания, однако в 1804 году он погиб, так и не успев воплотить в жизнь своё изобретение.

    В последующие годы изобретатели из разных стран пытались создать работоспособный двигатель на светильном газе. Однако все эти попытки не привели к появлению на рынке двигателей, которые могли бы успешно конкурировать с паровой машиной.

    Честь создания коммерчески успешного двигателя внутреннего сгорания принадлежит бельгийскому механику Жану Этьену Ленуару. Работая на гальваническом заводе, Ленуар пришёл к мысли, что топливовоздушную смесь в газовом двигателе можно воспламенять с помощью электрической искры, и решил построить двигатель на основе этой идеи. Решив возникшие по ходу проблемы (тугой ход и перегрев поршня, ведущий к заклиниванию) продумав систему охлаждения и смазки двигателя, Ленуар создал работоспособный двигатель внутреннего сгорания. В 1864 году было выпущено более трёхсот таких двигателей разной мощности. Разбогатев, Ленуар перестал работать над дальнейшим усовершенствованием своей машины, и это предопределило её судьбу — она была вытеснена с рынка более совершенным двигателем, созданным немецким изобретателем Августом Отто и получившим патент на изобретение своей модели газового двигателя в 1864 году.

    В 1864 году немецкий изобретатель Августо Отто заключил договор с богатым инженером Лангеном для реализации своего изобретения — была создана фирма «Отто и Компания». Ни Отто, ни Ланген не владели достаточными знаниями в области электротехники и отказались от электрического зажигания. Воспламенение они осуществляли открытым пламенем через трубку. Цилиндр двигателя Отто, в отличие от двигателя Ленуара, был вертикальным. Вращаемый вал помещался над цилиндром сбоку. Принцип действия: вращающийся вал поднимал поршень на 1/10 высоты цилиндра, в результате чего под поршнем образовывалось разреженное пространство и происходило всасывание смеси воздуха и газа. Затем смесь воспламенялась. При взрыве давление под поршнем возрастало примерно до 4 атм. Под действием этого давления поршень поднимался, объём газа увеличивался и давление падало. Поршень сначала под давлением газа, а потом по инерции поднимался до тех пор, пока под ним не создавалось разрежение. Таким образом, энергия сгоревшего топлива использовалась в двигателе с максимальной полнотой. В этом заключалась главная оригинальная находка Отто. Рабочий ход поршня вниз начинался под действием атмосферного давления, и после того, как давление в цилиндре достигало атмосферного, открывался выпускной вентиль, и поршень своей массой вытеснял отработанные газы. Из-за более полного расширения продуктов сгорания КПД этого двигателя был значительно выше, чем КПД двигателя Ленуара и достигал 15 %, то есть превосходил КПД самых лучших паровых машин того времени. Кроме того, двигатели Отто были почти в пять раз экономичнее двигателей Ленуара, они сразу стали пользоваться большим спросом. В последующие годы их было выпущено около пяти тысяч штук. Несмотря на это, Отто упорно работал над усовершенствованием их конструкции. Вскоре была применена кривошипно-шатунная передача. Однако самое существенное из его изобретений было сделано в 1877 году, когда Отто получил патент на новый двигатель с четырёхтактным циклом. Этот цикл по сей день лежит в основе работы большинства газовых и бензиновых двигателей.

    Типы двигателей внутреннего сгорания

    Поршневой ДВС Роторный ДВС Газотурбинный ДВС

    ДВС классифицируют:

    а) По назначению — делятся на транспортные, стационарные и специальные.

    б) По роду применяемого топлива — легкие жидкие (бензин, газ), тяжелые жидкие (дизельное топливо, судовые мазуты).

    в) По способу образования горючей смеси — внешнее (карбюратор, инжектор) и внутреннее (в цилиндре ДВС).

    г) По способу воспламенения (с принудительным зажиганием, с воспламенением от сжатия, калоризаторные).

    д) По расположению цилиндров разделяют рядные, вертикальные, оппозитные с одним и с двумя коленвалами, V-образные с верхним и нижним расположением коленвала, VR-образные и W-образные, однорядные и двухрядные звездообразные, Н-образные, двухрядные с параллельными коленвалами, «двойной веер», ромбовидные, трехлучевые и некоторые другие.

    Бензиновые

    Бензиновые карбюраторные

    Смесь топлива с воздухом готовится в карбюраторе, далее смесь подаётся в цилиндр, сжимается, а затем поджигается при помощи искры, проскакивающей между электродами свечи. Основная характерная особенность топливо-воздушной смеси в этом случае — гомогенность.

    Бензиновые инжекторные

    Также, существует способ смесеобразования путём впрыска бензина во впускной коллектор или непосредственно в цилиндр при помощи распыляющих форсунок (инжектор). Существуют системы одноточечного и распределённого впрыска различных механических и электронных систем. В механических системах впрыска дозация топлива осуществляется плунжерно — рычажным механизмом с возможностью электронной корректировки состава смеси. В электронных системах смесеобразование осуществляется под управлением электронного блока управления (ЭБУ), управляющим электрическими бензиновыми вентилями.

    Дизельные, с воспламенением от сжатия

    Дизельный двигатель характеризуется воспламенением топлива без использования свечи зажигания. В разогретый от сжатия воздух (до температуры, превышающей температуру воспламенения топлива) через форсунку впрыскивается порция топлива. В процессе впрыскивания топлива происходит его распыливание, а затем вокруг отдельных капель топлива возникают очаги сгорания. Т. к. дизельные двигатели не подвержены явлению детонации, характерному для двигателей с принудительным воспламенением, в них допустимо использование более высоких степеней сжатия (до 26), что благотворно сказывается на КПД данного типа двигателей, который может превышать 50% в случае с крупными судовыми двигателями.

    Дизельные двигатели являются менее быстроходными и характеризуются большим крутящим моментом на валу. Дизельное топливо является более дешевым, нежели бензин. Также некоторые крупные дизельные двигатели приспособлены для работы на тяжелых топливах, например, мазутах. Запуск крупных дизельных двигателей осуществляется, как правило, за счет пневматической схемы с запасом сжатого воздуха, либо в случае с инверторными генераторными установками, от присоединенной электромашины, которая при обычной эксплуатации выполняет роль генератора.

    Вопреки расхожему мнению, современные двигатели, традиционно называемые дизельными, работают не по циклу Дизеля, а по циклу Тринклера-Сабатэ со смешанным подводом теплоты.

    Недостатки дизельных двигателей обусловлены особенностями рабочего цикла — более высокой механической напряженностью, требующей повышенной прочности конструкции и, как следствие, увеличения её габаритов, веса и увеличения стоимости за счёт усложнённой конструкции и использования более дорогих материалов. Также дизельные двигатели за счет гетерогенного сгорания характеризуются неизбежными выбросами сажи и повышенным содержанием оксидов азота в выхлопных газах.

    Газовые

    Двигатель, сжигающий в качестве топлива углеводороды, находящиеся в газообразном состоянии при нормальных условиях:

    • смеси сжиженных газов — хранятся в баллоне под давлением насыщенных паров (до 16 атм). Испарённая в испарителе жидкая фаза или паровая фаза смеси ступенчато теряет давление в газовом редукторе до близкого атмосферному, и всасывается двигателем во впускной коллектор через воздушно-газовый смеситель или впрыскивается во впускной коллектор посредством электрических форсунок. Зажигание осуществляется при помощи искры, проскакивающей между электродами свечи.
    • сжатые природные газы — хранятся в баллоне под давлением 150—200 атм. Устройство систем питания аналогично системам питания сжиженным газом, отличие — отсутствие испарителя.
    • генераторный газ — газ, полученный превращением твёрдого топлива в газообразное. В качестве твёрдого топлива используются:

    Газодизельные

    Основная порция топлива приготавливается, как в одной из разновидностей газовых двигателей, но зажигается не электрической свечой, а запальной порцией дизтоплива, впрыскиваемого в цилиндр аналогично дизельному двигателю.

    Роторно-поршневой

    Предложен изобретателем Ванкелем в начале ХХ века. Основа двигателя — треугольный ротор (поршень), вращающийся в камере особой 8-образной формы, исполняющий функции поршня, коленвала и газораспределителя. Такая конструкция позволяет осуществить любой 4-тактный цикл Дизеля, Стирлинга или Отто без применения специального механизма газораспределения. За один оборот двигатель выполняет три полных рабочих цикла, что эквивалентно работе шестицилиндрового поршневого двигателя. Строился серийно фирмой НСУ в Германии (автомобиль RO-80), ВАЗом в СССР (ВАЗ-21018 «Жигули», ВАЗ-416, ВАЗ-426, ВАЗ-526), в настоящее время строится только Маздой (Mazda RX-8). При своей принципиальной простоте имеет ряд существенных конструктивных сложностей, делающих его широкое внедрение весьма затруднительным. Основные трудности связаны с созданием долговечных работоспособных уплотнений между ротором и камерой и с построением системы смазки.

    В Германии в конце 70х годов ХХ века существовал анекдот: «Продам НСУ, дам в придачу два колеса, фару и 18 запасных моторов в хорошем состоянии».

    • RCV — двигатель внутреннего сгорания, система газораспределения которого реализована за счёт движения поршня, который совершает возвратно-поступательные движения, попеременно проходя впускной и выпускной патрубок.

    Комбинированный двигатель внутреннего сгорания

    •  — двигатель внутреннего сгорания, представляющий собой комбинацию из поршневой и лопаточной машин (турбина, компрессор), в котором обе машины в соотносимой мере участвуют в осуществлении рабочего процесса. Примером комбинированного ДВС служит поршневой двигатель с газотурбинным наддувом (турбонаддув). Большой вклад в теорию комбинированных двигателей внес советский инженер, профессор А. Н. Шелест.

    Циклы работы поршневых ДВС

    Двухтактный цикл Схема работы четырёхтактного двигателя, цикл Отто
    1. впуск
    2. сжатие
    3. рабочий ход
    4. выпуск

    Поршневые двигатели внутреннего сгорания классифицируются по количеству тактов в рабочем цикле на двухтактные и четырёхтактные.

    Рабочий цикл четырёхтактных двигателей внутреннего сгорания занимает два полных оборота кривошипа, состоящий из четырёх отдельных тактов:

    1. впуска,
    2. сжатия заряда,
    3. рабочего хода и
    4. выпуска (выхлопа).

    Изменение рабочих тактов обеспечивается специальным газораспределительным механизмом, чаще всего он представлен одним или двумя распределительными валами, системой толкателей и клапанами, непосредственно обеспечивающими смену фазы. Некоторые двигатели внутреннего сгорания использовали для этой цели золотниковые гильзы (Рикардо), имеющие впускные и/или выхлопные окна. Сообщение полости цилиндра с коллекторами в этом случае обеспечивалось радиальным и вращательным движениями золотниковой гильзы, окнами открывающей нужный канал. Ввиду особенностей газодинамики — инерционности газов, времени возникновения газового ветра такты впуска, рабочего хода и выпуска в реальном четырёхтактном цикле перекрываются, это называется перекрытием фаз газораспределения. Чем выше рабочие обороты двигателя, тем больше перекрытие фаз и чем оно больше, тем меньше крутящий момент двигателя внутреннего сгорания на низких оборотах. Поэтому в современных двигателях внутреннего сгорания всё шире используются устройства, позволяющие изменять фазы газораспределения в процессе работы. Особенно пригодны для этой цели двигатели с электромагнитным управлением клапанами (BMW, Mazda). Имеются также двигатели с переменной степенью сжатия (СААБ), обладающие большей гибкостью характеристики.

    Двухтактные двигатели имеют множество вариантов компоновки и большое разнообразие конструктивных систем. Основной принцип любого двухтактного двигателя — исполнение поршнем функций элемента газораспределения. Рабочий цикл складывается, строго говоря, из трёх тактов: рабочего хода, длящегося от верхней мёртвой точки (ВМТ) до 20—30 градусов до нижней мёртвой точки (НМТ), продувки, фактически совмещающей впуск и выхлоп, и сжатия, длящегося от 20—30 градусов после НМТ до ВМТ. Продувка, с точки зрения газодинамики, слабое звено двухтактного цикла. С одной стороны, невозможно обеспечить полное разделение свежего заряда и выхлопных газов, поэтому неизбежны либо потери свежей смеси, буквально вылетающей в выхлопную трубу (если двигатель внутреннего сгорания — дизель, речь идёт о потере воздуха), с другой стороны, рабочий ход длится не половину оборота, а меньше, что само по себе снижает КПД. В то же время длительность чрезвычайно важного процесса газообмена, в четырёхтактном двигателе занимающего половину рабочего цикла, не может быть увеличена. Двухтактные двигатели могут вообще не иметь системы газораспределения. Однако, если речь не идёт об упрощённых дешёвых двигателях, двухтактный двигатель сложнее и дороже за счёт обязательного применения воздуходувки или системы наддува, повышенная теплонапряжённость ЦПГ требует более дорогих материалов для поршней, колец, втулок цилиндров. Исполнение поршнем функций элемента газораспределения обязывает иметь его высоту не менее ход поршня + высота продувочных окон, что некритично в мопеде, но существенно утяжеляет поршень уже при относительно небольших мощностях. Когда же мощность измеряется сотнями лошадиных сил, увеличение массы поршня становится очень серьёзным фактором. Введение распределительных гильз с вертикальным ходом в двигателях Рикардо было попыткой сделать возможным уменьшение габаритов и массы поршня. Система оказалась сложной и дорогой в исполнении, кроме авиации, такие двигатели нигде больше не использовались. Выхлопные клапаны (при прямоточной клапанной продувке) имеют вдвое большую теплонапряжённость в сравнении с выхлопными клапанами четырёхтактных двигателей и худшие условия для теплоотвода, а их сёдла имеют более длительный прямой контакт с выхлопными газами.

    Самой простой с точки зрения порядка работы и самой сложной с точки зрения конструкции является система Фербенкс — Морзе, представленная в СССР и в России, в основном, тепловозными дизелями серий Д100. Такой двигатель представляет собой симметричную двухвальную систему с расходящимися поршнями, каждый из которых связан со своим коленвалом. Таким образом, этот двигатель имеет два коленвала, механически синхронизированные; тот, который связан с выхлопными поршнями, опережает впускной на 20—30 градусов. За счёт этого опережения улучшается качество продувки, которая в этом случае является прямоточной, и улучшается наполнение цилиндра, так как в конце продувки выхлопные окна уже закрыты. В 30х — 40х годах ХХ века были предложены схемы с парами расходящихся поршней — ромбовидная, треугольная; существовали авиационные дизели с тремя звездообразно расходящимися поршнями, из которых два были впускными и один — выхлопным. В 20-х годах Юнкерс предложил одновальную систему с длинными шатунами, связанными с пальцами верхних поршней специальными коромыслами; верхний поршень передавал усилия на коленвал парой длинных шатунов, и на один цилиндр приходилось три колена вала. На коромыслах стояли также квадратные поршни продувочных полостей. Двухтактные двигатели с расходящимися поршнями любой системы имеют, в основном, два недостатка: во-первых, они весьма сложны и габаритны, во-вторых, выхлопные поршни и гильзы в зоне выхлопных окон имеют значительную температурную напряжённость и склонность к перегреву. Кольца выхлопных поршней также являются термически нагруженными, склонны к закоксовыванию и потере упругости. Эти особенности делают конструктивное исполнение таких двигателей нетривиальной задачей.

    Двигатели с прямоточной клапанной продувкой оснащены распределительным валом и выхлопными клапанами. Это значительно снижает требования к материалам и исполнению ЦПГ. Впуск осуществляется через окна в гильзе цилиндра, открываемые поршнем. Именно так компонуется большинство современных двухтактных дизелей. Зона окон и гильза в нижней части во многих случаях охлаждаются наддувочным воздухом.

    В случаях, когда одним из основных требований к двигателю является его удешевление, используются разные виды кривошипно-камерной контурной оконно-оконной продувки — петлевая, возвратно-петлевая (дефлекторная) в разнообразных модификациях. Для улучшения параметров двигателя применяются разнообразные конструктивные приёмы — изменяемая длина впускного и выхлопного каналов, может варьироваться количество и расположение перепускных каналов, используются золотники, вращающиеся отсекатели газов, гильзы и шторки, изменяющие высоту окон (и, соответственно, моменты начала впуска и выхлопа). Большинство таких двигателей имеет воздушное пассивное охлаждение. Их недостатки — относительно невысокое качество газообмена и потери горючей смеси при продувке, при наличии нескольких цилиндров секции кривошипных камер приходится разделять и герметизировать, усложняется и удорожается конструкция коленвала.

    Дополнительные агрегаты, требующиеся для ДВС

    Недостатком двигателя внутреннего сгорания является то, что он развивает наивысшую мощность только в узком диапазоне оборотов. Поэтому неотъемлемым атрибутом двигателя внутреннего сгорания является трансмиссия. Лишь в отдельных случаях (например, в самолётах) можно обойтись без сложной трансмиссии. Постепенно завоёвывает мир идея гибридного автомобиля, в котором мотор всегда работает в оптимальном режиме.

    Кроме того, двигателю внутреннего сгорания необходимы система питания (для подачи топлива и воздуха — приготовления топливо-воздушной смеси), выхлопная система (для отвода выхлопных газов), также не обойтись без системы смазки(предназначена для уменьшения сил трения в механизмах двигателя, защиты деталей двигателя от коррозии, а также совместно с системой охлаждения для поддержания оптимального теплового режима), системы охлаждения(для поддержания оптимального теплового режима двигателя), система запуска (применяются способы запуска: электростартерный, с помощью вспомогательного пускового двигателя, пневматический, с помощью мускульной силы человека), система зажигания (для воспламениня топливо-воздушной смеси, применяется у двигателей с принудительным воспламенением).

    См. также

    Примечания

    Ссылки

    Тепловой двигатель — это… Что такое Тепловой двигатель?

    Теплово́й дви́гатель — устройство, совершающее работу за счет использования внутренней энергии топлива, тепловая машина, превращающая тепло в механическую энергию, использует зависимость теплового расширения вещества от температуры. (Возможно использование изменения не только объёма, но и формы рабочего тела, как это делается в твёрдотельных двигателях, где в качестве рабочего тела используется вещество в твёрдой фазе.) Действие теплового двигателя подчиняется законам термодинамики. Для работы необходимо создать разность давлений по обе стороны поршня двигателя или лопастей турбины. Для работы двигателя обязательно наличие топлива. Это возможно при нагревании рабочего тела (газа), который совершает работу за счёт изменения своей внутренней энергии. Повышение и понижение температуры осуществляется, соответственно, нагревателем и охладителем.

    История

    Первой известной нам тепловой машиной была паровая турбина внешнего сгорания, изобретённая во ΙΙ (или в Ι ?) веке н. эры в римской империи. Это изобретение не получило своего развития предположительно из-за низкого уровня техники того времени (например, тогда ещё не был изобретён подшипник).

    Теория

    Работа, совершаемая двигателем, равна:

    , где:
    •  — количество теплоты, полученное от нагревателя,
    •  — количество теплоты, отданное охладителю.

    Коэффициент полезного действия (КПД) теплового двигателя рассчитывается как отношение работы, совершаемой двигателем, к количеству теплоты, полученному от нагревателя:

    Часть теплоты при передаче неизбежно теряется, поэтому КПД двигателя менее 1. Максимально возможным КПД обладает двигатель Карно. КПД двигателя Карно зависит только от абсолютных температур нагревателя() и холодильника():

    Типы тепловых двигателей

    Двигатель Стирлинга

    Дви́гатель Сти́рлинга — тепловая машина, в которой жидкое или газообразное рабочее тело движется в замкнутом объёме, разновидность двигателя внешнего сгорания. Основан на периодическом нагреве и охлаждении рабочего тела с извлечением энергии из возникающего при этом изменения объёма рабочего тела. Может работать не только от сжигания топлива, но и от любого источника тепла.

    Поршневой двигатель внутреннего сгорания

    ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ, тепловой двигатель, в котором часть химической энергии топлива, сгорающего в рабочей полости, преобразуется в механическую энергию. По роду топлива различают жидкостные и газовые; по рабочему циклу непрерывного действия, 2- и 4-тактные; по способу приготовления горючей смеси с внешним (напр., карбюраторные) и внутренним (напр., дизели) смесеобразованием; по виду преобразователя энергии поршневые, турбинные, реактивные и комбинированные. Коэффициент полезного действия 0,4-0,5. Первый двигатель внутреннего сгорания сконструирован Э. Ленуаром в 1860. В наше время чаще встречается автомобильный транспорт, который работает на тепловом двигателе внутреннего сгорания, работающем на жидком топливе. Рабочий цикл в двигателе происходит за четыре хода поршня, за четыре такта. Поэтому такой двигатель и называется четырёхтактным. Цикл двигателя состоит из следующих четырёх тактов: 1.впуск, 2.сжатие, 3.рабочий ход, 4.выпуск.

    Роторный (турбинный) двигатель внешнего сгорания

    Примером такого устройства является тепловая электрическая станция в базовом режиме. Таким образом колёса локомотива (электровоза) также, как и в 19 веке, вращает энергия пара. Но тут есть два существенных отличия. Первое отличие заключается в том, что паровоз 19 века работал на качественном дорогом топливе, например на антраците. Современные же паротурбинные установки работают на дешевом топливе, например на канско-ачинском угле, который добывается открытым способом шагающими экскаваторами. Но в подобном топливе много пустого балласта, который транспорту не приходится возить с собой вместо полезного груза. Электровозу не надо возить не только балласт, но и топливо вообще. Второе отличие заключается в том, что тепловая электрическая станция работает по циклу Ренкина, который близок к циклу Карно. Цикл Карно состоит из двух адиабат и двух изотерм. Цикл Ренкина состоит из двух адиабат, изотермы и изобары с регенерацией тепла, которая приближает этот цикл к идеальному циклу Карно. На транспорте трудно сделать такой идеальный цикл, так как у транспортного средства есть ограничения по массе и габаритам, которые практически отсутствуют у стационарной установки.

    Роторный (турбинный) двигатель внутреннего сгорания

    Примером такого устройства является тепловая электрическая станция в пиковом режиме. Порой в качестве газотурбинной установки используют списанные по технике безопасности воздушно-реактивные двигатели.

    Реактивные и ракетные двигатели

    Твёрдотельные двигатели

    (источник журнал “Техника молодёжи“)== == Здесь в качестве рабочего тела используется твёрдое тело. Здесь изменяется не объём рабочего тела, а его форма. Позволяет использовать рекордно малый перепад температур.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *