Цилиндр двигателя это – Поршневой двигатель внутреннего сгорания — это… Что такое Поршневой двигатель внутреннего сгорания?

Содержание

Что такое цилиндр 🚩 как называется часть цилиндра 🚩 Авто 🚩 Другое

Цилиндр автомобильного двигателя представляет собой трубку с толстыми стенками. Это одна из основных частей поршневого двигателя внутреннего сгорания, который является самым распространенным типом двигателя. Поршневой двигатель используется в разных видах транспорта, сельскохозяйственной и строительной технике, компрессорах, насосах и т.д.В разных поршневых двигателях может быть от 1 до 24 цилиндров. При этом общий объем двигателя равен суммарному объему всех цилиндров. Цилиндр состоит из двух частей: внутренней (гильзы) и внешней (рубашки). Гильза называется рабочей поверхностью цилиндра и отливается из высокопрочного чугуна или стали. Гильзу называют зеркалом цилиндра, она имеет очень большую чистоту.Рубашка цилиндра – это его внешняя часть, которая обычно изготавливается из единого материала со станиной двигателя. Когда цилиндров больше одного, они располагаются в двигателе единым блоком, имея общее зарубашечное пространство. В этом случае рубашки всех цилиндров представляют собой целую отливку и называются блоком цилиндров.Во время работы двигателя в цилиндр поступают продукты сгорания топлива в газообразном состоянии. Эти газы расширяются и их возрастающая тепловая энергия двигает поршень, который вставлен в цилиндр. Движение поршня в свою очередь заставляет вращаться коленчатый вал, количество колен которого обычно совпадает с числом цилиндров. Полный рабочий цикл двигателя представляет собой последовательность тактов, т.е. этапов полного движения поршня из одной крайней точки в другую.Во время работы двигатель сильно нагревается, поэтому предусматривается система охлаждения, которое происходит в рубашечном отделе цилиндров. Различают два типа системы охлаждения поршневых двигателей:1. Воздушная. Избыток тепловой энергии выбрасывается в быстрый поток воздуха через рубашки цилиндров, которые имеет ребристую поверхность.2. Жидкостная. Для охлаждения используется специальная жидкость, которая проходит через рубашку цилиндра, а затем уходит в радиатор охлаждения, в котором снова охлаждается системой вентиляции. Охлаждающей жидкостью может быть масло, вода или антифриз.Основные характеристики цилиндров поршневого двигателя:- рабочий объем – это объем, который высвобождается поршнем при движении от крайней верхней точки до крайней нижней;- полный объем – это объем пространства, находящегося над поршнем, когда он достигает крайнего нижнего положения. Полный объем складывается из рабочего объема и объема камеры сгорания.Литраж многоцилиндрового двигателя можно вычислить через произведение рабочего объема на количество цилиндров.

что нужно знать об этих деталях и как продлить срок их службы?

В статье подробно рассмотрены ключевые детали автомобильного двигателя – поршень и цилиндр. Уделено внимание их конструкции, функциям, условиям работы, возможным проблемам при эксплуатации и путям их решения.

Цилиндр и поршень – ключевые детали любого ДВС. В замкнутой полости цилиндро-поршневой группы (ЦПГ) происходит сгорание топливно-воздушной смеси. Газы, образующиеся при этом, воздействуют на поршень – он начинает двигаться и заставляет вращаться коленчатый вал.

Цилиндр и поршень обеспечивают оптимальный режим работы двигателя в любых условиях эксплуатации автомобиля.

Рассмотрим эту пару подробнее: конструкцию, функции, условия работы, возможные проблемы при эксплуатации элементов ЦПГ и пути их решения.

Принцип работы цилиндро-поршневой группы

Современные двигатели внутреннего сгорания оснащены блоками, в которые входят от 1 до 16 цилиндров – чем их больше, тем мощнее ДВС.

Внутренняя часть каждого цилиндра – гильза – является его рабочей поверхностью. Внешняя – рубашка – составляет единое целое с корпусом блока. Рубашка имеет множество каналов, по которым циркулирует охлаждающая жидкость.

Внутри цилиндра находится поршень. В результате давления газов, выделяющихся в процессе сгорания топливно-воздушной смеси, он совершает возвратно-поступательное движения и передает усилия на шатун. Кроме того, поршень выполняет функцию герметизации камеры сгорания и отводит от нее излишки тепла.

Поршень включает следующие конструктивные элементы:

  • Головку (днище)
  • Поршневые кольца (компрессионные и маслосъемные)
  • Направляющую часть (юбку)


Бензиновые двигатели оснащены достаточно простыми в изготовлении поршнями с плоской головкой. Некоторые модели имеют канавки, способствующие максимальному открытию клапанов. Поршни дизельных ДВС отличаются наличием на днищах выемок – благодаря им воздух, поступающий в цилиндр, лучше перемешивается с топливом.

Кольца, установленные в специальные канавки на поршне, обеспечивают плотность и герметичность его соединения с цилиндром. В двигателях разного типа и предназначения количество и расположение колец могут отличаться.

Чаще всего поршень содержит два компрессионных и одно маслосъемное кольцо.

Компрессионные (уплотняющие) кольца могут иметь трапециевидную, бочкообразную или коническую форму. Они служат для минимизации попадания газов в картер двигателя, а также отведения тепла от головки поршня к стенкам цилиндра.

Верхнее компрессионное кольцо, которое изнашивается быстрее всех, обычно обработано методом пористого хромирования или напылением молибдена. Благодаря этому оно лучше удерживает смазочный материал и меньше повреждается. Остальные уплотняющие кольца для лучшей приработки к цилиндрам покрывают слоем олова.

С помощью маслосъемного кольца поршень, совершающий возвратно-поступательные движения в гильзе, собирает с ее стенок излишки масла, которые не должны попасть в камеру сгорания. Через дренажные отверстия поршень «забирает» масло внутрь, а затем отводит его в картер двигателя.

Направляющая часть поршня (юбка) обычно имеет конусную или бочкообразную форму – это позволяет компенсировать неравномерное расширение поршня при высоких рабочих температурах. На юбке расположено отверстие двумя выступами (бобышками) – в нем крепится поршневой палец, служащий для соединения поршня с шатуном.

Палец представляет собой деталь трубчатой формы, которая может либо закрепляться в бобышках поршня или головке шатуна, либо свободно вращаться и в бобышках, и в головке (плавающие пальцы).

Поршень с коленчатым валом соединяется шатуном. Его верхняя головка движется возвратно-поступательно, нижняя вращается вместе с шатунной шейкой коленвала, а стержень совершает сложные колебательные движения. Шатун в процессе работы подвергается высоким нагрузкам – сжатию, изгибу и растяжению – поэтому его производят из прочных, жестких, но в то же время легких (в целях уменьшения сил инерции) материалов.


Конструкционные материалы деталей ЦПГ

Сегодня цилиндры и поршни двигателя чаще всего производят из алюминия или стали с различными присадками. Иногда для внешней части блока цилиндров используют алюминий, имеющий небольшой вес, а для гильзы, контактирующей с движущимся поршнем, – более прочную сталь.

В отличие от чугуна, который применялся ранее для изготовления деталей ЦПГ, внедрение алюминия – намного более легкого, но износостойкого материала – стало толчком к появлению мощных и высокооборотистых двигателей.

Современные автомобили, особенно с дизельными ДВС, все чаще оснащаются сборными поршнями из стали. Они имеют меньшую компрессионную высоту, чем алюминиевые, поэтому позволяют использовать удлиненные шатуны. В результате боковые нагрузки в паре «поршень-цилиндр» существенно снижаются.

Из специального высокопрочного чугуна с легирующими добавками (молибденом, хромом, вольфрамом, никелем) производятся сегодня поршневые кольца – части ЦПГ, которые наиболее подвержены износу и деформациям.

Значительные механические и тепловые циклические нагрузки отрицательно сказываются на работоспособности элементов цилиндро-поршневой группы. В то же время от их состояния напрямую зависит стабильная компрессия двигателя, обеспечивающая его уверенный холодный и горячий запуск, мощность, экологичность и другие эксплуатационные показатели.

Именно поэтому для изготовления поршней и других деталей ЦПГ применяются материалы, обладающие высокой механической прочностью, хорошей теплопроводностью, незначительным коэффициентом линейного расширения, отличными антифрикционными и антикоррозионными свойствами.

В целях снижения потерь на трение производители поршней покрывают их боковую поверхность специальными антифрикционными составами на основе твердых смазочных частиц: графита или дисульфида молибдена. Однако со временем заводское покрытие разрушается, поршни снова испытывают высокие нагрузки, под влиянием которых изнашиваются и выходят из строя.

Одним из самых эффективных антифрикционных покрытий поршней является MODENGY Для деталей ДВС.

Состав на основе сразу двух твердых смазок – высокоочищенного дисульфида молибдена и поляризованного графита – применяется для первоначальной обработки юбок поршней или восстановления старого заводского покрытия.

MODENGY Для деталей ДВС имеет практичную аэрозольную упаковку с оптимально настроенными параметрами распыления, поэтому наносится на юбки поршней легко, быстро и равномерно.

На поверхности покрытие создает долговечную сухую защитную пленку, которая снижает износ деталей и препятствует появлению задиров.

MODENGY Для деталей ДВС полимеризуется при комнатной температуре, не требуя дополнительного оборудования.

Для подготовки поверхностей перед нанесением покрытия их необходимо обработать Специальным очистителем-активатором MODENGY. Только в таком случае производитель гарантирует прочное сцепление состава с основой и долгий срок службы готового покрытия. Оба средства входят в Набор для нанесения антифрикционного покрытия на детали ДВС

.


Методы охлаждения и смазывания цилиндро-поршневой группы

В каждом цикле работы двигателя при температуре, достигающей +2000 °С, сгорает большое количество топливно-воздушной смеси. При этом все детали цилиндро-поршневой группы испытывают экстремальные температурные воздействия, поэтому нуждаются в эффективном охлаждении – воздушном или жидкостном.

Наружная поверхность цилиндров ДВС с воздушным охлаждением покрыта множеством ребер, которые обдувает встречный или искусственно созданный воздухозаборниками воздух.

При водяном охлаждении жидкость, циркулирующая в толще блока, омывает нагретые цилиндры, забирая таким образом излишек тепла. Затем жидкость попадает в радиатор, где охлаждается и вновь подается к цилиндрам.

Второй по важности момент после отвода тепла – система смазки цилиндров. Без нее поршни рано или поздно подвергаются заклиниванию, что может привести к поломке двигателя.

Для того чтобы масляная пленка дольше удерживалась на внутренних поверхностях цилиндров, их подвергают хонингованию, т.е. нанесению специальной микросетки. Стабильность слоя масла гарантирует не только максимально низкое трение в паре «поршень-цилиндр», но и способствует отведению лишнего тепла из ЦПГ.


Неисправности ЦПГ и их диагностика

Даже грамотная эксплуатация автомобиля не гарантирует, что со временем не возникнет проблем с его цилиндро-поршневой группой.

О неисправностях деталей ЦПГ свидетельствует увеличение расхода масла, ухудшение пусковых качеств двигателя, снижение его мощности, появление каких-либо посторонних шумов при работе. Эти моменты нельзя игнорировать, так как стоимость ремонта цилиндро-поршневой группы иногда равна стоимости автомобиля в целом.

Под влиянием очень высоких нагрузок и температур:

  • На рабочих поверхностях цилиндров появляются трещины, сколы, пробоины
  • Посадочные места под гильзу деформируются
  • Днища поршней оплавляются и прогорают
  • Поршневые кольца разрушаются, закоксовываются, залегают
  • На теле поршней возникают различные деформации
  • Зазоры между поршнем и цилиндром сужаются, вследствие чего на юбках появляются задиры
  • Наблюдается общий износ цилиндров и поршней

Перечисленные неисправности цилиндро-поршневой группы неизбежны при перегреве двигателя. Он может возникнуть из-за нарушения герметичности системы охлаждения, отказа термостата или помпы, сбоев в работе вентилятора охлаждения радиатора, поломки самого радиатора или его датчика.

Точно определить состояние цилиндров и поршней можно с помощью специализированной диагностики самой ЦПГ (при полной разборке двигателя) или других автомобильных систем (например, воздушного фильтра).

В ходе сервисных работ измеряется компрессия в цилиндрах ДВС, берутся пробы картерного масла и пр. – все это помогает оценить исправность работы цилиндро-поршневой группы.

Ремонт цилиндро-поршневой группы двигателя включает замену маслосъемных и компрессионных колец, установку новых поршней, шатунов, восстановление (расточку) цилиндров.

Степень износа последних определяется с помощью индикаторного нутрометра. Трещины и сколы на стенках устраняются эпоксидными пастами или путем сварки.

Новые поршни – с нужным диаметром и массой – подбирают к гильзам, а поршневые пальцы – к поршням и втулкам верхних головок шатунов. Шатуны предварительно проверяют и при необходимости восстанавливают.

Как продлить ресурс ЦПГ?

Ресурс цилиндро-поршневой группы зависит от типа двигателя, режима его эксплуатации, регулярности обслуживания и многих других факторов. Срок службы ЦПГ отечественных автомобилей, как правило, меньше, чем у иномарок: около 200 тыс. км против 500 тыс.

Для того, чтобы детали ЦПГ вырабатывала свой ресурс полностью, рекомендуется:

  • Использовать моторное масло, рекомендованное автопроизводителем
  • Осуществлять замену масла и охлаждающей жидкости строго по регламенту
  • Следить за температурным режимом работы двигателя, не допуская его перегрева и холодного запуска
  • Регулярно проводить диагностику автомобиля
  • Применять для обслуживания автокомпонентов специальные средства, которые могут защитить их от усиленного износа и максимально продлить срок службы

Рабочий объём — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 18 октября 2019; проверки требует 1 правка. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 18 октября 2019; проверки требует 1 правка. Displacement.gif

Рабочий объём (рабочий объём двигателя) — важнейший конструктивный параметр (характеристика) двигателя внутреннего сгорания (ДВС), выражаемый в кубических сантиметрах (см³) или литрах (л), в США применяются также кубические дюймы (cid). Входит в краткую характеристику любого автомобиля, мотоцикла, трактора, автобуса, тепловоза или судна с поршневым мотором.

Рабочий объём двигателя в значительной степени определяет его мощность и иные рабочие параметры. Рабочий объём равен сумме рабочих объёмов всех цилиндров двигателя. В свою очередь, рабочий объём цилиндра определяется как произведение площади сечения цилиндра на длину рабочего хода поршня (от НМТ до ВМТ). По величине рабочего объёма бензиновые автомобильные двигатели делятся на микролитражные (до 1,1 л), малолитражные (1,2-1,5 л), среднелитражные (1,6-3,5 л) и крупнолитражные (свыше 3,5 л). У дизельных двигателей данный параметр отличается в большую сторону из-за меньшей удельной мощности.

Во многих странах налогообложение автомобильных транспортных средств определяется именно рабочим объёмом, например, в Италии легковые автомобили с рабочим объёмом бензинового двигателя свыше 2000 см³ облагаются повышенным налогом. В Белоруссии так же налог на автомобили считается по объёму двигателя.

Одним из перспективных направлений развития конструкции ДВС является создание моторов с изменяемым рабочим объёмом, что достигается применением системы автоматического (электронного) отключения нескольких цилиндров при режимах частичной нагрузки двигателя. Данная система уже применяется на некоторых новых серийных американских пикапах и внедорожниках и позволяет экономить в среднем 20 % топлива. Существуют также специальные двигатели с устройством непосредственного (механического) изменения рабочего хода поршня, но они пока не вышли из опытно-экспериментальной стадии. Впрочем, ДВС с изменяемым рабочим объёмом достаточно давно применяются в качестве лабораторного оборудования, например, при определении октанового числа бензина «моторным методом».

Рабочий объём является одной из главных характеристик не только мотора, но и всего ТС. Поэтому его часто указывают в названии модели, а также на багажниках легковых автомобилей рядом с названием модели или вообще в модельном индексе. Указывать объём могут по-разному. Вот несколько способов для примера:

  • ВАЗ 21093 , на правом молдинге указан объём в 1100 кубических сантиметров

  • Displacement.gif

    На багажнике слева число 400 означает объёмом в 4 литра

  • VW Tiguan с мотором объёмом в 2 литра , что указано на крышке багажника справа

Советско-Российский автопром, а также практически все мотоциклы мира[править | править код]

На молдинге пишется, например, Sputnik 1500, что означает модель «Спутник» и объём двигателя в 1500 кубических сантиметров.

Мерседес Бенц и Лексус[править | править код]

Например, Мерседес S400 означает S-класс с объёмом двигателя в 4 литра или, например, Lexus IS250 — означает модель IS с объёмом 2,5 л.

BMW и Infiniti[править | править код]

Например, BMW 528i означает кузов 5-й серии с объёмом двигателя 2,8 литра или, например, Infiniti QX 56 до 2013 года означает модель QX с объёмом 5,6 л .

Другие марки[править | править код]

Наиболее популярным обозначением объёма является десятичная дробь в которой целое значение является литр. Например Dodge Ram Cummins 5,9 означает что на нём стоит мотор Cummins объёмом в 5,9 литра.

Yamaha[править | править код]

Yamaha R1 имеет объём чуть менее литра , когда как Yamaha R6 имеет объём 0,6 л.

Шестицилиндровый двигатель — Википедия

Запрос «V6» перенаправляется сюда; о японском бой-бэнде см. V6 (группа). Рядный шестицилиндровый двигатель автомобиля BMW (M20B25) со снятой головкой L6 турбодизель K6S310DR тепловоза ЧМЭ3, рабочий объём 163 л

Шестицили́ндровые дви́гатели — двигатели внутреннего сгорания, имеющие шесть цилиндров, размещённые чаще всего друг напротив друга под углом 60° или 90°.

Рядный шестицилиндровый двигатель — конфигурация двигателя внутреннего сгорания с рядным расположением шести цилиндров, порядок работы цилиндров 1-5-3-6-2-4, и поршнями, вращающими один общий коленчатый вал. Часто обозначается R6[1][2] (от немецкого[3] «Reihe» — ряд), I6 или L6 («Straight-6», «In-Line-Six»). Плоскость, в которой находятся цилиндры, может быть строго вертикальной, или находиться под определённым углом к вертикали. Во втором случае двигатель иногда называют Slant-6 (/6).

В теории I6 в четырёхтактном варианте является полностью сбалансированной конфигурацией относительно сил инерции разных порядков поршней и верхних частей шатунов (силы инерции 1-го порядка разных цилиндров взаимно компенсируют друг друга так же, как и у рядного четырёхцилиндрового двигателя, но, в отличие от последнего, силы инерции 2-го порядка также взаимно компенсируются), сочетая сравнительно невысокую сложность и стоимость изготовления с хорошей плавностью работы. Такую же сбалансированность демонстрирует и V12, работающий как два шестицилиндровых двигателя с общим коленчатым валом.

Однако на малых (холостых) оборотах коленчатого вала возможна некоторая вибрация, вызванная пульсацией крутящего момента. Рядный восьмицилиндровый двигатель, помимо полной сбалансированности, демонстрирует лучшую равномерность крутящего момента, чем рядный шестицилиндровый, но в наше время применяется очень редко из-за целого ряда иных недостатков.

Двигатели конфигурации I6 широко использовались и продолжают использоваться в настоящее время на автомобилях, автобусах, тракторах, речных судах. На легковых автомобилях в последние десятилетия, в связи с повсеместным распространением переднего привода с поперечным расположением силового агрегата, и вообще компоновочных схем с более «плотной» организацией подкапотного пространства, более популярны оказались V-образные шестицилиндровые двигатели как более компактные и короткие, хоть и более дорогие, менее технологичные и сбалансированные. Вместе с тем, отдельные производители не спешат отказываться от рядных шестицилиндровых моторов. Яркий пример — BMW. Более того, современные[когда?] технологии позволяют создать достаточно компактный рядный шестицилиндровый двигатель даже для поперечной установки, правда, на достаточно крупном автомобиле — примером такого силового агрегата служит Chevrolet Epica с передним приводом и поперечно установленными 2,0- и 2,5-литровыми моторами разработки Porsche.

Максимальный рабочий объём рядных шестицилиндровых двигателей практически не ограничен и на судовых дизелях может достигать 1820 дм³ на один цилиндр.

V-образный шестицилиндровый двигатель[править | править код]

V6 фирмы Lancia, первый серийный двигатель такой конфигурации.

V-образный шестицилиндровый двигатель — двигатель внутреннего сгорания с V-образным расположением шести цилиндров двумя рядами по три, и поршнями, вращающими один общий коленчатый вал. Часто обозначается V6 (англ. «Vee-Six», «Ви-Сикс»).

Это второй по популярности в наши дни автомобильный двигатель после рядного четырёхцилиндрового двигателя.

Первый серийный V6 появился в 1950 году на итальянской модели Lancia Aurelia.

Технические особенности[править | править код]

V6 — несбалансированный двигатель; он работает как два рядных трёхцилиндровых двигателя, и без дополнительных мер может иметь весьма большой уровень вибраций. В двигателях V6 используется дисбаланс коленвала, создаваемый противовесами (иногда дополнительно применяют маховик и шкив с дисбалансом), уравновешивающий момент от сил инерции 1-го порядка поршней и верхних частей шатунов. Кроме того, иногда (при некоторых углах развала цилиндров) для этого дополнительно используют балансировочный вал, вращающийся со скоростью коленвала, но в противоположную сторону. Это позволяет приблизить их по плавности работы и уровню вибраций к рядному шестицилиндровому двигателю. Момент инерции 2-го порядка, как правило оставляют свободным, так как он имеет небольшую величину и может быть поглощён опорами двигателя.

Как правило, угол развала цилиндров составляет 60, 90 или 120 градусов. Но встречаются и иные варианты, например 54°, 45°, 65°, 75° или 15° (VR6).

Угол развала 90° обычно встречается на двигателях, унифицированных с двигателями конфигурации V8, для которых такой угол развала является основным. В первых двигателях такой конфигурации, по причине того, что технологии тогда не позволяли сделать достаточно прочный коленвал со смещёнными шатунными шейками, а делать полноопорный коленвал с отдельными шейками для каждого шатуна невыгодно, так как по длине двигатель становится сравнимым с исходным V8 (кроме того, это усложняет двигатель), на каждой шатунной шейке располагались (так же, как и в исходном V8) по два шатуна от противоположных цилиндров (схема с 3 кривошипами, пример — Buick Special, а также советский двигатель ЯМЗ-236). Такая конструкция при угле развала 90° позволяет уравновесить момент инерции 1-го порядка без применения балансировочных валов, однако равномерных интервалов поджига смеси она не обеспечивает (рабочие ходы в цилиндрах следуют не равномерно, а через 90 и 150° по углу поворота коленчатого вала, порядок работы цилиндров при этом 1-4-2-5-3-6). Следствием этого является заметная вибрация работающего двигателя, особенно при работе на малых оборотах коленчатого вала, а также грубый и неприятный на слух звук выхлопа, а по плавности хода двигатель больше напоминает трёхцилиндровый. Чтобы уменьшить вибрации и улучшить плавность хода, применяют маховик увеличенной массы. В более современных[когда?] двигателях V6 с углом развала 90° используется усложнённый коленвал со смещёнными шатунными шейками (6 кривошипов), обеспечивающий равномерные интервалы поджига смеси, а момент инерции 1-го порядка уравновешивается при применении балансировочного вала (без него он уравновешивается не полностью, что потребует усовершенствованной подвески двигателя и часто неприемлемо для современного[когда?] легкового автомобиля из-за повышенной вибрации). Однако на болидах формулы-1 (регламент 2014) года используется именно простой коленвал с тремя кривошипами, не обеспечивающий равномерных интервалов поджига, но обладающий большей прочностью и не требующий уравновешивания момента 1-го порядка.

120-градусный развал позволяет получить широкий, но низкий силовой агрегат, что лучше подходит для низких, например, спортивных машин. В нём так же на каждой шатунной шейке располагаются по два шатуна (число шатунных шеек — 3), но за счёт угла развала цилиндров 120° обеспечиваются равномерные интервалы поджига смеси. Такая конфигурация имеет довольно большой момент 1-го порядка, который можно скомпенсировать только при применении балансировочного вала. При всех остальных углах развала (отличных от 120°), чтобы обеспечить равномерные интервалы поджига смеси (через каждые 120° по углу поворота коленвала) и тем самым уменьшить вибрацию двигателя, а также обеспечить плавный ход, каждый шатун располагают на отдельной шатунной шейке коленвала, либо применяют усложнённый коленвал со смещёнными шатунными шейками (это уменьшает длину двигателя, а также упрощает его, но требует усовершенствованния технологии изготовления коленвала).

60-градусный развал позволяет скомпенсировать момент 1-го порядка без применения балансировочных валов. По этой причине, а также благодаря компактности, этот угол развала считается «родным» для V-образных шестёрок. Иногда по каким-либо причинам применяют близкие углы развала, например 54° или 65° при незначительном увеличении вибраций, которые растут по мере отклонения от угла 60°.

Угол развала 15° позволяет сделать одну общую головку для всех цилиндров, а также позволяет использовать порядок зажигания такой же, как у рядного шестицилиндрового двигателя и обладает удовлетворительной сбалансированностью без применения балансировочных валов, что вместе с усовершенствованной подвеской двигателя решает проблему вибраций.

Именно трудности балансировки и являлись основной причиной, сдерживавшей распространение серийных двигателей этого типа. До 1950-х годов такие двигатели создавались, но либо для стационарных установок (например бензогенераторов), либо как опытные образцы.

В 1959 году в США фирма GM начала производство пятилитрового V6, которым оснащались пикапы и субурбаны (гибрид универсала и микроавтобуса на шасси пикапа).

В 1962 году в США пошёл в производство «компакт» Buick Special с 90-градусным V6, разработанным на основе небольшой V-образной «восьмёрки», но он отличался высоким уровнем вибраций и вскоре был снят с производства.

Одним из первых полностью перешёл на V-образные шестицилиндровые моторы (двух семейств — Cologne и Essex, в зависимости от места разработки — ФРГ или Великобритании) европейский филиал «Форда»: с 1965…66 годов они постепенно вытеснили ранее использовавшиеся на наиболее крупных европейских моделях этой марки рядные шестёрки (первоначально европейский «Форд» также повсеместно заменил на своих автомобилях рядные четвёрки на моторы конфигурации V4, принадлежавшие к тем же семействам, что и V6, но впоследствии отказался от них — в то время, как V6 упомянутых выше семейств дожили до 2000-х годов). При этом американский «Форд» оставался крайне консервативен в выборе типов силовых агрегатов, начав выпуск собственных V6 (на основе разработок британского филиала) лишь в начале 1980-х годов (на пике бензинового кризиса рубежа 1970-х — 1980-х годов).

Первый серийный японский V6 появился только в 1983 году у фирмы Nissan — серия Nissan VG, затем более продвинутым японским V6 стал мотор серии 6G от Mitsubishi, появившийся в 1986 году, примечатлен он тем, что устанавливался он на самый дорогой спорткар этой компании Mitsubishi 3000GT и в турбоверсии выдавал аж 320 лошадиных сил, нося индекс 6G72TT.

Использование в автомобилях[править | править код]

V6 — один из самых компактных двигателей, он обычно короче, чем I4, и в большинстве исполнений у́же и короче, чем V8.

В современных[когда?]переднеприводных автомобилях с поперечным расположением двигателя по компоновочным соображениям как правило невозможна установка рядных шестицилиндровых двигателей, что, при повышенных требованиях к мощности в наши дни, обуславливает популярность V-образных шестицилиндровых моторов на автомобилях более высоких классов, несмотря на малую сбалансированность и сложность в производстве в сравнении с I6. Унификация двигателей различных автомобилей приводит к тому, что V6 устанавливают и в машинах с продольным расположением двигателя, в которых, в принципе, нет строгой компоновочной необходимости его применения, — хотя оно и даёт ряд преимуществ. Вместе с тем, на автомобилях того же класса с задним приводом, вроде 5-й серии BMW, всё ещё довольно широко распространены и рядные «шестёрки».

Из советских двигателей серийными V6 были только дизели большого рабочего объёма для грузовиков, и спецтехники: ЯМЗ-236 и СМД-60. Трёхлитровый V6 моделей ГАЗ-24-14 и ГАЗ-24-18 планировался в качестве базового двигателя легкового автомобиля «Волга» ГАЗ-24, но впоследствии в силу целого ряда причин был заменён на рядный четырёхцилиндровый. Однако, была выпущена опытно-промышленная партия этих двигателей, которые использовались на ряде спортивных автомобилей, в частности, на одном из серии «Эстония».

Другим направлением развития является VR-технология, которая зародилась в 1920-е годы, когда компания Lancia выпустила семейство V-образных моторов с очень маленьким углом развала цилиндров (всего 10—20°). «VR» представляет собой аббревиатуру двух немецких слов, обозначающих V-образный и R-рядный, т. е. «v-образно-рядный».[3]

Двигатель представляет собой симбиоз V-образного двигателя с минимально малым углом развала 15° и рядного двигателя, в котором шесть цилиндров расположены V-образно под углом 15°, в отличие от традиционных V-образных двигателей, имеющих угол 60° или 90°. Поршни в блоке размещаются в шахматном порядке.

Двигатель никак не наследует сбалансированность R6[4], но имеет лучшую компактность в сравнении с V6 и R6. Совокупность достоинств обоих типов двигателей привела к тому, что двигатель VR6 стал настолько компактным, что позволил накрыть оба ряда цилиндров одной общей головкой, в отличие от обычного V6. В результате двигатель VR6 получился значительно меньшим по длине, чем R6, и по ширине, чем обычный V6[3].

Рабочий объём варьируется как правило от 2,0 до 5,0 л. Использование конфигурации в двигателях объёмом меньше 2,0 л мало оправдано из-за относительно высокой стоимости изготовления (по сравнению с четырёхцилиндровыми двигателями) и большой (в сравнении с ними же) длины. Однако, подобные случаи имели место, например, мотоцикл Benelli 750 Sei имел двигатель I6 с рабочим объёмом всего 0,75 л.

В настоящее время технология возрождена концерном Volkswagen, который выпустил шестицилиндровые двигатели компоновки VR6. Ставился с 1991 года (1992 модельный) на автомобили Volkswagen Passat, Golf, Corrado, Sharan. Имеет заводские индексы «AAA» объёмом 2,8 литра, мощностью 174 л/с и «ABV» объёмом 2,9 литра и мощностью 192 л/с.

Имеет два ряда по три цилиндра, которые расположены под углом 180°, причём противостоящие поршни двигаются зеркально (одновременно достигают верхней мёртвой точки). Такой двигатель хорошо уравновешен и имеет малую высоту и низкий центр тяжести, но при этом он довольно широкий. Используется на некоторых автомобилях («Порше», «Субару») и мотоциклах («Хонда Голд Винг»).[источник не указан 482 дня]

  • Nunney, M J. Light and Heavy Vehicle Technology.

Гидроцилиндр — Википедия

Hydraulikzylinder01.jpg

Гидроцили́ндр (гидравли́ческий цили́ндр) — объёмный гидродвигатель возвратно-поступательного движения. Принцип действия гидроцилиндров во многом схож с принципом действия пневмоцилиндров.

Внутреннее устройство одноштокового гидроцилиндра двустороннего действия можно посмотреть Файл:Cutawayweldedcylinder544x123.jpg

Гидроцилиндры одностороннего действия[править | править код]

Hydraulikzylinder01.jpg Гидроцилиндр одностороннего действия

Выдвижение штока осуществляется за счёт создания давления рабочей жидкости в поршневой полости, а возврат в исходное положение от усилия пружины.

Усилие, создаваемое гидроцилиндрами данного типа, при прочих равных условиях меньше усилия, создаваемого гидроцилиндрами двустороннего действия, за счёт того, что при прямом ходе штока необходимо преодолевать силу упругости пружины.

Пружина выполняет здесь роль возвратного элемента. В тех случаях, когда возврат производится за счет действия приводимого механизма, другого гидроцилиндра или силы тяжести поднятого груза, гидроцилиндр может не иметь возвратной пружины ввиду отсутствия необходимости. Такой принцип действия применяется в бутылочных домкратах.

Гидроцилиндры двустороннего действия[править | править код]

Hydraulikzylinder01.jpg Гидроцилиндр двустороннего действия

Как при прямом, так и при обратном ходе поршня усилие на штоке гидроцилиндра создаётся за счёт создания давления рабочей жидкости соответственно в поршневой и штоковой полости.

Следует иметь в виду, что при прямом ходе поршня усилие на штоке несколько больше, а скорость движения штока меньше, чем при обратном ходе, за счёт разницы в площадях, к которым приложена сила давления рабочей жидкости (эффективной площади поперечного сечения). Такие гидроцилиндры осуществляют, например, подъём-опускание отвала многих бульдозеров.

Телескопические гидроцилиндры[править | править код]

Hydraulikzylinder01.jpg Телескопический гидроцилиндр

Называются так благодаря конструктивному сходству с телескопом или подзорной трубой. Такие гидроцилиндры применяются в том случае, если при небольших размерах самого гидроцилиндра в исходном, то есть сложенном, состоянии, необходимо обеспечить большой ход штока. Конструктивно представляют собой несколько цилиндров, вставленных друг в друга таким образом, что корпус одного цилиндра является штоком другого. Такие гидроцилиндры имеют исполнение как для одностороннего, так и для двустороннего действия.

Они осуществляют, например, подъём-опускание кузовов во многих самосвалах.

Дифференциальные гидроцилиндры[править | править код]

Условное графическое обозначение дифференциального гидроцилиндра по ISO 1219

«Обычное» подключение поршневых гидроцилиндров двустороннего действия предусматривает поочередное подключение полостей гидроцилиндра к нагнетательной и сливной магистралям распределителем 4/2 или 4/3, что обеспечивает движение поршня за счет разности давлений. Соотношение скоростей движения, а также усилий при прямом и обратном ходе, различны и пропорциональны соотношению площадей поршня. Между скоростью и усилием устанавливается зависимость: выше скорость — меньше усилие, и наоборот.

«Кольцевая», или «дифференциальная» схема подключения.

При рабочем ходе (выдвижении штока) жидкость от насоса подается в поршневую полость, вытесняемая же жидкость из штоковой полости, за счет кольцевого подключения (распределитель 3/2), направляется не в гидробак, а подается также в поршневую полость. В результате выдвижение штока происходит намного быстрее, чем в обычной схеме подключения (распределитель 4/2 или 4/3).

Обратный ход (втягивание штока) происходит при подаче жидкости только в штоковую полость, поршневая соединена с гидробаком. При использовании гидроцилиндра с соотношением площадей поршня 2:1 (в некоторых источниках именно такие гидроцилиндры называются дифференциальными) такая схема позволяет получить равные скорости и равные усилия прямого и обратного ходов, что для гидроцилиндров с односторонним штоком без регулирования или дополнительных элементов получить невозможно.

Гидроцилиндры широко применяют во всех отраслях техники, где используют объёмный гидропривод. Например, в строительно-дорожных, землеройных, подъёмно-транспортных машинах, в авиации и космонавтике, а также в технологическом оборудовании — металлорежущих станках, кузнечно-прессовых машинах.

Управление движением поршня и штока гидроцилиндра осуществляется с помощью гидрораспределителя, либо с помощью средств регулирования гидропривода.

РАБОЧИЙ ОБЪЁМ ЦИЛИНДРА — это… Что такое РАБОЧИЙ ОБЪЁМ ЦИЛИНДРА?


РАБОЧИЙ ОБЪЁМ ЦИЛИНДРА

РАБОЧИЙ ОБЪЁМ ЦИЛИНДРА — объём, освобождаемый поршнем при его движении от верхней мёртвой точки до нижней, равный произведению площади поршня на его рабочий ход (см.). Выражается в кубических метрах и литрах, а для мотоциклетных и лодочных подвесных двигателей — в кубических сантиметрах. Суммарный Р. о. всех цилиндров двигателя иногда называют литражом двигателя.

Большая политехническая энциклопедия. — М.: Мир и образование. Рязанцев В. Д.. 2011.

  • РАБОЧЕЕ ТЕЛО
  • РАБОЧИЙ ОРГАН МАШИНЫ

Смотреть что такое «РАБОЧИЙ ОБЪЁМ ЦИЛИНДРА» в других словарях:

  • рабочий объём цилиндра — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN displacement …   Справочник технического переводчика

  • Рабочий объём — Для улучшения этой статьи желательно?: Викифицировать статью …   Википедия

  • Рабочий объем — Рабочий объём (рабочий объём двигателя, литраж) один из важнейших конструктивных параметров (характеристик) двигателя внутреннего сгорания (ДВС), выражаемый в литрах (л) или кубических сантиметрах (см³). Литраж двигателя в значительной степени… …   Википедия

  • Объём двигателя — 4 тактный цикл двигателя внутреннего сгорания Такты: 1.Всасывание горючей смеси. 2.Сжатие. 3.Рабочий ход. 4.Выхлоп. Двухтактный цикл. Такты: 1. При движении поршня вверх  сжатие топливной смеси в текущем цикле и всасывание смеси для следующего… …   Википедия

  • Гильза цилиндра —         сменная цилиндрическая вставка, устанавливаемая в блок картере поршневых тепловых двигателей (См. Тепловой двигатель) с водяным охлаждением. Г. ц. изготовляют из чугуна и применяют в блоках из алюминиевых сплавов для уменьшения износа… …   Большая советская энциклопедия

  • Бензиновый двигатель внутреннего сгорания — Бензиновый двигатель W16 Bugatti Veyron Бензиновые двигатели  это класс двигателей внутреннего сгорания, в цилиндрах которых предварительно сжатая топливовоздушная смесь поджигается электрической и …   Википедия

  • Четырехтактный двигатель — Бензиновые двигатели это класс двигателей внутреннего сгорания, в цилиндрах которых предварительно сжатая топливовоздушная смесь поджигается электрической искрой. Управление мощностью в данном типе двигателей производится, как правило,… …   Википедия

  • Четырёхтактный мотор — Бензиновые двигатели это класс двигателей внутреннего сгорания, в цилиндрах которых предварительно сжатая топливовоздушная смесь поджигается электрической искрой. Управление мощностью в данном типе двигателей производится, как правило,… …   Википедия

  • Поршневой двигатель внутреннего сгорания — 4 тактный цикл двигателя внутреннего сгорания Такты: 1. Всасывание горючей смеси. 2. Сжатие. 3. Рабочий ход. 4. Выхлоп. Двухтактный цикл. Такты: 1. При движении поршня вверх  сжатие топливной смеси в …   Википедия

  • Иж Планета — Общая информация Производитель Ижевский машиностроительный завод Годы выпуска 1962 1967 …   Википедия

Пятицилиндровый двигатель — Википедия

Материал из Википедии — свободной энциклопедии

Пятицилиндровый двигатель — поршневой двигатель внутреннего сгорания с 5 цилиндрами.

Рядный пятицилиндровый двигатель начал применяться в 30-х годах XX-в. Дизельный пятицилиндровый двигатель был установлен на военный грузовой автомобиль 1932-г. Lancia Ro3[1].

С 1974 года Mercedes-Benz начал устанавливать дизельные I5 с модели Mercedes-Benz W115 и на ряд других по 2005 год. Первые бензиновые двигатели I5 начали применять в моделях Audi 100 c 1976 года[2]. Широкую известность двигатель I5 получил благодаря раллийному автомобилю Audi Sport Quattro в середине 1980-х годов.

I5 / R5 — рядный пятицилиндровый двигатель. Применяется в автомобильных транспортных средствах таких как легковые и грузовые автомобили.

VR5 — VR-образный двигатель c пятью цилиндрами. Цилиндры расположены в шахматном порядке. Используется в некоторых моделях автомобилей марки Volkswagen.

Звездообразный (радиальный) — цилиндры расположены вокруг оси вращения коленчатого вала. Применяется главным образом в авиационной технике.

I5[править | править код]

Работа рядного 5-цилиндрового двигателя Работа радиального 5-цилиндрового двигателя Звучание рядного 5 цилиндрового двигателя

VR5[править | править код]

Радиальные (звездообразные) авиационные двигатели[править | править код]

  • Alfa Romeo JTD

  • Audi I5

  • Volvo I5

  • М-11Ф

Отправить ответ

avatar
  Подписаться  
Уведомление о