Детонация бензина – Детонационная стойкость топлив — это… Что такое Детонационная стойкость топлив?

Содержание

Детонационная стойкость топлив — Википедия

Материал из Википедии — свободной энциклопедии

Детонационная стойкость — параметр, характеризующий способность топлива противостоять самовоспламенению при сжатии. Это важнейшая количественная характеристика топлива, на основе которой определяется его сортность и применимость в двигателях той или иной конструкции.

Для легкотопливных двигателей важна высокая детонационная стойкость топлива (как правило, бензина). В данном случае, она измеряется параметром, называемым «октановое число».

Высокая детонационная стойкость бензинов обеспечивает их нормальное сгорание на всех режимах эксплуатации двигателя. При сжатии рабочей смеси, температура и давление повышаются, и начинается окисление углеводородов, которое интенсифицируется после воспламенения смеси. Если углеводороды несгоревшей части топлива обладают недостаточной стойкостью к окислению, начинается интенсивное накапливание перекисных соединений, а затем — их взрывной распад. При высокой концентрации перекисных соединений, происходит тепловой взрыв, который вызывает самовоспламенение топлива.

Самовоспламенение части рабочей смеси перед фронтом пламени приводит к взрывному горению оставшейся части топлива — к так называемому «детонационному сгоранию», «детонации». Детонация вызывает перегрев, повышенный износ, или даже местные разрушения двигателя, и сопровождается резким характерным звуком, падением мощности, увеличением дымности выхлопа. На возникновение детонации оказывают влияние состав применяемого бензина и конструктивные особенности двигателя.

Детонационная стойкость дизельных топлив[править | править код]

Для дизельных двигателей, работающих за счёт самовоспламенения рабочей смеси от сжатия, детонационная стойкость топлива должна наоборот быть достаточно низкой, чтобы обеспечить нормальный рабочий цикл.

Способность топлива воспламеняться при сжатии определяет период задержки воспламенения смеси (промежуток времени от впрыска топлива в цилиндр до начала его горения) и выражается характеристикой, обозначаемой как «цетановое число». Чем выше цетановое число, тем меньше задержка, и тем более спокойно и плавно горит топливная смесь.

Детонация в бензиновом двигателе | Двигатель автомобиля

Причина детонации

В обычных условиях рабочая смесь топлива с воздухом воспламеняется от свечи зажигания, после чего пламя равномерно распространяется в камере сгорания со средней скоростью около 20 м/с. При неравномерном воспламенении рабочей смеси температура и давление воспламеняющейся смеси резко повышаются, так же, как давление и температура невоспламененной смеси. Если при этом в нескольких местах превышается критическая температура, возникают очаги самовоспламенения, вызывающие неравномерное ударное возгорание остатка рабочей смеси. Неравномерный процесс сгорания образует сильные ударные волны, вызывающие звонкий детонационный звук при достижении поверхности цилиндра.

Способы предотвращения детонации

На практике существуют три вида мероприятий по предотвращению детонации.

  1. Предотвращение детонации при эксплуатации двигателя, когда она возникает во время движения автомобиля и необходимы срочные меры для предотвращения сильных повреждений двигателя.
  2. Предотвращение возможной детонации при разработке двигателя, когда используется комплекс мер для противодействия появлению детонации.
  3. Предотвращение возможной детонации путем разработки топлива с высокой детонационной стойкостью.

1. Предотвращение детонации при эксплуатации двигателя.

Во время движения автомобиля детонация может возникнуть при разгоне или движении с большой скоростью. В обоих случаях двигатель сильно перегружается.

Детонация при разгоне возникает при ускорении транспортного средства с низких оборотов коленчатого вала путем резкого нажатия на педаль «газа». При этом резко увеличивается подача рабочей смеси в цилиндры, избыток смеси не успевает сгорать вовремя и догорание смеси вызывает детонационные процессы. В таком случае помогает переключение на следующую передачу (при наличии механической коробки передач), когда при той же мощности двигателя повышается частота вращения коленчатого вала, а крутящий момент уменьшается. Наполнение и вентиляция цилиндров двигателя происходят более равномерно, не остается сгорающих избытков рабочей смеси и детонация исчезает.

Детонация при движении с большой скоростью возникает с выходом двигателя на излишне высокую частоту вращения коленчатого вала. Ее можно легко не заметить, и так как не принимаются никакие меры, это нередко приводит к прогоранию поршня. В этом случае достаточноснизить скорость, то есть уменьшить подачу рабочей смеси в цилиндры. Двигатель выйдет на оптимальный режим работы и детонация исчезнет. Если детонация возникает в двигателе, работающем на обычном бензине, поможет замена на бензин высшего качества.

Кроме того, можно снизить склонность двигателя к детонации, настроив угол опережения зажигание на «поздний». При «позднем» зажигании давление в цилиндрах остается низким, а топливо не так часто самовоспламеняется. Обратной стороной такого решения является снижение мощности двигателя и увеличения расхода топлива.

2. Предотвращение возможной детонации при разработке двигателя.

Выбор степени сжатия

Степень сжатия следует выбирать настолько высокую, насколько это возможно для работы двигателя без детонации на имеющемся в продаже бензине.

Обычный бензин позволяет выбрать степень сжатия E до 9.

Бензин высшего качества позволяет выбрать степень сжатия E от 8,5 до 11. При расчетах необходимо учитывать, что высокое значение степени сжатия увеличивает мощность двигателя и снижает расход топлива.

Положение свечи зажигания

Склонность двигателя к детонации снизится, если пламя будет распространяться от горячих частиц смеси к холодным. Самым горячим местом в камере сгорания является выпускной клапан. Рядом с ним должна устанавливаться свеча зажигания.

Хорошее охлаждение камеры сгорания предотвращает детонацию

Рис. Хорошее охлаждение камеры сгорания предотвращает детонацию

Форма камеры сгорания

Форма камеры сгорания также влияет на возникновение детонации. Единая камера сгорания менее предрасположена к детонации, чем разделенная.

Частицы рабочей смеси, которые поздно охватываются пламенем, должны сохранять низкую температуру с помощью хорошо охлажденных стенок камеры сгорания для предотвращения преждевременного воспламенения. Вихревое движение топливовоздушной смеси в камере сгорания поддерживает равномерный состав смеси и распределение температур. Пламя распространяется по камере сгорания быстрее, что не вызывает взрывных реакции при сгорании. Вихревое движение смеси обеспечивается геометрией впускного канала, а также соответствующей формой камеры сгорания и поршня, что закладывается на стадии проектирования двигателя. Во впускных каналах сложной геометрии увеличивается аэродинамическое сопротивление движению потока рабочей смеси, поэтому наполнение цилиндров и, соответственно, литровая мощность двигателя снижаются.

Охлаждение

Посредством хорошего охлаждения двигателя снижается температура рабочей смеси и она остается менее склонной к самовоспламенению. Жидкостное охлаждение двигателя имеет больше преимуществ, чем воздушное.

При использовании алюминиевых сплавов вместо чугуна температура головки блока цилиндров остается низкой вследствие в три раза большей теплопроводности.

Электронная система предотвращения детонации

Детонация исчезает, если установить угол опережения зажигания в «позднее» положение. Для этого используется электронная система предотвращения детонации в сочетании с электронной системой зажигания. Датчик детонации, установленный на двигателе (датчик ускорения), улавливает детонационные вибрации, например, блока цилиндров двигателя. Сигналы датчика детонации анализируются микропроцессором, который при необходимости перестраивает работу системы зажигания согласно уровню детонации, например, на 1 градус угла поворота коленчатого вала в направлении «позднее», пока детонационные вибрации не перестанут улавливаться.

Если детонация не улавливается, электронная система зажигания управляет работой двигателя в обычном режиме. При этом, правда, возможно приближение работы двигателя к зоне возможного возникновения детонации. В противоположность этому в двигателе без электронной системы предотвращения детонации режимы работы удерживаются на относительно большой дистанции от зоны возможного возникновения детонации. Следует, однако, учитывать, что работа двигателя вблизи этой зоны означает большую литровую мощность двигателя и меньший удельный расход топлива. В двигателях с электронной системой предотвращения детонации также может увеличиться степень сжатия; кроме того, они не чувствительны к топливу с незначительным октановым числом.

3. Предотвращение возможной детонации путем разработки топлива с высокой детонационной стойкостью.

Детонационная стойкость углеводородов

Рис. Детонационная стойкость углеводородов

Горючее получают путем перегонки нефти, которая представляет собой множественные соединения углеводородов, имеющих различную детонационную стойкость. Дистиллят нефти подвергается химическим процессам для обогащения антидетонационными углеводородами.

При перегонке нефти получается бензин с диапазоном кипения 40-215 °С. Его удельная теплота сгорания составляет Нп ~ 43 000 кДж/кг. Бензин разделяют на обычный бензин (плотность р — 0,74 г/см3), бензин высшего качества (р ~ 0,76 г/см3) и бензин наивысшего качества. Детонационная стойкость разных сортов бензина различается вследствие различного состава. Октановые числа бензина по исследовательскому методу (ROZ) по меньшей мере, должны быть равны следующим величинам:

  • обычный бензин ROZмин= 91
  • бензин высшего качества ROZмин = 95
  • бензин наивысшего качества ROZмин = 98

Раньше для увеличения детонационной стойкости в бензин добавляли соединения свинца. Так как свинец и его соединения ядовиты и несут угрозу для окружающей среды, свинцевание бензина было запрещено на законодательном уровне. Исключением является этилированный бензин высшего качества с октановым числом ROZмин = 98 (максимальное содержание свинца 0,15 г/л). Так как все современные двигатели оснащены каталитическими нейтрализаторами для очистки отработавших газов, они не должны работать на этилированном бензине. Свинец и его соединения покрыли бы поверхность нейтрализатора и вступили с ней в химическую реакцию. Вследствие этого очистка отработавших газов стала бы невозможной.

Те соединения свинца, которые раньше добавлялись в бензин для повышения детонационной стойкости, называются антидетонаторами.

В качестве антидетонаторов использовались тетраметилсвинец (Рb(СН3)4) и тетраэтилсвинец (Рb(С2Н5)4). Оба соединения свинца очень ядовиты. Их действие заключается в том, что они вследствие высокой температуры распадаются до воспламенения смеси в камере сгорания, и возникающий свинцовый порошок предотвращает преждевременное самовоспламенение смеси.

Чтобы во время сгорания не образовывался оксид свинца, который способен ускорить износ цилиндра, в бензин добавляют соединения брома и хлора. При высокой температуре в камере сгорания двигателя свинец образовывает бромид свинца или хлорид свинца. Эти два очень ядовитых соединения свинца становятся газообразными при температуре около 800 °С и выводятся из двигателя вместе с отработавшими газами. Они считаются вредными примесями в отработавших газах и приводят к загрязнению воздуха.

Добавление в бензин спиртов, например, метанола, также повышает детонационную стойкость топлива. Разумеется, при добавлении большого количества, равного 15%, топливная аппаратура системы питания двигателя должна быть специально настроена на смесь бензина и спирта.

Определение детонационной стойкости бензина

Детонационная стойкость бензина выражается в его октановом числе.

Октановое число бензина указывает на то, что данный вид топлива обладает такой же детонационной стойкостью, что и эталонная сравнительная смесь углеводородов — изооктана и нормального гептана. Так как изооктан имеет октановое число 100, а нормальный гептан — октановое число 0, то октановое число 80 означает, что детонационная стойкость бензина равна детонационной стойкости смеси из 80% (объемных частей) изооктана и 20% (объемных частей) нормального гептана. Детонационная стойкость растет с увеличением октанового числа.

Определение октанового числа выполняется на соответствующем испытательном стенде с использованием эталонного двигателя для оценки детонационной стойкости различных видов топлива. Эталонным в данном случае считается одноцилиндровый четырехтактный бензоиновый двигатель с термосифонной системой жидкостного охлаждения, в которой отсутствует помпа, а охлаждающая жидкость испаряется, и пар низкого давления конденсируется в радиаторе, а затем в виде конденсата возвращается в рубашку охлаждения. Степень сжатия двигателя во время испытаний может изменяться в границах между 4 и 18.

Существует два стандартизированных метода испытаний: исследовательский метод и моторный метод. Соответственно, результатами являются исследовательское октановое число бензина (ROZ) и моторное октановое число бензина (MOZ). Различия основных параметров обоих методов указаны в таблице.

Таблица. Различия параметров исследовательского и моторного методов

Различия параметров исследовательского и моторного методов

В моторном методе смесь воздуха и бензина нагревается позади карбюратора, а в исследовательском методе — воздух нагревается перед карбюратором.

Эталонный двигатель запускается и соединяется с большим электрическим генератором, в котором крутящий момент от эталонного двигателя возбуждает электрический ток, создающий тормозной момент. Измерение октанового числа всегда проводится в режиме сильной детонации при сгорании рабочей смеси. При этом коэффициент избытка воздуха регулируется так, чтобы получить детонацию максимальной интенсивности. Индуктивный датчик и электронный усилитель сигналов замеряют уровень детонации и выводят показания на дисплей специального прибора — детонометра. Компрессия двигателя настраивается таким образом, чтобы показания детонометра исследуемого бензина находились в середине шкалы прибора. Затем в систему питания вводятся две сравнительные смеси, чьи октановые числа различаются лишь на две единицы. Одна сравнительная смесь должна вызывать более сильную, а вторая более слабую детонацию, чем бензин. Посредством линейной интерполяции определяется и округляется до десятых долей октановое число бензина.

Определение октанового числа бензина

Рис. Определение октанового числа бензина

Один и тот же бензин, испытанный по моторному методу, имеет меньшее октановое число, чем выявленное по исследовательскому методу. Октановое число, определяемое по моторному методу, в современном бензине меньше примерно на 10 единиц, чем октановое число, определяемое по исследовательскому методу. Данная разница обусловлена тем, что соотношение олефинов и ароматических углеводородов в двух методах испытаний отличаются. На сегодняшний день исследовательское октановое число в бензине равно приблизительно 92, а в бензине высшего качества — 95 единиц. Октановое число, определяемое по исследовательскому методу, указывает на то, как ведет себя топливо при ускорении (детонация при разгоне).

Октановое число, определяемое по моторному методу, наоборот, указывает на поведение при большой нагрузке (детонация при высокой частоте вращения коленчатого вала).

Наряду с исследовательским и моторым октановыми числами существует также октановое число, определяемое по дорожному методу (SOZ). Оно определяется методом дорожных испытания транспортного средства согласно «модифицированному дорожному методу». В прогретый двигатель подаются различные сравнительные смеси из изооктана и нормального гептана. Автомобиль сначала ускоряется до максимальной скорости на прямой передаче, позволяющей плавное движение без рывков. Угол опережения зажигания регулируется до тех пор, пока не исчезнет детонация. В результате данные испытаний образуют базовую кривую, отображенную на рисунке.

Определение октанового числа по дорожному методу

Рис. Определение октанового числа по дорожному методу

Затем по тому же методу определяется установка зажигания, при которой начинается детонация, для исследуемого бензина. По базовой кривой определяется октановое число бензина по дорожному методу. Эта величина в различных двигателях будет иметь различные значения для одного и того же бензина.

Детонационная стойкость бензина — это что такое?

Показателем, показывающим соотношение различных составных частей в рассматриваемом товаре является детонационная стойкость бензина. Об этом рассказано в данной статье.

Понятие о детонации

Последняя возникает при самовоспламенении бензовоздушной смеси в той части, которая в наибольшей степени удалена от свечи зажигания. Ее горение носит взрывоопасный характер.

Оптимальные условия для ее протекания складываются в части камеры сгорания, в которой наблюдаются повышенная температура и большая экспозиция нахождения смеси.

Детонацию можно определить по характерным металлическим стукам, которые образуются из-за отражения ударных волн от стенок камеры сгорания и обусловленной этим вибрации цилиндров.

детонационная стойкость бензина

Детонационное сгорание бензина может наступить с большей вероятностью в случае наличия в камере сгорания нагара, а также при ухудшении состояния двигателя. Данное явление приводит к уменьшению его мощности, снижению экономических показателей, а также токсикологических показателей отработавших газов.

Свойства бензинов, обуславливающие возникновение детонации

К таковым относятся: фракционный состав, содержание серы, стабильность с физической и химической точек зрения, строение углеводородов и др.

Наибольшая детонационная стойкость характерна для ароматических углеводородов, а наименьшая — для нормальных парафиновых. Другие из них, входящие в состав бензина, занимают промежуточное положение.

Производят оценку детонационной стойкости бензина октановым числом.

Способы предотвращения детонации

Она должна предотвращаться в момент эксплуатации двигателя, тогда когда осуществляется движение автомобиля, в связи с чем возникает необходимость принятия срочных мер с целью предотвращения повреждения двигателя в наибольшей степени. Помимо этого, усилия конструкторов должны быть направлены на разработку последнего с комплексным противодействием рассматриваемому явлению.

Одним из основных способов предотвращения потенциальной детонации является выпуск бензина с детонационной стойкостью достаточно высокой.

Определение октанового числа

детонационная стойкость бензина октановое число

Выше мы определились с тем, какое число определяет детонационную стойкость бензина. Октановое число (ОЧ) определяют при помощи одноцилиндрового оборудования с динамичной степенью сжатия, применяя исследовательский или моторный методы. При его определении производится сжигание исследуемого бензина и эталонного топлива с известной искомой величиной. В состав последнего входят гептан с ОЧ=0 и изооктан с ОЧ=100.

При испытании в данное оборудование заливается бензин. При осуществлении исследований постепенно наращивается степень сжатия до тех пор, пока не появится детонация, после чего двигатель заправляется эталонным топливом с предварительным измерением детонации и фиксации степени сжатия, приведшей к ней. По объемному содержанию изооктана в смеси определяют ОЧ.

В наименовании марки бензина может присутствовать буква «И». Это свидетельствует о том, что ОЧ определялось исследовательским методом. В случае ее отсутствия использовался моторный метод. ОЧ, полученные по разным методам, несколько различаются по значениям. Поэтому октановое число для детонационной стойкости бензина должно обязательно сопровождаться указанием метода, по которому была определена его величина.

Последняя величина определяется при моторном методе при номинальных нагрузках, а при исследовательском — при неустановившихся режимах.

Помимо этих двух методов для определения ОЧ может использоваться дорожный метод. В разогретый двигатель подают смеси, в состав которых входят нормальный гептан и изооктан. Автомобиль разгоняют до максимально возможной скорости при прямой передаче и регулируют угол опережения зажигания до тех пор, пока не исчезнет детонация. После чего по этому же методу определяют установку зажигания, при которой стартует детонация. Строят базовую кривую в зависимости от градуса угла поворота коленвала, по которой и определяют ОЧ.

детонационная стойкость бензина оценивается

С целью повышения ОЧ прямогонных бензинов они подвергаются каталитическому риформингу. Насколько они возрастут, определяется жесткостью данных режимов.

Бензины термических процессов по детонационной стойкости превосходят прямогонные.

Понятие о повышении детонационной стойкости

Описанное выше свидетельствует о том, что последнюю необходимо повышать с целью продления срока службы двигателя.

Для повышения детонационной стойкости бензина используют специальные антидетонационные добавки. Октановое число увеличивается при повышении молярной массы углеводородов и степени разветвленности углеродной цепи, а также при превращении алканов в алкены, нафтены и ароматические углеводороды, имеющие одно и то же число углеродных атомов.

Способы повышения рассматриваемого показателя. Характеристика этиловых бензинов

Существуют следующие способы повышения детонационной стойкости бензинов:

  • ввод высокооктановых компонентов;
  • подбор сырья и технологии переработки;
  • введение антидетонаторов.
для повышения детонационной стойкости бензина используют

До недавнего времени основным из последних был тетраэтилсвинец (ТЭС), представляющий собой яд в виде жидкости, нерастворимый в воде, но легко растворимый в нефтепродуктах.

Однако свинец как продукт сгорания накапливается в камере сгорания, что увеличивает сжатие двигателя. Поэтому вместе с ТЭС в бензин добавляют выносители данного элемента, которые образуют летучие вещества при сгорании, удаляемые с отработавшими газами.

В качестве последних веществ могут использоваться таковые с содержанием таких галогенов как бром или хлор. Смесь выносителя с ТЭС носит название этиловой жидкости. Бензины, в которых она используется, называются этилированными. Они очень ядовиты, их использование должно сопровождаться использованием повышенных мер безопасности.

Со временем стали вводиться новые требования к экологичности двигателей, что обусловило переход на неэтилированные бензины.

Характеристика более безопасных антидетонационных добавок

Неэтилированные бензины потребовали изменить технологию производства данного товара и применть антидетонационные добавки, которые отличались бы пониженной токсичностью.

Детонационная стойкость бензина оценивается, в том числе, и по использованию в последнем нетоксиных антидетонаторов. Эффективность на уровне ТЭС показывают марганцевые вещества, которые представляют собой неядовитые жидкости. Однако они нашли ограниченное применение, поскольку снижают долговечность двигателя.

способы повышения детонационной стойкости бензина

Перспективной считается добавка метилтретбутиловый эфир (МТБЭ) с физико-химическими свойствами, близкими к бензину. При его добавлении в количестве 10% к топливу октановое число возрастает на 5-6 единиц.

Для высокооктановых бензинов используют органическое вещество под названием кумол.

Помимо этого, используются высокооктановые добавки на базе одноатомных спиртов и изобутилена.

Наибольшее распространение в производстве чистого бензина нашли эфиры.

Также применяются железосодержащие органические соединения, присадки на основе марганцевой органики, на базе N-метил-анилина, депарафинизированный рафинат

Помимо этого, в бензинах вместо ТЭС может использоваться тетраметилсвинец (ТМС), который лучше испаряется и более равномерно распределяется по цилиндрам.

Из практики использования ТЭС

Автомобилисты, имеющие значительный стаж вождения, знакомы с «красными свечами». Окраска свечей в данный цвет происходила тогда, когда в низкооктановый бензин подливали вместо ТЭС с выносителями чистый антидетонатор. Это приводило к освинцовыванию данных устройств. После этого отремонтировать и восстановить свечи уже невозможно. Таким образом, детонационная стойкость бензина характеризуется не бездумным, а правильным применением специально предназначенных для этого антидетонаторов.

Этилированные бензины способствуют меньшему износу кулачков на распредвалах, по сравнению с использованием бензинов без ТЭС. Предполагают, что продукты, образующиеся в результате сгорания, попадали через масло на поверхность, что защищало ее от износа. Последний уменьшался и по отношению к другим деталям двигателя при использовании этилированных бензинов.

Другие присадки для топлива

Для торможения окислительных реакций в бензины вводят антиокислительные присадки, которые могут быть древесносмольными, представляющими собой смесь фенолов с маслами, параоксифениламин и ФЧ-16, представляющий собой смесь фенолов.

Для предотвращения обледенения карбюратора применяют антиобледенительные присадки. В качестве них используют соединения, растворяющие воду и образующие низкозамерзающие смеси с ней, а также образующие оболочку на ледяных частицах, препятствующие росту и оседанию их на карбюраторных стенках.

Для удаления отложений могут использоваться различные моющие присадки.

Факторы, влияющие на рассматриваемый показатель

детонационная стойкость автомобильного бензина

Детонационная стойкость бензина оценивается не только по октановому числу. На нее оказывают влияние различные факторы.

Детонация усиливается при повышении степени сжатия двигателя, увеличении диаметра цилиндра, использовании поршней и головок из чугуна. Эти факторы относятся к конструктивным.

К эксплуатационным свойствам, усиливающим детонацию, относятся увеличение нагрузки двигателя при константной частоте вращения коленвала, либо уменьшение частоты вращения при константной нагрузке при увеличении угла опережения зажигания, уменьшении влажности воздуха, увеличении слоя нагара в камере сгорания и температуры сгорания охлаждающей жидкости.

Помимо этого, детонация обусловлена влиянием физических и химических факторов. Последние обусловлены тем, что топливо способно образовывать перекисные соединения, которые, при достижении определенной концентрации, способствуют образованию данного явления. Распад данных соединений протекает достаточно быстро, при этом выделяется теплота и образуется «холодное» пламя, которое, при распространении, насыщает смесь продуктами распадами перекисных веществ. В них содержатся активные центры, благодаря которым возникает фронт горячего пламени.

Основным физическим фактором является степень сжатия двигателя. От него прямо пропорционально зависит давление и температура в камере сгорания. При достижении критических значений порция рабочей смеси воспламеняется и сгорает со скоростью взрыва.

Детонационная стойкость различных типов двигателей

Высокая детонационная стойкость автомобильного бензина характерна для легкотопливных двигателей. Она обеспечивает нормальное сгорание данных видов топлива в различных режимах эксплуатации двигателя. Процесс возникновения детонации в данном случае был рассмотрен выше.

детонационная стойкость бензина характеризуется

Для обеспечения нормального рабочего цикла в дизельных двигателях, которые работают за счет самовоспламенения от сжатия рабочей смеси, детонационная стойкость топлива должна быть низкой. Для данных двигателей используется такая характеристика, как «цетановое число», которая показывает период времени от попадания топлива в цилиндр до начала осуществления его горения. Чем оно выше, тем меньше задержка, тем более спокойно осуществляется горение топливной смеси.

Сортность бензинов

Помимо детонационной стойкости бензина для авиационных видов данного топлива применяется понятие сортности. Она демонстрирует, насколько изменяется мощность при работе одноцилиндрового двигателя на обогащенной смеси на исследуемом топливе, по сравнению с мощностью, развиваемой этим же двигателем на изооктане, мощность которого принята за 100 единиц сортности или 100%.

В заключение

Детонационная стойкость бензина — это параметр, с помощью которого происходит характеристика способности данного вида топлива противостоять при сжатии самовоспламенению. Он относится к важнейшим характеристикам любого топлива, в том числе, и для рассматриваемого вида. Для легкотопливных двигателей ее определяют через октановое число. С целью повышения данного показателя применяют высокооктановые присадки, вводят антидетонаторы, подбирают сырье и разрабатывают технологии его переработки.

Детонационная стойкость топлив — это… Что такое Детонационная стойкость топлив?

Детонационная стойкость — параметр, характеризующий способность топлива противостоять самовоспламенению при сжатии. Это важнейшая количественная характеристика топлива, на основе которой определяется его сортность и применимость в двигателях той или иной конструкции.

Детонационная стойкость бензинов

Для легкотопливных двигателей важна высокая детонационная стойкость топлива (как правило, бензина). В данном случае, она измеряется параметром, называемым «октановое число».

Высокая детонационная стойкость бензинов обеспечивает их нормальное сгорание на всех режимах эксплуатации двигателя. При сжатии рабочей смеси, температура и давление повышаются, и начинается окисление углеводородов, которое интенсифицируется после воспламенения смеси. Если углеводороды несгоревшей части топлива обладают недостаточной стойкостью к окислению, начинается интенсивное накапливание перекисных соединений, а затем — их взрывной распад. При высокой концентрации перекисных соединений, происходит тепловой взрыв, который вызывает самовоспламенение топлива.

Самовоспламенение части рабочей смеси перед фронтом пламени приводит к взрывному горению оставшейся части топлива — к так называемому «детонационному сгоранию», «детонации». Детонация вызывает перегрев, повышенный износ, или даже местные разрушения двигателя, и сопровождается резким характерным звуком, падением мощности, увеличением дымности выхлопа. На возникновение детонации оказывают влияние состав применяемого бензина и конструктивные особенности двигателя.

Детонационная стойкость дизельных топлив

Для дизельных двигателей, работающих за счёт самовоспламенения рабочей смеси от сжатия, детонационная стойкость топлива должна наоборот быть достаточно низкой, чтобы обеспечить нормальный рабочий цикл.

Способность топлива воспламеняться при сжатии определяет период задержки воспламенения смеси (промежуток времени от впрыска топлива в цилиндр до начала его горения) и выражается характеристикой, обозначаемой как «цетановое число». Чем выше цетановое число, тем меньше задержка, и тем более спокойно и плавно горит топливная смесь.

См. также

Детонация моторных топлив Википедия

Эта статья описывает явление стука в двигателе внутреннего сгорания; о детонации как физико-химическом явлении см. Детонация. Два фронта пламени в камере сгорания, один из которых (слева) вызван преждевременным самовоспламенением

Сту́к в дви́гателе (англ. engine knock) возникает при быстром (взрывном) сгорании топливо-воздушной смеси в цилиндре двигателя внутреннего сгорания. На слух он воспринимается как металлический «звон» или стук. Это нежелательный режим работы двигателя, так как в цилиндре возникает повышенное давление и перегрев, и элементы конструкции цилиндра испытывают повышенные нагрузки, на которые они не рассчитаны, мощность двигателя снижается, а выбросы вредных веществ возрастают. При интенсивном воздействии эти нагрузки быстро приводят к повреждению цилиндра и неисправности двигателя.

Стук в двигателе иногда называют детонацией или детонационным сгоранием смеси, однако это название не отражает физику явления. Сгорание смеси в цилиндре двигателя, как при поджигании искрой, так и при преждевременном самовоспламенении смеси в горячих очагах, как правило, не сопровождается образованием детонационных волн. В соответствии с амплитудой волн давления, возникающих в цилиндре при быстром сгорании смеси, различают нормальный режим горения (без стука) и режим, в котором возникает стук. Последний режим, в свою очередь, подразделяется на обычный стук (англ. conventional knock) различной интенсивности и детонационный стук (англ. super-knock или deto-knock) согласно пиковым значениям давления[1]. Детонационный стук является особенно нежелательным, так как давление, возникающее в волне детонационного сгорания, может сразу разрушить цилиндр.

Возникновение стука связывается с эффектами аномального горения смеси в цилиндре: самовоспламенением смеси до её зажигания искрой или пристеночным воспламенением горячими элементами конструкции или посторонними частицами в цилиндре[2]. Вероятность возникновения стука повышается с увеличением степени сжатия и нагрузки на двигатель, а также с уменьшением октанового числа топлива. Для предотвращения стука применяются электронные системы управления зажиганием, а в топливо добавляют антидетонационные присадки, такие как ММА (монометиланилин) или МТБЭ (метил-трет-бутиловый эфир).

Причины[ | ]

Возможно, этот раздел содержит

Детонация — бензин — Большая Энциклопедия Нефти и Газа, статья, страница 1

Детонация — бензин

Cтраница 1

Детонация бензинов — явление стуков в цилиндре двигателей — вызывается значительным сжатием смеси паров горючего с воздухом и огромной скоростью распространения пламени в цилиндре двигателя. Коэфициент полезного действия двигателя значительно возрастает с увеличением степени сжатия, но детонация снижает мощность двигателей и вызывает их усиленный износ.  [1]

Граница детонации торфяного бензина лежит выше, чем у нефтяного бензина.  [2]

Вещества, усиливающие детонацию бензина в двигателе, называются проденаторы.  [3]

Для того чтобы измерить силу стартовой детонации определенного бензина, его сравнивают со смесью толуола и нормального гептана, имеющей ту же интенсивность детонации. Показатель называется толуольным числом и равняется объемной концентрации толуола в смеси, используемой как эталон.  [4]

Метод изготовления из этилена стойкого к детонации бензина в настоящее время находится в центре внимания многих специалистов нефтехимической промышленности.  [5]

Следует иметь в виду, что продолжительность оценки интенсивности детонации бензинов, содержащих в качестве антидетонаторов ферроцен или его производные, а также эталонных топлив по ГОСТ 511 и ГОСТ 8226 должна быть увеличена с 2 — 3 до 10 — 12 мин.  [7]

В настоящее время большое внимание специалисты нефтехимической промышленности уделяют получению стойкого к детонации бензина из этилена. Этилен в виде основного продукта получают при высоких температурах ( 650 — 850 С) из парафинов, молекулы которых располагаются в виде разветвленных цепочек. Однако метод получения этилена требует строительства огромных установок.  [8]

Изооктан в смеси с нормальным гептаном ( CrHie) применяется для оценки детонации бензинов, выражаемой так называемым октановым числом. Детонация заключается в том, что смесь паров углеводородов с воздухом в камере сгорания при достижении известного давления взрывает, в моторе раздается стук, что вызывает уменьшение мощности и порчу мотора. Изооктан обладает хорошими антидетонационными свойствами. Условно принимают антидетонационные свойства изо-октана равным 100, а антидетонационные свойства н-гептана равным нулю. Для определения октанового числа обычно сопоставляют детонационные свойства бензина со свойствами смеси изооктана и н-гептана.  [9]

Изооктан в смеси с нормальным гептаном ( С7Нш) применяется для оценки детонации бензинов, выражаемой так называемым октановым числом. Детонация заключается в том, что смесь паров углеводородов с воздухом в камере сгорания при до-стижении известного давления взрывает, в моторе раздается стук, что вызывает уменьшение мощности и порчу мотора. Изооктан обладает хорошими антидетонационными свойствами. Условно принимают антидетонационные свойства изооктана равным 100, а антидетонационные свойства н-гептана равным нулю. Для определения октанового числа обычно сопоставляют детонационные свойства бензина со свойствами смеси изооктана и н-гептана.  [10]

Поэтому большие усилия были затрачены на замену указанного вещества на менее опасные, а также на получение стойкого к детонации бензина.  [11]

В 1925 — 1930 гг., когда в автомобилестроении определенно наметилась тенденция все более и более широкого применения моторов, имеющих высокую степень сжатия, в США впервые было замечено явление детонации бензинов и начались исследовательские работы в области изучения поведения горючего в двигателе и изыскания способов получения бензинов, не имеющих детонационных свойств. В результате многих исследований того времени [1 ] было установлено, что наименее детонирующими углеводородами являются ароматические и олефины, третье место занимают нафтены и наиболее детонирующими оказались парафины.  [12]

Числа эти представляют собой проценты толуола или бензола, которые необходимо добавить к исследуемому, предварительно дозароматизированному бензину, чтобы получить топливо, по своим детонационным свойствам равноценное исходному бензину. Основной недостаток этого метода заключается в крайне сложной зависимости между количественным содержанием ароматики в бензине и величиной основных показателей, характеризующих детонацию бензина, что в высокой степени осложняет применение данного метода для практических целей. Таким же недостатком обладают варианты этого метода, основанные на добавке к дезароматизированному бензину некоторых иных веществ, понижающих детонационные свойства бензина, например анилина и тетраэтилсвинца. Поэтому все подобные выражения детонационных свойств топлива ныне оставлены, уступив место так называемой октановой ( точнее — изооктановой) характеристике бензина.  [13]

Числа эти представляют собой проценты толуола или бензола, которые необходимо добавить к исследуемому, предварительно дезароматизированному бензину, чтобы получить топливо, по своим детонационным свойствам равноценное исходному бензину. Основной недостаток этого метода заключается в крайне сложной зависимости между количественным содержанием ароматики в бензине и величиной основных показателей, характеризующих детонацию бензина, что в высокой степени осложняет применение данного метода для практических целей. Таким же недостатком обладают варианты этого метода, основанные на добавке к дезароматизированному бензину некоторых иных веществ, понижающих детонационные свойства бензина, например анилина и тетраэтилсвинца. Поэтому все подобные выражения детонационных свойств топлива ныне оставлены, уступив место так называемой октановой ( точнее — изооктановой) характеристике бензина.  [14]

Эксплуатация двигателя внутреннего сгорания автомобиля, работающего на бензине, в режиме повышенной нагрузки приводит к возникновению стука в его цилиндрах. Это связано с детонацией бензина. Детонация, моторного топлива представляет собой чрезвычайно быстрое разложение ( взрыв) углеводородов, которое происходит внезапно при сжатии горючей смеси в цилиндре двигателя. При ходе поршня цилиндра вниз диспергированный в воздухе бензин в виде тумана всасывается из карбюратора двигателя в цилиндр. При ходе поршня вверх смесь воздуха и бензина сжимается. Отношение первоначального объема к конечному называют степенью сжатия. Детонация не дает возможности достигнуть высокой степени сжатия горючей смеси, так как топливо самовоспламеняется раньше, чем поршень достигнет самой верхней точки цилиндра. Это ведет к излишнему расходу топлива и быстрому износу мотора.  [15]

Страницы:      1    2

Детонация топлива | Система зажигания, Топливо

Детонация — это режим горения топлива, при котором по нему распространяется ударная волна, вызывающая химические реакции горения, в свою очередь, поддерживающие движение ударной волны за счёт выделяющегося в экзотермических реакциях тепла. Комплекс, состоящий из ударной волны и зоны экзотермических химических реакций за ней, распространяется по веществу со сверхзвуковой скоростью и называется детонационной волной. Фронт детонационной волны — это поверхность гидродинамического нормального разрыва.

Явление детонации — ограничивающий фактор для выходной мощности и эффективности двигателя с искровым воспламенением.

Механизм детонации — нарастание внутри цилиндра двигателя волны давления, движущейся с такой скоростью, что ее удар о стенки цилиндра и поршень заставляет стенки цилиндра вибрировать и, таким образом, издавать характерный «звон». Когда искра воспламеняет горючую смесь из топлива и воздуха, ядро пламени растет сначала медленно, а затем быстро ускоряется. По мере того как фронт пламени продвигается, он сжимает перед собой еще не воспламененную смесь. Температура еще не воспламенившейся смеси поднимается за счет сжатия и теплового излучения от продвигающегося пламени, пока остающаяся часть смеси не воспламеняется спонтанным взрывом. Волна давления от этого взрыва проходит через горящую смесь с очень высокой скоростью, и стенки цилиндра испускают звенящий звук удара.

Детонация не представляет опасности при малых скоростях движения, так как водители обычно избегают этого, снижая нагрузку на двигатель при первом же предупреждении. Но на более высоких скоростях, когда уровень шума движения высок, характерный звук детонации часто почти невозможно обнаружить. Детонация — чрезвычайно опасная вещь, которая способна полностью разрушить двигатель.

Высокая температура сжатия и давление способствуют детонации. Кроме того, важна способность несгоревшей смеси поглощать или передавать тепло, излучаемое продвигающимся фронтом пламени. На эту способность влияют скрытая энтальпия (теплосодержание) смеси и конструкция камеры сгорания. Последняя должна быть устроена соответствующим образом для адекватного охлаждения несгоревшей части смеси, например, размещением ее вблизи хорошо охлаждаемой области вроде клапана входного отверстия.

Путь фронта пламени должен быть максимально сокращен тщательным выбором расположения точки воспламенения. Прочие факторы включают время (и, следовательно, момент зажигания), так как реакция в несгоревшей смеси требует времени для своего развития, степень турбулентности (вообще говоря, более высокая степень турбулентности имеет тенденцию снижать детонацию за счет срыва фронта пламени) и, что наиболее важно, склонность самого топлива к детонации.

Некоторые виды топлива в этом отношении ведут себя чуть лучше других. Чтобы улучшить качество топлива, его можно обработать добавками (например, тетраэтилсвинцом). Однако это усугубляет и без того трудную проблему выбросов. Топливо с хорошими антидетонационными свойствами — это изооктан, а наиболее склонен к детонации обычный гептан.

Чгобы получить октановое число или оценку антидетонационных свойств конкретной смеси топлива, тест выполняют на двигателе, который работает при тщательно контролируемых условиях, и начало детонации сравнивают с теми значениями, которые получены от различных смесей изооктана и обычного гептана. Если работа двигателя идентична, например работе на смеси 90% изооктана и 10% гептана, топливо имеет октановое число 90.

Подмешивание к топливу воды (или метанола и воды) может уменьшить детонацию. Спиртосодержащее топливо, которое позволяет воде удерживаться в растворе, является полезным еще и потому, что благодаря скрытой энтальпии воды дает возможность добиться лучшего использования топлива.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *