Формула мощности двигателя: Мощность — Википедия – 403 — Доступ запрещён

Содержание

Мощность и коэффициент полезного действия — урок. Физика, 8 класс.

Мощность по своей сути является скоростью выполнения работы. Чем больше мощность совершаемой работы, тем больше работы выполняется за единицу времени.

Среднее значение мощности — это работа, выполненная за единицу времени.

Величина мощности прямо пропорциональна величине совершённой работы \(A\) и обратно пропорциональна времени \(t\), за которое работа была совершена.

Мощность \(N\) определяют по формуле:

N=At.

 

Единицей измерения мощности в системе \(СИ\) является \(Ватт\) (русское обозначение — \(Вт\), международное — \(W\)).

Для определения мощности двигателя автомобилей и других транспортных средств используют исторически более древнюю единицу измерения — лошадиная сила (л.с.), 1 л.с. = 736 Вт.

Пример:

Мощность двигателя автомобиля равна примерно \(90 л.с. = 66240 Вт\).

Мощность автомобиля или другого транспортного средства можно рассчитать, если известна сила тяги автомобиля \(F\) и скорость его движения (v).

N=F⋅v

Эту формулу получают, преобразуя основную формулу определения мощности.

 

Ни одно устройство не способно использовать \(100\) % от начально подведённой к нему энергии на совершение полезной работы. Поэтому важной характеристикой любого устройства является не только мощность, но и коэффициент полезного действия, который показывает, насколько эффективно используется энергия, подведённая к устройству.  

Пример:

Для того чтобы автомобиль двигался, должны вращаться колёса. А для того чтобы вращались колёса, двигатель должен приводить в движение кривошипно-шатунный механизм (механизм, который возвратно-поступательное движение поршня двигателя преобразует во вращательное движение колёс). При этом приводятся во вращение шестерни и большая часть энергии выделяется в виде тепла в окружающее пространство, в результате чего происходит потеря подводимой энергии. Коэффициент полезного действия двигателя автомобиля находится в пределах \(40 — 45\) %. Таким образом, получается, что только около \(40\) % от всего бензина, которым заправляют автомобиль, идёт на совершение необходимой нам полезной работы — перемещение автомобиля.

Если мы заправим в бак автомобиля \(20\) литров бензина, тогда только \(8\) литров будут расходоваться на перемещение автомобиля, а \(12\) литров сгорят без совершения полезной работы.

Коэффициент полезного действия обозначается буквой греческого алфавита \(«эта»\) η, он является отношением полезной мощности \(N\) к полной или общей мощности Nполная.

 

Для его определения используют формулу: η=NNполная. Поскольку по определению коэффициент полезного действия является отношением мощностей, единицы измерения он не имеет.

 

Часто его выражают в процентах. Если коэффициент полезного действия выражают в процентах, тогда используют формулу: η=NNполная⋅100%.

 

Так как мощность является работой, проделанной за единицу времени, тогда коэффициент полезного действия можно выразить как отношение полезной проделанной работы \(

A\) к общей или полной проделанной работе Aполная. В этом случае формула для определения коэффициента полезного действия будет выглядеть так:

 

η=AAполная⋅100%.

 

Коэффициент полезного действия всегда меньше \(1\), или \(100\) % (η < 1, или η < \(100\) %).

 

Источники:

E. Šilters, V. Regusts, A. Cābelis. «Fizika 10. klasei», Lielvārds, 2004, 256 lpp.

(Э. Шилтерс, В. Регустс, А. Цабелис. «Физика для 10 класса», Lielvārds, 2004, 256 стр.)

Как рассчитать мощность электродвигателя? Формулы, эффективные методики + инструкция с фото и видео

Электродвигатель – незаменимое устройство, обеспечивающее функционирование всевозможных машин, конструкций и механизмов. Именно с его помощью происходит превращение энергии электрической в полезную энергию кинетическую. Электродвижок используется для поддержания работы различных насосных систем, машин, технических средств, вентиляционного оборудования, установок и других агрегатов.

Вследствие широкого спектра применения этого типа устройств, зачастую возникает вопрос, как правильно определить мощность электродвигателя. Это очень важный нюанс, поэтому для определения данного показателя разработано несколько методов, которые позволят произвести расчет ориентируясь на особенности и условия эксплуатации двигателя.

Краткое содержимое статьи:

Типы электродвигателей

Для начала желательно разобраться, какими же бывают модификации и модели движков. Именно от типа двигателя зависит величина мощности, которой он обладает, и другие показатели, характеризующие устройство.

Согласно общей классификации, электродвигатели бывают:

  • постоянного тока;
  • переменного тока.

Первый вид встречается редко, так как для его использования необходим источник постоянного электрического тока. Второй вариант применяется намного чаще, двигатель переменного тока востребован для обеспечения функционирования большей части современного оборудования.

Электродвижки переменного тока разделяются на синхронные и асинхронные. От модели двигателя во многом зависят основные технические характеристики устройства, например, показатель мощности у различных модификаций может варьировать от минимальных значений до 10 000 кВатт.

Выбор той или иной модели электродвигателя должен осуществляться исходя из оптимальных значений показателей для каждого конкретного случая.

Понятие мощности

Так для чего необходимо знать мощность двигателя? Что это за показатель, и почему на него нужно обращать внимание при выборе?

Электрическая мощность – показатель, характеризующий, насколько быстро передается или преобразуется кинетическая энергия. Представляет собой произведение напряжения сети на силу тока проводника. Единицей измерения считается 1 ватт.

Чтобы рассчитать показатель, в случае, когда по шильдикам (специальное изображение на двигателе, содержащее в себе данные обо всех основных характеристиках устройства) можно получить информацию лишь о номинальной максимальной мощности, необходимо:

  • найти данные о коэффициенте полезного действия двигателя (КПД) и коэффициенте его мощности;
  • принять к сведению взаимодействие динамических характеристик вала электродвигателя и КПД.

Обладая этими сведениями, можно с легкостью посчитать затраченную мощность, которая будет равна отношению номинальной мощности к КПД.

Обратите внимание, что энергия, которая потребляется электроприборами, включает в себя два основных типа мощностей двигателя: активную и реактивную. Активная компонента расходуется на полезную работу и образование тепла. Реактивная мощность говорит о способности деталей электродвигателя сохранять получаемую энергию.

Чтобы осуществить расчет, необходим достаточно большой набор инструментов: электрическая сеть, выступающая источником тока, линейка или специальный прибор – штангенциркуль, амперметр (прибор, позволяющий определить силу тока), динамометр, табличка, содержащая сведения о зависимости константы от числа полюсов, тахометр.

Варианты расчета показателя

Существует несколько способов и формул расчета мощности электродвигателя. Приготовив все необходимые инструменты, можно переходить к определению значения показателя одним из следующих методов:

По току электросети. Для этого электродвижок включается в сеть с фиксированным напряжением. Поочередно включая в каждую из обивок прибор амперметр, необходимо измерить работающий ток электродвигателя в единицах измерения – Амперах. Считаем, какое количество замеров было произведено, определяем сумму показателей, находим среднее значение. Полученное число перемножаем со значением напряжения в электросети, результат – мощность движка, выраженная в Ваттах.

По размерам. Для этого метода необходимо измерить длину и диаметр определенной детали – сердечника статора электродвижка и найти сведения о частоте оборачиваемости вала.

После получения сведений осуществляется приблизительный расчет по следующей формуле: Число Пи(3,14)*D*n/(120*f). На основании произведенного расчета, и найдя в справочнике постоянное число (константу), определяем мощность: P=C*D^2*I*n*10^(-6).

По тяговой силе. Для этого, с помощью тахометра необходимо измерить скорость вращения вала, его радиус (это проделывается штангенциркулем или линейкой), а также тяговое усилие электродвижка динамометром. Все полученные значения необходимо подставить в следующую формулу: P=M*w=F*2*3,14*n*r.

Для того, чтобы правильно рассчитать величину показателя тем или иным способом, можно изучить подробную инструкцию на видео или фото определения мощности электродвигателя различными методами. Это поможет вам не запутаться в осуществляемых действиях, сделать все четко и безошибочно.

Таким образом, помните, что мощность электродвигателя является основным показателем его работы, именно от неё зависит область применения устройства и выполняемые им задачи. Поэтому к расчету данного показателя необходимо подойти очень внимательно, осознавая серьезность осуществляемых действий.

Фото способов определения мощности электродвигателя

Как рассчитывается мощность двигателя?

Лошадиные силы двигателя автомобиля не измеряются лошадьми на практике, и это очевидно. Но как рассчитать мощность двигателя автомобиля другим способом? Всё очень просто: если Вы хотите узнать, сколько лошадиных сил в двигателе машины, Вы подключите двигатель к специальному динамометру. Динамометр создаёт нагрузку на двигатель и измеряет количество энергии, которое может развить двигатель против нагрузки. Но, тем не менее, чтобы рассчитать мощность двигателя, есть ещё один шаг, который необходимо преодолеть, и об этом мы сейчас поговорим.

Крутящий момент

Представьте себе, что у Вас есть большой торцевой гаечный ключ с ручкой на нём в 1 метр длиной, и Вы надавите на него весом 100 грамм. То, что Вы делаете, называется применением крутящего момента, у которого также есть своя единица измерения, и в данном случае она рассчитывается как 1 ньютон*метр (Н*м), потому что Вы давите 100 граммами (что примерно равно 1 Ньютону) с «плечом» в 1 метр. Вы сможете получить тот же 1 Н*м, если, к примеру, надавите весом в 1 кг на торцевой ключ с длиной ручки в 10 см.

Аналогично, если Вы вместо торцевого ключа приложите вал двигателя, то двигатель даст некоторый показатель крутящего момента на вал. Динамометр измеряет этот крутящий момент. А далее Вы можете легко конвертировать крутящий момент в лошадиные силы путём простой формулы и, таким образом, рассчитать мощность машины. Формула эта выглядит следующим образом:

Мощность двигателя = (Обороты в минуту * Крутящий момент)/5252.

Вы можете получить представление о том, как динамометр работает, следующим образом: представьте, что Вы включаете двигатель автомобиля при включенной нейтральной передачей и жмёте педаль акселератора «в пол». Двигатель будет работать так быстро, что может взорваться. Это не есть хорошо, но так, при помощи динамометра Вы можете измерить крутящий момент двигателя на разных оборотах. Вы можете подключить двигатель к динамометру, нажать на педаль газа и создать в динамометре достаточное количество нагрузки на двигатель, чтобы сохранить его работу, скажем, на 7 000 оборотов в минуту. Вы записываете при это на бумагу, с какой максимальной нагрузкой двигатель может справиться. Тогда Вы начинаете применять дополнительную нагрузку, чтобы сбить скорость двигателя до 6 500 оборотов в минуту и снова записать нагрузку в новом режиме. Тогда Вы сбросите нагрузкой двигатель до 6 000 оборотов в минуту, и так далее. Вы можете сделать то же самое вплоть до критически низких 500 или 1 000 оборотов в минуту. Что динамометры делают — так это фактически измеряют крутящий момент и далее конвертируют крутящий момент в лошадиные силы, рассчитывая мощность.

Тем не менее, крутящий момент, хоть и растёт вместе с мощностью при росте оборотов, тем не менее, не всегда значение мощности прямо пропорционально крутящему моменту. Так, если Вы построите график мощности и крутящего момента по оборотам вращения двигателя, делая отметки с шагом в 500 оборотов, то, что Вы в конечном итоге получите, является кривой мощности двигателя. Типичная кривая мощности для высокопроизводительного двигателя может выглядеть следующим образом (в примере 300-сильный мотор Mitsubishi 3000):

Данный график указывает на то, что любой двигатель имеет пиковую мощность, которую можно рассчитать динамометром — значение оборотов в минуту, при которых мощность двигателя достигает своего максимума. Двигатель также имеет максимальный крутящий момент в определённом диапазоне оборотов в минуту. Вы можете часто видеть в технических характеристиках автомобилей указание наподобие «123 л.с. при 4 600 об./мин., 155 Нм при 4 200 об./мин.». А ещё, когда люди говорят, что двигатель «низкооборотистый» или «высокооборотистый», то они имеют в виду, что максимальный крутящий момент двигателя достигается на довольно низкой или высокой величине оборотов соответственно (например, дизельные двигатели по своей природе являются низкооборотистыми, и потому (но не только поэтому) их часто используют на грузовых автомобилях и тракторах, а вот бензиновые двигатели, напротив, высокооборотистые).

Как мы видим, рассчитать мощность двигателя машины является не такой уж и сложной задачей для специалистов, вооружённых динамометром.

Урок физики «Мощность»

Цели урока:

  • Познакомиться с мощностью как новой физической величиной;
  • Развивать умения выводить формулы, пользуясь необходимыми знаниями прошлых уроков; развивать логическое мышление, умение анализировать, делать выводы;
  • Применять знания по физике в окружающем мире.

Ход урока

«И вечный бой! Покой нам только снится
Сквозь кровь и пыль…
Летит, летит степная кобылица
И мнет ковыль…
И нет конца! Мелькают вёрсты, кручи…
Останови! …Покоя нет! Степная кобылица несется вскачь!»

А.Блок «На поле Куликовом» (июнь 1908 г). ( Слайд 1).

Урок сегодня я хочу начать с вопросов к вам. (Слайд 2).

1. Как вы думаете, имеет ли какое-то отношение лошадь к физике?

2. С какой физической величиной связана лошадь?

Мощность – правильно, это и есть тема нашего урока. Запишем ее в тетрадь.

Действительно, мощность двигателей автомобилей, транспортных средств до сих пор измеряют в лошадиных силах. Сегодня на уроке мы с вами узнаем всё о мощности с точки зрения физики. Давайте подумаем вместе и определим, что мы должны знать о мощности, как о физической величине.

Существует план изучения физических величин: ( Слайд 3).

  1. Определение;
  2. Вектор или скаляр;
  3. Буквенное обозначение;
  4. Формула;
  5. Прибор для измерения;
  6. Единица величины.

Этот план и будут целью нашего урока.

Начнем с примера из жизни. Вам необходимо набрать бочку воды для полива растений. Вода находится в колодце. У вас есть выбор: набрать при помощи ведра или при помощи насоса. Напомню, что в обоих случаях механическая работа, совершенная при этом будет одинаковой. Конечно же, большинство из вас выберут, насос.

Вопрос: В чем разница при выполнении одной и той же работы?

Ответ: Насос выполнит эту работу быстрее, т.е. затратит меньшее время.

1) Физическая величина, характеризующая быстроту выполнения работы, называют мощностью. ( Слайд 4).

2) Скаляр, т.к. не имеет направления.

3) N.

4)

5) [N] = [ 1 Дж/с] = [1Вт ]

Название этой единицы мощности дано в честь английского изобретателя паровой машины (1784г) Джеймса Уатта. ( Слайд 5).

6) 1 Вт = мощности, при которой за время 1 с совершается работа в 1 Дж. ( Слайд 6).

Самолеты, автомобили, корабли и другие транспортные средства движутся часто с постоянной скоростью. Например, на трассах автомобиль достаточно долго может двигаться со скоростью 100 км/ч. ( Слайд 7).

Вопрос: от чего зависит скорость движения таких тел?

Оказывается, она напрямую зависит от мощности двигателя автомобиля.

Зная, формулу мощности мы выведем еще одну, но для этого давайте вспомним основную формулу для механической работы.

Учащийся выходит к доске для вывода формулы. ( Слайд 8).

Пусть сила совпадает по направлению со скоростью тела. Запишем формулу работы этой силы.

1.

2.При постоянной скорости движения , тело проходит путь определяемой формулой

Подставляем в исходную формулу мощности: , получаем — мощность.

У нас получилась еще одна формула для расчета мощности, которую мы будем использовать при решении задач.

Эта формула показывает ( Слайд 9), что при постоянной мощности двигателя, изменением скорости можно менять силу тяги автомобиля и наоборот, при изменении скорости автомобиля можно менять силу тяги двигателя.

При N = const

v > , F <.

v < , F >.

Вопрос. Когда нужна большая сила тяги?

Ответ:

а)При подъеме в гору. Правильно, тогда водитель снижает скорость.

б) При вспашке земли тракторист движется с малой скоростью, чтобы была большая сила тяги. Для этого водитель, тракторист, машинист, токарь, фрезеровщик часто используют коробку передач, которая позволяет менять скорость. ( Слайд 10).

Мощность всегда указывают в паспорте технического устройства. И в современных технических паспортах автомобилей есть графа:

Мощность двигателя: кВт / л.с.

Следовательно, между этими единицами мощности существует связь.

Вопрос: А откуда взялась эта единица мощности? ( Слайд 11).

Дж. Уатту принадлежит идея измерять механическую мощность в «лошадиных силах». Предложенная им единица мощности была весьма популярна, но в 1948 г. Генеральной конференцией мер и весов была введена новая единица мощности в международной системе единиц – ватт. ( Слайд 12).

1 л.с. = 735,5 Вт.

1 Вт = ,00013596 л.с.

Эта единица мощности была изъята из обращения с 1 января 1980 г.

Примеры мощностей современных автомобилей. ( Слайд 13,14).

Различные двигатели имеют разные мощности.

Учебник, страница 134, таблица 5. [1]

Вопрос: А какова мощность человека?

Текс учебника, § 54. Мощность человека при нормальных условиях работы в среднем составляет 70-80 Вт. Совершая прыжки, взбегая по лестнице, человек может развивать мощность до 730 Вт, а в отдельных случаях и большую.[1]

Вопрос: А чем «живые двигатели» отличаются от механических? ( Слайд 15).

Ответ: Тем, что «живые двигатели» могут изменять свою мощность в несколько раз.

Закрепление материала.

1.Расскажите все, что вы знаете о мощности. Ответ по плану изучения физической величины.

2. Упр. 29, задача №6. ( Слайд 16).

Дано: СИ Решение:
m = 125кг   N = A / t
h = 70 см 0,7 м A = F s s = h
t = 0,3 с   F = P = mg
    N = mgh / t
N — ?   N = 125 кг · 9,8 Н/ кг · 0,7 м / 0,3 с= 2858,3 Вт ≈ 2,9 кВт

Ответ : N ≈ 2,9 кВт.

Домашнее задание: ( Слайд 17).

  1. § 54.
  2. Записать формулы мощности в таблицу формул.
  3. Упр. 29 (2,5) – 1 уровень.
  4. Упр. 29 (1,3) – 2 уровень.
  5. Упр. 29 (1,4) – 3 уровень.
  6. Задание 18 – на дополнительную оценку ( на листочках).

Литература:

  1. А.В. Перышкин «Учебник физики для 7 класса», Дрофа, Москва, 2006.
  2. А. Блок «На поле Куликовом».
  3. 1C: Школа Физика 7 класс

формула, мгновенный и средний расчет силы

В общем смысле этим термином обозначают энергетические изменения определенной системы. Классическая формула механической мощности устанавливает связь между работой и временем, которое понадобилось на завершение соответствующего процесса. В этой публикации дополнительно рассмотрены электрические и гидравлические параметры энергии, методики вычислений, измерительные приборы.

Механическая мощность характеризует скорость выполнения работы

Механическая мощность характеризует скорость выполнения работы

Используемые обозначения

В стандартных формулах мощность часто обозначают буквой N без уточнения происхождения. Достаточно часто применяют P. В этом варианте понятен исходный смысл: от латинского слова potestas – действие, мощь, сила. В электротехнике часто применяют W (watt – англ., ватт). Дополнительными символами отмечают специфическое назначение NH – гидравлическая мощность от hydraulics.

Основные формулы

Когда рассчитывается средняя мощность формула содержит значения для определенных промежутков: ΔА (работа) и Δt (время). Мгновенные показатели обозначают dA и dt, соответственно. Чтобы узнать количество потребленной энергии, берут интеграл за необходимый временной интервал.

Единицы измерения

В действующей системе единиц «СИ», утвержденной на международном уровне, мощность предлагается указывать в ваттах (один Вт = работе 1 Джоуль, сделанной за 1 секунду). Устаревшее обозначение «лошадиная сила» рекомендовано изъять из оборота. Для удобства применяют производные значения с определенными приставками (один киловатт (1кВт) = 10 в третьей степени ватт = 1 000 Вт).

Перевод 1 Вт в иные обозначения:

  • килограмм-сила-метр в секунду (кгс*м/с) – 0,102;
  • эрг в секунду (эрг/с) – 107;
  • лошадиная сила (л.с.) метрическая/ английская – 1,36*10-3/ 1,34*10-3.

К сведению. Если в описании автомобиля указано 125 кВт, это равнозначно 170 л.с. (125*1,36=169,95).

Мощность в механике

В ходе исследования механических процессов необходимо учитывать точку приложения усилия и направление действия. Рассчитать мощность можно по формуле (N=F*v) с учетом скорости движения (v) определенного тела. Если направления не совпадают, добавляют корректирующий множитель (cosα).

Электрическая мощность

В этой области не важны тяжесть предметов, сила трения, другие механические термины и определения. Тем не менее, суть рассматриваемой физической величины остается неизменной, подобны принципы отдельных вычислений.

Можно применить для расчета мгновенной мощности формулу:

P(a-b) = А/ Δt,

где:

  • (a-b) – обозначают энергию, затраченную на перемещение заряда (q) из одной в другую точку;
  • А – выполненная в ходе этого процесса работа.

Если взять все заряды (Q), напряжение в контрольных точках (U), нетрудно вычислить суммарную мощность:

P = (U/ Δt) * Q = U * Q/ Δt = U *I.

Последнее преобразование основано на классическом определении тока (количество зарядов, протекающих по соответствующему проводнику за определенное время).

Для пассивных цепей можно пользоваться законом Ома и соответствующими формулами без дополнительных коррекций. Учитывают (при наличии) источник электродвижущей силы (направление движения токов).

Формулы для расчета мощности и других параметров

Формулы для расчета мощности и других параметров

При подключении техники к источникам переменного тока вычисления усложняются. Приходится интегрировать мгновенные значения с учетом определенных периодов, частоты и формы сигналов. На практике часто решают задачи по вычислению мощности потребителей, подключенных к источнику питания с синусоидальным током (напряжением).

Активная составляющая энергии в этом случае будет зависеть от фазового сдвига. Значение вычисляют по формуле:

Pa = U * I * cosϕ (для 220V).

При работе с трехфазными источниками пользуются измененным вариантом выражения:

Pa = √3 * U * I * cosϕ = 1,732 * U * I * cosϕ.

Реактивная переменная потребляется и возвращается в источник питания. Для расчета берут следующую зависимость базовых параметров:

Pq = U * I * sinϕ.

Полная мощность:

Ps = √( Pa2 + Pq2).

Приборы для измерения электрической мощности

С учетом основных компонентов формулы несложно понять, что значения необходимых параметров (ток и напряжение) можно узнать с помощью обычного мультиметра. По необходимому уровню точности выбирают методику и класс измерительного прибора.

Современный ваттметр может передавать информацию в режиме онлайн для удаленного контроля телеметрии

Современный ваттметр может передавать информацию в режиме онлайн для удаленного контроля телеметрии

Специализированные изделия (ваттметры) способны отображать результаты исследований при работе в сетях постоянного и переменного тока. Специальные модификации (варметры) замеряют реактивную составляющую.

Гидравлическая мощность

Узнать производительность асинхронного электродвигателя насоса можно косвенным методом, по выполненной работе. Для этого умножают перепад измеренных (вход/ выход) давлений (ΔP) на количество перекачанной жидкости (V) в м куб. за секунду.

Пример:

  • напор по манометрам – 220 кгс/ см кв.;
  • производительность – 65 л/мин. = 3,9 куб. м/ час = 0,001083 куб. м /с.;
  • мощность NH = ΔP * V = 220 * 100 (перевод см в м) * 0,001083 = 23,83 кВт.

Мощность силы

Для решения практических задач меняют рассмотренные выражения необходимым образом. Расчет энергетических изменений отображает пример с падающим предметом:

  • в исходных данных известны высота и масса тела;
  • требуется установить мощность силы формула которой отображает результат на половине пути при свободном падении;
  • подставляют вместо базовых компонентов известные величины:
  1. F = m *g;
  2. V (скорость в определенной точке) = Vn (начальная скорость) + g*t.
  • после завершения преобразований получают:

P = m*√(g3*h).

Мощность вращающихся объектов

Для расчета подобной системы применяют формулу:

N = M * w = (2π * M* n)/60,

где:

  • M – момент силы;
  • w – угловая скорость, характеризующая вращение;
  • n – количество оборотов, которое совершает двигатель или другое устройство за 60 секунд.

Приведенные сведения используют с учетом целевого назначения и реальных условий. Так, в термодинамике необходимо помнить о зависимости эффективности системы от температуры окружающей среды. Тепловые потери нагревателя оценивают по соответствующей мощности на единицу площади поверхности. Аналогичным образом поступают при решении механических задач для расчета тяги, КПД, иных рабочих параметров. Как правило, приходится специальным коэффициентом компенсировать трение.

В электрических цепях ток ограничивает сопротивление проводника. Для небольших расстояний при малой мощности тщательные расчеты не нужны. Однако проект магистральной трассы обязательно содержит соответствующие вычисления. На основе полученных результатов делают выводы о среднегодовых экономических показателях. Следует помнить о необходимости учета искажений, которые добавляют при работе с переменным напряжением реактивные нагрузки.

Видео

Мощность (физика) — это… Что такое Мощность (физика)?

Мощность — физическая величина, равная отношению работы, выполняемой за некоторый промежуток времени, к этому промежутку времени.

Эффективная мощность, мощность двигателя, отдаваемая рабочей машине непосредственно или через силовую передачу. Различают полезную, полную и номинальную Э. м. двигателя. Полезной называют Э. м. двигателя за вычетом затрат мощности на приведение в действие вспомогательных агрегатов или механизмов, необходимых для его работы, но имеющих отдельный привод (не от двигателя непосредственно). Полная Э. м. — мощность двигателя без вычета указанных затрат. Номинальная Э. м., или просто номинальная мощность, — Э. м., гарантированная заводом-изготовителем для определённых условий работы. В зависимости от типа и назначения двигателя устанавливаются Э. м., регламентируемые стандартами или техническими условиями (например, наибольшая мощность судового реверсивного двигателя при определённой частоте вращения коленчатого вала в случае заднего хода судна — так называемая мощность заднего хода, наибольшая мощность авиационного двигателя при минимальном удельном расходе топлива — так называемая крейсерская мощность и т. п.). Э. м. зависит от форсирования (интенсификации) рабочего процесса, размеров и механического кпд двигателя.[1]

P = \frac{\Delta A}{\Delta t} \,\! — средняя мощность
P = \frac{dA}{dt} \,\! — мгновенная мощность

Так как работа является мерой изменения энергии, мощность можно определить также как скорость изменения энергии системы.

Единицы измерения

В системе СИ единицей измерения мощности является ватт, равный одному джоулю, делённому на секунду.

Другой распространённой единицей измерения мощности является лошадиная сила.

Соотношения между единицами мощности
ЕдиницыВткВтМВткгс·м/сэрг/сл. с.
1 ватт110-310-60,1021071,36·10-3
1 киловатт103110-310210101,36
1 мегаватт1061031102·10310131,36·103
1 килограмм-сила-метр в секунду9,819,81·10-39,81·10-619,81·1071,33·10-2
1 эрг в секунду10-710-1010-131,02·10-811,36·10-10
1 лошадиная сила[2]735,5735,5·10-3735,5·10-6757,355·1091

Мощность в механике

Если на движущееся тело действует сила, то эта сила совершает работу. Мощность в этом случае равна скалярному произведению вектора силы на вектор скорости, с которой движется тело:

P = \mathbf F \cdot \mathbf v = F \cdot v \cdot \cos\alpha

F — сила, v — скорость, α — угол между вектором скорости и силы.

Частный случай мощности при вращательном движении:

P = \mathbf M \cdot \mathbf \omega = \frac {\mathbf \pi \cdot \mathbf M \cdot \mathbf n} {30}

M — момент, \mathbf \omega  — угловая скорость, ~\pi=3,1415\dots  — число пи, n — частота вращения (об/мин).

Электрическая мощность

Электри́ческая мо́щность — физическая величина, характеризующая скорость передачи или преобразования электрической энергии.

S=P+jQ

S — Полная мощность, ВА

P — Активная мощность, Вт

Q — Реактивная мощность, ВАр

Приборы для измерения мощности

Примечания

  1. Большая Советская энциклопедия
  2. «метрическая лошадиная сила»

См. также

Ссылки

Wikimedia Foundation. 2010.

формула и применение в физике

Для того, чтобы перетащить 10 мешков картошки с огорода, расположенного в паре километров от дома, вам потребуется целый день носиться с ведром туда-обратно. Если вы возьмете тележку, рассчитанную на один мешок, то справитесь за два-три часа.

Ну а если закинуть все мешки в телегу, запряженную лошадью, то через полчаса ваш урожай благополучно перекочует в ваш погреб. В чем разница? Разница в быстроте выполнения работы. Быстроту совершения механической работы характеризуют физической величиной, изучаемой в курсе физики седьмого класса. Называется эта величина мощностью. Мощность показывает, какая работа совершается за единицу времени. То есть, чтобы найти мощность, надо совершенную работу разделить на затраченное время.

Формула расчета мощности

И в таком случае, формула расчета мощности принимает следующий вид: мощность= работа/время , или

N=A/t,

где N – мощность,
A – работа,
t – время. 

Единицей мощности является ватт (1 Вт). 1 Вт – это такая мощность, при которой за 1 секунду совершается работа в 1 джоуль. Единица эта названа в честь английского изобретателя Дж. Уатта, который построил первую паровую машину. Любопытно, что сам Уатт пользовался другой единицей мощности – лошадиная сила, и формулу мощности в физике в том виде, в котором мы ее знаем сегодня, ввели позже. Измерение мощности в лошадиных силах используют и сегодня, например, когда говорят о мощности легкового автомобиля или грузовика. Одна лошадиная сила равна примерно 735,5 Вт.

Применение мощности в физике

Мощность является важнейшей характеристикой любого двигателя. Различные двигатели развивают совершенно разную мощность. Это могут быть как сотые доли киловатта, например, двигатель электробритвы, так и миллионы киловатт, например, двигатель ракеты-носителя космического корабля. При различной нагрузке двигатель автомобиля вырабатывает разную мощность, чтобы продолжать движение с одинаковой скоростью. Например, при увеличении массы груза, вес машины увеличивается, соответственно, возрастает сила трения о поверхность дороги, и для поддержания такой же скорости, как и без груза, двигатель должен будет совершать большую работу. Соответственно, возрастет вырабатываемая двигателем мощность. Двигатель будет потреблять больше топлива. Это хорошо известно всем шоферам. Однако, на большой скорости свою немалую роль играет и инерция движущегося транспортного средства, которая тем больше, чем больше его масса. Опытные водители грузовиков находят оптимальное сочетание скорости с потребляемым бензином, чтобы машина сжигала меньше топлива.

Нужна помощь в учебе?



Предыдущая тема: Механическая работа: определение и формула
Следующая тема:&nbsp&nbsp&nbspПростые механизмы и их применение: рычаг, равновесие сил на рычаге

Все неприличные комментарии будут удаляться.

Отправить ответ

avatar
  Подписаться  
Уведомление о