Стабилизатор напряжения | Описание работы, схема подключения.
Стабилизатор напряжения – важнейший радиоэлемент современных радиоэлектронных устройств. Он обеспечивает постоянное напряжение на выходе цепи, которое почти не зависит от нагрузки.
Стабилизаторы семейства LM
В нашей статье мы рассмотрим стабилизаторы напряжения семейства LM78ХХ. Серия 78ХХ выпускается в металлических корпусах ТО-3 (слева) и в пластмассовых корпусах ТО-220 (справа). Такие стабилизаторы имеют три вывода: вход, земля (общий) и вывод.
Вместо “ХХ” изготовители указывают напряжение стабилизации, которое нам будет выдавать этот стабилизатор. Например, стабилизатор 7805 на выходе будет выдавать 5 Вольт, 7812 соответственно 12 Вольт, а 7815 – 15 Вольт. Все очень просто.
Схема подключения
А вот и схема подключения таких стабилизаторов. Эта схема подходит ко всем стабилизаторам семейства 78ХХ.
На схеме мы видим два конденсатора, которые запаиваются с каждой стороны. Это минимальные значения конденсаторов, можно, и даже желательно поставить большего номинала. Это требуется для уменьшения пульсаций как по входу, так и по выходу. Кто забыл, что такое пульсации, можно заглянуть в статью как получить из переменного напряжения постоянное.
Характеристики LM стабилизаторов
Какое же напряжение подавать, чтобы стабилизатор работал как надо? Для этого ищем даташит на стабилизаторы и внимательно изучаем. Нас интересуют вот эти характеристики:
Output voltage – выходное напряжение
Input voltage – входное напряжение
Ищем наш 7805. Он выдает нам выходное напряжение 5 Вольт. Желательным входным напряжением производители отметили напряжение в 10 Вольт. Но, бывает так, что выходное стабилизированное напряжение иногда бывает или чуть занижено, или чуть завышено.
Для электронных безделушек доли вольт не ощущаются, но для прецизионной (точной) аппаратуры лучше все таки собирать свои схемы. Здесь мы видим, что стабилизатор 7805 может нам выдать одно из напряжений диапазона 4,75 – 5,25 Вольт, но при этом должны соблюдаться условия (conditions), что ток на выходе в нагрузке не будет превышать 1 Ампера. Нестабилизированное постоянное напряжение может “колыхаться” в диапазоне от 7,5 и до 20 Вольт, при это на выходе будет всегда 5 Вольт.
Рассеиваемая мощность на стабилизаторе может достигать до 15 Ватт – это приличное значение для такой маленькой радиодетали. Поэтому, если нагрузка на выходе такого стабилизатора будет кушать приличный ток, думаю, стоит подумать об охлаждении стабилизатора. Для этого ее надо посадить через пасту КПТ на радиатор. Чем больше ток на выходе стабилизатора, тем больше по габаритам должен быть радиатор. Было бы вообще идеально, если бы радиатор еще обдувался вентилятором.
Работа LM на практике
Давайте рассмотрим нашего подопечного, а именно, стабилизатор LM7805. Как вы уже поняли, на выходе мы должны получить 5 Вольт стабилизированного напряжения.
Соберем его по схеме
Берем нашу Макетную плату и быстренько собираем выше предложенную схемку подключения. Два желтеньких – это конденсаторы, хотя их ставить необязательно.
Итак, провода 1,2 – сюда мы загоняем нестабилизированное входное постоянное напряжение, снимаем 5 Вольт с проводов 3 и 2.
На Блоке питания мы ставим напряжение в диапазоне 7,5 Вольт и до 20 Вольт. В данном случае я поставил напряжение 8,52 Вольта.
И что же у нас получилось на выходе данного стабилизатора? 5,04 Вольта! Вот такое значение мы получим на выходе этого стабилизатора, если будем подавать напряжение в диапазоне от 7,5 и до 20 Вольт. Работает великолепно!
Давайте проверим еще один наш стабилизатор. Думаю, Вы уже догадались, на сколько он вольт.
Собираем его по схеме выше и замеряем входное напряжение. По даташиту можно подавать на него входное напряжение от 14,5 и до 27 Вольт. Задаем 15 Вольт с копейками.
А вот и напряжение на выходе. Блин, каких то 0,3 Вольта не хватает для 12 Вольт. Для радиоаппаратуры, работающей от 12 Вольт это не критично.
Как сделать блок питания на 5, 9,12 Вольт?
Как же сделать простой и высокостабильный источник питания на 5, на 9 или даже на 12 Вольт? Да очень просто. Для этого Вам нужно прочитать вот эту статейку и поставить на выход стабилизатор на радиаторе! И все! Схема будет приблизительно вот такая для блока питания 5 Вольт:
Два электролитических конденсатора для для устранения пульсаций и высокостабильный блок питания на 5 вольт к вашим услугам! Чтобы получить блок питания на большее напряжение, нам нужно также на выходе трансформатора тоже получить большее напряжение. Стремитесь, чтобы на конденсаторе С1 напряжение было не меньше, чем в даташите на описываемый стабилизатор.
Для того, чтобы стабилизатор напряжения не перегревался, подавайте на вход минимальное напряжение, указанное в даташите. Например, для стабилизатора 7805 это напряжение равно 7,5 Вольт, а для стабилизатора 7812 желательным входным напряжением можно считать напряжение в 14,5 Вольт. Это связано с тем, разницу напряжения, а следовательно и мощность, стабилизатор будет рассеивать на себе.
Как вы помните, формула мощности P=IU, где U – напряжение, а I – сила тока. Следовательно, чем больше входное напряжение стабилизатора, тем больше мощность, потребляемая им. А излишняя мощность – это и есть нагрев. В результате нагрева такой стабилизатор может перегреться и войти в состояние защиты, при котором дальнейшая работа стабилизатора прекращается или вовсе сгореть.
Заключение
Все большему числу электронных устройств требуется качественное стабильное питание без всяких скачков напряжения. Сбой того или иного модуля электронной аппаратуры может привести к неожиданным и не очень приятным последствиям. Используйте же на здоровье достижения электроники, и не парьтесь по поводу питания своих электронных безделушек.
Купить стабилизатор напряжения
Купить дешево эти интегральные стабилизаторы можно сразу целым набором на Алиэкспрессе по этой ссылке. Здесь есть абсолютно любые значения даже для отрицательного напряжения.
lm317 стабилизатор тока — стабилизация и защита схемы
Правильная работа LED может быть обеспечена только благодаря стабилизатору. Эта защита необходима еще и по причине разброса пороговых значений напряжения светодиода. При подключении по параллельной схеме лампочки могут просто на просто сгореть, так как им приходится пропускать недопустимую для них величину тока.
Виды стабилизирующих устройств
По способу ограничения силы тока выделяются устройства линейного и импульсного типа.
Так как напряжение на светодиоде – неизменная величина, то стабилизаторы тока часто считают стабилизаторами мощности LED. Фактически последняя прямо пропорциональна изменению напряжения, что характерно для линейной зависимости.
Линейный стабилизатор нагревается тем больше, чем больше прилагается к нему напряжения. Это его главный недочёт. Преимущества данной конструкции обусловлены:
- отсутствием электромагнитных помех;
- простотой;
- низкой стоимостью.
Более экономичными устройствами являются стабилизаторы на основе импульсного преобразователя. В этом случае мощность прокачивается порционно – по мере необходимости для потребителя.
Схемы линейных устройств
Самая простейшая схема стабилизатора – это схема, построенная на основе LM317 для светодиода. Последний являются аналогом стабилитрона с определенным рабочим током, который он может пропускать. Учитывая малую силу тока можно собрать простой аппарат самостоятельно. Наиболее простой драйвер светодиодных ламп и лент собирают именно таким способом.
Микросхема LM317 уже не одно десятилетие является хитом среди начинающих радиолюбителей благодаря своей простоте и надежности. На её основе можно собрать регулируемый блок питания, светодиодный драйвер и другие БП. Для этого потребуется несколько внешних радиодеталей, модуль работает сразу, настройки не требуется.
Интегральный стабилизатор LM317 как никакой другой подходит для создания несложных регулируемых блоков питания, для электронных устройств с разными характеристиками, как с регулируемым выходным напряжением, так и с заданными параметрами нагрузки.
Основное назначение это стабилизация заданных параметров. Регулировка происходит линейным способом, в отличие от импульсных преобразователей.
Выпускаются LM317 в монолитных корпусах, исполненных в нескольких вариациях. Самая распространённая модель TO-220 с маркировкой LM317Т.
Каждый вывод микросхемы имеет свое предназначение:
- ADJUST. Ввод для регулирования выходного напряжения.
- INPUT. Ввод для подачи питающего напряжения.
Технические показатели стабилизатора:
- Напряжение на выходе в пределах 1,2–37 В.
- Защита от перегрузки и КЗ.
- Погрешность выходного напряжения 0,1%.
- Схема включения с регулируемым выходным напряжением.
Мощность рассеяния и входное напряжение устройства
Максимальная «планка» входного напряжения должна быть не более заданной, а минимальная – выше желаемой выходной на 2 В.
Микросхема рассчитана на стабильную работу при максимальном токе до 1,5 А. Это значение будет ниже, если не применять качественный теплоотвод. Максимально допустимое рассеивание мощности без последнего равно примерно 1,5 Вт при температуре окружающей среды не более 300 С.
При установке микросхемы требуется изоляция корпуса от радиатора, к примеру, с помощью слюдяной прокладки. Также эффективный отвод тепла достигается путём применения теплопроводной пасты.
Краткое описание
Коротко описать достоинства радиоэлектронного модуля LM317, применяемого в стабилизаторах тока, можно так:
- яркость светового потока обеспечивается диапазоном выходного напряжения 1, – 37 В;
- выходные показатели модуля не зависят от частоты вращения вала электродвигателя;
- поддерживание выходного тока до 1,5 А позволяет подключать несколько электроприёмников;
- погрешность колебаний выходных параметров равна 0,1% от номинального значения, что является гарантией высокой стабильности;
- имеется функция защиты по ограничению тока и каскадного отключения при перегреве;
- корпус микросхемы заменяет землю, поэтому при внешнем креплении уменьшается количество монтажных кабелей.
Схемы включения
Безусловно, наипростейшим способом токового ограничения для светодиодных ламп станет последовательное включение добавочного резистора. Но данное средство подходит лишь только для маломощных LED.
Простейший стабилизированный блок питания
Чтобы сделать стабилизатор тока потребуется:
- микросхемка LM317;
- резистор;
- монтажные средства.
Собираем модель по нижеприведенной схеме:
Модуль можно применять в схемах разных зарядных устройств либо регулируемых ИБ.
Блок питания на интегральном стабилизаторе
Этот вариант более практичный. LM317 ограничивает потребляемый ток, который задается резистором R.
Помните, что максимально допустимое значение тока, которое нужно для управления LM317, составляет 1,5 А с хорошим радиатором.
Схема стабилизатора с регулируемым блоком питания
Ниже изображена схема с регулируемым выходным напряжением 1.2–30 В/1,5 А.
Переменный ток преобразуется в постоянный с помощью моста-выпрямителя (BR1). Конденсатор С1 фильтрует пульсирующий ток, С3 улучшает переходную характеристику. Это означает, что стабилизатор напряжения может отлично работать при постоянном токе на низких частотах. Выходное напряжение регулируется ползунком Р1 от 1.2 вольта до 30 В. Выходной ток составляет около 1,5 А.
Подбор резисторов по номиналу для стабилизатора должен осуществляться по точному расчету с допустимым отклонением (небольшим). Однако разрешается произвольное размещение резисторов на монтажном плате, но желательно для лучшей стабильности размещать их подальше от радиатора LM317.
Область применения
Микросхема LM317 является отличным вариантом для использования в режиме стабилизации основных технических показателей. Она отличается простотой в исполнении, недорогой стоимостью и отличными эксплуатационными характеристиками. Единственный недостаток – пороговое значение напряжения составляет лишь 3 В. Корпус в стиле ТО220 – это одна из самых доступных моделей, которая позволяет рассеивать тепло довольно хорошо.
Микросхема применима в устройствах:
Стабилизирующая схема, построенная на основе LM317 простая, дешёвая, и в то же время надежная.
Самый простой стабилизатор ТОКА на LM317 (РЕГУЛИРУЕМЫЙ) \ Simplest LED driver on LM317.
Watch this video on YouTube
Стабилизатор тока для светодиодов: виды, схемы, как сделать
Главным электрическим параметром светодиодов (LED) является их рабочий ток. Когда в таблице характеристик светодиода мы встречаем рабочее напряжение, то нужно понимать, что речь идет о падении напряжения на светодиоде при протекании рабочего тока. То есть рабочий ток определяет рабочее напряжение LED. Поэтому только стабилизатор тока для светодиодов может обеспечить их надежную работу.
Назначение и принцип работы
Стабилизаторы должны обеспечивать постоянный рабочий ток светодиодов когда в сети питания есть проблемы с отклонением напряжения от нормы (вам будет интересно узнать, как подключить светодиод от сети 220 вольт). Стабильный рабочий ток в первую очередь необходим для защиты LED от перегрева. Ведь при превышении максимально допустимого тока, светодиоды выходят из строя. Также стабильность рабочего тока обеспечивает постоянство светового потока прибора, например, при разряде аккумуляторных батарей или колебаниях напряжения в питающей сети.
Стабилизаторы тока для светодиодов имеют разные виды исполнения, а обилие вариантов схем исполнения радует глаз. На рисунке приведены три самые популярные схемы стабилизаторов на полупроводниках.
- Схема а) — Параметрический стабилизатор. В этой схеме стабилитрон задает постоянное напряжение на базе транзистора, который включен по схеме эмиттерного повторителя. Благодаря стабильности напряжения на базе транзистора, напряжение на резисторе R тоже постоянно. В силу закона Ома ток на резисторе также не меняется. Так как ток резистора равен току эмиттера, то стабильны токи эмиттера и коллектора транзистора. Включая нагрузку в цепь коллектора, мы получим стабилизированный ток.
- Схема б). В схеме, напряжение на резисторе R стабилизируется следующим образом. При увеличении падения напряжения на R, больше открывается первый транзистор. Это приводит к уменьшению тока базы второго транзистора. Второй транзистор немного закрывается и напряжение на R стабилизируется.
- Схема в). В третьей схеме ток стабилизации определяется начальным током полевого транзистора. Он не зависит от напряжения, приложенного между стоком и истоком.
В схемах а) и б) ток стабилизации определяется номиналом резистора R. Применяя вместо постоянного резистора подстрочный можно регулировать выходной ток стабилизаторов.
Производители электронных компонентов производят множество микросхем стабилизаторов для светодиодов. Поэтому в настоящее время в промышленных изделиях и в радиолюбительских конструкциях чаще применяются стабилизаторы в интегральном исполнении. Почитать про все возможные способы подключения светодиодов можно здесь.
Обзор известных моделей
Большинство микросхем для питания светодиодов выполнены в виде импульсных преобразователей напряжения. Преобразователи, в которых роль накопителя электрической энергии выполняет катушка индуктивности (дроссель) называются бустерами. В бустерах преобразование напряжения происходит за счет явления самоиндукции. Одна из типичных схем бустера приведена на рисунке.
Схема стабилизатора тока работает следующим образом. Транзисторный ключ находящийся внутри микросхемы периодически замыкает дроссель на общий провод. В момент размыкания ключа в дросселе возникает ЭДС самоиндукции, которая выпрямляется диодом. Характерно то, что ЭДС самоиндукции может значительно превышать напряжение источника питания.
Как видно из схемы для изготовления бустера на TPS61160 производства фирмы Texas Instruments требуется совсем немного компонентов. Главными навесными деталями являются дроссель L1, диод Шоттки D1, выпрямляющий импульсное напряжение на выходе преобразователя, и Rset.
Резистор выполняет две функции. Во-первых, резистор ограничивает ток, протекающий через светодиоды, а во-вторых, резистор служит элементом обратной связи (своего рода датчиком). С него снимается измерительное напряжение, и внутренние схемы чипа стабилизируют ток, протекающий через LED, на заданном уровне. Изменяя номинал резистора можно изменять ток светодиодов.
Преобразователь на TPS61160 работает на частоте 1.2 МГц, максимальный выходной ток может составлять 1.2 А. С помощью микросхемы можно питать до десяти светодиодов включенных последовательно. Яркость светодиодов можно изменять путем подачи на вход «контроль яркости» сигнала ШИМ переменной скважности. КПД приведенной схемы составляет около 80%.
Нужно заметить, что бустеры обычно используются, когда напряжение на светодиодах выше напряжения источника питания. В случаях, когда требуется понизить напряжение, чаще применяют линейные стабилизаторы. Целую линейку таких стабилизаторов MAX16xxx предлагает фирма MAXIM. Типовая схема включения и внутренняя структура подобных микросхем представлена на рисунке.
Как видно из структурной схемы, стабилизация тока светодиодов осуществляется Р-канальным полевым транзистором. Напряжение ошибки снимается с резистора Rsens и подается на схему управления полевиком. Так как полевой транзистор работает в линейном режиме, КПД подобных схем заметно ниже, чем у схем импульсных преобразователей.
Микросхемы линейки MAX16xxx часто применяются в автомобильных приложениях. Максимальное входное напряжение чипов составляет 40 В, выходной ток – 350 мА. Они, как и импульсные стабилизаторы, допускают ШИМ-диммирование.
Стабилизатор на LM317
В качестве стабилизатора тока для светодиодов можно использовать не только специализированные микросхемы. Большой популярностью у радиолюбителей пользуется схема LM317.
LM317 представляет собой классический линейный стабилизатор напряжения имеющий множество аналогов. В нашей стране эта микросхема известна как КР142ЕН12А. Типовая схема включения LM317 в качестве стабилизатора напряжения показана на рисунке.
Для превращения этой схемы в стабилизатор тока достаточно исключить из схемы резистор R1. Включение LM317 в качестве линейного стабилизатора тока выглядит следующим образом.
Выполнить расчет этого стабилизатора довольно просто. Достаточно вычислить номинал резистора R1, подставив значение тока в следующую формулу:
R1=1.25*I0.
Мощность, рассеиваемая на резисторе равна:
W=I2R1.
Регулируемый стабилизатор
Предыдущую схему легко превратить в регулируемый стабилизатор. Для этого нужно постоянный резистор R1 заменить на потенциометр. Схема будет выглядеть так:
Как сделать стабилизатор для светодиода своими руками
Во всех приведенных схемах стабилизаторов используется минимальное количество деталей. Поэтому самостоятельно собрать подобные конструкции сможет даже начинающий радиолюбитель освоивший навыки работы с паяльником. Особенно просты конструкции на LM317. Для их изготовления даже не нужно разрабатывать печатную плату. Достаточно припаять подходящий резистор между опорным выводом микросхемы и ее выходом.
Также к входу и выходу микросхемы нужно припаять два гибких проводника и конструкция будет готова. В случае, если с помощью стабилизатора тока на LM317 предполагается питать мощный светодиод, микросхему нужно оснастить радиатором который обеспечит отвод тепла. В качестве радиатора можно использовать небольшую алюминиевую пластинку площадью 15-20 квадратных сантиметров.
Изготавливая конструкции бустеров, в качестве дросселей можно использовать катушки фильтров различных блоков питания. Например, для этих целей хорошо подойдут ферритовые кольца от блоков питания компьютеров, на которые следует намотать несколько десятков витков эмалированного провода диаметром 0.3 мм.
Какой стабилизатор использовать в авто
Сейчас автолюбители часто занимаются модернизацией светотехники своих машин, применяя для этих целей светодиоды или светодиодные ленты (читайте, как подключить светодиодную ленту в авто). Известно, что напряжение бортовой сети автомобиля может сильно меняться в зависимости от режима работы двигателя и генератора. Поэтому в случае с авто особенно важно применять не стабилизатор 12 вольт, а рассчитанный на конкретный тип светодиодов.
Для автомобиля можно посоветовать конструкции на основе LM317. Также можно использовать одну из модификаций линейного стабилизатора на двух транзисторах, в которой в качестве силового элемента использован мощный N-канальный полевой транзистор. Ниже приведены варианты подобных схем, в том числе и схема светодиодного драйвера.
Вывод
Подводя итог можно сказать, что для надежной работы светодиодных конструкций их необходимо питать с помощью стабилизаторов тока. Многие схемы стабилизаторов просты и доступны для изготовления своими руками. Мы надеемся, что приведенные в материале сведения будут полезны всем, кто интересуется данной темой.
простой стабилизатор тока с минимальной просадкой напряжения
РадиоКот >Схемы >Питание >Преобразователи и UPS >простой стабилизатор тока с минимальной просадкой напряжения
Стабилизатор тока с минимальной просадкой напряжения.
С необходимым девайсом столкнулся когда захотел сделать ходовые огни для авто. В магазине из того что было, выбрал самы подходящие по цене и качеству светодиоды LEMWS68T80FZ10. ниже фото зависимости светимости от напряжения на светодиоде.
Из таблицы видно что при 150 ма светодиод будет требовать 3 вольта, следовательно соединив 4 штучки последовательно я получу 12 вольт. Но не все так просто, собрав цепь из 4 светодиодов я подключил к лабораторному блоку питания, задал 12 вольт и смотрел. Сначала было как в таблице 150 ма, но потом ток начал расти, и причем cильно, не дожидаясь когда светодиоды сгорят я выключил ток. Проблема в том что при нагревании светодиоды начинают больше потреблять тока, в результате сильнее греться и еще больше потреблять и т д. Так у этих светодиодов очень сильно меняется яркость от напряжения, достаточно увеличить напругу на 0.1 вольт и уже отчетливо видно что светимость изменилась, а это всего 0.1 вольта из 12. Так же следует помнить что в машине не всегда 12 вольт, когда она заведена там уже 14, пробовал ставить постоянный резистор и смотреть как будет меняться светимость при изменение напряжения от 12 до 14, сильно меняется, нужен стабилизатор тока, но очень простой с минимумом обвязки. И вот что я придумал
полевик подойдет любой, единственное на что надо обращать внимание это его рабочие напряжение, прямой он или обратный, сопротивление при 5 вольт на затворе. я выбрал вот такой
резистор на 130 кОм на затворе нужен что бы не возникал резонанс, без него полевик слишком быстро открывается и закрывается и схема не может поймать нужный ток. Ток смотрится путем падения напряжения на резисторе 0.5 Ом. Если нужно держать ток в 100 ма, то напряжение на 0.5 Ом резисторе будет 50 мв, следовательно на 1 ножке микросхемы надо создать с помощью резисторного делителя те же 50 мв. в моем случае их создают резистор на 10 Ком и переменник на 500 Ом.
Вот и вся схема. Микросхема имеет опорное напряжение 5 вольт на 14 ножке, на 3 ножке напряжение будет меняться от 0 до 5 вольт, тем самым будет осуществляться регулирование тока. Остальная часть микрухи не задействована. Можно было бы использовать обычный операционный усилитель, но тогда еще стабилитрон с резистором мострячить бы пришлось, да и данная микросхема у меня была под рукой) Схема работает от 12 до 15 вольт, минимальная просадка на стабилизаторе 0.1 вольта при токе 100 ма, и 0.2 вольта при токе 200 ма.
На достигнутом я не смог остановиться и решил усилить светимость добавив еще 2 ряда светодиодов. Немного поэксперементировав получил такую схему
Настроил на ток 300 ма. по 100 ма на каждый ряд светодиодов, дело в том что при токе 100 ма КПД светодиодов больше и срок службы дольше. Из за неравномерного нагрева возможен перекос, то есть горячие светодиоды буду потреблять тока больше холодных, поэтому на каждую ветку добавил по 5 Ом ресзистору, так же это позволило разгузить полевик, в этой схеме он работает на пределе. Повысилась минимальная просадка, с 0.1 вольта до 1 вольта. то есть такая схема работает от 13 до 15 вольт. Я решил сделать что бы ходовые огни включались сами при повороте ключа, для этого достаточно в машине найти нужный провод на котором напряжение будет появляться только при повороте ключа и присоедениться к нему. Так как схема будет практически всегда работать при заведенном двигателе, а это значит напряжение падать если и будет то не существенно, поэтому и сделал рабочий режим от 13 до 15 вольт.
Паралельное соеденение мощных светодиодов как бы не желательно, причина неравномерный нагрев, в этой схеме я так сделал ради эксперемента, хотя можно было просто поднять ток в схеме с одним рядом светодиодов. Если же другого выхода нет и все же светодиоды нужно запаралелить, то нужно добиться что бы их температура по возможности была у всех одинакова.
Далее я сталкнулся с самой очевидной проблемой — нагрев. Вся платка сильно раскалялась, а это снижает срок службы светодиодов. Тем не менее для того что бы отвести тепло не надо мострячить радиатор к каждому светодиоду, оказалось достаточно просто хорошо охолождать плату. Сделал я это так
Полоска меди припаяна к обратно стороне платы, и прикручина к корпусу противотуманки.
естественно вместо переменника я подобрал постоянный резистор.
А вот так оно светиться. Жаль на фото это выглядит не так ярко как когда сам смотришь.
Все вопросы в Форум.
Как вам эта статья? | Заработало ли это устройство у вас? |