Подключение трехфазного двигателя реверсивное: Реверсивная схема подключения электродвигателя.

Содержание

Реверсивный пускатель: схема правильного подключения

Если правильно подключить по схеме реверсивный пускатель, то получится запустить любой электродвигатель и заставить вращаться его не только вперед, но и назад. По сути, реверс обеспечивается наличием еще одной контактной группы на пускателе. Но ее нужно правильно подключить. Например, имеются три фазы А, В и С, которые подключены к контактной колодке электромотора. При этом вал вращается по часовой стрелке. Чтобы заставить вращаться его в обратную сторону, достаточно поменять любые две фазы местами. Например, подключить в таком порядке – В, А, С.

Особенности реверсивных пускателей

Используются такие схемы подключения в конструкциях лифтов, подъемных кранов, сверлильных станков. Если сильно не вдаваться в детали, то может показаться, что схема включения мотора с использованием реверса сложнее. Но на деле оказывается, что сложного нет ничего – в конструкцию добавилась еще одна силовая часть и управление.

Стоимость таких устройств немного выше за счет использования большего количества элементов. По сути, это два электромагнитных пускателя, объединенных в один корпус. Принцип работы у схемы специфический, потребуется внимательно рассмотреть все нюансы.

Исходное положение элементов

Схема реверсивного магнитного пускателя в изначальном состоянии разомкнута — напряжение поступает только на верхние контакты и «дежурит» до того момента, пока не начнет работать система управления. Фазы располагаются в таком виде:

  1. От фазы «А» производится питание цепи управления.
  2. Провод от фазы «А» поступает на кнопку остановки.
  3. Фаза также поступает на контакты кнопок SB2 и SB3.
  4. Обязательно осуществляется защита цепей – силовых и управления.

В таком виде схема готова к началу работы, остается только нажать на кнопку «Влево» или «Вправо», чтобы запустить электродвигатель. И нужно изучить более подробно процессы, протекающие в схеме реверсивного пускателя с кнопками управления при вращении ротора двигателя.

Ротор вращается против часовой стрелки

Как только происходит нажатие на кнопку SB2, через нормально-замкнутую группу контактов КМ2. 2 проходит фаза «А» на катушку пускателя. При этом происходит срабатывание обмотки, контакты, которые были разомкнутые, замыкаются. А замкнутые размыкаются.

Как только произойдет замыкание контактов КМ1.1, магнитный пускатель переводится в режим самоподхвата.

Следовательно, как только происходит замыкание группы силовых контактов, все три фазы подаются на обмотки электрического двигателя. И ротор начинает разгоняться, двигаясь в направлении против часовой стрелки. Нормально-замкнутая группа контактов КМ1.2, которая находится в цепи, питающей катушку пускателя КМ2, размыкается и противодействует подаче напряжения на катушку КМ2 (КМ1 при этом работает). В народе такую схему называют «защитой от дурака».

Двигатель вращается по часовой стрелке

Как было сказано ранее, для вращения мотора в противоположную сторону, достаточно просто поменять местами две фазы. Именно это и делает в схеме реверсивного пускателя двигателя элемент, обозначенный КМ2. Но, прежде чем изменить направление движения, необходимо остановить мотор. Для этого используется кнопка «Стоп». Обычно она имеет красный цвет. Как только оператор нажмет на кнопку, произойдет разрыв цепи питания катушки магнитного пускателя КМ1.

При этом пружина воздействует на контакты и возвращает их в исходное состояние. Электрический двигатель обесточивается, на обмотках пропадает напряжение и ротор останавливается. При нажатии на кнопку SB3 происходит передача фазы «А» по нормально-замкнутому контакту КМ1.2 на катушку электромагнита КМ2. Пускатель выходит в режим самоподхвата при помощи силового контакта КМ2.1.

В них переброшены две фазы – например, «А» и «В». Группа контактов КМ2.2, которая находится в цепи питания магнитного пускателя КМ1, размыкается и не позволяет включиться в работу КМ1. Магнитный пускатель КМ2 в это время работает.

Схема силовой цепи

В общем, схема подключения реверсивного пускателя в трехфазной сети может быть реализована несколькими способами. Самое главное – можно использовать два пускателя, если нет возможности поставить один.

Важно правильно произвести переброс фаз, чтобы осуществить реверс. Распределяются фазы в магнитном пускателе КМ1 таким образом:

  1. «А» подается к обмотке «1».
  2. «В» поступает на обмотку мотора «2»
  3. «С» подается на обмотку «3».

При этом вращение ротора происходит против часовой стрелки. На пускателе КМ2 фазы распределены таким образом:

  1. «А» на обмотку «1».
  2. «С» поступает к обмотке «2».
  3. «В» подается на обмотку мотора «3».

Следовательно, отличие только в том, что поменялись местами две фазы – «В» и «С». Фаза под литерой «А» остается все также на первом контакте. Но ротор будет вращаться в противоположную сторону – в обмотках происходит сдвиг фаз.

Практическая схема реверсивного пускателя

Схема подключения реверсивного пускателя трехфазного типа производится таким образом:

  1. Первой подсоединяется к контактам фаза «А». Она подходит к магнитному пускателю КМ1, а также при помощи перемычки с тем же номером контакта на КМ2.
  2. Выходы обоих пускателей соединяются параллельно при помощи перемычки.
  3. Фаза с обозначением «В» соединяется со средним контактом КМ1, а также при помощи перемычки с крайним правым КМ2.
  4. Фаза «С» соединяется с крайним правым контактом на КМ1 и средним на КМ2.

Именно таким образом происходит смена направления движения ротора.

Схема подключения реверсивного пускателя реализуется только лишь при помощи соединения силовых контактов и смены их порядка. Но обязательно в конструкции привода должна иметься защита от случайного включения двух магнитных пускателей одновременно.

Как осуществляется защита

Обязательно перед тем как произвести смену направления движения ротора, необходимо полностью застраховаться от различных ошибок. Допустим, конструкция не содержит в себе элементов, которые позволяют защитить схему. Тогда при вращении мотора против часовой стрелки магнитный пускатель КМ1 находится в рабочем состоянии. Все фазы поступают к соответствующим обмоткам мотора.

Если сразу же произвести включение магнитного пускателя КМ2, то фазы «В» и «С» окажутся замкнутыми. Следовательно, произойдет обычное межфазное замыкание, которое может привести к пожару или выходу из строя различных компонентов. Для предотвращения такого явления используются контакты нормально-замкнутого типа.

Они монтируются непосредственно в цепи питания катушек пускателей. Именно с их помощью появляется возможность включения только одного магнитного пускателя и полностью исключается вероятность включения в цепь питания одного пускателя до полного отключения второго. В противном случае постоянно будут выбивать автоматы защиты, оператору придется их включать.

Заключение

«Защита от дурака» имеется в любой электрической схеме. Если в схеме реверсивного пускателя не использовать такого типа защиту, то при эксплуатации возникнет множество проблем. Операторы, которые включают электропривод, обычно не имеют познаний в схемотехнике. Поэтому, чтобы исключить возможность ошибки, используется схема, которая не позволяет ввести в работу одновременно два магнитных пускателя.

Желательно применять в схемах лампы, которые будут показывать направление вращения двигателя. Чтобы произвести их подключение, нужно правильно соединить группы вспомогательных контактов. Можно использовать лампы на 220 Вольт или, если имеется отдельный источник питания, на 12 Вольт. Целесообразность использования таких типов конструкций сомнительна, так как намного проще применить в качестве источника напряжения одну из рабочих фаз. Обычно так и поступают, в редких случаях применяются дополнительные источники питания.

Желательно цепи управления питать от низковольтной цепи, но при этом возникает необходимость в источнике постоянного напряжения – придется применять специальные устройства. Для этого достаточно установить трансформатор и простейший выпрямитель, либо же использовать готовый блок питания. Обязательно нужно применить схему защиты цепи питания низковольтной части.

Схемы подключения магнитного пускателя | Электрик



Подключения магнитного пускателя и малогабаритных его вариантов, для опытных электриков не представляет никакой сложности, но для новичков может оказаться задачей над которой пройдется задуматься.

Магнитный пускатель является коммутационным устройством для дистанционного управления нагрузкой большой мощности.
На практике, зачастую, основным применением контакторов и магнитных пускателей есть запуск и остановка асинхронных электродвигателей, их управления и реверс оборотов двигателя.

Но свое использование такие устройства находят в работе и с другими нагрузками, например компрессорами, насосами, устройствами обогрева и освещения.

При особых требованиях безопасности (повышенная влажность в помещении) возможно использования пускателя с катушкой на 24 (12) вольт. А напряжение питания электрооборудования при этом может быть большим, например 380вольт и большим током.

Кроме непосредственной задачи, коммутации и управления нагрузкой с большим током, еще одной немаловажной особенностью есть возможность автоматического «отключения» оборудования при «пропадание» электричества.
Наглядный пример. При работе какого то станка, например распиловочного, пропало напряжение в сети. Двигатель остановился. Рабочий полез к рабочей части станка, и тут напряжение опять появилось. Если бы станок управлялся просто рубильником, двигатель сразу бы включился, в результате — травма. При управлении электродвигателем станка с помощью магнитного пускателя, станок не включится, пока не будет нажата кнопка «Пуск»

.

Схемы подключения магнитного пускателя

Стандартная схема. Применяется в случаях когда нужно осуществлять обычный пуск электродвигателя. Кнопку «Пуск» нажали – двигатель включился, кнопку «Стоп» нажали – двигатель отключился. Вместо двигателя может быть любая нагрузка подключенная к контактам, например мощный обогреватель.

В данной схеме силовая часть питается от трехфазного переменного напряжения 380В с фазами «А» «В» «С». В случаях однофазного напряжения, задействуются лишь две клеммы.

В силовую часть входит: трех полюсный автоматический выключатель QF1, три пары силовых контактов магнитного пускателя 1L1-2T1, 3L2-4T2, 5L3-6T3 и трехфазный асинхронный электродвигатель М.

Цепь управления получает питание от фазы «А».
В схему цепи управления входят кнопка SB1 «Стоп», кнопка SB2 «Пуск», катушка магнитного пускателя КМ1 и его вспомогательный контакт 13НО-14НО, подключенный параллельно кнопке «Пуск».

При включении автомата QF1 фазы «А», «В», «С» поступают на верхние контакты магнитного пускателя 1L1, 3L2, 5L3 и там дежурят. Фаза «А», питающая цепи управления, через кнопку «Стоп» приходит на «3» контакт кнопки «Пуск», вспомогательный контакт пускателя 13НО и так же остается дежурить на этих двух контактах.

Обратите внимание. В зависимости от номинала напряжения самой катушки и используемого напряжения питающей сети, будет разная схема подключения катушки.
Например если катушка магнитного пускателя на 220 вольт — один ее вывод подключается к нейтрале, а другой, через кнопки, к одной из фаз.


Если номинал катушки на 380 вольт — один вывод к одной из фаз, а второй, через цепь кнопок к другой фазе.
Существуют также катушки на 12, 24, 36, 42, 110 вольт, поэтому, прежде чем подать напряжение на катушку, вы должны точно знать ее номинальное рабочее напряжение.

При нажатии на кнопку «Пуск» фаза «А» попадает на катушку пускателя КМ1, пускатель срабатывает и все его контакты замыкаются. Напряжение появляется на нижних силовых контактах 2Т1, 4Т2, 6Т3 и уже от них поступает на электродвигатель. Двигатель начинает вращаться.

Вы можете отпустить кнопку «Пуск» и двигатель не отключится, так как с использованием вспомогательного контакта пускателя 13НО-14НО, подключенного параллельно кнопке «Пуск», реализован самоподхват.

Получается так, что после отпускания кнопки «Пуск» фаза продолжает поступать на катушку магнитного пускателя, но уже через свою пару 13НО-14НО.

В случае если не будет самоподхвата, будет необходимо все время держать нажатой кнопку «Пуск» чтобы работал электродвигатель или другая нагрузка.


Для отключения электродвигателя или другой нагрузки достаточно нажать кнопку «Стоп»: цепь разорвется и управляющее напряжение перестанет поступать на катушку пускателя, возвратная пружина вернет сердечник с силовыми контактами в исходное положение, силовые контакты разомкнутся и отключат электродвигатель от напряжения сети.


Как выглядит монтажная (практическая) схема подключения магнитного пускателя? Чтобы не тянуть лишний провод на кнопку «Пуск», можно поставить перемычку между выводом катушки и одним из ближайших вспомогательных контактов, в данном случае это «А2» и «14НО». А уже с противоположного вспомогательного контакта провод тянется непосредственно на «3» контакт кнопки «Пуск».

Как подключить магнитный пускатель в однофазной сети



Схема подключения электродвигателя с тепловым реле и защитным автоматом

Как выбрать автоматический выключатель (автомат) для защиты схемы?

Прежде всего выбираем сколько «полюсов», в трехфазной схеме питания естественно нужен будет трехполюсный автомат, а в сети 220 вольт как правило, двохполюсный автомат, хотя будет достаточно и однополюсного.

Следующим важным параметром будет ток сработки.

Например если электродвигатель на 1,5 кВт. то его максимальный рабочий ток — 3А (реальный рабочий может быть меньше, надо измерять).  Значит, трехполюсный автомат надо ставить на 3 или 4А.

Но у двигателя, мы знаем, пусковой ток намного больше рабочего, а значит обычный (бытовой) автомат с током в 3А будет срабатывать сразу при пуске такого двигателя.

Характеристику теплового расцепителя нужно выбирать D, чтобы при пуске автомат не срабатывал.

Или же, если такой автомат не просто найти, можно по подбирать ток автомата, чтобы он был на 10-20% больше рабочего тока электродвигателя.

Можно и удаться в практический эксперимент и с помощью измерительных клещей замерить пусковой и рабочий ток конкретного двигателя.

Например для двигателя на 4кВт, можно ставить автомат на 10А.

Для защиты от перегрузки двигателя, когда ток возрастает выше установленного (например пропадания фазы) — контакты теплового реле RT1 размыкаются, и цепь питания катушки электромагнитного пускателя разрывается.

В данном случае, тепловое реле выполняет роль кнопки «Стоп», и стоит в той же цепи, последовательно. Где его поставить — не особо важно, можно на участке схемы L1 — 1, если это удобно в монтаже.

С использованием теплового расцепителя, отпадает надобность так тщательно подбирать ток вводного автомата, так как с тепловой защитой вполне должно справится тепловое реле двигателя.

Подключение электродвигателя через реверсивный пускатель

Данная необходимость возникает, тогда когда нужно чтобы движок вращался поочередно в обоих направлениях.

Смена направления вращения реализуется простим способом,  меняются местами любые две фазы.

Когда включен пускатель КМ1, это будет «правое» вращение. Когда включается КМ2 — первая и третья фазы меняются местами, движок будет крутиться «влево». Включение пускателей КМ1 и КМ2 реализуется разными кнопками «Пуск вперед» и «Пуск назад«, выключение — одной, общей кнопкой «Стоп» , как и в схемах без реверса.


В таких схемах запуска всегда должна быть защита от одновременного включения кнопок «вперед» и «назад».

Реверсивный пускатель должен иметь механическую защиту от одновременного включения двух его половин. А если он состоит из двух отдельных пускателей, между ними должен стоять специальный механический блокиратор.

Вторая защита — электрическая. Контакты КМ2.4 и КМ1.4, стоящие в цепях питания катушек пускателей. Например, если включен КМ1, его НЗ контакт КМ1.4 разомкнут, и если случайно нажать обе кнопки «пуск», ничего не получится — электродвигатель будет слушаться той кнопки, которая нажата раньше.

Для реализации электрической блокировки одновременного включения и самоподхвата на каждый пускатель надо, кроме силовых, ещё один НЗ (блокировка) и НО (самоподхват). Но так-как пятого контакта, в большинства магнитных пускателей нет, можно поставить дополнительный контакт. Например приставка ПКИ.

с катушкой на 220 вольт

с катушкой на 380 вольт

Реверсивная схема подключения электродвигателя

 

Подключение трехфазного электродвигателя по реверсивной схеме бывает востребовано в случаях, когда в процессе его эксплуатации необходимо оперативно изменять направление вращения вала.

В отличие от обычной схемы подключения, данная схема содержит два магнитных пускателя, две кнопки «Пуск» и одну «Стоп».

 

Изменение направление вращения вала электродвигателя происходит за счет изменения фазировки (порядка подключения фаз) в его электропитании и задается нажатием кнопки «Пуск1» или «Пуск2».

 

Реверсивная схема подключения электродвигателя

Силовые контакты пускателей KM 1 и KM 2 соединены таким образом, что при срабатывании одного из них, очередность фаз в питании будет отличаться от фазировки при срабатывании другого.

 

Работает схема следующим образом: нажатием кнопки «Пуск 1» (SB 1) замыкается цепь питания катушки KM 1, происходит втягивание и замыкание силовых контактов KM 1 (на схеме выделены красным цветом) и питание с очередностью фаз L1, L2, L3 поступает на клеммы электродвигателя. Во избежание ошибочного включения кнопки «Пуск 2», в цепь катушки KM 1 последовательно включен нормально закрытый блок-контакт второго магнитного пускателя KM 2.

 

Остановка двигателя производиться нажатием кнопки «Стоп» (SB 3) — ее контакты «разрывают» питающую фазу катушки L3. Прерывание питания катушки KM 1 приводит к возврату подвижных силовых контактов этого пускателя в исходное положение, таким образом, электродвигатель оказывается отключенным.

 

Нажатием кнопки «Пуск 2» (SB 2) по аналогии замыкается цепь питания катушки KM 2, происходит втягивание и замыкание силовых контактов KM 2 (на схеме выделены зеленым цветом) и питание, теперь уже с очередностью фаз L3, L2,  L1 поступает на клеммы электродвигателя. Таким образом, вращаться вал электродвигателя теперь будет в противоположном направлении.

 

Блокировка пускателя KM 1, в случае ошибочного включения кнопки «Пуск 1» здесь так-же осуществляется последовательным включением в цепь питания катушки нормально закрытого блок-контакта другого пускателя. В данном случае, в цепь KM 2 последовательно включен нормально закрытый блок-контакт KM 1.

Как подключить трёхфазный электродвигатель на 380 Вольт

Трехфазные электродвигатели обладают более высокой эффективностью, чем однофазные на 220 вольт. Если у Вас в доме или гараже есть ввод на 380 Вольт, тогда обязательно покупайте компрессор или станок с трехфазным электродвигателем. Это обеспечит более стабильную и экономичную работу устройств. Для пуска мотора не понадобятся различные пусковые устройства и обмотки, потому что вращающееся магнитное поле возникает в статоре сразу после подключения к электросети 380 Вольт.

Выбор схемы включения электродвигателя

Схемы подключения 3-х фазных двигателей при помощи магнитных пускателей Я подробно описывал в прошлых статьях: «Схема подключения электромоторов с тепловым реле» и «Схема реверсивного пуска«.

Подключить трех фазный двигатель возможно и в сеть 220 Вольт с использованием конденсаторов по этой схеме. Но будет значительное падение мощности и эффективности его работы.

В статоре асинхронного двигателя на 380 В расположены три отдельные обмотки, которые соединяются между собой в треугольник или звезду и к трем лучам или вершинам подключаются 3 разноименные фазы.

Вы должны учитывать, что при подключении звездой пуск будет плавным, но для того что бы достичь полной мощности необходимо подключить мотор треугольником. При этом мощность возрастет в 1.5 раза, но ток при запуске мощных или средних моторов будет очень высоким, и да же может повредить изоляцию обмоток.

Перед подключением электродвигателя ознакомьтесь с его характеристиками в паспорте и на шильдике. Особенно это важно при подключении 3 фазных электродвигателей западно-европейского производства, которые рассчитаны на работу  от сети напряжением 400/690. Пример такого шильдика на картинке снизу.  Такие моторы подключаются только по схеме «треугольник» к нашей электросети. Но многие монтажники подключают их аналогично отечественным в «звезду» и электромоторы при этом сгорают, особенно быстро под нагрузкой.

На практике все электродвигатели отечественного производства на 380 Вольт подключаются звездой. Пример на картинке.   В очень редких случаях на производстве для того что бы, выжать всю мощность используется комбинированная схема включения звезда-треугольник. Об этом подробно узнаете в самом конце статьи.

Схема подключения электродвигателя звезда треугольник

В некоторых наших электромоторах выходит всего 3 конца из статора с обмотками- это означает, что уже внутри двигателя собрана звезда. Вам только остается подключить к ним 3 фазы. А для того, что бы собрать звезду необходимы оба конца, каждой обмотки или 6 выводов.

Нумерация концов обмоток на схемах идет слева направо. К номерам 4, 5 и 6 подключаются 3 фазы А-В-С от электросети.

При соединении звездой трёхфазного электродвигателя начала его обмоток статора соединяются вместе в одной точке, а к концам обмоток подключаются 3 фазы электропитания на 380 Вольт.

При соединении треугольником статорные обмотки между собой соединяются последовательно. Практически, необходимо соединить конец одной обмотки с началом следующей. К трем точкам соединения их между собой подключаются 3 фазы питания.

Подключение схемы звезда-треугольник

Для подключения мотора по  довольно редкой схеме  звезды при запуске, с последующим переводом для работы в рабочем режиме в схему треугольника. Так Мы сможем выжать максимум мощности, но получается довольно сложная схема без возможности реверсирования или изменения направления вращения.

Для работы схемы необходимы 3 пускателя. На первый К1 подключено электропитание с одной стороны, а с другой — концы обмоток статора. Их же начала подключены к К2 и К3. С пускателя К2 начала обмоток подключаются соответственно на другие фазы по схеме треугольник. При включении К3 все 3 фазы закорачиваются между собой и получается схема работы звездой.

Внимание, одновременно не должны включаться магнитные пускатели К2 и К3, а то произойдет произойдет аварийное отключение автомата защиты из-за возникновения межфазного короткого замыкания. Поэтому и делается электрическая блокировка между ними- при включении одного из них размыкается блок контактами цепь управления другого.

Схема работает следующим образом. При включении пускателя К1 реле времени включает К3 и двигатель запускается по схеме звезда. По истечении заданного промежутка, достаточного для полного запуска двигателя реле времени отключает пускатель К3 и включает К2. Мотор переходит на работу обмоток по схеме треугольник.

Отключение происходит пускателем К1. При повторном запуске все снова повторяется.

Магнитный пускатель, схемы и особенности подключения

Для осуществления дистанционного включения оборудования используется магнитный пускатель или магнитный контактор. Как подключить магнитный пускатель по простой схеме и как подключить реверсивный пускатель мы и рассмотрим в этой статье.

Магнитный пускатель и магнитный контактор

Отличие между магнитным пускателем и магнитным контактором  в том, какую мощность нагрузки могут коммутировать эти  устройства.

Магнитный пускатель может быть «1»,  «2»,  «3», «4» или «5» величины. Например пускатель второй величины ПМЕ-211 выглядит так:

Названия пускателей расшифровываются следующим образом:

  • Первый знак П — Пускатель;
  • Второй знак М — Магнитный;
  • Третий знак Е, Л, У, А… — это тип или серия пускателя;
  • Четвертый цифровой знак — величина пускателя;
  • Пятый и последующие цифровые знаки — характеристики и разновидности пускателя.

Некоторые характеристики магнитных пускателей можно посмотреть в таблице

Отличия магнитного контактора от пускателя весьма условны. Контактор выполняет ту же роль, что и пускатель. Контактор производит аналогичные подключения, как и пускатель, только электропотребители имеют большую мощность, соответственно и размеры у контактора значительно больше, и контакты у контактора значительно мощней.Магнитный контактор имеет немного другой внешний вид:

Габариты контакторов зависят от его мощности. Контакты коммутирующего прибора необходимо разделять на силовые и управляющие. Пускатели и контакторы необходимо применять когда простые устройства коммутации не могут управлять большими токами. За счёт этого магнитный пускатель может размещаться в силовых шкафах рядом с силовым устройством, которые он подключает, а все его управляющие элементы в виде кнопок и кнопочных постов  на включение могут размещаться в рабочих зонах пользователя.
На схеме пускатель и контактор обозначаются таким схематичным знаком:

где A1-A2 катушка электромагнита пускателя;

L1-T1 L2-T2 L3-T3 силовые контакты, к которым подключается силовое трехфазное напряжение (L1-L2-L3) и нагрузка (T1-T2-T3), в нашем случае электродвигатель;

13-14 контакты, блокирующие пусковую кнопку управления двигателем.

Данные устройства могут иметь катушки электромагнитов на напряжения 12 В, 24 В, 36 В, 127 В, 220 В, 380 В. Когда требуется повышенный уровень безопасности, есть возможность использовать электромагнитный пускатель с катушкой на 12 или 24 В, а напряжение цепи нагрузки может иметь 220 или 380 В.
Важно знать, что подключенные пускатели для подключения трехфазного двигателя способны обеспечить дополнительную безопасность при случайной потере напряжения в сетях. Это связано с тем, что при исчезновении тока в сети, напряжение на катушке пускателя пропадает и силовые контакты размыкаются. А когда напряжение возобновится, то в электрооборудовании будет отсутствовать напряжения до тех пор, покуда кнопку «Пуск» не активируют. Для подключения магнитного пускателя имеется несколько схем.

Стандартная схема коммутации магнитных пускателей

Это схема подключения пускателя требуется для того, чтобы произвести запуск двигателя через пускатель с помощью кнопки «Пуск» и обесточивания этого двигателя кнопкой «Стоп». Это проще понимается, если разделить схему на две части: силовую и цепь управления.
Силовую часть схемы следует запитать трёхфазным напряжением 380 В, имеющим фазы «A», «B», «C». Силовая часть состоит из трёхполюсного автоматического выключателя, силовых контактов магнитного пускателя «1L1-2T1», «3L2-4T2», «5L3-6L3», а также асинхронного трехфазного электродвигателя «M».

 

К управляющей цепи подаётся питание 220 вольт от фазы «A» и к нейтрали. К схеме управляющей цепи относится кнопка «Стоп» «SB1», «Пуск» «SB2», катушка «KM1» и вспомогательный контакт «13HO-14HO», что подключён параллельно контактам кнопки «Пуску». Когда автомат фаз «A», «B», «C», включается, ток проходит к контактам пускателя и остаётся на них. Питающая цепь управления (фаза «А») проходит через кнопку «Стоп» к 3 контакту кнопки «Пуск», и параллельно на вспомогательный контакт пускателя 13HO и остаётся там на контактах.
Если активируется кнопка «Пуск», к катушке приходит напряжение — фаза «А» с пускателя «KM1».  Электромагнит пускателя срабатывает, контакты «1L1-2T1», «3L2-4T2», «5L3-6L3» замыкаются , после чего напряжение 380 вольт подается на двигатель по данной схеме подключения и начинает свою работу электродвигатель. При отпускании кнопки «Пуск» ток питания катушки пускателя течет через контакты 13HO-14HO, электромагнит не отпускает силовые контакты пускателя, двигатель продолжает работать. При нажатии кнопки «Стоп» цепь питания катушки пускателя обесточивается, электромагнит отпускает силовые контакты, напряжение на двигатель не подается, двигатель останавливается.

Как подключить трехфазный двигатель можно дополнительно посмотреть на видео:

Схема коммутации магнитных пускателей через кнопочный пост

Схема для подключения магнитного пускателя к электродвигателю через кнопочный пост, включает в себя непосредственно сам пост с кнопками «Пуск» и «Стоп», а также две пары замкнутых и разомкнутых контактов. Также сюда относится пускатель с катушкой 220 В.

Питание для кнопок берётся с силовых контактовых клемм пускателя, а напряжение доходит к кнопке «Стоп». После этого по перемычке оно проходит сквозь нормально замкнутый контакт на кнопку «Пуск». Когда активирована кнопка «Пуск», нормально разомкнутый контакт будет замкнут. Отключение происходит путём нажатия на кнопку «Стоп», тем самым размыкая ток от катушки и после действия возвратной пружины, пускатель отключится и устройство обесточится. После выполнения вышеуказанных действий электродвигатель будет отключён и готов к последующего пуска с кнопочного поста. В принципе работа схемы аналогична предыдущей схемы. Только в данной схеме нагрузка однофазная.

Реверсивная схема коммутации магнитных пускателей

Схема подключения реверсивного магнитного пускателя применяется тогда, когда требуется обеспечение вращение электродвигателя в обоих направлениях. К примеру, реверсивный пускатель устанавливается на лифт, грузоподъемный кран, сверлильный станок и прочие приборы требующие прямой и обратный ход.

Реверсивный пускатель состоит из двух обыкновенных пускателей собранных по специальной схеме. Выглядит он так:

Схема подключения реверсивного магнитного пускателя отличается от других схем тем, что имеет два совершенно одинаковых пускателя, которые работают попеременно. При подключении первого пускателя двигатель вращается в одну сторону, при подключении второго пускателя, двигатель вращается в противоположную сторону. Если вы внимательно посмотрите на схему, то заметите, что при переменном подключении пускателей, две фазы меняются местами. Это и заставляет трехфазный двигатель вращаться в разные стороны.

 

К имеющемуся в предыдущих схемах пускателю  добавлены второй пускатель «КМ2» и дополнительные цепи управления вторым пускателем.  Цепи управления состоят из кнопки «SB3», магнитного пускателя «КМ2», а также изменённой силовой частью подачи питания к электродвигателю. Кнопки при подключении реверсивного магнитного пускателя имеют названия «Вправо» «Влево», но могут иметь и другие названия, такие, как «Вверх», «Вниз». Чтобы защитить силовые цепи от короткого замыкания, до катушек добавлены два нормально замкнутых контакта «КМ1.2» и «КМ2.2», что взяты от дополнительных контактов на магнитных пускателях КМ1 и КМ2. Они не дают возможности включиться обоим пускателям одновременно. На выше приведенной схеме цепи управления и силовые цепи одного пускателя имеют один цвет, а другого пускателя — другой цвет, что облегчает понимание, как работает схема. Когда включается автоматический выключатель «QF1», фазы «A», «B», «C» идут к верхним силовым контактам пускателей «КМ1» и «КМ2», после чего ожидают там включения. Фаза «А» питает управляющие цепи от защитного автомата, проходит через «SF1» — контакты тепловой защиты и кнопку «Стоп» «SB1», переходит на контакты кнопок «SB2» и «SB3» и остается в ожидании нажатия на одну из этих кнопок. После нажатия пусковой кнопки ток движется через вспомогательный пусковой контакт «КМ1.2» или «КМ2.2» на катушку пускателей «КМ1» или «КМ2». После этого один из реверсивных пускателей сработает. Двигатель начинает вращаться. Что бы запустить двигатель в обратную сторону, надо нажать кнопку стоп (пускатель разомкнет силовые контакты), двигатель обесточится, дождаться остановки двигателя и после этого нажать другую пусковую кнопку. На схеме показано, что подключен пускатель «КМ2». При этом его дополнительные контакты «КМ2.2» разомкнули цепь питания катушки «КМ1», что не даст случайного подключения пускателя «КМ1».

Схема реверса электродвигателя для открытия закрытия ворот — Ремонт ворот doorhan — Мариуполь сервис

Схема подключения реверсивного магнитного пускателя

Эта схема используется для подключения трехфазного электродвигателя там, где нужно изменять направление его вращении — в насосах, электрозадвижках, лифтах и т.д.

Схема реверса двигателя с блокировкой предназначена для предотвращения неправильного включения.

При нажатии на кнопку Пуск SB2 двигатель вращается в направлении Вперед , например, для открытия электрозадвижки. При нажатии на кнопку Пуск SB3 двигатель вращается в направлении Назад , например, для закрытия электрозадвижки. Для обеспечения реверса двигателя изменяется его фазировка, меняются местами две фазы на входе магнитных пускателей KM1 и KM2, в данной схеме L1 и L3 .

При нажатии на кнопку Пуск SB2 замыкается цепь питания катушки пускателя КМ1, он срабатывает и двигатель начинает вращаться в направлении Вперед . В этой схеме исключается одновременное срабатывание магнитного пускателя Вперед КМ1 и магнитного пускателя Назад КМ2. Это обеспечивается с помощью нормально-замкнутых блок-контактов КМ1-2 и КМ2-2. Нормально замкнутый блок-контакт KM1-2 пускателя KM1 размыкается и разрывает цепь питания пускателя КМ2. Это делает невозможным замыкание цепи питания пускателя КМ2 без нажатия кнопки SB3.

Аналогично схема будет работать при нажатии кнопки Пуск SB3 для магнитного пускателя КМ2, только двигатель будет вращаться в направлении Назад . При нажатии на кнопку Стоп SB1 двигатель остановится.

Тепловое реле КК защищает двигатель от перегрузки и пропадания одной из фаз.

Плавкие вставки FU служат для защиты электродвигателя и цепи магнитного пускателя от тока короткого замыкания.

Реверс электродвигателя

Март 5th, 2012 Рубрика: Электродвигатели. Электрооборудование

Приветствую Вас, уважаемые гости сайта Заметки электрика .

Сегодня я Вам расскажу про реверс электродвигателя.

В данной статье Вы познакомитесь со схемой реверса электродвигателя, а также узнаете как она работает. А в конце я снял для Вас специальный видео-ролик, где покажу Вам принцип работы схемы реверса электродвигателя на специальном стенде.

В процессе эксплуатации трехфазного асинхронного электродвигателя возникают моменты, когда необходимо изменить вращение вала электродвигателя. Чтобы осуществить задуманное, мы подключаем электродвигатель по схеме реверса.

Что нам для это потребуется?

  • Вводной питающий автомат — в данном примере я использовал автоматический выключатель марки АП-50 с номинальным током 4А
  • Контакторы или магнитные пускатели в количестве 2 штуки
  • Кнопочный пост с 3 кнопками (красная — стоп , черные — вперед , назад )
  • Тепловое реле
  • Асинхронный электродвигатель
  • В моем примере (видео) отсутствует тепловое реле и сам электродвигатель, т.к. данный стенд предназначался для тренировки для студентов колледжей по сборке схемы реверса электродвигателя без силовой части.

    Перед тем, как перейти к реверсу электродвигателя рекомендую прочитать и досконально изучить следующие статьи:

    А теперь перейдем к реверсу. Чтобы изменить вращение вала (направление) электродвигателя, необходимо изменить чередование (следование) фаз питающего напряжения.

    Как это сделать?

    Схема реверса электродвигателя

    Схема реверса электродвигателя при напряжении сети 220(В) и при напряжении цепей управления 220(В)

    Хочу сразу заметить, что следует обращать внимание на уровень напряжение питания электродвигателя (380В или 220В) и напряжение катушек контакторов (380В и 220В).

    Ниже смотрите еще 2 схемы реверса электродвигателя с разными номинальными напряжениями.

    Схема реверса электродвигателя при напряжении сети 380(В) и при напряжении цепей управления 380(В)

    Схема реверса электродвигателя при напряжении сети 380(В) и при напряжении цепей управления 220(В)

    В моем примере уровень напряжения силовой цепи составляет 220(В), поэтому контакторы я использую с катушками, соответственно, на 220 (В).

    Контакторы КМ1 и КМ2 используем для организации реверса электродвигателя. При срабатывании контактора КМ1 фазировка питающего напряжения будет различаться от фазировки при срабатывании контактора КМ2.

    Управление катушками контакторов КМ1 и КМ2 осуществляется кнопками стоп , вперед и назад .

    Давайте рассмотрим принцип работы схемы реверса электродвигателя.

    Принцип работы схемы реверса

    При нажатии кнопки вперед получает питание катушка контактора КМ1 по цепи: фаза С — н.з. контакт кнопки стоп — н.з. контакт КМ2.2 контактора КМ2 — н.о. контакт нажатой кнопки вперед — катушка контактора КМ1 — фаза В.

    Контактор КМ1 подтягивается и замыкает свои силовые контакты КМ1.1. Двигатель начинает вращаться в прямом направлении.

    Кнопку вперед держать не нужно, т.к. катушка контактора КМ1 встает на самоподхват через свой же контакт КМ1.3.

    Н.о. — нормально-открытый контакт, н.з. — нормально-закрытый контакт

    Для остановки электродвигателя используем кнопку стоп . Контактами этой кнопки мы разрываем питание катушки ( самоподхват ) контактора КМ1. Катушка КМ1 теряет питание и контактор КМ1 отпадывает, отключая электродвигатель от сети.

    При нажатии кнопки назад получает питание катушка контактора КМ2 по цепи: фаза С — н.з. контакт кнопки стоп — н.з. контакт КМ1.2 контактора КМ1 — н.о. контакт нажатой кнопки назад — катушка контактора КМ2 — фаза В.

    Контактор КМ2 подтягивается и замыкает свои силовые контакты КМ2.1. Двигатель начинает вращаться в обратном направлении.

    Кнопку назад держать не нужно, т.к. катушка контактора КМ2 встает на самоподхват через свой же контакт КМ2.3.

    В этой схеме выполнена блокировка кнопок от одновременного нажатия, иначе в силовой цепи возникнет короткое замыкание. которое приведет к повреждению электрооборудования. Блокировка выполняется последовательным включением н.з. контакта (блок-контакта) соответствующего контактора.

    Силовая цепь схемы реверса электродвигателя снабжена защитным коммутационным вводным автоматическим выключателем АП-50 с номинальным током 4(А). Также желательно выполнить защиту и цепи управления, путем установки автоматических выключателей или предохранителей на фазу В и С.

    В примере (видео) защита цепей управления отсутствует.

    Существуют заводские сборные контакторы для схем реверса электродвигателя с механической блокировкой в виде перекидного рычажка, который блокирует одновременное включение контакторов.

    Если у Вас однофазный двигатель, то схемы приведенные в данной статье не подойдут. Переходите по ссылке, чтобы узнать более подробно о реверсе однофазного двигателя .

    В комментариях регулярно пишут, что в данной статье не в полном объеме раскрыта сборка схемы реверса. Исправляюсь и представляю Вашему вниманию пошаговую инструкцию по сборке схемы реверса асинхронного двигателя (переходите по ссылочке). Прочитав эту инструкцию, Вы самостоятельно соберете схему реверса электродвигателя.

    P.S. Для более наглядного живого примера реверса электродвигателя я приготовил для Вас видео-ролик. Не судите строго. Это мое первое созданное видео на сайте. В дальнейшем буду стараться для каждой статьи добавлять видео-уроки.

    Реверсивное управление трехфазным электродвигателем

    Применяется в промышленности, в грузо-подъемном оборудовании, в обрабатывающих станках, в строительстве

    Схема управления

    Самая простая и распространенная схема подключения кнопок управления, контактов и катушек магнитных пускателей.

    Рассмотрим направление электрического тока, в работе схемы и ее элементов, функция Закрыто .

    При нажатии кнопки Закрыто через кнопку Стоп контакт К2.2 . магнитного пускателя K2 контакт КS1 . концевого выключателя цепь замкнулась.

    Катушка K1 втягивает якорь, замыкает контакт К1.1 . катушка становится на самоподпитку, кнопку Закрыто . можно отпустить размыкает контакт К1.2 . для блокировки ошибочного включения катушки K2 электродвигатель AD работает.

    При достижении механизма концевого выключателя, размыкается его контакт КS1 . схема разрывается катушка K1 отключается электродвигатель AD остановился.

    Работа функции Открыто . по принципу Закрыто .

    Кнопкой Стоп . можно воспользоваться в любой момент работы электродвигателя AD для размыкания цепи питания катушек K1 и K2 и контактов самоподпитки К1.1 и К2.1

    Реверс электродвигателя. Назначение и применение

    В процессе эксплуатации трехфазного асинхронного электродвигателя возникают моменты, когда необходимо изменить вращение вала электродвигателя. Чтобы осуществить задуманное, мы подключаем электродвигатель по схеме реверса.

    Что нам для это потребуется?

  • Вводной питающий автомат — в данном примере я использовал автоматический выключатель марки АП-50 с номинальным током 4А
  • Контакторы в количестве 2 штуки
  • Кнопочный пост с 3 кнопками (красная — «стоп», черные — «вперед», «назад»)
  • Тепловое реле
  • Асинхронный электродвигатель
  • Электрооборудование для схемы реверса электродвигателя

    Чтобы изменить вращение вала (направление) электродвигателя, необходимо изменить фазировку напряжения его питания.

    Схема реверса электродвигателя

    Схема реверса электродвигателя при напряжении сети 220(В) и при напряжении цепей управления 220(В)

    Хочу сразу заметить, что следует обращать внимание на уровень напряжение питания электродвигателя (380В или 220В) и напряжение катушек контакторов (380В и 220В).

    Схема реверса электродвигателя при напряжении сети 380(В) и при напряжении цепей управления 380(В)

    Схема реверса электродвигателя при напряжении сети 380(В) и при напряжении цепей управления 220(В)

    Контакторы КМ1 и КМ2 используем для организации реверса электродвигателя. При срабатывании контактора КМ1 фазировка питающего напряжения будет различаться от фазировки при срабатывании контактора КМ2.

    Кнопочный пост. Кнопки управления контакторами.

    Давайте рассмотрим принцип работы схемы реверса электродвигателя.

    Схема реверса электродвигателя. Принцип работы

    При нажатии кнопки «вперед» получает питание катушка контактора КМ1 по цепи: фаза С — н.з. контакт кнопки «стоп» — н.з. контакт КМ2.2 контактора КМ2 — н.о. контакт нажатой кнопки «вперед» — катушка контактора КМ1 — фаза В.

    Контактор КМ1 подтягивается и замыкает свои силовые контакты КМ1.1. Двигатель начинает вращаться в прямом направлении.

    Кнопку «вперед» держать не нужно, т.к. катушка контактора КМ1 встает на «самоподхват» через свой же контакт КМ1.3.

    Н.о. — нормально-открытый контакт, н.з. — нормально-закрытый контакт

    Для остановки электродвигателя используем кнопку «стоп». Контактами этой кнопки мы разрываем питание катушки («самоподхват») контактора КМ1. Катушка КМ1 теряет питание и контактор КМ1 отпадывает, отключая электродвигатель от сети.

    При нажатии кнопки «назад» получает питание катушка контактора КМ2 по цепи: фаза С — н.з. контакт кнопки «стоп» — н.з. контакт КМ1.2 контактора КМ1 — н.о. контакт нажатой кнопки «назад» — катушка контактора КМ2 — фаза В.

    Контактор КМ2 подтягивается и замыкает свои силовые контакты КМ2.1. Двигатель начинает вращаться в обратном направлении.

    Кнопку «назад» держать не нужно, т.к. катушка контактора КМ2 встает на «самоподхват» через свой же контакт КМ2.3.

    В этой схеме выполнена блокировка кнопок от одновременного нажатия, иначе в силовой цепи возникнет короткое замыкание, которое приведет к повреждению электрооборудования. Блокировка выполняется последовательным включением н.з. контакта (блок-контакта) соответствующего контактора.

    Местонахождение контактов контакторов

    Силовая цепь схемы реверса электродвигателя снабжена защитным коммутационным вводным автоматическим выключателем АП-50 с номинальным током 4(А). Также желательно выполнить защиту и цепи управления, путем установки автоматических выключателей или предохранителей на фазу В и С.

    Источники: www.electricdom.ru, zametkielectrika.ru, electro.narod.ru, trigada.ucoz.com

    Подключение трёхфазного двигателя на 220 В: пошаговая инструкция

    Иногда наши читатели освещают довольно нестандартные подходы к той или иной работе. Сегодня вашему вниманию предлагается один из таких обзоров. Эту статью прислал наш постоянный читатель Перминов Андрей Алексеевич из города Бирск, который находится в республике Башкортостан.

    Здравствуйте. Недавно озаботился вопросом установки в гараже заточного станка. Лишние деньги тратить не хотелось. Посему, начал разбирать то, что было в наличии. Двигатель был найден очень быстро, причём практически новый и не один. Дело в том, что гараж приобретался вместе с участком, и от прежнего владельца осталось много нужных вещей. Проблема заключалась только в том, что электродвигатель оказался трёхфазным. К участку же подведено лишь напряжение 220 В. Собрав в сети и различных учебниках по электротехнике необходимую информацию, я понял, что подключение возможно и принялся за дело.

    По причине того, что изначально я не был уверен в положительном результате, поэтапные фото не делались. Позже я отдельно собрал подобную схему специально, чтобы объяснить суть.

    Именно на примере этой работы я и расскажу, как всё происходило

    Содержание статьи

    Что необходимо для подключения трёхфазного двигателя на 220 В

    Интересно, что при наличии множества различных магнитных пускателей, найденных мною в гараже, обнаружилась неожиданная проблема. Она заключалась в отсутствии нормальных пусковых кнопок – под рукой оказались лишь довольно старые образцы. Но, обо всём по порядку.

    Для работы потребуется:

    1. Непосредственно сам электромотор.
    2. Два конденсатора (пусковой и рабочий).
    3. Магнитный пускатель соответствующего номинала.
    4. Второй пускатель для подачи питания на один из конденсаторов (при наличии кнопочного поста более нового образца с двумя постоянно разомкнутыми контактами он был бы не нужен).
    5. Провода соответствующего сечения.
    6. Кнопочный пост на 2 точки управления.
    7. Плоскогубцы, отвёртки, ключи.

    Подготовив всё необходимое, приступаем к работе.

    Двигатель, особенности размещения перемычек катушек, первые шаги подключения

    Первое, на что нужно обратить внимание – это шильдик двигателя. На нём прописана возможность однофазного подключения, мощность агрегата и другая необходимая для работы информация.

    Шильдик электродвигателя – на нём указаны все параметры

    Было решено начинать сборку схемы подключения с контактной группы двигателя. На ней находится 6 контактов – по паре на обмотку. Изначально, перемычки на них были установлены в ряд по одной стороне, соединяя в одной точке все 3 обмотки – в «звезду». Подобная коммутация подходит лишь для трёхфазного подключения, поэтому они были переустановлены для подключения в «треугольник», который нам необходим для напряжения 220 В. Это расположение можно увидеть на фото.

    Перемычки установлены в контактной группе для подключения «треугольником»

    Несколько слов о магнитном пускателе

    Это устройство, выдерживающее высокие пусковые токи, позволяет подавать питание на электродвигатели и прочее оборудование. К примеру, обычный выключатель, хотя и способен работать в подобной цепи, однако не сможет выдержать именно момент включения. Внешне пускатели могут быть довольно разнообразны, иметь различный номинал рабочей мощности. В нашем случае были выбраны два совершенно разных по виду и по мощности устройства.

    Электромагнитный пускатель ПМЕ-211 – выбран в качестве рабочегоЭлектромагнитный пускатель ПМЕ-111 – для подачи напряжения на пусковой конденсатор

    Подключение электродвигателя: с чего следует начать

    Этот этап не составит никаких сложностей. К клеммам «С1» и «С2» при помощи провода (в моём случае использовались жилы, сечением 4 мм²) подключаются первые два контакта электромотора. Однако, если первый контакт двигателя затягивается сразу плотно, то вторую гайку пока накручивать не следует.

    Начало подключения – первые два провода на месте

    Из-за того, что для работы данного электродвигателя требуется напряжение 380 В, нам нужно обеспечить сдвиг фаз. Это достигается путём подключения рабочего конденсатора. В моём случае, его ёмкость составляет 20 мкФ, чего вполне достаточно. Он подключается на второй и третий контакт электродвигателя. Таким образом, напряжение на третью обмотку будет проходить через конденсатор, который и создаст необходимый сдвиг фаз. Также, к третьему контакту (фаза С) подключается один из проводов пускового конденсатора.

    Контакты обмоток двигателя фаз В и С. Больше здесь подключений производиться не будет

    Второй провод от пускового конденсатора, ёмкость которого составляет 50 мкФ, пока не подключаем – его коммутация будет производиться через другой магнитный пускатель меньшей мощности.

    Меры предосторожности при работе с конденсаторами

    При выполнении подобных работ следует быть внимательным. Дело в том, что конденсаторы могут быть заряжены. Это приведёт к пусть неопасному, но весьма неприятному удару током. В нашем случае используются элементы с напряжением 400 В – именно такой кратковременный разряд можно получить. Во избежание подобных неприятностей нужно соединить между собой контакты конденсаторов. Если в них осталось напряжение, проскочит искра, раздастся щелчок, после чего с элементом можно работать, не опасаясь удара тока.

    Дальнейшая коммутация: работаем с рабочим магнитным пускателем

    Здесь же производим подключение питающих проводов – они идут от вводного автомата. При этом фазный провод подключается на контакт «L1» рабочего пускателя, а нулевой (нейтраль) на «L2». «L3» задействоваться не будет по причине отсутствия трёхфазной системы.

    Подключение питающих проводов к магнитному пускателю

    Сразу подключим одну из сторон катушки электромагнита, без которой невозможна работа пускателя. При выборе оборудования, следует обратить особое внимание на её рабочее напряжение. Оно может составлять 220 или 380 В. В последнем случае пускатель срабатывать не будет. Здесь подключение производится путём установки перемычки с контакта нулевого провода на клемму катушки.

    Установка перемычки с клеммы подачи на катушку

    Приступаем к коммутации второго магнитного пускателя

    Здесь стоит объяснить, для чего он нужен. Дело в том, что более мощный конденсатор ёмкостью 50 мкФ необходим только в момент запуска электродвигателя, после чего он должен отключиться. Если же оба конденсатора будут работать постоянно, это приведёт к неизбежному нагреву двигателя и его быстрому выходу из строя. Однако он нужен лишь при условии, что сам электромотор достаточно мощный – более 1 кВт. Именно такой и был установлен у меня в гараже (1,5 кВт). Здесь же мощность 0,25 кВт. Подобный двигатель можно запустить без второго конденсатора. Однако, моей целью было показать подключение электромотора большой мощности, а значит, схему коммутации пускового конденсатора показать необходимо.

    Пусковой конденсатор ёмкостью 50 мкФ был найден в гараже совершенно новым, как и рабочий – на 20 мкФ

    Этапы подключения пускателя для второго конденсатора

    Для начала были произвольно выбраны 2 контакта, которые были соединены между собой перемычкой. Здесь клеммы можно протягивать сразу – больше никаких дополнительных проводов к ним коммутироваться не будет.

    Устанавливаем перемычку между контактами второго пускателя

    Здесь дело вот в чём. Конечно, монтаж второго магнитного пускателя – это дополнительные проблемы, однако, в моём случае, была поставлена цель вообще ничего не приобретать в магазине. Как уже говорилось, кнопочные посты, оказавшиеся в наличии, были старого образца – на пусковой кнопке присутствовал лишь один постоянно разомкнутый контакт. Если же их два, то необходимость в монтаже второго пускателя сразу отпадает, что значительно облегчает работу. В описываемом мною варианте работы больше, зато она учитывает все возможные нюансы, которые могут возникнуть в процессе коммутации.

    От перемкнутых контактов второго пускателя отводим провод – он нужен для подачи питания и присоединяется к клемме подачи фазы на первое устройство, а именно на «L1».

    Подключение провода для подачи питания на второй пускатель

    Катушка второго магнитного пускателя

    Понятно, что второй магнитный пускатель не сможет обойтись без стабильной подачи напряжения на катушку. Для обеспечения стабильности, соединяем контакт «L2» первого устройства с её клеммой при помощи отдельного провода. В моём случае, для наглядности, выбрана тёмно-коричневая жила.

    Подключение коричневого провода на контакт «L2» рабочего пускателяКоммутация другого конца жилы с одной из клемм катушки второго пускателя

    У некоторых может возникнуть вопрос, почему вся коммутация производится на клеммах магнитного пускателя? Ведь, если большую её часть перенести на вводной автомат, обслуживание и ремонт впоследствии будет проводить значительно проще. Изначально и я так подумал, однако столкнулся с проблемой малого размера контактора – несколько проводов в него просто не помещались. Что же касается клеммы пускателя, то она значительно больше, что упрощает сам процесс коммутации. После её окончания, для удобства, можно объединить несколько жил, подходящих к одной клемме, при помощи небольшого хомутика или просто смотать их изолентой.

    Подключаем пусковой конденсатор: второй провод

    Здесь всё достаточно просто. Оставшийся свободным провод от конденсатора (50 мкФ) нужно подключить к любому из нижних контактов второго пускателя, который окажется под напряжением в момент включения. Из фото ниже легко понять, как это сделать.

    Подключение свободного провода пускового конденсатора

    Продвигаемся к кнопочному посту

    На кнопочном посту, в моём случае, две кнопки – «СТОП» (её контакты постоянно замкнуты) и «ПУСК» (контакт постоянно разомкнут, и замыкается только в момент нажатия). Первое, что необходимо сделать – это соединить перемычкой фазную клемму рабочего пускателя и контакт кнопки «СТОП», подав на неё питание.

    Присоединяем один конец перемычки к фазной клемме («L1») и протягиваем контактВторой конец идёт на клемму кнопки «СТОП»

    Также следует отметить, что если кнопочный пост уже был ранее где-либо установлен, то перемычка  между контактами «ПУСК» и «СТОП» может отсутствовать. В этом случае её нужно установить. Сделать это очень просто – из фото ниже чётко видно, как выполнить подобную работу.

    Перемычка между пусковой и стоповой кнопкой необходима

    Продолжаем подключение кнопочного поста

    Далее необходимо собрать схему таким образом, чтобы пусковая кнопка взаимодействовала с катушками обоих пускателей. Для этого монтируется перемычка между ней и одним из постоянно разомкнутых контактов катушки рабочего магнитного пускателя. В нашем случае, я выбрал зелёный провод. Один его конец фиксируем на контакте кнопки «ПУСК», к которому подходит перемычка от стоповой.

    Соединение на пусковой кнопке — работа с постом практически завершена

    Второй конец соединяем с катушкой рабочего пускателя и тоже сразу затягиваем – здесь больше соединений не будет.

    Коммутация с постоянно разомкнутым контактом катушки рабочего пускателя

    Осталось завершить подключение кнопочного поста. Монтируем перемычку со свободного контакта пусковой кнопки на питание катушки дополнительного пускателя. Таким образом, получится, что при нажатии на кнопку «ПУСК» питание будет подаваться на конденсатор 50 мкФ, но только в то время, пока она удерживается. Если кнопку отпустить (двигатель запущен), цепь разрывается, подача питания на катушку прекращается, и контакты дополнительного пускателя размыкаются.

    Присоединяем один конец перемычки к свободному контакту кнопки «ПУСК»Второй конец этого провода коммутируется с клеммой катушки дополнительного пускателя

    Окончательные этапы сборки схемы подключения электродвигателя

    Теперь остаётся дело за малым. Стоит снова вернуться к рабочему электромагнитному пускателю. Сбоку, в его нижней части, есть блокировочные контакты. При помощи перемычки соединяем их между собой. Это делается для того, чтобы после того, как кнопка «ПУСК» отпущена и цепь разомкнулась, питание на катушку продолжало подаваться. В противном случае двигатель будет работать только при нажатой кнопке.

    Перемычка блокировочного контакта позволяет цепи оставаться замкнутой после того, как отпущена кнопка «ПУСК»

    Теперь остаётся лишь соединить отдельной перемычкой оставшийся свободным основной контакт дополнительного пускателя и блокировочный контакт рабочего. Выглядит это так.

    Один конец перемычки подключается к основному контакту второстепенного пускателяВторой – к блокировочному контакту рабочего электромагнитного пускателя

    Остаётся тщательно протянуть все клеммы, для удобства и аккуратности скомпоновать и объединить в жгуты провода, после чего можно подать питание и проверить работоспособность собранной схемы.

    Почему всё так сложно

    Этот вопрос и мне изначально не давал покоя, однако всё сложно лишь на первый взгляд. Если выполнять всю работу пошагово, в соответствии с инструкциями, он отпадёт сам собой. Как уже упоминалось, основные сложности были созданы, можно сказать, намеренно. Ведь стоило лишь приобрести в любом магазине электротехники более совершенный кнопочный пост, и большая часть работы просто потеряла свою актуальность. Но в том, что я пошёл столь проблематичным путём есть и свои плюсы – были рассмотрены все варианты при нулевых затратах. Всё, что мне было необходимо, нашлось в гараже. Зато сейчас я имею возможность пользоваться низкобюджетным заточным станком. Из затрат – лишь покупка наждачного заточного круга и оплата счетов за электроэнергию, которые нельзя назвать крупными.

    Подведём итог проделанной работе

    При наличии необходимых составляющих для сборки подобной схемы, такой вариант подключения достоин внимания. Это касается даже тех, кто будет использовать станок лишь для заточки или правки ножей 2-3 раза в год. Ведь затрат он не требует, а иногда может оказаться просто необходим. Я очень надеюсь, что рассказанное мною сегодня, пригодится кому-либо из читателей этого ресурса.

    А сейчас хочу обратиться к читателям. Если вы в чём-то не согласны в моей работе, напишите об этом в комментариях. Быть может, я приму Ваше мнение на вооружение, а возможно и смогу доказать свою правоту. В любом случае, мне будет очень интересен Ваш отзыв. Спасибо за внимание.

    Редакция Homius приглашает домашних мастеров и умельцев стать соавторами рубрики «Истории». Полезные истории от первого лица будут опубликованы на страницах нашего онлайн-журнала.

    Предыдущая

    ИСТОРИИКак изготовить необыкновенное зеркало с подсветкой: опыт читателя Homius

    Следующая

    ИСТОРИИБуржуйка из газовых баллонов своими руками без лишних вложений: опыт читателя Homius

    Понравилась статья? Сохраните, чтобы не потерять!

    ТОЖЕ ИНТЕРЕСНО:

    ВОЗМОЖНО ВАМ ТАКЖЕ БУДЕТ ИНТЕРЕСНО:

    Реверсивные трехфазные асинхронные двигатели

    Трехфазные асинхронные двигатели Вращение трехфазного двигателя можно изменить, изменив любые две из трех линий питания двигателя. Обычной стандартной практикой является переключение линии 1 и линии 3. Когда двигатель должен вращаться по часовой стрелке и против часовой стрелки, необходим реверсивный пускатель.

    Реверсивный пускатель

    Реверсивный пускатель — это двух-трехполюсные контакторы, в которых один из контакторов содержит один набор перегрузок.

    Оба контактора должны содержать набор нормально замкнутых вспомогательных контактов вместе с нормально разомкнутыми герметичными контактами. Нормально замкнутые контакты будут использоваться для блокировки. Дополнительная блокировка подключается последовательно с противоположной катушкой. Этот метод подключения катушек через противоположные вспомогательные нормально замкнутые контакты предотвращает одновременное включение катушек пускателей, что может быть очень опасно, даже если они подключены неправильно.

    Большинство реверсивных пускателей также содержат механическое блокировочное устройство, которое также служит средством блокировки катушек от одновременного нажатия. Часто техники используют отвертки для ручного включения катушек стартера. Этот метод устранения неполадок запрещен и очень опасен.

    Блокировка кнопок

    Другой метод блокировки — это использование блокировки кнопок. Блокировка кнопок или кнопок — это метод проводного управления, выполняемый специалистом по управлению.Станция состоит из трех кнопок, одна кнопка является нормально замкнутой кнопкой останова, а две другие — кнопками включения и выключения, содержащими как нормально разомкнутые, так и нормально замкнутые контакты.

    Кнопки подключены таким образом, что позволяет запускать двигатель как в прямом, так и в обратном направлении. Если требуется, чтобы нагрузка вращалась в противоположном направлении, когда один из контакторов находится под напряжением, нажатие кнопки противоположного вращения приведет к потере питания катушки под напряжением на ее герметичном контакте.В этот момент оба контактора обесточены, позволяя кнопке задействовать неработающую катушку.

    Встроенное прерывание цепи управления позволяет обесточить обе катушки перед запуском противоположной катушки. Чтобы обеспечить максимальную безопасность персонала и оборудования, должны быть реализованы все три метода блокировки.

    Реверсивный пускатель

    Конфигурация 1: Реверсивный трехфазный асинхронный двигатель

    Реверсивный пускатель в конфигурации 1 работает следующим образом:

    • Контакторы, управляющие прямым или обратным вращением двигателя, могут быть запускается нажатием кнопки прямого или обратного хода.
    • Если нажата кнопка переднего хода, мощность будет передана на катушку через обратный вспомогательный контакт.
    • Катушка будет запитана через передний нормально разомкнутый герметичный контакт.
    • В это время кнопка реверса изолирована от цепи, потому что прямой вспомогательный контакт разомкнут, поэтому на контактор реверса нельзя подавать питание одновременно или в то же время, когда контактор прямого хода работает.
    • Чтобы нажать кнопку реверса и повернуть двигатель в обратном направлении, необходимо нажать кнопку останова, высвободив питание из нормально разомкнутого герметичного контакта пускателя двигателя переднего хода.

    Цепи управления прямым / обратным ходом — базовое управление двигателем

    Если трехфазный двигатель должен приводиться в движение только в одном направлении, и при его первоначальном включении оказывается, что он вращается противоположно желаемому, все, что необходимо, — это поменять местами любые два из трех линейных проводов, питающих двигатель. . Это можно сделать на пускателе двигателя или на самом двигателе.

    Вращение трехфазного двигателя

    После того, как две линии были переключены, направление магнитных полей, созданных в двигателе, теперь заставит вал вращаться в противоположном направлении.Это называется обращением чередования фаз.

    Если двигатель должен приводиться в движение в двух направлениях, то для него потребуется пускатель прямого / обратного хода, который имеет два трехполюсных контактора с номинальной мощностью в лошадиных силах, а не один, как в обычном пускателе. Каждый из двух стартеров двигателя приводит в действие двигатель с различным чередованием фаз.

    Когда контактор прямого хода находится под напряжением, силовые контакты соединяют линию L1 с T1, линию L2 с T2 и линию L3 с T3 на двигателе. Когда обратный контактор находится под напряжением, силовые контакты соединяют линию L1 с T3, линию L2 с T2 и линию L3 с T1 на двигателе.

    Цепь прямого / обратного хода

    Поскольку два пускателя двигателя управляют только одним двигателем, необходимо использовать только один комплект нагревателей реле перегрузки. Обратные пути для обеих катушек стартера соединяются последовательно с нормально замкнутыми контактами реле перегрузки, так что при возникновении перегрузки в любом направлении катушки стартера будут обесточены, и двигатель остановится.

    Обратите внимание, что два контактора должны быть электрически и механически заблокированы, чтобы на них нельзя было подавать питание одновременно.Если обе катушки стартера будут запитаны одновременно, произойдет короткое замыкание с потенциально опасными последствиями.

    Пускатели прямого / обратного хода

    поставляются с двумя наборами нормально разомкнутых вспомогательных контактов, которые действуют как удерживающие контакты в каждом направлении. Они также будут поставляться с двумя наборами нормально замкнутых вспомогательных контактов, которые действуют как электрические блокировки.

    Пускатели прямого / обратного хода никогда не должны замыкать свои силовые контакты одновременно. Лучший способ обеспечить это — использовать электрические блокировки, которые предотвращают подачу питания на одну катушку, если задействована другая.Неисправность электрической блокировки может привести к одновременному включению обеих катушек.

    Если оба находятся под напряжением, требуется какая-то механическая блокировка для предотвращения втягивания обоих якоря. На схематических диаграммах изображенная пунктирной линией между двумя катушками, механическая блокировка представляет собой физический барьер, который вставляется на пути одной катушки. якорь движением соседней катушки. Это означает, что даже если обе катушки находятся под напряжением, только один якорь сможет втягиваться полностью.Катушка, которая не может втягиваться, будет издавать ужасный дребезжащий звук, пытаясь замкнуть магнитную цепь.

    На механические блокировки следует полагаться как на последнее средство защиты.

    Электрическая блокировка достигается путем установки нормально замкнутого контакта катушки одного направления последовательно с катушкой противоположного направления, и наоборот. Это гарантирует, что при включении прямой катушки нажатие кнопки реверса не активирует обратную катушку.Такая же ситуация имеет место, когда обратная катушка находится под напряжением. В обеих ситуациях необходимо будет нажать кнопку останова, чтобы обесточить работающую катушку и вернуть все ее вспомогательные контакты в исходное состояние. Тогда может быть задействована катушка противоположного направления.

    Схема управления прямым / обратным ходом

    При разработке схемы управления для цепей прямого / обратного вращения мы начинаем со стандартной трехпроводной схемы, добавляем вторую нормально разомкнутую кнопку и добавляем ответвление удерживающего контакта для второй катушки.Одной кнопки останова достаточно, чтобы отключить двигатель в обоих направлениях.

    Две катушки механически заблокированы, а нормально замкнутые контакты мгновенного действия обеспечивают электрическую блокировку.

    Если кнопка прямого хода нажата, пока обратная катушка не задействована, ток найдет путь через нормально замкнутый обратный контакт и возбудит прямую катушку, в результате чего все контакты, связанные с этой катушкой, изменят свое состояние. Удерживающие контакты 2-3 замкнутся, и нормально замкнутая электрическая блокировка разомкнется.Если нажать кнопку реверса, когда задействована передняя катушка, ток не сможет пройти через передний нормально замкнутый контакт, и ничего не произойдет.

    Для того, чтобы двигатель вращался в обратном направлении, передняя катушка должна быть обесточена. Для этого необходимо нажать кнопку останова, тогда кнопка реверса сможет активировать обратную катушку.

    Независимо от направления вращения двигателя, эта схема будет работать как стандартная трехпроводная схема, обеспечивающая защиту от низкого напряжения (LVP) до тех пор, пока не будет нажата кнопка останова или не произойдет перегрузка.

    Блокировка кнопок прямого / обратного хода

    Блокировка кнопок требует использования четырехконтактных кнопок мгновенного действия, каждая из которых имеет набор нормально разомкнутых и нормально замкнутых контактов.

    Для обеспечения блокировки кнопок просто соедините нормально замкнутые контакты одной кнопки последовательно с нормально разомкнутыми контактами другой кнопки, и удерживающие контакты будут подключены параллельно с нормально разомкнутыми контактами соответствующей кнопки.

    Эта схема все еще требует установки электрических блокировок.

    Блокировка кнопок не требует отключения катушек двигателя перед изменением направления, потому что нормально замкнутые передние контакты включены последовательно с нормально разомкнутыми обратными контактами, и наоборот. Нажатие одной кнопки одновременно отключает одну катушку и запускает другую. Это внезапное реверсирование (засорение) может быть тяжелым для мотора, но если требуется быстрое реверсирование мотора, эта схема может быть решением.

    Мгновенный прямой / обратный ход с трехфазными асинхронными двигателями переменного тока

    Различия между однофазными и трехфазными асинхронными двигателями переменного тока не ограничиваются входным источником питания.Есть несколько вещей, которые вам нужно знать при использовании трехфазных асинхронных двигателей переменного тока в мгновенном прямом / обратном режиме.

    Что такое мгновенный прямой / обратный ход?

    Мгновенная операция вперед / назад описывает двигатель, который постоянно вращается вперед и назад между двумя положениями. Примером применения может быть приспособление для тестирования соединителей, которое вставляет и втягивает соединитель для проверки его надежности. Это можно сделать с помощью двигателей переменного тока, бесщеточных двигателей, серводвигателей или шаговых двигателей.Все они могут изменить направление. Решающим фактором является то, насколько быстро и насколько точно вы хотите, чтобы двигатель останавливался при получении команды на останов.

    Кредит: Mathworks

    В чем разница между однофазными и трехфазными асинхронными двигателями переменного тока?

    1. Обмотки

    Во-первых, другая конструкция обмотки. Первичная и вторичная обмотки у трехфазных двигателей более сбалансированы, чем у однофазных двигателей.В данном случае имеется в виду электрические характеристики обмотки. См. Пример в таблице ниже.

    Источник питания (В перем. Тока) Двигатель Первичная обмотка Вторичная обмотка
    Фаза U (Ом) Фаза V (Ом) Фаза Вт (Ом)
    Однофазный 200/220/230 4IK25A-CW 157.6 157,1 н / д
    Трехфазный 200/220/230 4IK25A-SW 179,9 179,9 179,9

    2. Производительность

    Различные характеристики обмотки влияют на характеристики скорости и момента двигателя. На изображении ниже мы сравниваем кривые скорость-крутящий момент для однофазного и трехфазного двигателей.

    Благодаря большему доступному крутящему моменту в области низких скоростей трехфазные двигатели обеспечивают больший пусковой крутящий момент и лучше подходят для мгновенной работы вперед / назад.Когда однофазный двигатель останавливается и реверсирует, более низкий крутящий момент может привести к замедлению разгона двигателя до его номинальной скорости. Когда трехфазный двигатель останавливается и реверсирует, более высокий крутящий момент позволяет ему быстрее разогнаться до номинальной скорости.

    3. Пусковой момент

    Однофазные двигатели

    FYI не останавливаются немедленно. Если они не используются с каким-либо типом фрикционного, электромагнитного, тормозного механизма сцепления или электронного тормозного блока, они будут останавливаться по инерции. Расстояние выбега или выбег зависит от трения и инерционной нагрузки, но может достигать 30 оборотов (на валу двигателя; кратно передаточному отношению).Этот перебег не очень хорошо сочетается с «мгновенной» частью мгновенного движения вперед / назад, так как двигателю теперь нужно время, чтобы разогнаться до номинальной скорости каждый раз, когда он запускается. Если вы измените направление слишком быстро, не дожидаясь, пока двигатель не остановится, он может продолжать вращаться в том же направлении.

    Перебег одинаков для однофазных и трехфазных асинхронных двигателей переменного тока после отключения питания, хотя более высокий пусковой момент у трехфазных двигателей делает их более идеальными для мгновенных операций вперед / назад.

    СОВЕТ № 1: Остановите трехфазный двигатель перед изменением направления

    Если вы хотите, чтобы двигатель продолжал работать, вот две причины, по которым вам следует сначала остановить двигатель, прежде чем менять его направление. Лучший способ — дать двигателю полностью остановиться перед переключением направления. В противном случае рекомендуется тестирование.

    • Повреждение шестерни
    • Опасность короткого замыкания питания

    Повреждение шестерни

    В некоторых случаях шестерни мотор-редуктора могут быть повреждены в момент реверсирования.Если направление двигателя меняется слишком быстро, нагрузка может продолжать вращаться в том же направлении, но на самом деле двигатель пытается вращаться в противоположном направлении. Поскольку крутящий момент работает в обоих направлениях, шестерни могут быть повреждены. Сведение к минимуму сил удара для шестерен внутри редуктора двигателя может продлить срок его службы. Более высокий пусковой момент трехфазных двигателей усугубляет проблему.

    Риск короткого замыкания питания

    Внутренняя разводка обмоток внутри однофазного двигателя и трехфазного двигателя отличается.Поэтому метод внешней проводки и тип переключателя различаются. На приведенной ниже схеме показаны схемы подключения однофазного и трехфазного двигателей.

    Различия в подключении:

    Первое, что вы, вероятно, заметили, — это конденсатор, показанный на схеме подключения однофазного двигателя. Конденсатор превращает однофазный источник питания в многофазный. Многофазный источник питания необходим для создания вращающегося магнитного поля внутри двигателя.

    Второе, что вы, вероятно, заметили, — это количество проводов, которое нам нужно переключить, чтобы реверсировать трехфазный двигатель (MC). С однофазным двигателем эту работу может выполнять однополюсный двухпозиционный переключатель. Однако для трехфазного двигателя требуется электромагнитный переключатель без потерь, который предлагает структуру блокировки. Этот тип переключателя не позволяет одновременно включать два контакта. Если на любой из двух проводов подается питание одновременно, это может вызвать короткое замыкание в цепи питания, а затем автоматический выключатель может остановить двигатель.С однофазными двигателями риска нет, так как переключается только один полюс.

    СОВЕТ № 2: Используйте инвертор

    Другой способ управления направлением трехфазных двигателей — использование инвертора или частотно-регулируемого привода. ЧРП разработан для управления направлением и скоростью трехфазных двигателей (и многим другим), поэтому мгновенные операции вперед / назад могут быть выполнены намного проще.В дополнение к популярной серии стандартных двигателей переменного тока World K, новая серия трехфазных двигателей переменного тока с высоким крутящим моментом KIIS от Oriental Motor была разработана для работы с частотно-регулируемыми приводами.

    Предлагаются кривые скорость-крутящий момент, отображающие ожидаемую производительность двигателя и комбинации частотно-регулируемого привода. Больше будет добавляться по мере их появления.

    Не стесняйтесь нажимать на данные кривой выше, чтобы узнать больше об этих двигателях.

    Последние мысли

    Помните , мгновенная работа вперед / назад не ограничивается только трехфазными двигателями. Любой двигатель может работать в прямом / обратном направлении, решающим фактором является то, насколько «мгновенно» и насколько «точным» вы хотите добиться этого. Всегда есть компромиссы.

    Различные двигатели имеют разные способы выполнения операций вперед / назад. Поэтому для продуктов предлагаются различные характеристики перебега и частоты торможения.Например, в однофазном реверсивном двигателе используется фрикционный тормоз, чтобы резко снизить его выбег для мгновенных операций вперед / назад. В то время как перебег на валу двигателя сокращается до 2 оборотов, тепло, выделяемое фрикционным тормозом, ограничивает рабочий цикл до 30 минут за раз. Этот двигатель идеально подходит для машин, которые допускают перебег на 2 оборота для точности остановки и работают только 30 минут за раз. Для приложений, требующих мгновенных остановок, но не определенного значения точности останова, может быть достаточно системы бесщеточного двигателя с системой динамического торможения.Шаговые двигатели или серводвигатели на самом деле предлагают лучшую точность остановки, пускового момента и точности остановки для мгновенных операций вперед / назад, но для управления этими двигателями требуется больше, чем для реверсивного двигателя переменного тока.

    Вот некоторые сравнительные данные между всеми двигателями, которые могут выполнять операции вперед / назад. Помните, что эти значения перебега относятся к двигателю. Если вы добавляете редуктор, разделите перебег на передаточное число. Это только справочные значения.

    Oriental Motor предлагает полную линейку асинхронных двигателей переменного тока от 1 Вт (1/750 л.с.) до 2237 Вт (3 л.с.).В дополнение к асинхронным двигателям также доступны реверсивные двигатели, двигатели с электромагнитным тормозом, двигатели сцепления / тормоза и двигатели для промывки. Для приложений с высоким крутящим моментом могут быть добавлены различные типы редукторов. Группы серий продуктов различаются в зависимости от типа (-ов) двигателя и функций. Например, серия World K — это наша стандартная серия двигателей переменного тока, в которую входят многие типы двигателей, от асинхронных до электромагнитных тормозов. Серия KIIS — это трехфазная часть серии KII, которая сохраняет характеристики высокого крутящего момента серии KII, а также новые функции трехфазного управления скоростью.

    При таком широком ассортименте продукции рекомендуется проконсультироваться по выбору двигателя с нашими инженерами службы технической поддержки, чтобы сузить выбор продуктов.

    Вот разбивка всей нашей линейки трехфазных двигателей переменного тока.

    • World K Series (1 ~ 150 Вт): однофазный и трехфазный; стандартный тип
    • K2S Series (30 ~ 200 Вт): трехфазный; оптимизирован для VFD
    • Brother Mid G3 Series (1/2 ~ 3 л.с.): трехфазный; высокая мощность

    На нашем веб-сайте мы разбиваем их на двигатели переменного тока « с постоянной скоростью » и « с регулировкой скорости ».В то время как двигатели переменного тока с постоянной скоростью включают как однофазные, так и трехфазные типы, трехфазные двигатели переменного тока для частотно-регулируемых приводов ориентированы только на трехфазные двигатели, предназначенные для управления скоростью.

    Пожалуйста, подпишитесь на этот блог в правом верхнем углу страницы.

    Как реверсировать электродвигатель

    Возможно, вы только что установили заменяющий двигатель, или, может быть, вы устанавливаете новую силовую передачу.Вы включаете электродвигатель и … он вращается не в том направлении! Что, черт возьми, происходит? Есть ли что-то, что вы можете сделать, чтобы перевернуть мой электродвигатель?

    Ответ — да, в большинстве случаев есть. Первый шаг к выяснению того, как решить проблемы с вращением, — это определить, является ли это двигателем переменного или постоянного тока. Оттуда решение зависит от того, с каким именно двигателем вы работаете.

    Асинхронный двигатель переменного тока

    Если у вас асинхронный двигатель переменного тока, вам необходимо определить, является ли он трехфазным или однофазным, прежде чем пытаться изменить направление вращения.

    Трехфазные двигатели

    Трехфазные асинхронные двигатели переменного тока являются наиболее часто используемым типом двигателей в промышленности. Это в первую очередь потому, что они очень эффективны и, по сравнению с однофазными, стоят потерь.

    Трехфазные двигатели переменного тока имеют вращающееся магнитное поле, которое заставляет ротор вращаться в определенном направлении. Если двигатель вращается в неправильном направлении, это означает, что он не в правильной последовательности фаз. Это простое решение: все, что вам нужно сделать, это поменять местами любые два провода питания, чтобы перевернуть / перевернуть магнитное поле, и наиболее распространенной практикой является переключение линий 1 и 3.Как только это будет сделано, двигатель должен вращаться в правильном направлении. Если у вас более 3-х отведений, может потребоваться немного больше. Обратите внимание на схемы подключения, прилагаемые к устройству.

    Двигатели однофазные

    Однофазные двигатели переменного тока имеют только одну форму волны напряжения, подаваемую на двигатель. Они не так эффективны, как их трехфазные аналоги, но все еще широко используются. Как и трехфазные асинхронные двигатели, направление вращающегося магнитного поля определяет направление вращения двигателя.

    Однако однофазные асинхронные двигатели переменного тока немного сложнее исправить, если они вращаются в неправильном направлении. Чтобы изменить / реверсировать это направление, вам нужно поменять полярность пусковой обмотки.

    Вы можете найти инструкции от производителя о том, как это сделать для вашего конкретного случая — если только ваш двигатель не обозначен как нереверсивный. В этом случае дело не в том, что полярность пусковой обмотки нельзя изменить, а в том, что провода, к которым вам нужен доступ, находятся внутри двигателя.Если вы действительно не разбираетесь в двигателях переменного тока, лучше доверить эту задачу профессионалам.

    Двигатели постоянного тока

    Существует три основных типа двигателей постоянного тока: с параллельной обмоткой, с последовательной обмоткой и со сложной обмоткой. Хотя их направление можно изменить довольно просто, лучше всего знать, с каким типом двигателя постоянного тока вы работаете, прежде чем приступить к работе.

    Двигатели с параллельной обмоткой

    В шунтирующем двигателе постоянного тока (или просто шунтирующем двигателе постоянного тока) обмотки возбуждения шунтируются (соединяются параллельно) с обмоткой якоря.Из-за этого якорь и обмотка возбуждения подвергаются одинаковому напряжению питания и части тока, проходящей через обмотку возбуждения, а другая часть — через обмотку якоря. Поток магнитного поля в этих двигателях практически постоянен, поэтому их называют двигателями с постоянным магнитным потоком, и они могут регулировать свою собственную скорость так, чтобы она была почти постоянной.

    Двигатели с фазной обмоткой

    серии

    Двигатели постоянного тока с обмоткой серии

    , как следует из названия, имеют обмотки возбуждения и обмотки якоря, соединенные внутри последовательно, так что они оба получают одинаковый ток.В результате такой конструкции обмотки возбуждения в этих двигателях получают больший ток, чем в других типах двигателей постоянного тока.

    Что делает эти двигатели особенными, так это высокий крутящий момент, который они не могут обеспечить. Такой высокий крутящий момент делает их полезными в качестве стартеров, часто работающих в течение короткого периода времени. В отличие от двигателя постоянного тока с параллельной обмоткой, двигатель с последовательной обмоткой не может регулировать свою скорость.

    Двигатели с комбинированной обмоткой

    Двигатель постоянного тока с комбинированной обмоткой сочетает в себе конструкцию как параллельных, так и последовательных двигателей постоянного тока.Результат — хорошее регулирование скорости и высокий пусковой момент. Однако скорость регулируется не так хорошо, как у двигателя с параллельной обмоткой, а крутящий момент не такой высокий, как у двигателя с последовательной обмоткой.

    Существует два основных типа двигателей постоянного тока с составной обмоткой: с длинной шунтирующей составной обмоткой и с короткой шунтирующей составной обмоткой. Длинный шунтирующий двигатель имеет шунтирующую обмотку возбуждения, соединенную параллельно якорю и последовательной обмотке возбуждения. В этом случае регулировка скорости лучше.

    Короткий шунтирующий двигатель немного отличается: шунтирующая обмотка возбуждения подключена параллельно только через обмотку якоря.Кроме того, на катушку последовательного возбуждения поступает весь ток питания, прежде чем он будет разделен на токи возбуждения шунта и якоря. Это приводит к лучшему пусковому крутящему моменту.

    Устранение проблем вращения для двигателей постоянного тока

    Двигатели

    постоянного тока, как и двигатели переменного тока, могут быть настроены на вращение в любом направлении. Их направление можно легко контролировать, инвертируя полярность приложенного напряжения якоря, меняя местами выводы якоря. Это работает с двигателями постоянного тока с параллельной, последовательной обмоткой и двигателями с составной обмоткой.

    С другой стороны, вы также можете поменять местами провода возбуждения, но это рискованно: это может повлиять на стабильность вашего двигателя постоянного тока.

    Заключение

    Электродвигатель, работающий в неправильном направлении, — это еще не конец света. Для двигателей постоянного тока изменение направления просто связано с реверсированием выводов якоря. Для трехфазного двигателя переменного тока вам необходимо поменять местами любые два провода питания (обычно выбираются 1 и 3), а для однофазного двигателя вам нужно будет обратиться к инструкциям производителя или обратиться за помощью к сертифицированному специалисту. электромотор техник.Мы просто знаем о мастерской по ремонту электродвигателей, которая может помочь.

    Что произойдет, если полярность одной обмотки трехфазного двигателя изменится?

    Для правильного вращения последовательность фаз должна быть правильной (L1 — M1, L2 — M2 и L3 — M3 — где L относится к ЛИНИИ, а M — к фазе ДВИГАТЕЛЯ).

    Если две фазы подключены неправильно (например, L1 к M2 и L2 к M1) — двигатель будет вращаться в противоположном направлении.ПРИМЕЧАНИЕ: ЭТО НЕ ТО же, ЧТО ИЗМЕНЕНИЕ ПОЛЯРНОСТИ ОДНОЙ ФАЗЫ.

    Если у одной фазы изменилась полярность, тогда распределение магнитного поля внутри обмотки двигателя станет неравномерным, и выходной крутящий момент будет «пульсирующим». (Чтобы убедиться в этом сами, нанесите три фазы и их сумму на один график. Затем переключите полярность на одной фазе и посмотрите разницу в формах сигналов.)

    Это может вызвать или не вызвать безвозвратное повреждение двигателя и приводное оборудование — зависит от того, какой механический запас встроен в установку.Хотя это, конечно, не «хорошее» состояние — вероятность отказа значительно увеличивается.

    Обмотки 3-фазного двигателя не в одном направлении. Например, трехфазный двигатель 60 Гц, 1770 об / мин, поэтому 4-полюсный трехфазный двигатель всего 12 групп катушек с магнитным проводом. Таким образом, 6 групп катушек с магнитным проводом по часовой стрелке и 6 групп катушек с магнитным проводом поочередно против часовой стрелки. Каждая клемма 4 группы катушки (2 группы по часовой стрелке / направление южного полюса и 2 полюса провода против часовой стрелки / направление северного полюса) подключены поочередно к другой клемме 2 и группе клемм 3 катушки, чтобы вращать ротор.Если одна катушка магнитного провода по ошибке изменит вращение / направление намотки, на опыт работы в ГГц, ротор не будет вращаться и будет казаться перегрузкой, и обмотка статора будет гореть, потому что 5 групп магнитных проводов в направлении южного полюса и 7 групп магнитных проводов в северном направлении. направление полюса магнитное поле не сбалансировано.

    Трехфазные двигатели в трехфазной трехпроводной системе нуждаются только в двух линиях, и провода двигателя поменяны местами для реверсирования вращения двигателя. Изменение полярности одной фазы по отношению к двум другим в типичной системе питания трехфазного генератора, которая функционирует должным образом, невозможно.

    Реверсивный переключатель трехфазного двигателя — схемы подключения 11

    Выберите свою страну … Глобальный сайт —————- КанадаКитайХорватияЧешская РеспубликаГерманияФранцияИталияПольшаРумынияРоссийская ФедерацияИспанияШвейцарияТурцияОбъединенные Арабские ЭмиратыВеликобританияСоединенные Штаты —————- АфганистанАлбанияАлжирАмериканское СамоаАндорраАнголаАнгилаАнтаар Андорра BarbudaArgentinaArmeniaArubaAustraliaAustriaAzerbaijanBahamasBahrainBangladeshBarbadosBelarusBelgiumBelizeBeninBermudaBhutanBoliviaBosnia И HerzegovinaBotswanaBouvet IslandBrazilBritish Индийский океан TerritoryBrunei DarussalamBulgariaBurkina FasoBurundiCambodiaCameroonCanadaCape VerdeCayman IslandsCentral африканских RepublicChadChileChinaChristmas IslandCocos (Килинг) IslandsColombiaComorosCongoCongo, Демократическая Республика TheCook IslandsCosta RicaCote D’ivoireCroatiaCubaCyprusCzech RepublicDenmarkDjiboutiDominicaDominican RepublicEast TimorEcuadorEgyptEl SalvadorEquatorial GuineaEritreaEstoniaEthiopiaFalkland острова (Мальвинские) Фарерских IslandsFijiFinlandFranceFrench GuianaFrench PolynesiaFren ч Южный TerritoriesGabonGambiaGeorgiaGermanyGhanaGibraltarGreeceGreenlandGrenadaGuadeloupeGuamGuatemalaGuineaGuinea-bissauGuyanaHaitiHeard остров и МакДональда IslandsHoly See (Vatican City State) HondurasHong KongHungaryIcelandIndiaIndonesiaIran, Исламская Республика OfIraqIrelandIsraelItalyJamaicaJapanJordanKazakstanKenyaKiribatiKorea, Корейская Народно-Демократическая Республика OfKorea, Республика OfKosovoKuwaitKyrgyzstanLao Народная Демократическая RepublicLatviaLebanonLesothoLiberiaLibyan Арабская JamahiriyaLiechtensteinLithuaniaLuxembourgMacauMacedonia, бывшая югославская Республика OfMadagascarMalawiMalaysiaMaldivesMaliMaltaMarshall IslandsMartiniqueMauritaniaMauritiusMayotteMexicoMicronesia, Федеративные Штаты OfMoldova, Республика OfMonacoMongoliaMontenegroMontserratMoroccoMozambiqueMyanmarNamibiaNauruNepalNetherlandsNetherlands AntillesNew CaledoniaNew ЗеландияНикарагуаНигерНигерияНиуэОстров НорфолкСеверные Марианские островаНорвегияОманПакистанПалауПалестинская территория, оккупированнаяПанамаПапуа-Новая ГвинеяПарагвайПеру PhilippinesPitcairnPolandPortugalPuerto RicoQatarReunionRomaniaRussian FederationRwandaSaint HelenaSaint Киттс И NevisSaint LuciaSaint Пьер и MiquelonSaint Винсент и GrenadinesSamoaSan MarinoSao Фолиант И PrincipeSaudi ArabiaSenegalSerbiaSeychellesSierra LeoneSingaporeSlovakiaSloveniaSolomon IslandsSomaliaSouth AfricaSouth Джорджия и Южные Сандвичевы IslandsSouth SudanSpainSri LankaSudanSurinameSvalbard и Ян MayenSwazilandSwedenSwitzerlandSyrian Arab RepublicTaiwan, провинция ChinaTajikistanTanzania, Объединенная Республика OfThailandTogoTokelauTongaTrinidad И TobagoTunisiaTurkeyTurkmenistanTurks И Кайкос IslandsTuvaluUgandaUkraineUnited Араб ЭмиратыВеликобританияСоединенные ШтатыМалые отдаленные острова СШАУругвайУзбекистан ВануатуВенесуэлаВьетнамВиргинские острова, Британские Виргинские острова, СШАs.Wallis and Futuna, Западная Сахара, Йемен, Замбия, Зимбабве,

    Глобальный |

    Что произойдет, если вы неправильно подключите трехфазный двигатель?

    Если одна фаза изменила полярность, тогда распределение магнитного поля внутри обмотки двигателя станет неравномерным, и выходной крутящий момент будет «пульсирующим».Обмотки 3 фазного двигателя не в одном направлении. Например, 3 фазы 60 Гц 1770 об / мин двигатель , поэтому 4-полюсный в трехфазном всего 12 групп магнитных проводов катушки .

    Щелкните, чтобы увидеть полный ответ

    Кроме того, можете ли вы неправильно подключить трехфазный двигатель?

    Если фазный двигатель 3, , вращается в неправильном направлении , , можно поменять местами любые два вывода, чтобы изменить направление в желаемом направлении. Один из способов проверить направление двигателя — это попытаться угадать , как подключить провода , затем запустить двигатель и отметить направление его вращения. Если вы неправильный , вы отключаете два провода и меняете местами провода .

    Во-вторых, что произойдет, если вы неправильно подключите фазу и нейтраль? Если вы, , поменяли местами провода под напряжением и нейтраль , то даже при выключенном состоянии все провода и нагрузка внутри прибора находятся под напряжением, так что намного легче получить электрошок. Если подключен правильно, то кожух винта будет на стороне , нейтральной, , так что безопасный , если вы случайно прикоснетесь к нему.

    Учитывая это, что бы произошло, если бы двигатель вращался неправильно?

    Что произойдет, если трехфазный асинхронный двигатель вращается в неправильном направлении ? Если это направление вращения поменять местами, это просто не будет служить цели.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *