Принцип действия и устройство асинхронного электродвигателя: Асинхронный электродвигатель: устройство и принцип работы

Содержание

Асинхронный электродвигатель: устройство и принцип работы

Содержание

  1. Устройство асинхронного электродвигателя
  2. Принцип работы асинхронного двигателя
  3. Преимущества асинхронных двигателей

Самым эффективным устройством, превращающим электрическую энергию в механическую, является асинхронный двигатель, изобретенный инженером Доливо-Добровольским в конце 19 века. Учитывая возрастающий интерес современников к разработке и сборке станков, самодвижущихся аппаратов и прочих механизмов, мы постараемся объяснить, как работает асинхронный электродвигатель, чтобы вы могли понять принцип его действия и результативно его использовать.

Устройство асинхронного электродвигателя

В его конструкцию входят следующие элементы:

  • Статор цилиндрической формы, собранный из стальных листов. Сердечник статора имеет пазы, в которые уложены обмотки. Их оси сдвинуты на 120 градусов по отношению друг к другу.
  • Ротор (короткозамкнутый или фазный). Первый вариант представляет собой сердечник с алюминиевыми стержнями, накоротко замкнутыми торцевыми кольцами (беличья клетка). Второй вариант состоит из трехфазной обмотки, чаще всего соединенной «звездой».
  • Конструктивные детали – вал, подшипники, лапы, подшипниковые щиты, крыльчатка и кожух вентилятора, коробка выводов — обеспечивающие вращение, охлаждение и защиту механизма.

Схему асинхронного двигателя с указанием его деталей легко найти в интернете или в пособиях.

Принцип работы асинхронного двигателя

Принцип действия асинхронного электродвигателя заложен в его названии (не синхронный). То есть статор и ротор при включении создают вращающиеся с разной частотой магнитные поля. При этом частота вращения магнитного поля ротора всегда меньше частоты вращения магнитного поля статора.

Чтобы более наглядно представить себе этот процесс, возьмите постоянный магнит и покрутите его вокруг своей оси возле медного диска. Диск с небольшим отставанием начнет вращаться вслед за магнитом. Дело в том, что при вращении магнита в структуре диска возбуждаются токи Фуко (индукционные токи), движущиеся по замкнутому кругу. По сути они являются токами короткого замыкания, разогревающими металл. В диске «зарождается» собственное магнитное поле, в дальнейшем взаимодействующее с полем магнита.

В асинхронном двигателе для получения вращающегося поля используются обмотки статора. Магнитный поток, образованный ими, создает ЭДС в проводниках ротора. При взаимодействии магнитного поля статора и индуцируемого тока в обмотке ротора создается электромагнитная сила, приводящая во вращение вал электродвигателя.

Пошагово процесс выглядит следующим образом:

  1. При запуске двигателя магнитное поле статора пересекается с контуром ротора и индуцирует электродвижущую силу.
  2. В накоротко замкнутом роторе возникает переменный ток.
  3. Два магнитных поля (статора и ротора) создают крутящий момент.
  4. Крутящийся ротор пытается «догнать» поле статора.
  5. В тот момент, когда частоты вращения магнитного поля статора и ротора совпадут, электромагнитные процессы в роторе затухают и крутящий момент становится равным нулю.
  6. Магнитное поле статора возбуждает контур ротора, который к этому моменту снова отстает.

То есть ротор всегда медленнее магнитного поля статора, что и обеспечивает асинхронность.

Поскольку ток в роторе индуцируется бесконтактно, отпадает необходимость установки скользящих контактов, что делает асинхронные двигатели более надежными и эффективными. Изменяя направление тока в одной из обмоток (для этого нужно поменять фазы на клеммах), вы можете «заставить» мотор вращаться в ту или другую сторону.

Направление электромагнитной силы легко определить, вспомнив школьный курс физики и воспользовавшись «правилом левой руки».

На частоту вращения магнитного поля статора влияет частота питающей сети и число пар полюсов. Поскольку число пар полюсов зависит от типа двигателя и остается неизменным, то, если вы хотите изменить частоту вращения поля, необходимо изменить частоту питающей сети с помощью преобразователя.

Преимущества асинхронных двигателей

Благодаря тому, что устройство и принцип работы асинхронного электродвигателя достаточно просты, он обладает массой преимуществ и широко применяется во всех сферах народного хозяйства и в быту. Двигатели этого типа характеризуются:

  • Надежностью и долговечностью. Отсутствие контакта между подвижными и неподвижными деталями сводит к минимуму возможность износа и поломок.
  • Низкой стоимостью. Они доступны (не зря 90% от всех выпускающихся в мире двигателей именно асинхронные).
  • Простотой эксплуатации. Для того чтобы использовать их, не обязательно иметь специальные знания и навыки.
  • Универсальностью. Их можно установить практически на любое оборудование.

Изобретение асинхронного электродвигателя было значимым вкладом в развитие науки, промышленности и сельского хозяйства. С ним наша жизнь стала более комфортной.


Асинхронный электродвигатель. Устройство и принцип действия. – www.motors33.ru

Асинхронный электродвигатель имеет две основные части – статор и ротор. Неподвижная часть двигателя называется статор. С внутренней стороны статора сделаны пазы, куда укладывается трехфазная обмотка, питаемая трехфазным током. Вращающаяся часть машины называется ротор, в пазах его тоже уложена обмотка. Статор и ротор собираются из отдельных штампованных листов электротехнической стали толщиной 0,35-0,5 мм. Отдельные листы стали изолируются один от другого слоем лака. Воздушный зазор между статором и ротором делается как можно меньше (0,3-0,35 мм в машинах малой мощности и 1-1,5 мм в машинах большой мощности).

В зависимости от конструкции ротора асинхронные двигатели бывают с короткозамкнутым и с фазным роторами. Наибольшее распространение получили двигатели с короткозамкнутым ротором, они просты по устройству и удобны в эксплуатации.
Трехфазная обмотка статора помещается в пазы и состоит из ряда катушек, соединенных между собой. Каждая катушка сделана из одного или нескольких витков, изолированных между собой и от стенок паза.

Рис. 1. Различные виды обмотки статора асинхронных электродвигателей

На рис. 1, а) показана обмотка статора асинхронного электродвигателя. У этой обмотки каждая катушка состоит из двух проводников. Обмотка, состоящая из трех катушек, создает магнитное поле с двумя полюсами. За один период трехфазного тока магнитное поле сделает один оборот. При частоте 50 Гц это будет соответствовать 50 об/сек, или 3000 об/мин.
На рис. 1, б) показана обмотка, у которой каждая сторона катушки состоит из двух проводников.
Скорость вращения магнитного поля четырехполюсного статора вдвое меньше скорости вращения поля двухполюсного статора, т. е. 1500 об/мин (при 50 Гц). Обмотка четырехполюсного статора с одним проводником на полюс и фазу показана на рис. 1, в), а с двумя проводниками на полюс и фазу – на рис.

1, г). Магнитное поле шестиполюсного статора имеет втрое меньшую скорость, чем двухполюсного, т. е. 1000 об/мин (при 50 Гц). Обмотка шестиполюсного статора с одним проводником на полюс и фазу представлена на рис. 1, д). Число всех пазов на статоре равно утроенному произведению числа полюсов статора на число пазов, приходящееся на полюс и фазу.

Асинхронный электродвигатель с короткозамкнутым ротором

является самым распространенным из электрических двигателей, применяемых в промышленности. Рассмотрим его устройство. На неподвижной части двигателя – статоре 1 – размещается трехфазная обмотка 2 (рис. 2), питаемая трехфазным током. Начала трех фаз этой обмотки выводятся на общий щиток, укрепленный снаружи на корпусе электродвигателя.

Рис. 2. Асинхронный электродвигатель с короткозамкнутым ротором
Собранный сердечник статора укрепляют в чугунном корпусе 3 двигателя. Вращающуюся часть двигателя – ротор 4 – собирают также из отдельных листов стали.

В пазы ротора закладывают медные стержни, которые с двух сторон припаивают к медным кольцам

Рис. 3. Короткозамкнутый ротор
а — ротор с короткозамкнутой обмоткой, б — «беличье колесо»,
в — короткозамкнутый ротор, залитый алюминием;
1 — сердечник ротора, 2 — замыкающие кольца, 3 — медные стержни,
4 — вентиляционные лопатки
Таким образом, все стержни оказываются замкнутыми с двух сторон накоротко. Если представить себе отдельно обмотку такого ротора, то она по внешнему виду будет напоминать «беличье колесо». В настоящее время у всех двигателей мощностью до 100 кВт «беличье колесо» делается из алюминия путем заливки его под давлением в пазы ротора. Вал 6 вращается в подшипниках, закрепленных в

подшипниковых щитах 7 и 8. Щиты при помощи болтов крепятся к корпусу двигателя. На один конец вала ротора насаживается шкив для передачи вращения рабочим машинам или станкам.
Устройство статора асинхронного двигателя с фазным ротором и его обмотка не отличаются от устройства статора двигателя с короткозамкнутым ротором. Различие между этими электродвигателями заключается в устройстве ротора.

Рис. 4. Разрез асинхронного двигателя с фазным ротором
1 — вал двигателя, 2 — ротор, 3 — обмотка ротора, 4 — статор, 5 — обмотка статора, 6 — корпус, 7 — подшипниковые крышки, 8 — вентилятор, 9 — контактные кольца
Фазный ротор имеет три фазные обмотки, соединенные между собой звездой (реже треугольником). Концы фазных обмоток ротора присоединяют к трем медным кольцам, укрепленным на валу ротора и изолированным как между собой, так и от стального сердечника ротора, вследствие чего этот двигатель получил также название двигателя с контактными кольцами. Три кольца жестко насажены на вал ротора (через изоляционные прокладки). На кольца накладываются щетки, которые размещены в щеткодержателях, укрепленных на одной из подшипниковых крышек.
Щетки, скользящие по поверхности колец ротора, все время имеют с ними хороший электрический контакт и соединены, таким образом, с обмотками ротора. Щетки соединены с трехфазным реостатом.

Источник: Кузнецов М. И. Основы электротехники. Учебное пособие.
Изд. 10-е, перераб. «Высшая школа», 1970.

Устройство и принцип действия асинхронного двигателя

1. Южно-Казахстанская государственная фармацевтическая академия

Кафедра технология фармацевтического производства
Презентация
На тему: Устройство и принцип действия
асинхронного двигателя
Выполнил: Толеш Н
Группа: 302 ТФПК
Приняла: Бердалиева А.А
Шымкент, 2017 г

2. План

Введение
Основная часть
1. Применение электрических машин
1.1. Бытовая электрическая техника
2. Электрическое оборудование предприятий
3. Основатели электрических машин
4. Электрический двигатель в разрезе
5. Устройство и принцип действия АД
6. Схемы соединения обмоток
7. Формулы и графики ЭДС
8. Схемы пуска АД
Заключение
Литература

3. Введение

Асинхронный двигатель — это асинхронная
машина, предназначенная для преобразования
электрической энергии переменного тока в
механическую энергию. Само слово “асинхронный”
означает не одновременный. При этом имеется
ввиду, что у асинхронных двигателей частота
вращения магнитного поля статора всегда больше
частоты вращения ротора. Работают асинхронные
двигатели, как понятно из определения, от
сети переменного тока.

4. Бытовая электрическая техника

5. Электрическое оборудование предприятий

Станок деревообрабатывающий

7. Основатели электрических машин

• В 1888 году Никола Тесла, австрийский
учёный, получил патент на изобретение
многофазных электрических машин.
• Выходец из России Михаил Осипович
Доливо-Добровольский уже в
1889 г. получил патент на трехфазный
асинхронный двигатель с
короткозамкнутым ротором типа «беличья
клетка».
Никола Тесла

9. Михаил Доливо-Добровольский

10. Электрический двигатель в разрезе

11. Трёхфазный электрический двигатель

Трёхфазные обмотки
электрического
двигателя

12.

Принцип действия АД • Принцип действия основан на явлении
электромагнитной индукции. При
подачи напряжения на обмотки статора
внутри него возникает вращающееся
магнитное поле. Это поле пронизывает
ротор и в его обмотках возникает
переменный электрический ток.
Взаимодействие переменного тока в
роторе с вращающимся магнитным
полем статора создаёт вращающийся
момент.
M=сΦI2cosψ2,
с — констр.коэфф.-т, Ф-магнитный
поток, I2 – ток в роторе,
ψ2 – сдвиг по фазе между ЭДС и
током ротора
Ротор двигателя начинает вращаться в
ту же сторону, что и статор, но с
небольшим отставанием, т.е.
асинхронно
Схема соединения обмоток АД
Схема соединения обмоток АД

16. Формулы 3-х фазных ЭДС

Eo, B
5
wt
0
1
2
3
4
5
6
7
8
Ea = Eosin(wt)
0
4.2
4.5
0.7
-3.7
-4.7
-1.3
3.2
4.9
3.9
4.7
1. 1
-3.4
-4.9
-1.8
-4.1 -4.6
-0.8
3.6
4.8
1.5
-3.1
Eb= Eosin(wt-120)
-4.3
-4.4 -0.4
Ec= Eosin(wt-240)
4.3
0.1

17. Графики трёхфазных ЭДС

Ea=sin(wt), Eb=sin(wt-120), Ec=sin(wt-240)
E, B
6
4
2
0
-2
1
2
3
4
5
6
7
8
9
Ф-С
Ф-А
-6
Ф-С
-4
wt

18. Основные определения и формулы АД

• n0 =(60f)/p, об/мин, p –число пар полюсов
f – частота тока
• n0 — скорость вращения маг.поля
• n — скорость вращения ротора
• Скольжение двигателя S=(n0−n)/n0
При пуске в ход АД: n=0,S=1
Номинальный режим АД: Sн=(2÷5)%
• BA=Bmsin(ωt) – магнитная индукция фазы A
• BB=Bmsin(ωt−120°) — магнитная индукция фазы B
• BC=Bmsin(ωt−240°) — магнитная индукция фазы C

19. Виды асинхронных машин

АД общего назначения
тяговый двигатель
• АД общего назначения применяют в различных областях
промышленности (в основном с к/з ротором)
• Тяговые двигатели используются в электровозах, поездах

20.

Устройство трёхфазного двигателя 1 -станина
2-сердечник
3-Обмотка
статора
АД с фазным ротором
Адрес :http://energo.ucoz.ua/IMG/kran.jpg

22. Статор А Д

• Статор асинхронного
электродвигателя является неподвижной
частью.
• Чтобы уменьшить потери на вихревые токи,
сердечник статора набирают из тонких
штампованных стальных листов.
• В пазы статора закладывают обмотку из
медной проволоки. Фазовые обмотки статора
электродвигателя соединяются «звездой» или
«треугольником»

23. Ротор асинхронного двигателя

Короткозамкнутый в
форме беличьего
колеса
фазный ротор
Схема пуска и защиты АД с к.з
ротором
пуск
Тепловая защита
ссылка: http://fazaa.ru/wp-content/uploads/2012/01/bn8.gif

25. Пуск АД с фазным ротором

пусковой реостат
Заключение
Принцип
работы
асинхронного
двигателя заключается во взаимодействии
вращающегося магнитного поля статора и
токов, которые наводятся этим магнитным
полем в роторе. Причём вращающий момент
может возникнуть только в том случае, если
существует разность частот вращения
магнитных полей.

27. Тесты по АД

Тест №1
Неподвижные части АД:
Статор
Ротор
Вентилятор

28. Тест №2 по АД

Каково соотношение между фазными и
линейными напряжениями при соединении
потребителей электроэнергии треугольником
Ил = Иф
Ил = √3 * Ил
Иф = √3 * Ил

29. Тест №3 по АД

Частота вращения магнитного поля
асинхронного двигателя 1000 об/мин. Частота
вращения ротора 950 об/мин. Определить
скольжение (S=(n0−n)/n0 )
50
0,5
0,05

30. Тест №4 по АД

1889 года величайший русский учёный и
инженер Михаил Осипович ДоливоДобровольский изобрёл
трёхфазный асинхронный двигатель
Статор
Короткозамкнутый ротор

31. Тест №5 по АД

Асинхронная машина, предназначенная для
преобразования электрической энергии
переменного тока в механическую энергию
Асинхронный двигатель
Ротор
Статор

32.

Тест №6 по АД Величина, которая показывает, насколько
синхронная частота n1магнитного поля статора
больше, чем частота вращения ротора n2, в
процентном соотношении.
Ротор
Скольжение s
Частоты вращения

33. Тест №7 по АД

Само слово “асинхронный”
означает
увеличится
не одновременный
двигатель

34. Тест №8 по АД

Основными частями асинхронного
двигателя являются
Подшипники
Вал
Статор и ротор

35. Тест №9 по АД

Роторы асинхронного двигателя
бывают двух видов:
Постоянный и переменный
Сдвинуты и относительный
Короткозамкнутый и фазный ротор

36. Тест №10 по АД

Имеет цилиндрическую форму, и
собирается из листов стали
Статор
Ротор
Вал

37. Закрепление материала

1. Схемы соединения обмоток АД
2. Устройство 3-х фазного АД
3. Основные определения и формулы
4. Виды асинхронных машин
5. Устройство ротора АД
6. Формулы и график 3-х фазных ЭДС
7. Схема пуска АД с к.з ротором
8. Схема пуска АД с фазным ротором

38. http://www.eti.su/articles/elektroprivod/elektroprivod_36.html

Интернет ресурсы
http://www.eti.su/articles/elektrop
rivod/elektroprivod_36.html

39. Интернет — ссылки

1. http://electricalschool.info/spravochnik/ma
schiny/
2. http://www.induction.ru/library/book_001
/glava4/4-10.html
3. http://zametkielectrika.ru/sxema-puskaasinxronnogo-dvigatelya/
4. http://ecodelo.org/sites/default/files/4/im
ages/5555.JPG

Принцип действия трехфазного асинхронного двигателя

Неподвижная часть асинхронного двигателя – статор имеет трехфазную обмотку, при включении которой в сеть возникает вращающееся магнитное поле. Скорость вращения этого поля

n1=f1∙60/p.

В расточке статора расположена вращающаяся часть двигателя – ротор, который состоит из вала, сердечника и обмотки. Обмотка ротора состоит из стержней, уложенных в пазы сердечника и замкнутых с двух сторон кольцами.

Вращающееся поле статора пересекает проводники (стержни) обмотки ротора и наводит в них э. д. с. Но так как обмотка ротора замкнута, то в стержнях возникают токи. Взаимодействие этих токов с полем статора создает на проводниках обмотки ротора электромагнитные силы Fпр, направление которых определяется по правилу «левой руки». Силы Fпр стремятся повернуть ротор в направлении вращения магнитного поля статора. Совокупность сил Fпр, приложенных к отдельным проводникам, создает на роторе электромагнитный момент М, приводящий его во вращение со скоростью n2. Вращение ротора через вал передается исполнительному механизму.

Таким образом, электрическая энергия, поступающая в обмотку статора из сети, преобразуется в механическую.

Направление вращения магнитного поля статора, а следовательно, и направление вращения ротора, зависит от порядка следования фаз напряжения, подводимого к обмотке статора. При необходимости изменить направление вращения ротора асинхронного двигателя следует поменять местами любую пару проводов, соединяющих обмотку статора с сетью. Например, порядок следования фаз АВС заменить порядком СВА. Скорость вращения ротора n2 асинхронного двигателя всегда меньше скорости вращения поля n1, так как только в этом случае возможно наведение э.д.с. в обмотке ротора. Разность скоростей ротора и вращающегося поля статора характеризуется величиной, называемой скольжением,

s=(n1 — n2)/n1.

Часто скольжение выражается в процентах:

s=[(n1 — n2)/n1]∙100.

Скольжение асинхронного двигателя может изменяться в пределах от 0 до 1. При этом s≈0 соответствует режиму холостого хода, когда ротор двигателя не испытывает противодействующих моментов, а s≈1 соответствует режиму короткого замыкания, когда противодействующий момент двигателя превышает вращающий момент и поэтому ротор двигателя неподвижен (n2=0).

Скольжение, соответствующее номинальной нагрузке двигателя, называется номинальным скольжением. Так, например, для двигателей нормального исполнения мощностью от 1 до 1000 кВт номинальное скольжение приблизительно составляет соответственно 0,06-0,01, т.е. 6-1%.

Скорость вращения ротора асинхронного двигателя равна

n2=(1-s)∙n1.

На щитке двигателя указывается номинальная скорость вращения nн. Эта величина дает возможность определить синхронную скорость вращения n1, номинальное скольжение sн, а также число полюсов обмотки статора 2р.

Источник: Кацман М. М. Электрические машины и трансформаторы. — М.: 1971, с. 288-290.

Однофазный асинхронный двигатель. Назначение, устройство, принцип действия.

Однофазные асинхронные двигатели — машины небольшой мощности, которые по конструктивному исполнению напоминают аналогичные трехфазные асинхронные электродвигатели с короткозамкнутым ротором.

Назначение, устройство и принцип действия однофазных асинхронных двигателей

Однофазные асинхронные двигатели отличаются от трехфазных двигателей устройством статора, где в пазах магнитопровода находится двухфазная обмотка, состоящая из основной, или рабочей, фазы с фазной зоной 120 эл. град и выводами к зажимам с обозначениями С1 и С2, и вспомогательной, или пусковой, фазы с фазной зоной 60 эл. град и выводами к зажимам с обозначениями В1 и В2 (рис. 1).

Магнитные оси этих фаз обмотки смещены относительно друг друга на угол 0 = 90 эл. град. Одна рабочая фаза, присоединенная к питающей сети переменного напряжения, не может вызвать вращения ротора, так как ток ее возбуждает переменное магнитное поле с неподвижной осью симметрии, характеризуемое гармонически изменяющейся во времени магнитной индукцией.

Схема включения однофазного асинхронного двигателя

Рис. 1

Это поле можно представить двумя составляющими — одинаковыми круговыми магнитными полями прямой и обратной последовательностей, вращающимися с магнитными индукциями, вращающимися в противоположные стороны с одной и той же скоростью. Однако при предварительном разгоне ротора в необходимом направлении он при включенной рабочей фазе продолжает вращаться в том же направлении.

По этой причине пуск однофазного двигателя начинают с разгона ротора путем нажатия пусковой кнопки, вызывающего возбуждение токов в обеих фазах обмотки статора, которые сдвинуты по фазе на величину, зависящую от параметров фазосдвигающего устройства Z, выполненного в виде резистора, индуктивной катушки или конденсатора, и элементов электрических цепей, в которые входят рабочая и пусковая фазы обмотки статора. Эти токи побуждают в машине вращающееся магнитное поле с магнитной индукцией в воздушном зазоре, которая периодически и монотонно изменяется в пределах максимального и минимального значений, а конец ее вектора описывает эллипс.

Это эллиптическое вращающееся магнитное поле находит в проводниках короткозамкнутой обмотки ротора ЭДС и токи, которые, взаимодействуя с этим полем, обеспечивают разгон ротора однофазного двигателя в направлении вращения поля, и он в течение нескольких секунд достигает почти номинальной скорости.

Отпускание пусковой кнопки переводит электродвигатель с двухфазного режима на однофазный, поддерживаемый в дальнейшем соответствующей составляющей переменного магнитного поля, которая при своем вращении несколько опережает вращающийся ротор из-за скольжения.

Своевременное отключение пусковой фазы обмотки статора однофазного асинхронного двигателя от питающей сети необходимо в связи с ее конструктивным исполнением, предусматривающим кратковременный режим работы — обычно до 3 с, что исключает длительное пребывание ее под нагрузкой в связи с недопустимым перегревом, сгоранием изоляции и выходом из строя.

Маркировка зажимов фаз обмотки статора однофазного асинхронного двигателя с короткозамкнутым ротором

Рис. 2: а, в — соединение для правого вращения ротора; б, г — соединение для левого вращения ротора

Повышение надежности эксплуатации однофазных асинхронных двигателей обеспечивают встраиванием в корпус машин центробежного выключателя с размыкающими контактами, присоединенными к зажимам с обозначениями ВЦ и В2, и теплового реле с аналогичными контактами, имеющими выводы с обозначениями РТ и С1 (рис. 2, в, г).

Центробежный выключатель автоматически отключает пусковую фазу обмотки статора, присоединенную к зажимам с обозначениями В1 и В2 при достижении ротором скорости, близкой к номинальной, а тепловое реле — обе фазы обмотки статора от питающей сети, когда нагрев их окажется выше допустимого.

Перемена направления вращения ротора достигается изменением направления тока в одной из фаз обмотки статора при пуске путем переключения пусковой кнопки и перестановки металлической пластины на зажимах электродвигателя (рис. 2, а, б) или только перестановкой двух аналогичных пластин (рис. 2, в, г).

Устройство асинхронного электродвигателя


Устройство и принцип действия асинхронных электродвигателей

Всем привет. Рад вас видеть у себя на сайте. Тема сегодняшней статьи: устройство и принцип действия асинхронных электродвигателей. Так же я бы хотел немного сказать о способах регулировки их частоты вращения, и перечислить их основные преимущества и недостатки.

Раньше, я уже писал статьи, касающиеся асинхронных электродвигателей. Если кому интересно, то можете почитать. Вот список:

Схема пуска асинхронного двигателя.

Расчёт тока электродвигателя.

Реверсивное управление асинхронным электродвигателем с короткозамкнутым ротором.

Ну а теперь давайте перейдём к теме сегодняшней статьи.

В нынешнее время, очень трудно представить, как бы существовали все промышленные предприятия, если бы не было асинхронных машин. Эти двигателя установлены практически везде. Даже дома у каждого человека есть такой двигатель. Он может стоять на вашей стиральной машинке, на вентиляторе, на насосной станции, в вытяжке и так далее.

Вообще асинхронный электродвигатель – это колоссальный прорыв в мировой промышленности. Во всём мире их выпускают более 90 процентов от количества всех выпускаемых двигателей.

Асинхронный электродвигатель – это электрическая машина, которая преобразовывает электрическую энергию в механическую. То есть потребляет электрический ток, а взамен дают крутящий момент, с помощью которого можно вращать многие агрегаты.

А само слово «асинхронный» — означает неодновременных или не совпадающий по времени. Потому что у таких двигателей частота вращения ротора немного отстаёт от частоты вращения электромагнитного поля статора. Ещё это отставанием называют – скольжением.

Обозначается это скольжение буквой: S

А вычисляется скольжение по такой формуле: S = ( n1 — n2 )/ n1 — 100%

Где, n1 – это синхронная частота магнитного поля статора;

n2 – это частота вращения вала.

Устройство асинхронного электродвигателя.

Двигатель состоит из таких частей:

1. Статор с обмотками. Или станина внутри которой находится статор с обмотками.

2. Ротор. Это если короткозамкнутый. А если фазный, то можно сказать, что это якорь или даже коллектор. Я думаю, ошибки не будет.

3. Подшипниковые щиты. На мощных двигателях ещё спереди стоят подшипниковые крышки с уплотнителями.

4. Подшипники. Могут стоять скольжения или качения, в зависимости от исполнения.

5. Вентилятор охлаждения. Изготавливается из пластмассы или металла.

6. Кожух вентилятора. Имеет прорези для подачи воздуха.

7. Борно или клеммная коробка. Для подключения кабелей.

Это все его основные детали, но в зависимости от вида, типа и исполнения может немного изменяться.

Асинхронные электродвигателя в основном выпускают двух видов: трёхфазные и однофазные. В свою очередь трёхфазные ещё подразделяются на подвиды: с короткозамкнутым ротором или фазным ротором.

Самые распространённые – это трёхфазные с короткозамкнутым ротор.

Статор имеет круглую форму и набирается с листов специальной стали, которые изолированы между собой, и эта собранная конструкция образует сердечник с пазами. В пазы сердечника укладываются обмотки, со специального обмоточного, изолированного лаком провода. Провод это отливают в основном из меди, но также есть и с алюминия. Если двигатель очень мощный, то обмотки делаю шиной. Обмотки укладывают так, чтобы они были сдвинуты относительно друг друга на 120 градусов. Соединяются обмотки статора в звезду или в треугольник.

Ротор, как выше я уже писал выше, бывает короткозамкнутый или фазный.

Короткозамкнутый представляет собой вал, на который надеваются листы, из тоже специальной, стали. Эти наборные листы образую сердечник, в пазы которого заливают расплавленный алюминий. Этот алюминий равномерно растекается по пазам и образует стержни. А по краям эти стержни замыкают алюминиевыми кольцами. Получается своего рода «беличья клетка».

Фазный ротор представляет собой вал с сердечником и тремя обмотками. Одни концы, которых обычно соединяют в звезду, а вторые три конца присоединяют к токосъемным кольцам. А на эти кольца, с помощью щёток подают электрический ток.

Если в цепь фазных обмоток добавить нагрузочный реостат, и при пуске двигателя увеличивать активное сопротивление, то таким способ можно уменьшить большие пусковые токи.

Принцип действия.

Когда на обмотки статора подаются электрический ток, то в этих обмотках возникает электрический поток. Как вы помните, из выше написанных слов, фазы у нас смещены относительно друг друга на 120 градусов. И вот этот поток в обмотках начинает вращаться.

И при вращении магнитного потока статора, в обмотках ротора появляется электрический ток, и своё магнитное поле. Два этих магнитных поля начинают взаимодействовать и заставляют вращаться ротор электродвигателя. Это если ротор короткозамкнутый.

По принципу роботы вот посмотрите видео ролик.

Ну а с фазным ротором, по сути, принцип тот же. Напряжение подаётся на статор и на ротор. Появляются два магнитных поля, которые начинают взаимодействовать и вращать ротор.

Достоинства и недостатки асинхронных двигателей.

Основные достоинства асинхронного электродвигателя с короткозамкнутым ротором:

1. Очень простое устройство, что позволяет сократить затраты на его изготовление.

2. Цена намного меньше по сравнению с другими двигателями.

3. Очень простая схема запуска.

4. Скорость вращения вала практически не меняется с увеличением нагрузки.

5. Хорошо переносит кратковременные перегрузы.

6. Возможность подключения трёхфазных двигателей в однофазную сеть.

7. Надёжность и возможность эксплуатировать практически в любых условиях.

8. Имеет очень высокий показатель КПД и cos φ.

Недостатки:

1. Не возможности контролировать частоту вращения ротора без потери мощности.

2. Если увеличить нагрузку, то уменьшается момент.

3. Пусковой момент очень мал по сравнению с другими машинами.

4. При недогрузе увеличивается показатель cos φ

5. Высокие показатели пусковых токов.

Достоинства двигателей с фазным ротором:

1. По сравнению с короткозамкнутыми двигателями, имеет достаточно большой вращающий момент. Что позволяет его запускать под нагрузкой.

2. Может работать с небольшим перегрузом, и при этом частота вращения вала практически не меняется.

3. Небольшой пусковой ток.

4. Можно применять автоматические пусковые устройства.

Недостатки:

1. Большие габариты.

2. Показатели КПД и cos φ меньше, чем у двигателей с короткозамкнутым ротором. И при недогрузе эти показатели имеют минимальное значение

3. Нужно обслуживать щёточный механизм.

На этом буду заканчивать свою статью. Если она была вам полезной, то поделитесь нею со своими друзьями в социальных сетях. Если есть вопросы, то задавайте их в комментариях и подписывайтесь на обновления. Пока.

С уважением Александр!

5.2. Устройство асинхронного двигателя

Асинхронный двигатель состоит из двух основных частей, разделенных воздушным зазором: неподвижного статора и вращающегося ротора. Каж­дая из этих частей имеет сердечник и обмотку. При этом обмотка статора включается в сеть и является как бы первичной, а обмотка ротора — вто­ричной, так как энергия в нее поступает из обмотки статора за счет магнит­ной связи между этими обмотками.

По своей конструкции асинхронные двигатели разделяются на два вида: двигатели с короткозамкнутым ротором и двигатели с фазным ротором. Рас­смотрим устройство трехфазного асинхронного двигателя с короткозамкнутым ротором (рис.5.2). Двигатели этого вида имеют наиболее широкое применение.

Рис.5.2. Устройство трехфазного асинхронного двигателя

с короткозамкнутым ротором:

1 — вал; 2, 6 — подшипники; 3, 7 — подшипниковые щиты; 4 — коробка выводов;

5 — вентилятор; 8 — кожух вентилятора; 9 — сердечник ротора с короткозамкну-

той обмоткой; 10 — сердечник статора с обмоткой; 11 — корпус; 12 — лапы

Неподвижная часть двигателя — статор — состоит из корпуса // и сердечника 10 с трехфазной обмоткой. Корпус двигателя отливают из алю­миниевого сплава или из чугуна либо делают сварным. Рассматриваемый двигатель имеет закрытое обдуваемое исполнение. Поэтому поверхность его корпуса имеет ряд продольных ребер, назначение которых состоит в том, чтобы увеличить поверхность охлаждения двигателя.

В корпусе расположен сердечник статора 10, имеющий шихтованную конструкцию: отштампованные листы из тонколистовой электротехничес­кой стали толщиной обычно 0,5 мм покрыты слоем изоляционного лака, собраны в пакет и скреплены специальными скобами или продольными свар­ными швами по наружной поверхности пакета. Такая конструкция Сердеч­ника способствует значительному уменьшению вихревых токов, возникаю­щих в процессе перемагничивания сердечника вращающимся магнитным полем. На внутренней поверхности сердечника статора имеются продоль­ные пазы, в которых расположены пазовые части обмотки статора, соеди­ненные в определенном порядке лобовыми частями, находящимися за преде­лами сердечника по его торцовым сторонам. Конструкция короткозамкнутого ротора приведена на рис.5.3.

Рис.5.3. Конструкция короткозамкнутого ротора: а — беличья клетка; б — ротор с медной стержневой обмоткой; в — ротор с алюминиевой литой обмоткой;

1 — сердечник ротора; 2 — стержни; 3 — замыкающие кольца;

4 — лопасти вентилятора

Обмотка статора асинхронного электродвигателя может быть соединена звездой или треугольником. Схемы соединения представлены на рис.5.4

Рис.5.4. Схемы соединения выводов трехфазных обмоток электродвигателя:

а — звезда; б — треугольник

5.3. Принцип образования вращающегося магнитного поля

Принцип образования вращающегося магнитного поля рассмотрим на при­мере простейшей трехфазной двухполюсной обмотки, каждая фаза которой состоит из одной секции, фазы обмотки соединены звездой (рис.5.5). При этом секции тока в фазных обмотках (по времени) относительно друг друга на электрический угол 120° (рис.5.5, б). Проведем ряд построений вектора МДС трехфазной обмотки Fm, соответствующих различным моментам времениt0, t1, t2,t3отмеченным на графике рис.5.5, б.

В момент времени t0ток в фазе А равен 0, в фазе В ток имеет отрица­тельное, а в фазе С — положительное направления. Эти направления тока отмечаем на рис.5.5, б в сечениях обмоток статора для данного момента времени. При этом следует помнить, что за положительное направление тока

Рис.5.5. Получение вращающегося магнитного поля: а — трехфазная обмотка статора;

б — вращение МДС; в — модель магнитного поля статора;

1-4 — обмотка фазы А; 3-6 — обмотка фазы В;

5—2 — обмотка фазы С (первая цифра — начало обмотки)

в фазной обмотке принимается направление тока от начала обмотки к ее концу и обозначается х, а, следовательно, отрицательное направление тока в обмотке соответствует направлению тока от конца к началу и обозначается •. Затем в соответствии с указанными на рис. 5, б направлениями токов определяем (по правилу буравчика) направление вектора МДС трехфазной обмотки статора (вектор Fmнаправлен вниз).

В момент времени t1т.е. через (1/3) Т, ток в фазе В равен нулю, в фазе А имеет положительное, а в фазе С — отрицательное направление. Сделав построения, аналогичные моменту времени t0, заметим, что вектор МДС обмотки статора Fmпо сравнению с его положением в момент вре­мени t0повернулся на 120° в направлении движения часовой стрелки.

Проведя аналогичные построения вектора МДС обмотки статора для момента t2и t3, видим, что каждый раз при переходе от одного момента времени к другому вектор Fmповорачивается на 120°, а за один период изменения токов в обмотках (с t0до t3) делает полный оборот (360°) и будет, таким образом, вращающимся. Вращающаяся МДС создает враща­ющееся магнитное поле, эквивалентное полю магнита N — S с индукци­ей Во (рис.5, в). Это поле вращается с синхронной частотойn0кото­рая пропорциональна частоте переменного токаfи обратно пропорцио­нальна числу пар полюсов обмоток статора р, т.е.

,

Зависимость n0 от р и f представлена в табл.5.2.

Таблица 5.2

f = 50 Гц

Р

1

2

3

4

5

6

n0, об/мин

3000

1500

1000

750

600

500

р=1

f. ГЦ

50

100

200

400

500

1000

Круговое вращающееся магнитное поле характеризуется тем, что пространственный вектор магнитной индукции этого поля Во вра­щается равномерно (n0= const).

При необходимости изменить направление вращения магнитного поля статора нужно по­менять порядок следования токов в фазных обмотках статора, для чего переключают фазы на зажимах двигателя (рис.5.6).

Рис.5.6. Изменение направления вращения магнитного поля.

Устройство и принцип работы асинхронного двигателя

Немало техники — бытовой, строительной, производственной имеют двигатели. Если задаться целью и проверить тип мотора, в 90% окажется, что стоит асинхронный двигатель. Это обусловлено простотой конструкции, высоким КПД, отсутствием электрического контакта с движущейся частью (в моделях с короткозамкнутым ротором). В общем, причин достаточно. 

Что такое асинхронный двигатель и принцип его действия

Любой электродвигатель — устройство для преобразования электрической энергии в механическую. Электрический двигатель состоит из неподвижной (статор) и подвижной части (ротор). Строение статора таково, что он имеет вид полого цилиндра, внутри которого имеется обмотка. В это цилиндрическое отверстие вставляется подвижная часть — ротор. Он также имеет вид цилиндра, но меньшего размера. Между статором и ротором имеется воздушный зазор, позволяющий ротору свободно вращаться. Ротор вращается из-за наводимых магнитным полем статора токов. По способу вращения двигатели делят на синхронные и асинхронные.

Так выглядит разобранный асинхронный двигатель с короткозамкнутым ротором

Асинхронный электродвигатель отличается тем, что частота вращения ротора и магнитного поля, создаваемого статором, у него неравны. То есть, ротор вращается несинхронно с полем, что и дало название этому типу машин. Характерно, в рабочем режиме скорость его вращения меньше. Второе название этого типа двигателей — индукционные. Это название связано с тем, что движение происходит за счёт наводимых на нём токов индукции.

Асинхронный двигатель в разобранном виде: основные узлы и части

Коротко описать принцип работы асинхронного двигателя можно так. При включении мотора на обмотки статора подаётся ток, из-за чего возникает переменное магнитное поле. В область действия силовых линий этого попадает ротор, который начинает вращаться вслед за переменным полем статора.

Статор

Статор асинхронного двигателя состоит из трёх частей: корпуса, сердечника и обмотки. Корпус статора служит в качестве опоры для электродвигателя. Изготавливают его из стали или чугуна, сваркой или литьём. К прочности корпуса предъявляются высокие требования, так как при работе возникают вибрации в результате которых может сместиться ротор, что приведёт к заклиниванию мотора и выходу его из строя.

Статор асинхронного двигателя

Есть и ещё одно требование — геометрия корпуса должна быть идеальной. Между обмоткой статора и ротором зазор делают в несколько миллиметров, так что малейшие отклонения могут быть критичны.

Сердечник статора

Сердечник статора асинхронного электродвигателя изготавливают из наборных металлических пластин. Так как сердечник является магнитопроводом, металл используется магнитная электротехническая сталь. Для уменьшения потерь из-за вихревых потоков сердечник набирается из пластин, покрытых слоем диэлектрика (лак).

Сердечник статора набирается из тонких металлических изолированных пластин

Толщина одной пластины — 0,35-0,5 мм. Они собираются в единый пакет, так чтобы пазы всех пластин совпадали. В эти пазы затем укладываются витки обмотки.

Обмотка статора и количество оборотов электродвигателя

Статор асинхронного электромотора чаще всего имеет трёхфазную обмотку возбуждения. Она называется так, потому что является причиной движения ротора. Обмотка статора состоит из катушек, навитых из медной проволоки которые укладываются в пазы сердечника. Каждая обмотка может состоять из нескольких витков проволоки или из одного витка. Провод используется специальный, с лаковым покрытием, которое изолирует витки друг от друга и от стенок сердечника.

Как уже говорили, чаще всего обмотка статора асинхронного двигателя имеет три фазы. В этом случае оси катушек расположены со сдвигом 120°. При таком строении магнитное поле имеет два полюса и делает один полный оборот за один цикл трёхфазного питания. При частоте в электросети равной 50 Гц, скорость вращения поля (и ротора) 50 об/сек или 3000 об/мин.

Укладка катушек обмотки статора асинхронного двигателя

Для уменьшения скорости вращения ротора в асинхронном двигателе обмотку делают с большим количеством полюсов. Так с четырехполюсным стартером скорость вращения будет вдвое меньше — 1500 об/мин. Обмотка с шестью полюсами статора даёт втрое меньшую скорость — 1000 об/мин. С восемью полюсами — в четыре раза меньше, т. е. 750 об/мин. Ещё более «медленные» электромоторы делают очень редко.

Концы обмоток статора выводятся на клеммную коробку корпуса. Тут они могут соединяться по принципу «звезда» или «треугольник» в зависимости от типа подаваемого питания (220 В или 380 В).

Ротор

Ротор асинхронного электродвигателя бывает двух видов: короткозамкнутым и фазным. Чаще всего встречаются машины с короткозамкнутым ротором. Их преимущество в простоте конструкция и несложной технологии изготовления. Что еще важно, в таких моторах отсутствует контакт с динамической конструкцией. Это повышает долговечность, делает обслуживание более редким и простым.

Асинхронный двигатель может быть с короткозамкнутым и фазным

Асинхронные электромоторы с фазным ротором имеют более сложную конструкцию. Но они позволяют плавно регулировать скорость без дополнительных устройств, со старта имеют высокий крутящий момент. Так что приходится выбирать: более простая конструкция или возможность регулировки скорости вращения.

Устройство короткозамкнутого ротора

Ротор состоит из вала и цилиндрической конструкции из короткозамкнутых стержней. Внешне эта конструкция очень напоминает беличье колесо, поэтому так часто называют короткозамкнутую обмотку ротора.

Устройство короткозамкнутого ротора

Изначально и стержни, и замыкающие кольца изготавливались из меди. Роторы современных асинхронных двигателей мощностью до 100 кВт делают из алюминиевых стержней, с алюминиевыми же замыкающими дисками. Расстояние между стержнями заливается снова-таки алюминиевым сплавом. Получается короткозамкнутый ротор, но уже со сплошным покрытием.

Так как при работе выделяется значительное количество тепла, для охлаждения перемычки «беличьего колеса» делают с дополнительными вентиляционными лопатками. Так во время работы происходит самоохлаждение. Оно работает тем эффективнее, чем выше скорость вращения.

Как устроен асинхронный двигатель: устройство и компоновка деталей

Ротор устанавливается в статор, концы вала фиксируются при помощи крышек с вмонтированными подшипниками. Это двигатель без щеток (безщеточный). Никаких дополнительных контактов и электрических соединений. Подвижная часть мотора начинает вращаться при наличии магнитного поля на статоре. Оно возникает после подачи питания. Это поле вращается, заставляя вращаться и предметы, которые находятся в его поле. Простая и надёжная конструкция, которая обусловила популярность электрических двигателей этого типа.

Как сделан фазный ротор

Устройство фазного ротора мало чем отличается от обмотки статора. Те же наборные кольца с пазами под укладку медных катушек. Количество обмоток ротора три, соединены они обычно «звездой».

Так выглядит фазный ротор асинхронного двигателя

Концы роторных обмоток крепят к контактным кольцам из меди. Эти кольца жёстко закреплены на валу. Кроме того, они обязательно изолированы между собой, не имеют электрического контакта со стальным валом (крепятся к стержню через диэлектрические прокладки). Так как наличие колец отличительная черта этого типа движков, иногда их называют кольцевыми.

Асинхронный двигатель с фазным ротором

Для фиксации ротора к корпусу статора делают две крышки с подшипниками. На одной из крышек закрепляются щетки, которые прижимаются к кольцам на валу, за счёт чего имеют с ними хороший контакт. Для регулировки скорости вращения щетки соединены с реостатом. Изменяя его сопротивление, меняем напряжение, а с ним и скорость вращения.

Что лучше короткозамкнутый или фазный?

Несмотря на то что двигатели с фазовым ротором лучше стартуют, позволяют в процессе работы плавно менять скорость при помощи обычного реостата, чаще применяется моторы короткозамкнутого типа. В этой конструкции отсутствуют щетки, которые выходят из строя первыми. Кроме того, более простое устройство подвижной части снижает стоимость двигателя, агрегат служит дольше, уход и техобслуживание проще.

Какой лучше: короткозамкнутый ротор или фазный

Тем не менее стоит более подробно ознакомиться с достоинствами и недостатками обоих типов асинхронных двигателей. Итак, достоинства короткозамкнутого асинхронного двигателя:

  • Простая конструкция.
  • Лёгкое обслуживание.
  • Более высокий КПД.
  • Нет искрообразования.

Недостатки:

Из-за высокого пускового тока прямое включение допускается для двигателей мощностью до 200 кВт. Более мощные требуют пускорегулирующей аппаратуры. Обычно используют частотный преобразователь, который плавно увеличивает ток, обеспечивая плавный старт без перегрузок.

Преимущество асинхронного фазного двигателя:

  • Быстрый и беспроблемный старт.
  • Позволяет менять скорость в процессе работы.
  • Прямое подключение возможно, практически без ограничения мощности.

Недостатки тоже есть: наличие щёток, возможность искрения, сложное и частое обслуживание.

Как регулируется частота вращения

Как уже писали, частота вращения ротора зависит от количества полюсов статора. Чем больше количество полюсов, тем меньше скорость. Но это не только так можно регулировать скорость вращения. Она еще зависит от напряжения и частоты питания.

Способы регулирования частоты асинхронного двигателя

Напряжение можно регулировать, установив потенциометр на входе. Частоту регулируют поставив частотный преобразователь. Частотник — более выгодное решение, так как он ещё и снижает стартовые токи и может быть программируемым.

Однофазный асинхронный двигатель

Выше рассматривался трехфазный асинхронный двигатель, в однофазном асинхронном двигателе их две. Одна рабочая, вторая вспомогательная. Вспомогательная нужна для того, чтобы придать первоначальное вращение ротору. Потому может называться ещё пусковой или стартовой.

Однофазный асинхронный двигатель имеет две обмотки: рабочую и вспомогательную (стартовую или пусковую)

Когда в статоре включена одна обмотка, она создаёт два равных магнитных поля, вращающихся в разные стороны. Если ввести в это поле ротор, который уже имеет какое-то начальное вращение, магнитное поле будет поддерживать это вращение. Но как запустить ротор на старте? Как придать ему вращение, ведь от одной обмотки возникают два равноценных магнитных поля, направленные в разные стороны. Так что с их помощью заставить вращаться ротор невозможно. В простейшем варианте вращение задаётся вручную — механически. Затем вращение подхватывает поле.

Чтобы автоматизировать запуск однофазного асинхронного двигателя и сделана вспомогательная обмотка. Она сконструирована так, что подавляет одну из составляющих магнитного поля основной обмотки и усиливает вторую. Соответственно, одна из составляющих перевешивает, задавая вращение ротора. Затем стартовая обмотка отключается, вращение поддерживает основная.

Асинхронный двигатель: принцип работы и устройство :

Из всего спектра выпускаемых в настоящее время электрических моторов наибольшее распространение получил двигатель асинхронный трёхфазный. Практически половина производимой в мире электроэнергии используется именно этими машинами. Они широко применяются в металлообрабатывающей и деревообрабатывающей промышленности. Асинхронный двигатель незаменим на фабриках и насосных станциях. Без таких машин не обойтись и в быту, где они используются и в другой домашней технике, и в ручном электроинструменте.

Область применения этих электрических машин расширяется с каждым днём, так как совершенствуются и сами модели, и используемые для их изготовления материалы.

Каковы же основные части этой машины

Разобрав двигатель асинхронный трехфазный, можно наблюдать два главных элемента.

1. Статор.

2. Ротор.

Одна из важнейших деталей — статор. На фото сверху эта часть двигателя расположена слева. Он состоит из следующих основных элементов:

1. Корпус. Он необходим для соединения всех деталей машины. Если двигатель небольшой, то корпус изготавливают цельнолитым. В качестве материала используют чугун. Применяются также сталь или сплавы алюминия. Иногда корпус малых двигателей совмещает функции сердечника. Если же двигатель имеет большие размеры и мощность, то корпус сваривают из отдельных частей.

2. Сердечник. Этот элемент двигателя запрессовывается в корпус. Служит он для улучшения качеств магнитной индукции. Выполняется сердечник из пластин электрической стали. Для того чтобы снизить потери, неизбежные при появлении вихревых токов, каждая пластина покрывается слоем специального лака.

3. Обмотка. Она размещается в пазах сердечника. Состоит из витков медной проволоки, которые собираются в секции. Соединённые в определённой последовательности, они образуют три катушки, которые в совокупности являются обмоткой статора. Подключается она непосредственно к сети, поэтому называется первичной.

Ротор — это подвижная часть двигателя. На фото он находится справа. Служит он для преобразования силы магнитных полей в механическую энергию. Состоит ротор асинхронного двигателя из следующих деталей:

1. Вал. На хвостовиках его закреплены подшипники. Они запрессовываются в щиты, крепящиеся болтами к торцовым стенкам коробки статора.

2. Сердечник, который собирается на валу. Состоит из пластин специальной стали, обладающей таким ценным свойством, как низкое сопротивление магнитным полям. Сердечник, обладая формой цилиндра, и является основой для укладки обмотки якоря. Роторная, или, как её ещё называют, вторичная обмотка получает энергию благодаря магнитному полю, которое появилось вокруг катушек статора при прохождении по ним электрического тока.

Двигатели по типу изготовления подвижной части

Различают двигатели:

1. Имеющие короткозамкнутую обмотку ротора. Один из вариантов исполнения этой детали показан на рисунке.

Асинхронный двигатель с короткозамкнутым ротором имеет обмотку, сделанную из алюминиевых стержней, которые располагаются в пазах сердечника. В торцевой части они замкнуты кольцами накоротко.

2. Электродвигатели, имеющие ротор, изготовленный с контактными кольцами.

У обоих типов асинхронных двигателей конструкция статора одинаковая. Различаются они только исполнением якоря.

Каков же принцип работы

Якорь трёхфазного асинхронного двигателя, исполненный подобным образом, приводится во вращение благодаря эффекту возникновения переменного магнитного поля в статорных катушках. Чтобы понять, каким образом это происходит, необходимо вспомнить физический закон самоиндукции. Он гласит, что вокруг проводника, по которому проходит поток заряженных частиц, возникает магнитное поле. Величина его будет прямо пропорциональна индуктивности провода и интенсивности протекающего в нём потока заряженных частиц. Кроме того, это магнитное поле формирует силу с определённой направленностью. Именно она нас и интересует, так как является причиной вращения ротора. Для эффективной работы двигателя необходимо иметь мощный магнитный поток. Создаётся он благодаря специальному способу монтажа первичной обмотки.

Известно, что источник питания имеет переменное напряжение. Следовательно, магнитное поле вокруг статора будет иметь такую же характеристику, напрямую зависящую от изменения тока в подающей сети. Примечательно то, что каждая фаза смещена одна относительно другой на 120˚.

Что происходит в обмотке статора

Каждая фаза сети питания подключается к соответствующей катушке статора, поэтому возникающее вокруг них магнитное поле будет смещено на 120˚. Источник питания имеет переменное напряжение, следовательно, вокруг катушек статора, которыми располагает асинхронный двигатель, будет возникать переменное магнитное поле. Схема асинхронного двигателя собирается так, чтобы магнитное поле, возникающее вокруг катушек статора, постепенно изменялось и последовательно переходило от одной обмотки к другой. Таким образом создаётся эффект вращающегося магнитного поля. Можно вычислить его частоту вращения. Измеряться она будет в оборотах за минуту. Определяется по формуле: n=60f/p, где f — это частота переменного тока в подключенной сети (Гц), p — соответствует числу пар полюсов, смонтированных на статоре.

Как работает ротор

Теперь необходимо рассмотреть, какие процессы возникают во вторичной обмотке. Асинхронный двигатель с короткозамкнутым ротором имеет конструкционную особенность. Дело в том, что к его якорной обмотке напряжение не подводится. Оно там возникает благодаря магнитоиндукционной связи с первичной обмоткой. Поэтому и происходит процесс, обратный тому, что наблюдался в статоре, в соответствии с законом, который гласит, что при пересечении проводника, а в нашем случае это короткозамкнутая обмотка ротора, магнитным потоком в нём возникает электрический ток. Откуда берётся магнитное поле? Оно возникло вокруг первичной катушки при подключении трёхфазного источника питания.

Соединим статор и ротор. Что получится?

Таким образом, имеем асинхронный короткозамкнутый двигатель с ротором, в обмотке которого проходит электрический ток. Он и будет причиной возникновения магнитного поля вокруг якорной обмотки. Однако полярность этого потока будет отличаться от созданного статором. Соответственно, и сила, образуемая им, будет вступать в противодействие с той, которая вызвана магнитным полем первичной обмотки. Это и приведёт в движение ротор, так как на нём собрана вторичная катушка, и хвостовики вала якоря закреплены в корпусе двигателя на подшипниках.

Рассмотрим ситуацию взаимодействия сил, возникающих от магнитных полей статора и ротора, с течением времени. Знаем, что магнитное поле первичной обмотки вращается и обладает определённой частотой. Созданная им сила будет перемещаться, имея аналогичную скорость. Это заставит асинхронный двигатель заработать. И его ротор будет свободно вращаться вокруг оси.

Эффект скольжения

Ситуация, когда силовые потоки ротора как бы отталкиваются от вращающегося магнитного поля статора, получила название скольжения. Следует отметить, что частота асинхронного двигателя (n1) всегда меньше той, с которой перемещается магнитное поле статора. Объяснить это можно так. Чтобы в роторной обмотке возник ток, она должна быть пересечена магнитным потоком с определённой угловой скоростью. И поэтому справедливо утверждение, что скорость вращения вала больше либо равна нулю, но меньше интенсивности перемещения магнитного поля статора. Ротор имеет частоту вращения, зависящую от силы трения в подшипниках, а также от величины отбора мощности с вала ротора. Поэтому он как бы отстаёт от магнитного поля статора. Именно из-за этого частота называется асинхронной.

Таким образом, электроэнергия питающего источника преобразовалась в кинетическую энергию вращающегося вала. Скорость его вращения прямо пропорциональна частоте тока питающей сети и количеству пар полюсов статора. Для увеличения частоты вращения якоря можно использовать частотные преобразователи. Однако работа этих устройств должна быть согласована с количеством пар полюсов.

Как подключить двигатель к источнику питания

Чтобы осуществить пуск асинхронного двигателя, его необходимо подключить к сети трёхфазного тока. Схема асинхронного двигателя собирается двумя способами. На рисунке показана схема соединения выводов двигателя, в которой статорные обмотки собраны способом «звезда».

На этом рисунке изображён другой способ соединения, именуемый «треугольник». Собираются схемы в клеммной коробке, закреплённой на корпусе.

Следует знать, что начала каждой из трёх катушек, их ещё называют обмотками фаз, именуются С1, С2, С3 соответственно. Аналогично подписываются концы, которые имеют названия С4, С5, С6. Если в клеммной коробке нет маркировки выводов, то начала и концы придётся определить самостоятельно.

Как сделать реверс

При возникновении потребности осуществить пуск асинхронного двигателя, изменив направление вращения якоря, надо просто поменять местами два провода подключаемого источника трехфазного напряжения.

Однофазный асинхронных двигателей

В быту проблематично использовать трёхфазные двигатели из-за отсутствия требуемого источника напряжения. Поэтому существует однофазный асинхронный двигатель. Он также имеет статор, но с существенным конструкционным отличием. Оно заключается в количестве и способе расположения обмоток. Это определяет и схему запуска машины.

Если однофазный асинхронный двигатель имеет статор с двумя обмотками, то расположены они будут со смещением по окружности под углом в 90˚. Катушки называются пусковой и рабочей. Соединяются они параллельно, но, чтобы создать условия для появления вращающееся магнитного поля, дополнительно вводится активное сопротивление или конденсатор. Это создаёт сдвиг фаз токов обмоток, близкий к 90˚, благодаря чему создаётся условие для образования вращающегося магнитного поля.

Если статор имеет только одну катушку, то подключённый к ней однофазный источник питания будет причиной пульсирующего магнитного поля. В замкнутой накоротко обмотке ротора появится переменный ток. Он станет причиной возникновения своего магнитного потока. Результирующая двух образовавшихся сил будет равна нулю. Поэтому для запуска двигателя, имеющего такую конструкцию, требуется дополнительный толчок. Создать его можно, подключив конденсаторную схему пуска.

Подключить двигатель к однофазной цепи

Изготовленный для работы от трёхфазного источника питания электромотор может работать и от домашней однофазной сети, но при этом существенно снизятся его характеристики, такие как КПД, коэффициент мощности. Кроме того, снизятся мощность и пусковые показатели.

Если же без подключения не обойтись, то требуется из трёх обмоток статора собрать схему, где их будет только две. Одна рабочая, а другая пусковая. Например, есть три катушки с началами С1, С2, С3 и концами С4, С5, С6 соответственно. Для создания первой (рабочей) обмотки двигателя объединяем концы С5 и С6, а их начала С3 и С2 подключаем к источнику однофазного тока, например, бытовой сети 220 вольт. Роль второй, пусковой обмотки, будет выполнять оставшаяся незадействованная катушка стартера. Она подключается к источнику питания через конденсатор, соединённый с ней последовательно.

Параметры асинхронного двигателя

При подборе таких машин, а также при дальнейшей их эксплуатации необходимо учитывать характеристики асинхронного двигателя. Они бывают энергетические — это коэффициент полезного действия, коэффициент мощности. Важно учитывать и механические показатели. Основным из них считается зависимость между скоростью вращения вала и рабочим усилием, прикладываемым к нему. Существуют ещё пусковые характеристики. Они определяют пусковой, минимальный и максимальный моменты и их соотношение. Важно также знать, каков пусковой ток асинхронного двигателя. Для наиболее эффективного использования двигателя необходимо учитывать все эти параметры.

Нельзя оставить без внимания вопрос энергосбережения. В последнее время он рассматривается не только с позиции уменьшения эксплуатационных затрат. Экономичность электродвигателей снижает уровень экологических проблем, связанных с производством электроэнергии.

Перед производителями постоянно ставятся задачи разработки и выпуска энергосберегающих двигателей, повышения эксплуатационного ресурса, уменьшения шумового уровня.

Улучшить энергосберегающие показатели можно путём снижения потерь при эксплуатации. А они напрямую зависят от рабочей температуры машины. Кроме того, совершенствование этой характеристики неизбежно приведёт к увеличению срока эксплуатации двигателя.

Снизить температуру обмоток можно, применяя вентилятор наружного обдува, закреплённый на хвостовике вала ротора. Но это приводит к неизбежному повышению шума, производимого двигателем при работе. Особенно ощутим этот показатель при высокой скорости вращения ротора.

Таким образом, видно, что асинхронный двигатель имеет один существенный недостаток. Он не способен поддерживать постоянную частоту вращения вала при возрастающих нагрузках. Зато такой двигатель имеет множество преимуществ по сравнению с образцами электродвигателей других конструкций.

Во-первых, он имеет надёжную конструкцию. Работа асинхронного двигателя не вызывает никаких сложностей при его использовании.

Во-вторых, асинхронный двигатель экономичен в производстве и эксплуатации.

В-третьих, эта машина универсальна. Имеется возможность её использования в любых устройствах, которые не требуют точного поддержания частоты вращения вала якоря.

В-четвёртых, двигатель с асинхронным принципом действия востребован и в быту, получая питание только от одной фазы.

Асинхронный двигатель: принцип работы, особенности конструкции

Асинхронный двигатель представляет собой мотор переменного тока, скорость вращения которого не равна частоте напряжения в обмотках статора. Эти электродвигатели получили широкое распространение, потому что являются достаточно выносливыми. Асинхронный однофазный, трехфазный моторы могут работать при значительной нагрузке продолжительное время, не перегреваясь, держать свой крутящий момент. Работа асинхронного двигателя проста, но при этом его характеристики напрямую зависят от параметров обмоток и технологии их укладки.

Оглавление:

  • Область применения
  • Разновидности моторов
  • Устройство асинхронного двигателя
  • Особенности устройства каждого из элементов
  • Ротор
  • Принцип работы
  • Маркировка электродвигателя
  • Скольжение
  • Двигателя с фазным ротором
  • Недостатки асинхронных электродвигателей

Область применения

Асинхронный двигатель получил широкое распространение в качестве тягового, второстепенного и прочих видов силовых компонентов. Учитывая особенности его конструкции, отсутствие скользящих контактов, эксплуатация такого мотора намного проще. Также, схема подключения не требует сложных устройств управления, если говорить о простом режиме работы с постоянной частотой. Плюс ко всему и срок службы до сервисного обслуживания намного дольше, так как внутреннее пространство и обмотки не загрязняются графитом.

Применяется асинхронный электродвигатель во многих сферах:

  • Системы вентиляции – благодаря выносливости и неприхотливости при эксплуатации моторы с короткозамкнутыми роторами достаточно часто используются в качестве вентиляторов. Они хорошо переживают продолжительную работу на максимальных оборотах, обеспечивая пользователей или технологическое оборудование интенсивным воздушным потоком.
  • Конвейеры – благодаря высокому моменту, способности его поддерживать при нагрузках моторы асинхронного типа стали идеальным вариантом для реализации управления подвижными производственными линиями.
  • Следящие системы и приводные устройства – особо часто применяют асинхронные двигатели в приводных системах на технологическом оборудовании. Но для организации управления таким типом двигателя потребуется особая схема подключения и частотный блок управления, а ротор асинхронного двигателя оснащается неодимовыми магнитами. Такие моторы рассчитаны на работы с частотой до 400 Гц.
  • Бытовая сфера. Из такого мотора можно сделать различные рабочие агрегаты бытового назначения или для небольшой мастерской: вентилятор, управляемые заслонки, циркулярная пила, фуганок, прочее оборудование.

Разновидности моторов

От типа питающей сети асинхронные электродвигатели подразделяются на:

  1. Трехфазные. Обмотки асинхронных двигателей такого типа состоят из 3 катушек, специальным образом уложенных в пазах статора. Они предназначены для работы в промышленности, так как имеют высокий КПД и cosφ приближенный к 1, а для обеспечения дополнительной экономии работают с системой рекуперации энергии при торможении, выступая генератором.
  2. Однофазный асинхронный двигатель. Применяется в быту и промышленности: старые стиральные машины, бытовые вентиляторы, холодильное и прочие виды оборудования. Имеют меньший КПД, мощность, по сравнению с трехфазными, что объясняется потерями в статоре из-за отсутствия дополнительной фазы.

Устройство асинхронного двигателя

Устройство асинхронного двигателя является достаточно простым:

  • Статор – является неподвижной частью электрического двигателя, который снабжен обмотками возбуждения.
  • Ротор – вращающийся элемент мотора, который крутится под действием магнитного поля, создаваемым обмотками возбуждения, расположенными на статоре. Различают 2 типа двигателя от конструкции ротора: короткозамкнутые и фазные.
  • Фланцы – статическая часть электрического двигателя, в которой находятся опорные подшипники, удерживающие ротор и являющиеся своего рода крепежом для статора. Он зажимается между двумя фланцами-крышками стяжными болтами. Либо они прикручены к корпусу статора.
  • Клеммная коробка – часть статической конструкции двигателя, в которую выводятся концы обмоток со статора. Посредством его осуществляется подключение двигателя к схеме управления.
  • Крыльчатка и защитный кожух – используется для обеспечения принудительной вентиляции, а кожух предохранит обслуживающий персонал от травматизма.
  • Дополнительные сервисные обмотки – при необходимости совместно с обмоткой возбуждения на статоре может быть дополнительная, предназначенная для контроля и измерения рабочих параметров мотора во время его работы.
  • Термодатчики – промышленные асинхронные двигателя, кроме обмоток, также имеются датчики температуры, контролирующие перегрев на случай резкого возрастания тока потребления.

Также двигателя могут быть оборудованными планарными редукторами и изготовленными в едином корпусе. Это преимущественно промышленные типы агрегатов, применяемые на станках, конвейерах и прочих видах оборудования.

Особенности устройства каждого из элементов

Статор асинхронного электродвигателя представляет собой цилиндр, изготовленный из листов специальной электротехнической стали толщиной до 0.5 мм, покрытых лаком. Этот цилиндр является сердечником, с внутренней стороны имеются пазы, куда укладываются обмотки. В трехфазных, соответственно, сдвинутые на 120 градусов, в однофазных – на 90. Обмотки могут быть уложены несколькими способами в зависимости от схемы их подключения и эксплуатационных требований. Именно от этого зависит такой показатель, как момент и мощность на валу. А при наличии количества полюсов более, чем 2 пары, то он может использоваться в следящих системах управления приводными механизмами.

Статор запрессован в корпус либо же расположен между фланцами. Корпус и боковые крышки изготовлены из чугуна или сплава алюминия. На них имеются ребра для увеличения площади и повышения эффективности отведения тепла при работе. Такое устройство позволяет лучше охлаждать двигатель, обеспечивая продолжительную работу при предельных нагрузках.

Однополюсная обмотка такого электродвигателя наматывается из 3-х катушек. Каждая из них называется фазой. Для достижения требуемых параметров работы мотора обмотка укладывается в противоположных пазах сердечника. Катушки соединяются между собой специальным образом в соответствии со схемой подключения и ожидаемых характеристик, обеспечивая возбуждение магнитного поля и необходимый момент при вращении.

Все концы датчиков выводятся в клеммную коробку, что позволяет их соединять в звезду или треугольник, что зависит от схемы подключения системы управления, величины питания. 3-фазный электродвигатель является универсальным, при необходимости его можно подключать к однофазному питанию с линейным напряжением. При соединении обмоток треугольником напряжение обмоток равно линейному Uф, а при подключении по схеме звезды – √3Uф.

Ротор

Ротор в асинхронном электродвигателе представляет собой вал, на котором закрепляется сердечник, набранный из листов электротехнической стали. Что трехфазный, что однофазный мотор, ротор имеет практически одинаковую конструкцию. В качестве обмотки в обычных асинхронных моторах на рабочую частоту 50Гц используются куски медного или алюминиевого провода большой толщины или стержни, соединенные между собой торцевыми замыкающими кольцами.

Для того чтобы обмотка надежно удерживалась в сердечнике, имеются специальные пазы, куда она запрессована. Торцевые кольца могут быть снабжены вентиляционными лопатками, предназначенными для улучшения интенсивности охлаждения внутреннего пространства. Вал закреплен на подшипниках, впрессованных во фланцы или плитах, закрепленных к станине в зависимости от устройства.

Между валом и статором имеется зазор, величина которого зависит от пусковых параметров мотора. Если необходимо увеличить мощность и момент, то он должен быть как можно меньше. Одновременно с ростом мощности увеличиваются и добавочные потери в верхних слоях статора и ротора.

Принцип работы

Асинхронный двигатель принцип работы имеет достаточно простой. Он основан на двух физических явлениях:

  1. При подаче напряжения на статорные обмотки в двигателе возникает вращающееся магнитное поле.
  2. Поле оказывает воздействие на ток, индуцируемый в роторе. А это создает крутящий момент, поворачивающий вал двигателя относительно полюсов.

За каждый поворот вала полюса меняются полярностью с частотой сети. Поэтому напряжение обмотки статора имеет стандартную частоту, а скорость вращения зависит от:

  • нагрузки на валу;
  • количества пар полюсов;
  • особенностей намотки статора.

Маркировка электродвигателя

Для упрощения процесса подключения и выбора схемы асинхронного 3-фазного ЭД на каждом из них имеется соответствующая маркировка. В ней указываются такие характеристики, как:

  • крутящий момент;
  • мощность;
  • максимальная скорость вращения;
  • cosφ.

Также в зашифрованной маркировке имеется указание типа двигателя, количества полюсов. Их необходимо учитывать при выборе мотора для тех или для других нужд. А для облегчения процесса подключения все концы сводятся в клеммную коробку, где подписаны следующим образом:

Если мотор подключается к сети 380 В с линейным напряжением обмоток 220В, то его схема обмоток должна быть треугольником. Но если двигатель подключается к стандартной сети 380В, то схема включения обмоток должна быть звездой.

Скольжение

При рассмотрении принципа работы асинхронного электрического двигателя применяют такое понятие, как скольжение, и обозначается параметр буквой «s». Оно возникает из-за разницы в скоростях вращения магнитного поля статора и реальной частоты вращения ротора. При этом первый показатель на порядок больше. Следовательно, чем выше разница, тем сильнее скольжение.

Скольжение позволяет объяснить принцип работы. За счет отставания частоты вращения ротора от магнитного поля статора и обеспечивается наведение ЭДС в короткозамкнутом роторе. Но если бы поле вращалось со скоростью частоты ЭДС в роторе, то собственно вращения не происходило.

Скольжение, являясь относительной величиной, измеряется в %. И становится больше при увеличении нагрузки на валу двигателя.

Двигателя с фазным ротором

Когда речь идет о моторах с фазным ротором, то он имеет немного иное устройство. Также имеется 3 обмотки, которые соединены в звезду, а их начала выведены на подводящие кольца. Сравнивая два типа двигателя с короткозамкнутым и фазным роторами, то у второго развивается момент сразу же под высокой нагрузкой. Такие моторы получили применение в системах, где требуется сделать мощный приводной агрегат с высокой тягой. Также такие моторы являются более удобными для регулируемого управления посредством регулятора частоты.

Недостатки асинхронных электродвигателей

В стандартном исполнении без магнитов на роторе асинхронные электродвигатели являются маломощными. Они неспособны сразу обеспечить высокий крутящий момент. А также для их запуска требуется большое количество электрической мощности, которая может превышать предельно допустимые показатели системы питания. Поэтому их пуск должен выполняться без нагрузки. Кроме этого, асинхронные электродвигатели являются мощными источниками электромагнитных помех, сопровождающимися сбоями в работе различных других устройств, находящихся вблизи. Для снижения их влияния необходимо предусматривать качественное заземление и обязательное экранирование.



1.1 Устройство и принцип действия асинхронного двигателя с короткозамкнутым ротором. Технология ремонта и обслуживание асинхронного двигателя с короткозамкнутым ротором

Похожие главы из других работ:

Асинхронные двигатели в системах электропривода

2.2 Управление пуском АД с короткозамкнутым ротором

Схема управления асинхронным двигателем с использованием магнитного пускателя (рисунок 6) включает в себя магнитный пускатель, состоящий из контактора KM и двух встроенных в него тепловых реле защиты KK…

Асинхронные двигатели в системах электропривода

3. Управление реверсом АД с короткозамкнутым ротором

Основным элементом в схеме управления реверсом (рисунок 8) является реверсивный магнитный пускатель, который включает в себя два линейных контактора (KM1 и KM2) и два тепловых реле защиты (KK)…

Изготовление статора трёхфазного асинхронного двигателя

1. Технологический процесс, конструктивные особенности и принцип действия трёхфазного асинхронного двигателя

Изготовление статора трёхфазного асинхронного двигателя

1.1 Принцип действия трёхфазного асинхронного двигателя

Асинхронный двигатель отличается простотой конструкции и несложностью обслуживания. Как и любая машина переменного тока, асинхронный двигатель состоит из двух основных частей — ротора и статора. Статором называется неподвижная часть машины…

Импульсные водородные тиратроны

2. Устройство и принцип действия

Основные элементы конструкции тиратрона (рис. 2): подогревный оксидный катод, анод и расположенная между ними двойная металлическая перегородка с отверстиями, выполняющая роль управляющей сетки…

Модернизация рыбоочистительной машины РО-1М

2.1 Устройство и принцип действия

Рыбоочиститель РО-1М Очистка рыбы производится путем механического воздействия вращающихся рифленых поверхностей на чешую рыбы. На предприятиях общественного питания для очистки рыбы применяются приспособления РО-1…

Организация и выполнение технического обслуживания и ремонта асинхронного двигателя АИР63А2

1.2 Устройство и принцип действия асинхронного двигателя АИР63А2

Данный двигатель состоит из: Статор — неподвижная часть электрической машины, взаимодействующая с подвижной частью — ротором. Ротор — вращающаяся часть двигателей и рабочих машин, на которой расположены органы…

Пиролиз как термический метод переработки древесины

4. Устройство и принцип действия экстрактора

Экстрактор. Наиболее экономичным и технологически надежным является способ выделения из жижки уксусной кислоты. Извлечение ее растворителем-экстрагентом. Процесс извлечения уксусной кислоты из жижки ведут в экстракторах…

Проектирование сушильного цеха с камерами СПЛК-2

1. Устройство и принцип действия оборудования

Разработка лесосушильного цеха на базе сушильных камер ВК-4

1. Устройство и принцип действия оборудования

Современное помольное оборудование

Устройство и принцип действия

Измельчение материала в струйной мельнице происходит в размольной камере, в которую подают сжатый воздух или перегретый пар. Мелющий поток через сопла поступает в камеру измельчения, где формирует аэрозоль из твердого измельчаемого вещества…

Технология производства пастеризованного молока

Устройство и принцип действия линии

Вначале оценивается качество молока и производится его приемка, в процессе которой молоко перекачивается центробежными насосами 1 из автомолцистерн…

Технология ремонта и обслуживание асинхронного двигателя с короткозамкнутым ротором

1.4 Технологическая карта ремонта и обслуживания асинхронного двигателя с короткозамкнутым ротором

№ п/п Наименование и содержание работ Оборудование и приспособления Технические требования 1 Наружный осмотр электрической машины, в том числе систем управления, защиты, вентиляции и охлаждения…

Управление асинхронными двигателями

1.3 Схема включения асинхронного двигателя с фазным ротором

Рис. 3. Схема пуска асинхронного двигателя с фазным ротором Используя схему асинхронного двигателя (рис. ) рассмотрим запуск в две ступени который проводится с использованием релейно-контакторной аппаратуры…

Центробежные компрессоры

Устройство и принцип действия

Центробежным называется такой компрессор, сжатие газа на колесе которого осуществляется за счет действия центробежных сил инерции на массы воздуха, увлекаемые во вращательное движение совместно с колесом компрессора…

Асинхронный двигатель

| Асинхронный двигатель

Наиболее часто используемым двигателем в мире является асинхронный двигатель или асинхронный двигатель. Это двигатель, который может работать без электрического подключения к ротору. В этом посте будет обсуждаться асинхронный двигатель (асинхронные двигатели), его типы, то есть однофазный, трехфазный, беличий корпус, контактное кольцо и т. Д., Особенности, принцип работы, применение, преимущества и недостатки.

Что такое асинхронный двигатель (асинхронный двигатель)

Асинхронный двигатель или асинхронный двигатель — это самый основной и распространенный тип электродвигателя, который имеет только обмотки Armortisseur , что означает вспомогательную обмотку только на якоре.В асинхронном двигателе (или асинхронном двигателе) статорная часть двигателя передает электромагнитное поле своей обмоткой на роторную часть двигателя. Это генерирует электрический ток в роторе. Электрический ток создает крутящий момент, который приводит в движение.

Рис. 1 — Введение в асинхронный двигатель (асинхронный двигатель)

Он упоминается как «Асинхронный двигатель », поскольку он всегда будет работать со скоростью, меньшей, чем его синхронная скорость.Синхронная скорость определяется как скорость магнитного поля вращающейся машины, которая снова определяется количеством полюсов и частотой в машине.

Поскольку в этом типе двигателя ротор получает поток и вращение за счет магнитного поля в статоре, существует задержка между токами в статоре и роторе. Из-за этого ротор никогда не достигает своей синхронной скорости. Отсюда термин «асинхронный двигатель». На рис. 2 показаны части асинхронного двигателя.

Фиг.2 — Детали асинхронного двигателя (асинхронный двигатель)

Конструкция асинхронного двигателя (асинхронный двигатель)

Он состоит в основном из двух частей, а именно:

Статор

Это неподвижная часть электродвигателя. Эта часть обеспечивает электромагнитное поле, необходимое для вращения вращающейся части двигателя. Он состоит из ряда штамповок с прорезями для трехфазной обмотки. Каждая обмотка отделена от другой обмотки на 120 градусов.

Ротор

Это вращающаяся часть двигателя.Более распространенный тип ротора в асинхронных двигателях (или асинхронных двигателях) — это ротор с короткозамкнутым ротором. Ротор имеет форму якоря с сердечником цилиндрической формы. Вокруг сердечника есть параллельные прорези, через которые проходит ток. Сердечник имеет стержень из алюминия, меди или сплава.

Рис.3 — Базовый ротор и статор

Типы асинхронных двигателей (асинхронные двигатели)

Он подразделяется на два типа:

  • Однофазный асинхронный двигатель
  • Трехфазный асинхронный двигатель
Однофазный асинхронный двигатель

Однофазный асинхронный двигатель

не является самозапускающимся двигателем.Здесь двигатель подключен к однофазному источнику питания, который передает переменный ток к основной обмотке. Поскольку источник переменного тока представляет собой синусоидальную волну, он создает пульсирующее магнитное поле в обмотке статора.

Пульсирующие магнитные поля — это два магнитных поля, вращающихся в противоположных направлениях; следовательно, крутящий момент не создается. Таким образом, после подачи тока ротор необходимо переместить в любом направлении извне, чтобы двигатель заработал. Однофазный индуктор отсюда; Могут быть разные разновидности в зависимости от устройства, которое используется для запуска двигателя:

  • Двигатель с расщепленными фазами
  • Двигатель с экранированными полюсами
  • Конденсаторный пусковой двигатель
  • Конденсаторный пусковой двигатель и конденсаторный двигатель

Фиг.4 — Принципиальная схема (а) Однофазного (б) Трехфазного асинхронного двигателя

Трехфазного асинхронного двигателя (асинхронного двигателя)

Эти двигатели не требуют каких-либо внешних устройств, таких как конденсатор, центробежный переключатель или пусковая обмотка для Начинаем. Принцип работы этого двигателя основан на использовании трех однофазных фаз, разность фаз между которыми составляет 120 градусов. Таким образом, магнитное поле, вызывающее вращение, будет иметь одинаковую разность фаз между ними, это заставит ротор двигаться без какого-либо внешнего крутящего момента.

Для дальнейшего упрощения предположим, что это три фазы: phase1, phase2 и phase3. Итак, первая фаза 1 намагничивается, и ротор начинает двигаться в этом направлении, вскоре после этого будет возбуждена фаза 2, и тогда ротор будет притягиваться к фазе 2, а затем, наконец, к фазе 3. Таким образом, ротор продолжит вращаться.

Далее они подразделяются на категории в зависимости от типа используемого ротора:

  • Асинхронный двигатель с короткозамкнутым ротором
  • Асинхронный двигатель с контактным кольцом или двигатель с фазным ротором
Асинхронный двигатель с короткозамкнутым ротором

В этом типе ротор имеет форму Беличья клетка, отсюда и название.Ротор изготовлен из стали с очень токопроводящими металлами, такими как алюминий и медь на его поверхности. Скорость асинхронного двигателя этого типа очень легко изменить, просто изменив форму стержней в роторе.

Рис. 5 — Асинхронный двигатель с короткозамкнутым ротором

Асинхронный двигатель с контактным кольцом или двигатель с фазным ротором

Он также известен как асинхронный двигатель с фазовой обмоткой. Здесь ротор подключается к внешнему сопротивлению через контактные кольца.Скорость ротора регулируется путем регулировки внешнего сопротивления. Поскольку у этого двигателя больше обмоток, чем у асинхронного двигателя с короткозамкнутым ротором, его также называют асинхронным двигателем с фазным ротором.

Рис. 6 — Асинхронный двигатель с контактным кольцом

Характеристики асинхронного двигателя (асинхронного двигателя)

Ниже приведены характеристики двух различных типов асинхронных двигателей.

Характеристики однофазного асинхронного двигателя
  • Здесь мы выделим некоторые характеристики, которые применимы только к однофазным асинхронным двигателям:
  • Однофазные асинхронные двигатели не самозапускаются и используют однофазное питание. для вращения.
  • Чтобы изменить направление вращения в однофазных двигателях, лучше всего остановить двигатель и изменить его, иначе существует вероятность повреждения двигателя из-за момента инерции, который действует против направления, в котором вам нужно изменить вращение.
  • Для запуска двигателя вам потребуется конденсатор и / или центробежный переключатель.
  • Пусковой крутящий момент у этих двигателей низкий.
  • Они в основном используются дома или в бытовых приборах из-за низкого коэффициента мощности и эффективности.

Характеристики трехфазного асинхронного двигателя

Ниже перечислены некоторые особенности трехфазного асинхронного двигателя, которые отличает его от однофазного двигателя: специальные закуски.

  • Имеются три однофазных линии с разностью фаз 120 градусов.
  • Он имеет более простое подключение и более надежен, чем однофазные асинхронные двигатели.
  • Пусковой крутящий момент у этих двигателей выше, чем у однофазных двигателей.
  • Они в основном используются на заводах и в промышленности из-за высокого коэффициента мощности и эффективности.
  • Как работает асинхронный двигатель (асинхронный двигатель) Работа

    Явление, которое заставляет асинхронные двигатели работать, весьма интересно. Двигатели постоянного тока нуждаются в двойном возбуждении для вращения, одно для статора, а другое для ротора.Но в этих двигателях мы должны отдавать это только статору, что делает это уникальным. Как следует из названия, принцип работы этого двигателя основан на индукции. Давайте предпримем ряд шагов, которые происходят при вращении этого двигателя:

    • На обмотки статора подается питание, возникает ток и создается магнитный поток.
    • Обмотка в роторе устроена таким образом, что каждая катушка закорачивается.
    • Короткозамкнутая обмотка ротора обрезается магнитным потоком статора.

    Рис. 7 — Работа асинхронного двигателя

    Согласно законам электромагнитной индукции Фарадея, магнитное поле взаимодействует с электрической цепью, создавая ЭДС (электродвижущая сила). Итак, согласно этому закону, в катушках ротора начинает течь ток.

    • Ток в роторе генерирует другой поток.
    • Теперь есть два потока, один в статоре, а другой в роторе.
    • Поток ротора отстает от магнитного потока статора, что создает крутящий момент в роторе в направлении магнитного поля.

    Применения асинхронных двигателей

    Области применения включают:

    • Они широко используются в смесителях, игрушках, вентиляторах и т. Д.
    • Они также используются в насосах и компрессорах.
    • Малые асинхронные двигатели используются в электробритвах.
    • Они используются в буровых станках, лифтах, кранах и дробилках.
    • Они подходят для приводов текстильных фабрик и маслоэкстракционных заводов.

    Преимущества асинхронного двигателя

    Ниже приведены некоторые преимущества асинхронных двигателей:

    • Высокоэффективный и простой в конструкции.
    • Очень прочный и может работать в любых условиях.
    • Низкие эксплуатационные расходы, поскольку в них не так много деталей, как коммутаторы или щетки.
    • Они могут развивать очень высокую скорость, не беспокоясь о том, что они износятся, поскольку у них нет щеток.
    • Они просты в эксплуатации, поскольку к ротору не подключены электрические разъемы.
    • Поскольку у них нет щеток, искры не боятся, поэтому их можно использовать в загрязненных или взрывоопасных средах.
    • Скорость колебания от низкой до номинальной становится меньше.

    Недостатки асинхронного двигателя

    Асинхронные двигатели имеют простую конструкцию, которая может иметь несколько недостатков, как указано ниже:

    • Трудно контролировать скорость асинхронного двигателя, поэтому его нельзя использовать в местах, требующих точного контроль скорости.
    • При малых нагрузках наблюдается падение КПД.
    • Они имеют высокие входные импульсные токи, что дает низкое напряжение при пуске двигателя.

    См. Также: Видео на Youtube по асинхронным двигателям

      Также прочтите:
    Маховик как накопитель энергии, расчеты и требования к ротору
    Повышающий трансформатор - работа, конструкция, применение и преимущества
    Синхронный двигатель - конструкция, принцип, типы, характеристики
    Что такое клещи (клещевые щупы) - типы, принцип работы и порядок эксплуатации  

    Принцип работы и типы асинхронного двигателя

    Асинхронные двигатели — наиболее часто используемые двигатели во многих областях.Их также называют асинхронными двигателями , потому что асинхронный двигатель всегда работает со скоростью ниже синхронной. Синхронная скорость означает скорость вращающегося магнитного поля в статоре.
    В основном существует 2 типов асинхронных двигателей в зависимости от типа входного питания — (i) однофазный асинхронный двигатель и (ii) трехфазный асинхронный двигатель.

    Или их можно разделить по типу ротора — (i) двигатель с короткозамкнутым ротором и (ii) двигатель с контактным кольцом или тип

    .

    Основной принцип работы асинхронного двигателя

    В двигателе постоянного тока необходимо подавать питание как на обмотку статора, так и на обмотку ротора.Но в асинхронном двигателе только обмотка статора питается переменным током.
    • Из-за источника переменного тока вокруг обмотки статора образуется переменный магнитный поток. Этот переменный поток вращается с синхронной скоростью. Вращающийся поток называется «вращающимся магнитным полем» (RMF).
    • Относительная скорость между RMF статора и проводниками ротора вызывает индуцированную ЭДС в проводниках ротора в соответствии с законом электромагнитной индукции Фарадея. Проводники ротора закорочены, и, следовательно, ток ротора возникает из-за наведенной ЭДС.Поэтому такие двигатели называются асинхронными двигателями . (Это действие аналогично тому, что происходит в трансформаторах, поэтому асинхронные двигатели могут называться вращающимися трансформаторами .)
    • Теперь индуцированный ток в роторе также будет создавать вокруг него переменный поток. Этот поток ротора отстает от потока статора. Направление индуцированного тока ротора, согласно закону Ленца, таково, что он будет иметь тенденцию противодействовать причине его возникновения.
    • Поскольку причиной возникновения тока ротора является относительная скорость между магнитным потоком вращающегося статора и ротором, ротор будет пытаться догнать RMF статора.Таким образом, ротор вращается в том же направлении, что и магнитный поток статора, чтобы минимизировать относительную скорость. Однако ротору никогда не удается догнать синхронную скорость. Это основной принцип работы асинхронного двигателя любого типа, однофазный или трехфазный.
    Синхронная скорость:

    где, f = частота подачи

    P = количество полюсов

    Кронштейн:

    Ротор пытается догнать синхронную скорость поля статора, и, следовательно, он вращается.Но на практике ротор никогда не догоняет. Если ротор достигает скорости статора, не будет относительной скорости между потоком статора и ротором, следовательно, не будет индуцированного тока ротора и создания крутящего момента для поддержания вращения. Однако это не остановит двигатель, ротор замедлится из-за потери крутящего момента, крутящий момент снова будет действовать из-за относительной скорости. Вот почему ротор вращается со скоростью, которая всегда меньше синхронной скорости.

    Разница между синхронной скоростью (N s ) и фактической скоростью (N) ротора называется скольжением.
    Принцип работы асинхронного двигателя

    — StudiousGuy

    Асинхронные двигатели — одно из величайших изобретений в истории человечества. На ее долю приходится около 45% от общего потребления электроэнергии во всем мире, это повсеместная технология в современном мировом оборудовании. Фактически, всемирно известная корпорация по производству электромобилей Tesla назвала свою организацию в честь изобретателя асинхронного двигателя Николы Тесла. Асинхронный двигатель — это электродвигатель с приводом от переменного тока (AC), который использует электромагнитную индукцию для преобразования электрической энергии в механическую.Он также известен как асинхронный двигатель, поскольку частота вращения двигателя обычно меньше и не синхронизируется с частотой входного переменного тока. Асинхронные двигатели имеют ряд преимуществ по сравнению с аналогичными двигателями постоянного тока, такие как более низкая стоимость конструкции и обслуживания, простота эксплуатации, более высокая скорость, долговечность и т. Д., Что делает их более удобными для использования. Чтобы понять принцип работы асинхронного двигателя, давайте сначала разберемся, в каких частях он является отличной машиной.

    Указатель статей (Нажмите, чтобы перейти)

    Компоненты асинхронного двигателя

    Асинхронный двигатель может быть разных форм и размеров, но чаще всего это цилиндрическое устройство с торчащим из него осевым валом.Вращательное действие вала осуществляется за счет особого расположения следующих компонентов.

    Статор

    Статор асинхронного двигателя представляет собой полый цилиндрический сердечник, состоящий из многослойных и многослойных тонких металлических листов. Это неподвижная часть с прорезями для намотки катушки электромагнитной цепи двигателя. Многослойная структура статора используется для предотвращения потерь на вихревые токи и гистерезиса, которые в противном случае возникли бы с твердым сердечником.Катушка статора, также известная как обмотка статора, сделана из медных проводов, изолированных эмалью, лаком или смолами, чтобы избежать короткого замыкания.

    Ротор

    Ротор — это вращающаяся часть асинхронного двигателя. Это цилиндрический блок, установленный на валу, который несет механическую нагрузку. При производстве асинхронных двигателей используются два типа роторов.

    Ротор с беличьей клеткой

    Ротор с короткозамкнутым ротором — один из наиболее широко используемых роторов в производстве асинхронных двигателей из-за его исключительных характеристик, таких как надежность, прочность и низкая стоимость производства.Он получил свое название от своей цилиндрической конструкции, напоминающей клетку, которая состоит из продольных токопроводящих стержней, изготовленных из алюминия или меди, закороченных накоротко с кольцами, выполненными из того же материала на обоих концах. Стержни ротора слегка перекошены, чтобы они не блокировались зазорами между катушками статора, обеспечивая плавное и бесшумное вращение. Кроме того, количество стержней не должно равняться целому кратному числу пазов статора, так как это может вызвать магнитную блокировку обоих компонентов.

    Ротор с обмоткой

    Ротор с обмоткой, также известный как ротор с контактным кольцом, представляет собой цилиндрический блок, сделанный из тонких многослойных стальных листов, уложенных друг на друга, и на его периферии есть прорези для удержания вращающихся обмоток. Концы вращающихся обмоток соединены с тремя контактными кольцами, размещенными вокруг вала. Контактные кольца соединены с блоками переменного сопротивления мощности через щетки, что позволяет оператору изменять скорость двигателя, изменяя сопротивление.

    Вал

    Вал представляет собой длинный стержень из углеродистой стали, расположенный вдоль цилиндрической оси асинхронного двигателя. Это элемент, который обеспечивает преобразованную механическую энергию для конечного использования. Головка вала соединена с различными механическими нагрузками, такими как шкивы, шестерни и т. Д., Тогда как задняя часть соединена с вентилятором внутри двигателя.

    Подшипники

    Вал ротора удерживается подшипниками на обоих концах корпуса двигателя. Подшипники минимизируют трение вала, соединенного с корпусом, повышая эффективность двигателя.Корпус асинхронного двигателя содержит все компоненты двигателя, обеспечивает электрические соединения и обеспечивает вентиляцию деталей двигателя для уменьшения тепловыделения. Конструкция корпуса часто включает ребра для отвода тепла.

    Вентилятор

    Вентилятор в асинхронном двигателе действует как вытяжка и охлаждает асинхронный двигатель, рассеивая тепло. Он соединен с валом, который передает вращательное движение ротора на вентилятор.

    Кожух

    Кожух асинхронного двигателя содержит все компоненты двигателя, обеспечивает электрические соединения и обеспечивает вентиляцию деталей двигателя для уменьшения тепловыделения.Конструкция корпуса часто включает ребра для отвода тепла.

    Принцип работы асинхронного двигателя

    Асинхронный двигатель работает по принципу электромагнитной индукции. Это явление, при котором ЭДС индуцируется поперек проводника, когда он находится внутри переменного магнитного поля. Эта наведенная ЭДС в катушке задается законом электромагнитной индукции Фарадея, который гласит, что электродвижущая сила вокруг замкнутого пути равна отрицательной скорости изменения во времени магнитного потока, заключенного на этом пути.Математически это выражение можно записать как

    ε = — \ frac {dΦ} {dt}

    Где ε — наведенная ЭДС, Φ — магнитный поток, а t обозначает время.

    Взаимодействие между двумя магнитными полями заставляет ротор вращаться. Чтобы понять концепцию более подробно, давайте посмотрим на работу асинхронного двигателя.

    Работа асинхронного двигателя

    Когда переменный ток течет через обмотки статора, он создает магнитное поле вокруг катушек обмоток.Катушки внутри статора расположены таким образом (пространственно разнесены на 120 °), что создаваемое ими магнитное поле начинает вращаться вследствие периодически меняющегося направления входного переменного тока. Вращающееся магнитное поле индуцирует ток, который течет через замкнутые обмотки ротора. Затем течение тока создает обратную ЭДС, которая противодействует изменению магнитного поля, создаваемого обмотками статора. Обратная ЭДС обмоток ротора отстает на 90 градусов (без нагрузки) от ЭДС обмоток статора.Эта разница в силе создает крутящий момент и заставляет ротор вращаться вокруг оси вала. Задержка также заставляет обмотки ротора вращаться немного медленнее, чем вращающееся поле. Разница между скоростью называется «проскальзыванием» в технических терминах, и она может варьироваться в зависимости от нескольких факторов, таких как нагрузка на двигатель, сопротивление цепи ротора и сила магнитного поля, создаваемого двигателем. статор. Асинхронный двигатель работает аналогично трансформатору, причем первичная и вторичная обмотки являются обмотками статора и ротора соответственно.Асинхронный двигатель также известен как вращающийся трансформатор из-за вращательного движения обмоток ротора. Работа асинхронных двигателей может различаться в зависимости от их типа.

    Типы асинхронных двигателей

    Асинхронные двигатели

    в основном подразделяются на две категории в зависимости от источника питания, с которым они работают, то есть трехфазные асинхронные двигатели и однофазные асинхронные двигатели.

    Трехфазный асинхронный двигатель

    Трехфазный асинхронный двигатель — один из наиболее часто используемых асинхронных двигателей в промышленных и коммерческих целях.Как следует из названия, трехфазные асинхронные двигатели — это те, которые работают от трехфазного источника переменного тока. Чтобы понять принцип работы трехфазного асинхронного двигателя, необходимо немного узнать о трехфазном источнике питания переменного тока. Направление тока в источнике питания переменного тока периодически меняется, генерируя синусоидальную форму волны, причем каждый цикл показывает величину тока, идущую от нуля до максимума в одном направлении, обратно до нуля, а затем до максимума в противоположном направлении.Трехфазный источник питания переменного тока содержит три различных синусоидальных сигнала переменного тока, так что, когда один из циклов проходит через ноль, два других могут компенсировать уменьшенную величину тока в цепи. Большинство наших бытовых электроприборов могут эффективно работать с частотой 50-60 Гц (циклов в секунду) одной синусоидальной формы волны переменного тока; однако в промышленных целях применяется трехфазный источник переменного тока для удовлетворения требований высокой мощности.

    В трехфазном асинхронном двигателе статор состоит из трех наборов обмоток, на которые подается входной трехфазный переменный ток.Обмотки статора расположены по Y-образной схеме, образуя разность фаз в 120 градусов электрического угла. Эта конструкция обеспечивает вращающееся магнитное поле, и согласно закону Ленца ротор начинает вращаться в своем направлении, чтобы нейтрализовать эффект электромагнитной индукции. Тем не менее, из-за разницы между индуцированным магнитным потоком ротора и магнитным потоком статора, ротор никогда не достигает скорости вращающегося магнитного поля. Гипотетически, если ротор сможет достичь скорости, аналогичной скорости вращающегося магнитного поля, за счет приложения некоторой внешней силы, не будет никакого запаздывания между потоками, и электромагнитная индукция немедленно прекратится.В основном это два

    Трехфазный асинхронный двигатель с короткозамкнутым ротором

    Как следует из названия, трехфазный асинхронный двигатель с короткозамкнутым ротором содержит ротор с короткозамкнутым ротором (описанный выше) и работает от трехфазного источника переменного тока. Вращающееся магнитное поле индуцирует ток через проводящие стержни, который дополнительно генерирует магнитный поток ротора и заставляет ротор вращаться. Цилиндрическая конструкция клетки имеет определенные преимущества, такие как прочная конструкция и низкие затраты на техническое обслуживание; однако наиболее важной особенностью роторов с короткозамкнутым ротором является простота конструкции для создания различных вариантов.Характеристики скорости-момента трехфазного асинхронного двигателя с короткозамкнутым ротором можно легко изменить, отрегулировав перекос и длину токопроводящих стержней внутри ротора. Это позволяет легко заменять двигатели разных производителей, что упрощает замену двигателей. Тем не менее, отсутствие контроля скорости в асинхронных двигателях с короткозамкнутым ротором является недостатком их уникальной конструкции. Короткозамкнутые кольца на концах ротора не дают места для добавления переменного сопротивления, и поэтому трехфазный асинхронный двигатель с короткозамкнутым ротором работает с постоянной скоростью после достижения установившегося состояния.

    Трехфазный асинхронный электродвигатель с контактным кольцом

    Трехфазный асинхронный двигатель с контактным кольцом, также известный как трехфазный асинхронный двигатель с обмоточным ротором, представляет собой асинхронный двигатель с регулируемой скоростью. Ротор этих двигателей состоит из цилиндрического блока, состоящего из многослойных стальных пластин, намотанных катушками из медной проволоки. Обмотки ротора имеют трехфазную конфигурацию, при этом выводы каждой фазы подключены к контактным кольцам. Контактное кольцо — это электромеханическое устройство, которое помогает передавать мощность и электрические сигналы от неподвижного компонента к вращающемуся.Когда источник переменного тока используется для возбуждения обмотки статора, создается магнитный поток. Вращающееся магнитное поле индуцирует ток через проводящие стержни, который создает дополнительный магнитный поток в роторе и заставляет его вращаться. Тем не менее, из-за большего количества витков в обмотках ротора индуцированное напряжение выше, чем индуцированный ток. Когда двигатель включен, внешнее сопротивление, приложенное к обмоткам ротора, заставляет ток ротора ослаблять вращающееся магнитное поле статора.Это означает, что как только двигатель достигает полной скорости, сопротивление можно регулировать для управления скоростью вращения, что дает операторам возможность выбирать пусковой момент и рабочие характеристики. Индуктивное реактивное сопротивление и разность фаз между I и V могут быть уменьшены, что позволяет двигателю обеспечивать высокий пусковой момент. По сравнению со стандартными двигателями с короткозамкнутым ротором сложность и необходимость обслуживания контактных колец и щеток высоки. Тем не менее, в приложениях с высокими инерционными нагрузками, таких как большие вентиляторы, насосы и мельницы, конструкция с фазным ротором позволяет постепенное ускорение нагрузки за счет управления скоростью и крутящим моментом.

    Преимущества трехфазного асинхронного двигателя

    • Они имеют простую конструкцию и прочную конструкцию, что делает их долговечными и простыми в использовании.
    • Стоимость обслуживания трехфазных асинхронных двигателей значительно ниже по сравнению с однофазными асинхронными двигателями.
    • Наиболее важной особенностью, которая делает трехфазные асинхронные двигатели широко применяемыми в промышленности, является то, что они самозапускаются и не требуют какого-либо внешнего механизма для запуска вращения ротора.Вращающееся магнитное поле, создаваемое Y-образной структурой обмоток статора, достаточно эффективно для создания пускового момента, чего нет в однофазных асинхронных двигателях.
    • Разделение трехфазного входного переменного тока в трехфазном асинхронном двигателе вызывает распределение нагрузки и делает двигатель более эффективным с точки зрения характеристик скорости-момента.
    • Ротор трехфазного асинхронного двигателя с короткозамкнутым ротором не имеет физического электрического соединения, что позволяет избежать потерь тока, которые могут возникнуть во время передачи.
    • Трехфазный асинхронный двигатель работает во вращающемся магнитном поле с постоянной величиной, то есть крутящий момент постоянный, а не пульсирующий.
    • Устойчивое магнитное поле также снижает вибрацию двигателя.

    Недостатки трехфазного асинхронного двигателя

    • Трехфазный асинхронный двигатель потребляет больше тока в условиях небольшой нагрузки из-за низкого коэффициента мощности. В результате происходит большая утечка меди и низкий КПД.
    • Чтобы получить контроль скорости в трехфазном асинхронном двигателе, требуется больше электрических компонентов, что приводит к сложному электрическому механизму.
    • Асинхронный двигатель имеет высокий пусковой ток. Это вызывает снижение напряжения во время запуска.

    Приложения

    Трехфазные асинхронные двигатели в основном используются в промышленных условиях. Асинхронные двигатели с короткозамкнутым ротором используются как в быту, так и в промышленности, особенно в приложениях, где не требуется регулирование скорости двигателя, например, в погружных насосах, прокатных прессах, шлифовальных машинах, конвейерах, компрессорах напольных мельниц и т. Д.Двигатели с фазным ротором, напротив, используются в приложениях с большой нагрузкой, требующих высокого пускового момента, например, в лифтах, кранах, линейных валах, мельничных прессах и т. Д.

    Однофазный асинхронный двигатель

    Однофазные асинхронные двигатели почти идентичны трехфазным асинхронным двигателям; однако эти двигатели работают от однофазного источника переменного тока. Однофазные асинхронные двигатели широко используются в маломощных устройствах, например, в бытовых приборах. Они меньше по размеру и дешевле в производстве.Поскольку большинство этих двигателей имеют дробную мощность в киловаттах, они также известны как двигатели с дробной мощностью. Статор однофазного асинхронного двигателя представляет собой неподвижную часть с многослойной конструкцией, состоящей из штамповок, аналогичной таковой у трехфазного асинхронного двигателя. Обмотка статора поддерживается пазами на краю этих штамповок. Для активации этой обмотки используется однофазный источник переменного тока. Ротор состоит из пазов, заполненных токопроводящими алюминиевыми или медными стержнями. Индуцированное магнитное поле в роторе будет взаимодействовать с магнитным полем статора, образуя вращающееся поле.Даже с одной обмоткой это поле заставляет двигатель работать в том направлении, в котором он был запущен. Однако, когда двигатели подключены к нагрузке, невозможно обеспечить начало вращения. Чтобы обойти эту трудность, однофазный двигатель временно преобразуется в двухфазный двигатель, чтобы обеспечить вращающийся поток. Помимо основной обмотки статора предусмотрена пусковая обмотка. Пусковая или вспомогательная обмотка сделана очень резистивной, а основная или рабочая обмотка — очень индуктивной.Из-за огромной разницы фаз между этими двумя двигателями создается достаточный крутящий момент для вращения ротора.

    Асинхронный двигатель с разделенной фазой

    В однофазном асинхронном двигателе с расщепленной фазой, также известном как двигатель с резистивным пуском, вспомогательная или пусковая обмотки расположены на 90 ° от основных обмоток статора. Вспомогательные обмотки вместе с резистором подключаются к основным обмоткам последовательно и параллельно источнику переменного тока. Вспомогательная обмотка имеет несколько витков небольшого диаметра.Вспомогательные обмотки создают разность фаз между обоими потоками, создаваемыми основной обмоткой и обмоткой ротора. Когда двигатель развивает от 75 до 80% своей максимальной скорости, центробежный выключатель отключает эту обмотку, что неэффективно в рабочих условиях. В этом случае двигатель работает только на основной обмотке статора. Такой подход дает очень небольшую разность фаз, и, следовательно, пусковой момент в этих двигателях очень низкий. В результате они используются в приложениях, требующих умеренного начального крутящего момента, например, в вентиляторах, воздуходувках или шлифовальных машинах.

    Конденсаторный индукционный двигатель

    Этот двигатель представляет собой более сложный вариант асинхронного двигателя с расщепленной фазой. Индукции с разделением фаз недостаточно для создания высокого крутящего момента, поскольку разность фаз, вызванная вспомогательными обмотками, мала. Этот недостаток устраняется в конденсаторном пусковом двигателе за счет последовательного включения конденсатора со вспомогательной обмоткой. Этот двигатель оснащен конденсатором сухого типа, работающим на переменном токе. Тем не менее, этот конденсатор не используется постоянно.В этой схеме также используется центробежный переключатель, который отключает конденсатор и вспомогательную обмотку, когда двигатель работает на 75-80% синхронной скорости. Конденсатор потребляет большую разность фаз между током, протекающим через основные обмотки, и током, протекающим через вспомогательные обмотки. В результате, по сравнению с асинхронным двигателем с расщепленной фазой, пусковой крутящий момент этого двигателя чрезвычайно высок и даже на 300 процентов превышает полную нагрузочную способность асинхронного двигателя с разъемным торцом.Этот двигатель используется в приложениях, где требуется высокий пусковой крутящий момент, например, в токарных станках, компрессорах, сверлильных станках и т. Д.

    Конденсатор Запуск Конденсатор Асинхронный двигатель

    Конденсаторный пусковой конденсаторный двигатель имеет два конденсатора в параллельной конфигурации, соединенных последовательно вспомогательной обмоткой. Один из этих двух конденсаторов используется исключительно для инициирования (пусковой конденсатор) и имеет высокое значение емкости, а другой постоянно соединен с двигателем (рабочий конденсатор) и имеет низкое значение емкости.Пусковой конденсатор соединен последовательно с центробежным выключателем, который выключается, когда скорость двигателя достигает 70% от скорости. Рабочий конденсатор улучшает коэффициент мощности двигателя, обеспечивая дополнительный заряд переменного тока. В рабочем режиме к двигателю подключены как рабочая, так и вспомогательная обмотки. Пусковой момент и КПД этого двигателя очень высоки. Следовательно, это можно использовать в приложениях, где требуется высокий пусковой крутящий момент, например, в холодильнике, кондиционере, потолочном вентиляторе, компрессоре и т. Д.

    Асинхронный двигатель с экранированными полюсами

    Асинхронный двигатель с экранированными полюсами представляет собой однофазный асинхронный двигатель с самозапуском и медным кольцом, затеняющим полюса статора. Это медное кольцо служит вторичной обмоткой двигателя, и когда питание подается на статор, в медных кольцах индуцируется магнитный поток. Поток медного кольца взаимодействует с потоком обмоток статора, создавая вращающееся магнитное поле. Асинхронный двигатель с экранированными полюсами состоит из ротора с короткозамкнутым ротором, который взаимодействует с вращающимся магнитным полем.Это взаимодействие создает крутящий момент в роторе и вращает его. Важно отметить, что асинхронный двигатель с экранированными полюсами может вращаться только в одном направлении. Эти двигатели не обладают хорошим коэффициентом мощности и в основном используются в качестве реле в таких устройствах, как вентиляторы, фены, проекторы, проигрыватели и т. Д.

    Преимущества однофазных асинхронных двигателей

    Основным преимуществом однофазного асинхронного двигателя является простота сборки и сборки. Асинхронный двигатель работает независимо от состояния окружающей среды.В результате двигатель получается мощный и механически прочный.

    Недостатки однофазных асинхронных двигателей

    Хотя однофазные двигатели механически просты, известно, что они работают медленно или перегреваются при высокой нагрузке. Более того, поскольку однофазные двигатели не запускаются автоматически, они требуют дополнительных схем для запуска, что, в свою очередь, дает больше места для коротких замыканий и отказов.

    Электродвигатель

    | Британника

    Самый простой тип асинхронного двигателя показан на рисунке в разрезе.Трехфазный набор обмоток статора вставлен в пазы в железе статора. Эти обмотки могут быть подключены по схеме «звезда», обычно без внешнего подключения к нейтральной точке, или по схеме «треугольник». Ротор состоит из цилиндрического стального сердечника с проводниками, размещенными в пазах по всей поверхности. В наиболее обычном виде эти проводники ротора соединены вместе на каждом конце ротора токопроводящим концевым кольцом.

    Принцип работы асинхронного двигателя можно разработать, сначала предположив, что обмотки статора подключены к трехфазному источнику питания и что набор из трех синусоидальных токов, показанных на рисунке, протекает в обмотках статора.На этом рисунке показано влияние этих токов на создание магнитного поля через воздушный зазор машины в течение шести мгновений цикла. Для простоты показана только центральная токопроводящая петля для каждой фазной обмотки. В момент t 1 на рисунке ток в фазе a является максимально положительным, а в фазах b и c — вдвое отрицательным. Результатом является магнитное поле с приблизительно синусоидальным распределением вокруг воздушного зазора с максимальным значением наружу вверху и максимальным значением внутрь внизу.В момент времени t 2 на рисунке (т. Е. Одна шестая цикла позже), ток в фазе c является максимально отрицательным, в то время как в фазе b и фазе значение равно половине. положительный. Результатом, как показано на рисунке для t 2 , снова является синусоидально распределенное магнитное поле, но повернутое на 60 ° против часовой стрелки. Исследование распределения тока для т 3 , т 4 , т 5 и т 6 показывает, что магнитное поле продолжает вращаться с течением времени.Поле совершает один оборот за один цикл токов статора. Таким образом, совокупный эффект трех равных синусоидальных токов, равномерно смещенных во времени и текущих в трех обмотках статора, равномерно смещенных в угловом положении, должен создать вращающееся магнитное поле постоянной величины и механической угловой скорости, которая зависит от частоты электроснабжение.

    Вращательное движение магнитного поля относительно проводников ротора вызывает индуцирование напряжения в каждом из них, пропорциональное величине и скорости поля относительно проводников.Поскольку проводники ротора закорочены вместе на каждом конце, в результате в этих проводниках будут протекать токи. В простейшем режиме работы эти токи будут примерно равны индуцированному напряжению, деленному на сопротивление проводника. На этом рисунке показана диаграмма токов ротора за мгновение t 1 рисунка. Видно, что токи приблизительно синусоидально распределены по периферии ротора и расположены так, чтобы создавать вращающий момент против часовой стрелки на роторе (т.е.е. крутящий момент в том же направлении, что и вращение поля). Этот крутящий момент ускоряет ротор и вращает механическую нагрузку. По мере увеличения скорости вращения ротора его скорость относительно скорости вращающегося поля уменьшается. Таким образом, индуцированное напряжение уменьшается, что приводит к пропорциональному уменьшению тока в проводнике ротора и крутящего момента. Скорость ротора достигает постоянного значения, когда крутящий момент, создаваемый токами ротора, равен крутящему моменту, необходимому на этой скорости для нагрузки, при отсутствии избыточного крутящего момента, доступного для ускорения объединенной инерции нагрузки и двигателя.

    Вращающееся поле и токи, которые оно создает в короткозамкнутых проводниках ротора.

    Британская энциклопедия, Inc.

    Механическая выходная мощность должна обеспечиваться входной электрической мощностью. Первоначальных токов статора, показанных на рисунке, достаточно для создания вращающегося магнитного поля. Чтобы поддерживать это вращающееся поле при наличии токов ротора, показанных на рисунке, необходимо, чтобы обмотки статора несли дополнительную составляющую синусоидального тока такой величины и фазы, чтобы нейтрализовать влияние магнитного поля, которое в противном случае могло бы возникнуть. токами ротора на рисунке.Полный ток статора в каждой фазной обмотке является суммой синусоидальной составляющей, создающей магнитное поле, и другой синусоиды, опережающей первую на четверть цикла, или 90 °, для обеспечения необходимой электроэнергии. Вторая, или силовая, составляющая тока находится в фазе с напряжением, приложенным к статору, в то время как первая, или намагничивающая, составляющая отстает от приложенного напряжения на четверть цикла или 90 °. При номинальной нагрузке эта намагничивающая составляющая обычно находится в диапазоне 0.От 4 до 0,6 величины силовой составляющей.

    Большинство трехфазных асинхронных двигателей работают с обмотками статора, подключенными непосредственно к трехфазному источнику питания постоянного напряжения и постоянной частоты. Типичные напряжения питания находятся в диапазоне от 230 вольт между фазами для двигателей относительно небольшой мощности (например, от 0,5 до 50 киловатт) до примерно 15 киловольт между фазами для двигателей большой мощности до примерно 10 мегаватт.

    За исключением небольшого падения напряжения на сопротивлении обмотки статора, напряжение питания согласуется со скоростью изменения магнитного потока в статоре машины во времени.Таким образом, при питании с постоянной частотой и постоянным напряжением величина вращающегося магнитного поля остается постоянной, а крутящий момент примерно пропорционален силовой составляющей тока питания.

    В асинхронном двигателе, показанном на предыдущих рисунках, магнитное поле совершает один оборот за каждый цикл частоты питания. Для источника с частотой 60 Гц скорость поля составляет 60 оборотов в секунду или 3600 оборотов в минуту. Скорость ротора меньше скорости поля на величину, достаточную для того, чтобы индуцировать необходимое напряжение в проводниках ротора для создания тока ротора, необходимого для момента нагрузки.При полной нагрузке скорость обычно на 0,5–5 процентов ниже скорости поля (часто называемая синхронной скоростью), причем более высокий процент применяется к двигателям меньшего размера. Эта разница в скорости часто называется скольжением.

    Другие синхронные скорости могут быть получены с источником постоянной частоты, построив машину с большим количеством пар магнитных полюсов, в отличие от двухполюсной конструкции, показанной на рисунке. Возможные значения скорости магнитного поля в оборотах в минуту: 120 f / p , где f — частота в герцах (циклов в секунду), а p — количество полюсов (которое должно быть четное число).Данный железный каркас может быть намотан для любого из нескольких возможных количеств пар полюсов с помощью катушек, охватывающих угол приблизительно (360/ p ) °. Крутящий момент, доступный от рамы машины, останется неизменным, поскольку он пропорционален произведению магнитного поля и допустимого тока катушки. Таким образом, номинальная мощность рамы, являющаяся произведением крутящего момента и скорости, будет примерно обратно пропорциональна количеству пар полюсов. Наиболее распространенные синхронные скорости для двигателей с частотой 60 Гц — 1800 и 1200 оборотов в минуту.

    Введение в индукционный электродвигатель и электродвигатель переменного тока

    Асинхронный электродвигатель — это электродвигатель переменного тока, в котором электрический ток в роторе электродвигателя, необходимый для создания крутящего момента, получается за счет электромагнитной индукции из магнитного поля обмотки статора. Один из наиболее распространенных электродвигателей, используемых в большинстве приложений, известен как асинхронный двигатель. Чаще всего используются трехфазные и однофазные асинхронные двигатели . Асинхронный электродвигатель также называют асинхронным электродвигателем, потому что он работает со скоростью, меньшей, чем синхронная скорость, которая представляет собой скорость вращения магнитного поля во вращающейся машине, и зависит от частоты и количества полюсов электродвигателя.

    Принцип работы асинхронного двигателя / синхронного двигателя

    Когда переменный ток подается на обмотку статора асинхронного двигателя, переменный ток начинает течь через статор или главную обмотку. Этот переменный ток создает переменный поток, называемый основным потоком. Этот основной поток также связывается с проводниками ротора и, следовательно, разрезает проводник ротора. Асинхронные электродвигатели работают по закону электромагнитной индукции Фарадея.

    Согласно закону Фарадея об электромагнитной индукции , в роторе индуцируется ЭДС.Поскольку цепь ротора замкнута, ток начинает течь в роторе. Эти токи называют током ротора. Этот ток ротора создает свой собственный поток, называемый потоком ротора. Поскольку этот поток создается по принципу индукции, двигатель, работающий по этому принципу, получил название асинхронный двигатель . Теперь есть два потока, один из которых является основным, а другой называется потоком ротора. Эти два потока создают желаемый крутящий момент, необходимый двигателю для вращения. Это основной принцип работы трансформаторов, индукторов и многих типов электродвигателей, генераторов и соленоидов.

    В асинхронный двигатель всегда работает со скоростью, меньшей, чем синхронная скорость, потому что вращающееся магнитное поле, которое создается в статоре, будет генерировать магнитный поток в роторе, который заставит ротор вращаться, но из-за отставания магнитного потока в роторе от магнитного потока в статоре, ротор никогда не достигнет скорости i своего вращающегося магнитного поля.е. синхронная скорость. В основном существует два типа асинхронного электродвигателя , которые зависят от входного источника питания: однофазный асинхронный двигатель и трехфазный асинхронный двигатель.

    Скольжение асинхронного двигателя / синхронного двигателя

    Ротор асинхронного двигателя всегда вращается со скоростью, меньшей, чем синхронная скорость. Разница между потоком (Ns) и скоростью ротора (N) называется скольжением.

    % Скольжение = (Нс — Н) x 100 / Н

    Скорость скольжения = Нс — Н

    Различные типы асинхронных двигателей

    ОДНОФАЗНЫЕ ИНДУКЦИОННЫЕ ДВИГАТЕЛИ

    • Двухфазные асинхронные двигатели
    • Конденсаторный пуск, индукционный электрический двигатель
    • Конденсатор пусковой конденсатор асинхронный двигатель
    • Асинхронный двигатель с экранированными полюсами •

    ТРЕХФАЗНЫЕ ИНДУКЦИОННЫЕ ДВИГАТЕЛИ

    • Асинхронные электродвигатели с короткозамкнутым ротором
    • Асинхронный электродвигатель с контактным кольцом
    Конструкция трехфазного асинхронного двигателя

    Трехфазный асинхронный двигатель является наиболее широко используемым электродвигателем.Почти 80% механической энергии, используемой в промышленности, обеспечивается трехфазными асинхронными электродвигателями из-за их простой и прочной конструкции, низкой стоимости, хороших рабочих характеристик, отсутствия коммутатора и хорошего регулирования скорости. В трехфазном асинхронном электродвигателе мощность передается от статора к обмотке ротора посредством индукции. Электродвигатель индукционного типа также называется асинхронным двигателем , поскольку он работает со скоростью, отличной от синхронной.

    Как и любой другой электродвигатель, асинхронные двигатели также состоят из двух основных частей: ротора и статора.

    Статор: Как видно из названия, статор является неподвижной частью электродвигателя. Обмотка статора помещается в статор асинхронных двигателей, и на нее подается трехфазное питание.

    Ротор: Ротор — это вращающаяся часть асинхронного электродвигателя. Ротор связан с механической нагрузкой через вал. Ротор трехфазных асинхронных двигателей дополнительно классифицируется как ротор с короткозамкнутым ротором, , ротор с контактным кольцом, ротор с фазной обмоткой или ротор с фазовой обмоткой.В зависимости от типа конструкции ротора трехфазный асинхронный двигатель классифицируется как: асинхронный двигатель с короткозамкнутым ротором, асинхронный двигатель с контактным кольцом, асинхронный двигатель с фазной обмоткой или асинхронный двигатель с фазной обмоткой.

    УПРАВЛЕНИЕ СКОРОСТЬЮ ИНДУКЦИОННЫХ ДВИГАТЕЛЕЙ

    Скорость асинхронного двигателя можно легко контролировать, изменяя частоту трехфазного источника питания. Чтобы поддерживать постоянную (номинальную) плотность потока, приложенное напряжение также должно изменяться в той же пропорции, что и частота (как диктуется законом Фарадея).Этот метод управления скоростью электродвигателя известен как вольт на Гц. При превышении номинальной скорости приложенное напряжение обычно поддерживается постоянным на номинальном значении; эта операция называется постоянной HP. На низких частотах (т. Е. Скоростях) необходимо повышать напряжение, чтобы компенсировать влияние сопротивления статора.

    Применение трехфазных и однофазных двигателей

    Трехфазный асинхронный двигатель — это двигатели, наиболее часто используемые в различных отраслях промышленности.Они просты, надежны, дешевы и просты в обслуживании. Они работают практически с постоянной скоростью от нуля до полной нагрузки. Скорость зависит от частоты, и, следовательно, эти двигатели нелегко приспособить для управления скоростью. В трехфазной системе есть три однофазных линии с разностью фаз 120 °. Таким образом, вращающееся магнитное поле имеет ту же разность фаз, которая заставляет ротор двигаться. Помимо того, что однофазный двигатель также доминирует для бытовых и маломощных двигателей, это связано с тем, что он используется в бытовой технике и портативных станках.Как правило, они используются, когда трехфазное питание отсутствует. Конструкция однофазного асинхронного электродвигателя почти аналогична трехфазному асинхронному двигателю с короткозамкнутым ротором, за исключением того, что в случае однофазного асинхронного электродвигателя статор имеет две обмотки вместо одной фазы по сравнению с одной обмоткой статора на каждую. фаза в трехфазном асинхронном двигателе.

    Преимущества асинхронных двигателей
    • Асинхронные электродвигатели имеют только одну движущуюся часть, ротор, что делает их недорогими, тихими, долговечными и относительно безотказными.Электродвигатели постоянного тока , напротив, имеют коллектор и угольные щетки, которые изнашиваются и нуждаются в периодической замене. Трение между щетками и коллектором также делает двигатели постоянного тока относительно шумными (а иногда даже довольно вонючими).

    Недостатки асинхронных двигателей

    Поскольку скорость асинхронного электродвигателя зависит от частоты переменного тока, который его питает, он вращается с постоянной скоростью, если вы не используете частотно-регулируемый привод.По сравнению с асинхронными двигателями, скорость двигателей постоянного тока намного легче контролировать, просто повышая или понижая напряжение питания. Эти двигатели могут быть довольно тяжелыми из-за их катушечной обмотки. В отличие от двигателей постоянного тока , они не могут работать от батарей или любого другого источника постоянного тока без использования инвертора. Это потому, что им нужно изменяющееся магнитное поле, чтобы повернуть ротор на .

    Принцип работы электрического асинхронного двигателя / синхронного двигателя Видео-гид

    Кредит: 1, 2, 3

    Каков принцип работы трехфазного асинхронного двигателя?

    Электродвигатель преобразует электрическую энергию в механическую, которая затем подается на различные типы нагрузок.Двигатели переменного тока работают от источника переменного тока и подразделяются на синхронные, однофазные, трехфазные асинхронные двигатели и двигатели специального назначения. Из всех типов трехфазные асинхронные двигатели наиболее широко используются в промышленности, главным образом потому, что для них не требуется пусковое устройство.

    Трехфазный асинхронный двигатель получил свое название от того факта, что ток ротора индуцируется магнитным полем, а не электрическими соединениями.

    Принцип действия трехфазного асинхронного двигателя основан на создании вращающегося магнитного поля (т.м.ф.).

    Создание вращающегося магнитного поля

    Статор асинхронного двигателя состоит из нескольких перекрывающихся обмоток, смещенных на электрический угол 120 °. Когда первичная обмотка или статор подключены к трехфазному источнику переменного тока, создается вращающееся магнитное поле, которое вращается с синхронной скоростью.

    Направление вращения двигателя зависит от последовательности фаз линий питания и порядка, в котором эти линии подключены к статору.Таким образом, изменение мест подключения любых двух первичных клемм к источнику питания изменит направление вращения на противоположное.

    Число полюсов и частота приложенного напряжения определяют синхронную скорость вращения статора двигателя. Двигатели обычно имеют 2, 4, 6 или 8 полюсов. Синхронная скорость, термин, обозначающий скорость вращения поля, создаваемого первичными токами, определяется следующим выражением.

    Синхронная скорость вращения = (120 x частота питающей сети) / Число полюсов статора

    Производство магнитного потока

    Вращающееся магнитное поле в статоре — это первая часть работы.Чтобы создать крутящий момент и, таким образом, вращаться, роторы должны пропускать некоторый ток. В асинхронных двигателях этот ток исходит от проводов ротора. Вращающееся магнитное поле, создаваемое в статоре, пересекает токопроводящие стержни ротора и индуцирует электродвижущую силу (ЭДС).

    Обмотки ротора асинхронного двигателя либо замкнуты из-за внешнего сопротивления, либо напрямую закорочены. Следовательно, ЭДС, индуцированная в роторе, заставляет ток течь в направлении, противоположном направлению вращающегося магнитного поля в статоре, и приводит к скручивающему движению или крутящему моменту в роторе.

    Как следствие, скорость ротора не достигает синхронной скорости среднеквадратичного значения в статоре. Если бы скорости совпадали, ЭДС не было бы. индуцированный в роторе, ток не будет течь, и, следовательно, не будет создаваться крутящий момент. Разница между скоростями статора (синхронной скорости) и ротора называется скольжением.

    Вращение магнитного поля в асинхронном двигателе имеет то преимущество, что не требуется никаких электрических соединений с ротором.

    В результате получается мотор:
    • Самозапуск
    • Взрывозащищенный (из-за отсутствия контактных колец или коммутаторов и щеток, которые могут вызвать искрение)
    • Прочная конструкция
    • Недорого
    • Легче в обслуживании

    Что такое электродвигатель?

    Электродвигатели — это устройства, преобразующие электрическую энергию в механическую, обычно в форме вращательного движения.Проще говоря, это устройства, которые используют электроэнергию для выработки движущей силы.

    Электродвигатели не только обеспечивают простое и эффективное средство для создания высоких уровней выходной мощности привода, но их также легко уменьшить, что позволяет использовать их в других механизмах и оборудовании. В результате они находят широкое применение как в промышленности, так и в повседневной жизни.

    Принцип работы

    Вы помните, как в школе вас учили правилу левой руки Флеминга? Электродвигатели являются применением этого правила, когда сила, создаваемая электрическим током, протекающим через катушку в присутствии магнитного поля, заставляет вал двигателя вращаться.
    На диаграмме ниже правило левой руки Флеминга говорит нам, что восходящая сила генерируется, когда ток течет перпендикулярно магнитному полю от магнита * .

    Как достигается вращение в электродвигателе

    В случае щеточного электродвигателя постоянного тока * 1 , например, эту силу можно использовать для поддержания непрерывного вращения путем изменения направления тока на противоположное на каждом полуобороте катушки (что достигается с помощью щетки и коллектор * 2 )

    • * 1

      Двигатель постоянного тока: двигатель, работающий от постоянного тока (DC)

    • * 2

      Щетки и коммутатор: используются вместе, они меняют направление тока каждый раз, когда вал двигателя делает пол-оборота.

    История электродвигателей

    Британский ученый Майкл Фарадей признан особенно влиятельным среди многих ученых 19 века, которые сыграли роль в изобретении и разработке электродвигателей. В 1821 году Фарадей провел успешный эксперимент, в котором вращение проволоки осуществлялось с помощью магнита вместе с магнитным полем, создаваемым электрическим током. В 1831 году он изобрел закон магнитной индукции, заложив основу для значительного прогресса в области электродвигателей и генераторов.

    Со временем было разработано множество других типов электродвигателей, а также конструкции, которые можно рассматривать как типичные электродвигатели постоянного тока.

    Впоследствии, в 1872 году, практический электродвигатель был не столько изобретен, сколько обнаружен, когда один из генераторов, представленных на Всемирной выставке в Вене, начал вращаться самостоятельно после случайного подключения к другому генератору. Это привело людей к пониманию того, что принцип работы генераторов можно использовать и в двигателях. Последовавший за этим быстрый рост практического использования генераторов был таким, что они стали основой многих отраслей в 20 веке.

    Двигатели и генераторы

    В то время как электродвигатели преобразуют электрическую энергию во вращение и другие формы механической энергии, генераторы выполняют обратную роль преобразования механической энергии в электрическую.
    Несмотря на эти противоположные функции, двигатели и генераторы очень похожи по конструкции и принципу действия. Фактически, простой эксперимент, в котором два модельных двигателя соединены вместе, — это все, что нужно, чтобы продемонстрировать, что электродвигатель также может работать как генератор.
    Естественно, учитывая разные способы их использования, эти два типа машин всегда разрабатывались отдельно.

    Типы электродвигателей

    Электродвигатели бывают разных форм в зависимости от типа используемого тока, конструкции их катушек (обмоток) и того, как они создают магнитное поле. Соответственно, их можно классифицировать по-разному.
    Ниже описаны три типа электродвигателей, обычно используемых как в быту, так и в промышленности.

    Двигатели постоянного тока

    Это двигатели, приводимые в действие источником постоянного тока. Они сгруппированы в щеточные или бесщеточные (BLDC) двигатели в зависимости от того, используют ли они щетку * 1 .
    В то время как щеточные двигатели постоянного тока должны быть подключены только к источнику постоянного тока для работы, бесщеточные двигатели постоянного тока требуют датчика для определения ориентации магнитных полюсов ротора * 2 и цепи привода для подачи соответствующего тока.

    Двигатели переменного тока

    Это двигатели, приводимые в действие источником переменного тока.Они сгруппированы в зависимости от того, является ли этот источник питания однофазным * 1 или трехфазным * 2 .
    Однофазные двигатели дополнительно подразделяются на конденсаторные двигатели, которые используют конденсатор * 3 для создания крутящего момента, и двигатели с расщепленными полюсами, которые имеют дополнительную катушку (обмотку), называемую затеняющей катушкой * 4 .

    • * 1

      Однофазный: обычный источник питания переменного тока, обычно доступный в домах.

    • * 2

      Трехфазный: источник питания переменного тока, который в основном используется в промышленности.

    • * 3

      Конденсатор: электронный компонент, накапливающий электрическую энергию.

    • * 4

      Затеняющая катушка: Катушка с замкнутым контуром, намотанная вокруг части сердечника статора.

    Шаговые двигатели

    Это двигатели, которые вращаются на фиксированный шаг (угол) каждый раз, когда вводится импульс * 1 .
    Шаговые двигатели можно сгруппировать по конструкции их ротора. Двигатели с постоянным магнитом (PM) * 2 имеют магнит в роторе * 3 , двигатели с переменным магнитным сопротивлением (VR) * 4 имеют железный сердечник, а гибридные двигатели имеют и то, и другое.

    • * 1

      Pulse: Короткий всплеск электричества, возникающий при включении и выключении источника питания.

    • * 2

      Ротор: вращающаяся часть двигателя. Вал двигателя является частью ротора.

    • * 3

      Двигатель с постоянными магнитами: двигатель с постоянным магнитом

    • * 4

      Двигатель

      VR: двигатель с переменным магнитным сопротивлением, в котором сердечники расположены как зубья шестерни, при этом эта компоновка определяет угол шага.

    Обзор типов электродвигателей

    В таблице ниже перечислены основные характеристики трех различных типов двигателей.

    Помимо перечисленных выше, существует множество других типов электродвигателей.

    Тип Характеристики
    Линейный двигатель Двигатель, скользящий в линейном направлении
    Ультразвуковой мотор Двигатель, приводимый в движение посредством ультразвуковых колебаний
    Двигатель без сердечника Щеточный двигатель постоянного тока с ротором без железного сердечника или бесщеточный двигатель со статором без железного сердечника
    Универсальный двигатель Двигатель с фазным ротором и фазным статором, работающий как на переменном, так и на постоянном токе
    Гистерезис двигателя Двигатель переменного тока, в роторе которого используется материал, обладающий гистерезисом и вращающийся с помощью гистерезисного момента
    Двигатель SR Шаговый двигатель VR, который также имеет функцию определения положения ротора, что позволяет избежать потери синхронизации

    Моторные приложения

    Хотя электродвигатели используются по-разному, ниже перечислены общие области применения бесщеточных двигателей постоянного тока и шаговых двигателей, поставляемых ASPINA.

    Применения для бесщеточных двигателей постоянного тока

    Благодаря своим характеристикам: небольшие размеры, высокая мощность, низкий уровень шума и вибрации, а также длительный срок службы, бесщеточные двигатели постоянного тока находят широкое применение в таких приложениях, как системы вентиляции (очистители воздуха и другие виды кондиционирования воздуха), бытовые приборы, холодильники. , водонагреватели, торговые автоматы, копировальные аппараты, принтеры, проекторы, оргтехника, приборы, транспортные средства и медицинские приборы.

    • Кондиционеры
    • Финансовые терминалы (банкоматы), обменные автоматы, автоматы обмена валюты, автоматы по продаже билетов
    • Бытовая техника
    • Чистые помещения
    • Водонагреватели и горелки
    • Оптическая продукция
    • Торговые автоматы
    • Принтеры
    • Витрины для морозильных и холодильных камер
    • Копировальные аппараты
    • Медицинское оборудование
    • Оргтехника
    • Лабораторные аналитические системы

    Применения для шаговых двигателей

    Превосходная точность остановки, высокий крутящий момент на средних и низких скоростях и превосходная отзывчивость шаговых двигателей означают, что они могут использоваться в широком спектре приводных приложений, требующих точного управления.

    • Производственное оборудование
    • Оптические приводы (приводы Blu-ray, DVD и т. Д.)
    • Медицинское оборудование
    • Лазерные принтеры
    • Приборы лабораторные аналитические
    • Цифровые фотоаппараты
    • Банкоматы
    • Жалюзи кондиционера
    • Торговые автоматы
    • Аттракционы
    • Автоматы по продаже билетов
    • Копировальные аппараты
    • Роботы

    Преодоление проблем с электродвигателями

    ASPINA поставляет не только автономные шаговые двигатели, но и системные продукты, которые включают в себя системы привода и управления, а также механическую конструкцию.Они подкреплены всесторонней поддержкой, которая простирается от прототипа до коммерческого производства и послепродажного обслуживания.
    ASPINA может предложить решения, адаптированные к функциям и характеристикам, требуемым для различных отраслей промышленности, приложений и продуктов клиентов, а также для конкретных производственных условий.

    ASPINA поддерживает не только клиентов, которые уже знают свои требования или спецификации, но и тех, кто сталкивается с проблемами на ранних этапах разработки.
    Вы боретесь со следующими проблемами?

    Выбор двигателя

    • У вас еще нет подробных спецификаций или чертежей, но нужна консультация по двигателям?
    • У вас нет сотрудников, разбирающихся в двигателях, и вы не можете определить, какой двигатель лучше всего подойдет для вашего нового продукта?

    Разработка двигателей и сопутствующих компонентов

    • Хотите сосредоточить свои ресурсы на основных технологиях и передать на аутсорсинг приводные системы и разработку двигателей?
    • Хотите сэкономить время и силы, связанные с изменением конструкции существующих механических компонентов при замене двигателя?

    Уникальное требование

    • Вам нужен двигатель, изготовленный по индивидуальному заказу, но ваш обычный поставщик отказался от него?
    • Не можете найти двигатель, который дает вам необходимый контроль, и вот-вот теряете надежду?

    Ищете ответы на эти проблемы? Свяжитесь с ASPINA, мы здесь, чтобы помочь.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *