Расчет мощности стабилизатора напряжения для дома: Стабилизатор напряжения какой мощности выбрать

Онлайн калькулятор мощности стабилизатора напряжения

Содержание

Онлайн калькулятор мощности стабилизатора напряжения

Используйте онлайн калькулятор мощности стабилизатора напряжения для расчета потребления тока каждого бытового прибора. Для аппаратуры, Вы можете посмотреть потребление энергии в паспорте, а так же эта информация дублируется и на самом приборе (на задней стенке прибора). Так же необходимо учитывать различные типы нагрузки. Нагрузка существует как активная, так и реактивная.

Что это такое?

Онлайн калькулятор мощности позволяет правильно учесть активную нагрузку. Активная нагрузка, потому и называется активной, что вся потребляемая электроэнергия преобразуется в другие виды энергии (тепловую, световую и др.). Многие приборы и устройства имеют только активную нагрузку. К таким приборам и устройствам можно отнести лампы накаливания, обогреватели, электроплиты, утюги и т.д. Если их указанная потребляемая мощность составляет 1 кВт, для их питания достаточно стабилизатора мощностью 1кВт. Реактивные нагрузки. К таким устройствам можно отнести приборы и изделия имеющие электродвигатель. Среди бытовой техники, таких устройств очень много — почти вся электронная и бытовая техника. Они имеют полную мощность и активную.

Полная мощность исчисляется ВА (вольт-амперы), активная мощность исчисляется Вт (ваттах). Полная мощность (вольт-амперы) и активная мощность ( ватты) связаны между собой коэффициентом cos ф. На электроприборах имеющих реактивную составляющую нагрузки , часто указывают их активную потребляемую мощность в ваттах и cos ф. Для того чтобы Вам подсчитать полную мощность в ВА, нужно активную мощность в Вт разделить на cos ф.

Расчет мощности стабилизатора напряжения
Расчет мощности стабилизатора напряжения очень ответственное дело и подходить к этому надо внимательно, иначе вы рискуете оказаться в ситуации, когда стабилизатор напряжения будет все время отключать ваших потребителей (так работает защита по току).

Расчет мощности стабилизатора напряжения

Сделаем расчет мощности стабилизатора напряжения на примере.

Пример: если на дрели написано «700 Вт» и » cos ф = 0,7″, это означает, что на самом деле потребляемая инструментом полная мощность будет равна 700/0,7=1000 ВА. Если cos ф не указан, то в среднем активную мощность можно разделить на 0,7.

Высокие пусковые токи. Многие приборы в момент пуска могут потреблять энергии в несколько раз больше, чем их номинальная мощность. К таким приборам относятся все устройства, содержащие двигатель.

Например, глубинный насос, холодильник и т.д.. Указанную в паспорте потребляемую мощность необходимо умножить на 3-5 раз, иначе Вы не сможете включить эти устройства через стабилизатор, потому что будет срабатывать защита от превышения мощности.

После того как Вы получили суммарную мощность всех приборов, необходимо посчитать какие именно приборы будут включатся одновременно и у каких приборов есть пусковые токи. Только в этом случае Вы правильно рассчитаете правильную мощность стабилизатора напряжения необходимого для питания Вашей бытовой техники.

Рекомендуется выбирать модель стабилизатора с 20% запасом по мощности. Во-первых, Вы обеспечите «щадящий» режим работы стабилизатора, тем самым, увеличив его срок службы, во-вторых, создадите себе резерв мощности для дополнительного подключения нового оборудования.

Как рассчитать мощность стабилизатора напряжения

11.08.2018

Планируя покупку стабилизатора напряжения, современный потребитель, если он, конечно, не профессионал, часто сталкивается с целым рядом затруднений. В основном, все их можно свести к кругу вопросов, связанных с критериями выбора аппарата. В частности, один из важнейших вопросов, волнующих потенциального покупателя: как подобрать стабилизатор по мощности или как рассчитать мощность устройства.

Какие функции выполняют стабилизаторы напряжения?

Само название этого типа оборудования говорит об их предназначении. Их основной задачей является обеспечение стабильного напряжения на выходе и защита бытовых приборов и другого электрооборудования от перепадов напряжения в сети. Поскольку отечественные сети, к несчастью, далеки от стандартов качества электроснабжения, то приобретение стабилизаторов остается наиболее эффективным решением существующих проблем. По-иному решить данную проблему пока не представляется возможным.

Скачки напряжения, вызванные не зависящими от пользователя факторами, крайне опасны, особенно, если перепады слишком велики. Примеры просто разрушительных последствий, особенно для владельцев частных домов, имеются. Но даже небольшие скачки напряжения по меньшей мере неприятны, а в конечном счете, рано или поздно выводят технику из строя, причем раньше, чем это гарантирует производитель. Не случайно, сегодня все больше производителей заявляют об аннулировании своих гарантийных обязательств, если владелец техники эксплуатирует ее без стабилизаторов напряжения в проблемных сетях вроде российских.

Правильно подобранный аппарат поможет нормализовать сетевое напряжение до 220 В при наличии однофазной сети и 380 В при трехфазной сети. Однако возможности стабилизатора не ограничиваются его основной функцией. Вы по достоинству оцените возможности аппарата по защите приборов от короткого замыкания и резких кратковременных скачков напряжения вниз или вверх.

Что такое «cos φ» и «пусковые токи» и почему они нужны при расчете мощности?

Оба параметра, а них мы сейчас вкратце расскажем, имеют самое непосредственное отношение к расчету мощности. Первый — cos φ — обозначает коэффициент мощности и рассчитывается через отношение показателя активной мощности к показателю полной. В электротехнике считается, что идеальным показателем коэффициента мощности является 1, если речь идет об обычных бытовых электроприборах. То есть, чем ближе к единице значение cos φ, тем это лучше для потребителей и поставщиков.

Стабилизатор напряжения Энергия АСН 8000 Если быть более конкретным, то можно разобрать данный вопрос на примере одного из продуктов компании «Энергия» — стабилизаторе АСН 8000. Как известно, цифры в его названии указывают на мощность в Вольт/Амперах (8000 В/А). Так как обычно показатель мощности выражается в Ваттах, то отсюда и возникает необходимость использовать параметры коэффициента cosφ. Соответственно, если речь идет об использовании стабилизатора для нормальной работы различных бытовых электроприборов (электрочайника, нагревательного тэна, электроплиты и т.п.), то значение коэффициента должно быть равно единице.

Чтобы узнать значение в Ваттах, используется простая формула: Ватты = В/А х cosφ (1). Для примера вернемся к упоминавшемуся выше стабилизатору Энергия АСН 8000. Формула будет выглядеть следующим образом:

8000 ВА х 1 =8 кВт.

Если же планируется использование стабилизатора с техникой, оснащенной электродвигателями, насосами и компрессорами (то есть с активно/реактивной нагрузкой), то расчет производится исходя из значения cosφ, равного 0,8 или 0,7, причем лучше использовать последнее значение. Впрочем, здесь многое будет зависеть от конкретной ситуации. Например, Энергия HYBRID СНВТ 5000 обладает полной мощностью в 5000 В/А. Следовательно, опять используем вышеописанную формулу со значением коэффициента в 0,7. И получаем:

5000 (В/А) х 0.7 = 3.5 кВт.

Если же вы планируете одновременное подключение техники как с нагревательными элементами, так и с двигателями, то лучше если cosφ равен 0,8.

Теперь о пусковых токах. При расчете мощности стабилизатора данный показатель является одним из ключевых, так как при запуске двигателя бытовых электроприборов (стиральных машин, сплит-систем, насосов и т.д.) возникает краткосрочная нагрузка, которая превышает номинальную мощность стабилизатора.

Холодильники, стиральные машины, СВЧ-печи, пылесосы и другие подобные электроприборы могут потреблять в три и даже больше раз мощности, чем номинальный показатель, при запуске. Затем, когда прибор начнет работать на рабочих оборотах, показатель потребляемой мощности опять станет равным номиналу. И хотя длительность пусковых токов не превышает нескольких секунд, игнорировать данное обстоятельство не следует, если вы рассчитываете суммарную мощность. Допустим, у вас есть холодильник, номинальная мощность которого составляет 300 Вт. Но при запуске, когда начинает работать компрессор, мощность резко возрастает, достигая показателя в один киловатт. Следовательно, вам придется принимать в расчет не только номинальный показатель мощности холодильника, но и пусковые токи.

Как же правильно рассчитать мощность?

При покупке стабилизатора следует, прежде всего, определиться с тем, в каких условиях будет эксплуатировать прибор: для защиты отдельных устройств или же для всего комплекса электроприборов. Но допустим, что речь идет о покупке такого стабилизатора, который будет защищать всю технику в доме. Как действовать в этом случае?

Для начала необходимо узнать параметры совокупного потребления всеми приборами в доме. Сделать это можно несколькими способами. Первый и самый простой заключается в том, чтобы взять разрешение по электроснабжению, в котором должны содержаться данные о выделенной на участок мощности.

Можно обратиться ко второму способу, когда в качестве указателя мощности используются данные на входных автоматах защиты. На приборах обычно указывается сила тока в амперах, которую можно без труда перевести в ватты (кол-во в амперах умножить на 220 В). Например, если мощность равна 24 А, то путем несложных подсчетов мы получим 5,5 кВт. Это касается как однофазной, так и трехфазной сети. Только в последнем случае нужно умножить силу тока на напряжение и получить результат на каждую фазу. Если в вашем случае подключается 3-фазная нагрузка, то мощность трех фаз нужно суммировать, чтобы получить общую мощность.

Наконец, вы можете воспользоваться третьим способом, который еще проще. Взять информацию по нагрузке от каждого прибора с учетом пускового тока и суммировать данные, а затем умножить на коэффициент 0,7. Почему именно 0,7? Дело в том, что на практике пользователи не включают одновременно все электроприборы, то есть параметр коэффициента указывает на типичное положение, когда работает примерно 70 % домашней аппаратуры. Для защиты отдельных приборов иногда создается выделенная линия от стабилизатора, что часто более эффективно.

Группы стабилизаторов по мощности

Первую группу входят аппараты мощностью до 2 кВт, которые полезны при защиты наиболее распространенных видов электроприборов, включая автоматику котлов отопления, циркуляционные насосы, холодильники, телевизоры, СВЧ-печи. Примером подобного рода стабилизаторов может быть модель Энергия Voltron РСН 2000.

Стабилизатор напряжения Энергия Classic 5000 Во вторую группу включаются стабилизаторы мощностью от трех до пяти кВт, которые могут работать с более мощными образцами техники: глубинными насосами, стиральными машинами, компрессорами септики, мойками высокого давления. В качестве примера можно рассматривать модель Энергия Classic 5000.

Третья группа включает стабилизаторы мощностью от 8 до 20 кВт, которые подойдут для защиты дома, коттеджа или квартиры. Аппарат обычно устанавливают сразу после автоматов защиты по току. С помощью клеммной колодки делает ввод сети и подключение нагрузки. Среди примеров стабилизаторов такого рода можно рассмотреть популярную модель Voltron РСН 10000.

И, наконец, четвертая группа включает стабилизаторы мощностью от 30 кВт трехфазного типа, рассчитанные на профессиональное оборудование или коттеджи с большим энергопотреблением.

Рассказать друзьям:

Расчитать мощность стабилизатора напряжения

Очень важная характеристика для надежной, долгой работы. Всем известно, если любое оборудование использовать на все сто процентов его возможностей, срок службы значительно сокращается. Мощность стабилизатора указывает максимальное значение нагрузки, которое можно подключить. Перед покупкой следует первым делом вычислить общее потребление бытовой техники дома, лишь после этого рассматривать модели, способные обеспечить соответствующий режим работы по нагрузке.

Как она влияет на работоспособность? Если неправильно подобрать мощность стабилизатора, периодически будет срабатывать защита — перегрузка. Результат, возникает дискомфорт от постоянных отключений. Работа будет в перегруженном режиме, последствия — перегрев трансформатора. Случай без гарантийный. Чтобы правильно рассчитать данный параметр электронного стабилизатора, существует несколько способов. Рассмотрим подробнее.

Расчет по техническим характеристикам

Каждый бытовой прибор имеет паспорт, где есть таблица характеристик прибора. В этой таблице без особого труда можно посмотреть сколько потребляет прибор. На каждом приборе (обычно на задней стороне прибора) есть шильдик с указанием основных характеристик. Собрав все значения с приборов которыми Вы можете пользоваться одновременно, суммируем. Получаем приблизительное значение необходимой мощности стабилизатора. Значение приблизительное. Поэтому рекомендуется всегда закладывать небольшой запас для Российских производителей, и 50% запаса для произведенных в Китае.

Мощность стабилизатора по входным автоматам

Самый простой способ определения мощности стабилизатора — посмотреть номинал входных автоматов установленных в щитке. Автоматы находятся рядом со счетчиком электроэнергии. На фото показан пример расположения автоматов, место обозначения номинала. Расчет мощности электронного стабилизатора прост. Смотрим значения номинала автомата. Приблизительно делим значение на 5, получаем мощность стабилизатора. Например стоят автоматы 25 Ампер (25 А). Будет прописано С25. Делим, получаем значение 5 кВа. Если автоматы не выбивало, значит Ваша нагрузка не превышает 5 кВа. Начинаем просматривать модели с данной характеристикой. Сложнее определить если в щитке много автоматических выключателей. Внимательно рассматриваем номиналы всех. Как правило вводной (входной) автомат имеет значение выше, чем все остальные, ставят его первым от счетчика электроэнергии.

Расчет мощности в онлайн калькуляторе

В процессе расчета надо сложить все электроприборы, которыми пользуетесь одновременно. Прибавить несколько киловатт на свет. Не забывайте учитывать мощные нагревательные элементы. Получив определенное значение, надо теперь заложить запас на падение мощности стабилизатора при пониженном напряжении. В нижней части калькулятора предусмотрена дополнительная шкала, которая учитывает падение, закладывая небольшой запас.

Серия ЛЮКС работает без падения мощности стабилизатора при пониженном напряжении. Измерительный элемент стоит на выходе стабилизирующего устройства. В результате защита по перегрузке сработает только тогда, когда потребитель даст нагрузку в 100% от заданных параметров. Естественно, законы физики не отменяли, на входе устройства при низком напряжении потребление тока будет больше. В результате само падение оплачивает не потребитель, а производитель. Что очень удобно для конечного потребителя.

Хотите получить бесплатную консультацию, узнать стоимость и действующие скидки?

Отправьте запрос, заполнив все поля в онлайн консультанте.

Рассчитать мощность стабилизатора можно позвонив по бесплатному номеру

Калькулятор расчета мощности | Стабилизаторы напряжения VoltStab

Для правильного выбора мощности стабилизатора, необходимо определить сумму мощностей всех потребителей, нуждающихся одновременно в снабжении электроэнергией. А также, имейте ввиду потребителей, включающихся единовременно. ..на них тоже рассчитывайте. ВАЖНО: Необходимо учитывать, что электродвигатели имеют пусковые токи гораздо выше номинальных. Мощность стабилизатора при использовании асинхронных двигателей, компрессоров, насосов должна в 3-5 раз превышать номинальную мощность потребителей.

Для того чтобы правильно рассчитать мощность стабилизатора напряжения необходимо последовательно сложить мощность всех потребителей включаемых одновременно с учетом пусковых токов.

Мощность каждого бытового прибора Вы можете посмотреть в паспорте или на самом приборе, как правило эта цифра указывается на задней стенке прибора.

Так же необходимо учитывать различные типы нагрузки.

Нагрузка существует как активная, так и реактивная.

Что это такое?

Активная нагрузка, потому и называется активной, что вся потребляемая электроэнергия преобразуется в другие виды энергии (тепловую, световую и др.). Многие приборы и устройства имеют только активную нагрузку. К таким приборам и устройствам можно отнести лампы накаливания, обогреватели, электроплиты, утюги и т.д. Если их указанная потребляемая мощность составляет 1 кВт, для их питания достаточно стабилизатора мощностью 1кВт.

Реактивные нагрузки. К таким устройствам можно отнести приборы и изделия имеющие электродвигатель. Среди бытовой техники, таких устройств очень много — это почти вся электронная и бытовая техника. Такие приборы имеют полную мощность и активную. Полная мощность исчисляется ВА (вольт-амперы), активная мощность исчисляется Вт (ваттах).

Полная мощность (вольт-амперы) и активная мощность ( ватты) связаны между собой коэффициентом cos ф. На электроприборах имеющих реактивную составляющую нагрузки , часто указывают их активную потребляемую мощность в ваттах и cos ф.

Для того чтобы Вам подсчитать полную мощность в ВА, нужно активную мощность в Вт разделить на cos ф.

Например: если на дрели написано «700 Вт» и » cos ф = 0,7″, это означает, что на самом деле потребляемая инструментом полная мощность будет равна 700/0,7=1000 ВА. Если cos ф не указан, то в среднем активную мощность можно разделить на 0,7.

Высокие пусковые токи.

Многие приборы в момент пуска могут потреблять энергии в несколько раз больше чем их номинальная мощность. К таким приборам относятся все устройства содержащие двигатель.

К примеру, глубинный насос, холодильник и т.д.. Указанную в паспорте потребляемую мощность необходимо умножить на 3-5 раз, иначе Вы не сможете включить эти устройства через стабилизатор, потому что будет срабатывать защита от превышения мощности.

После того как Вы получили суммарную мощность всех приборов, необходимо посчитать какие именно приборы будут включатся одновременно и у каких приборов есть пусковые токи. Только в этом случае Вы правильно рассчитаете правильную мощность стабилизатора напряжения необходимого для питания Вашей бытовой техники.

Рекомендуется выбирать модель стабилизатора с 20% запасом по мощности. Во-первых, Вы обеспечите «щадящий» режим работы стабилизатора, тем самым, увеличив его срок службы, во-вторых, создадите себе резерв мощности для дополнительного подключения нового оборудования.

Как выбрать стабилизатор напряжения (2018) | Стабилизаторы напряжения | Блог

Вместо привычного с детства числа 220 в маркировке современных электроприборов все чаще попадается 230. С недавних пор именно 230 В является стандартным напряжением в России и многих других странах. Впрочем, для большинства электроприборов разницы между 230 и 220 В нет никакой. Стандартом допускаются отклонения напряжения сети на ±10%, т.е. от 207 до 253 В. Производители бытовой техники ориентируются именно на эти показатели.

Однако в реальности напряжение в этих рамках удерживается не всегда. В новых микрорайонах, в деревнях и поселках часто к старой подстанции, рассчитанной на определенную нагрузку, подключается много новых потребителей. Это приводит к падению напряжения до 190 В и даже ниже, что бывает хорошо заметно по горящим в полнакала лампочкам. К сожалению, снижением яркости лампочек проблема не исчерпывается. Возрастают токи в обмотках электродвигателей насосов, холодильников, стиральных машин, посудомоек и пр. Это может привести к выходу двигателя из строя.

Бывает в сети и повышенное напряжение, также довольно частое в загородных домах – иногда подстанции намеренно подстраиваются на выдачу повышенного напряжения, чтобы на удаленных потребителях оно поднялось до нормального. При этом на потребителях, близких к подстанции, оно может быть около 250 В. Если при этом еще и нулевой провод окажется не заземлен, то из-за перекоса фаз напряжение может подняться еще выше – до 260 В и даже больше. Ну и не так уж редки случаи, когда электрики случайно подключают в щитке вместо нулевого провода – еще одну фазу, выдавая потребителям 400 В вместо 230. Повышенное напряжение вредно всем потребителям без исключения, поскольку ведет к увеличению выделения тепла, перегреву деталей, выходу их из строя и даже воспламенению.

Можно защитить все электроприборы в доме, установив во входном щитке реле напряжения, но это не решит проблему полностью – при выходе напряжения за установленные рамки оно просто обесточит потребителей. Чтобы защититься от длительных просадок или повышений напряжения, следует ставить стабилизатор.

Конечно, можно поставить мощный стабилизатор на входе в дом и защитить всю технику скопом, но это будет стоить весьма недешево. Тем более что особой надобности в этом и нет – различные электроприборы по-разному реагируют на повышенное или пониженное напряжение. Вполне возможно, что не всей вашей технике нужна защита стабилизатором.

Защита электроприборов

Холодильники, морозильники и кондиционеры требуют защиты в первую очередь – пониженное напряжение в сети может стать причиной поломки компрессора и дорогостоящего ремонта.

Но еще одна особенность этой техники в том, что многие модели могут выйти из строя при быстром выключении-включении. Дело в том, что при выключении компрессора давление в системе выравнивается в течение некоторого времени (1-3 минуты). Если запустить компрессор раньше, его двигатель будет работать с повышенной нагрузкой (или вообще не сможет запуститься), что может привести к поломке. Современные холодильники и кондиционеры большей частью имеют встроенное реле задержки, но если у вас есть сомнения, или в руководстве указано, что перед повторным пуском следует выждать некоторое время, то стабилизатор обязательно должен иметь функцию задержки запуска минимум на 1 минуту.

Насосы, как погружные, так и поверхностные также требуют защиты от пониженного/повышенного напряжения и им тоже нужна задержка запуска. При пуске двигатель насоса в течение 1-2 секунд потребляет ток, в несколько раз превышающий номинальный. При этом обмотка двигателя нагревается. При обычном пуске излишки тепла снимаются прокачиваемой водой, но если напряжение в сети пропадает и появляется, то пусковые токи длятся дольше, а двигатель не успевает раскрутиться и прокачать воду. Контактирующая с насосом вода перегревается вплоть до закипания, что приводит к поломке насоса и перегоранию обмоток двигателя. Поэтому стабилизатор, защищающий насосы, должен также иметь задержку запуска в 5-10 секунд.

СВЧ-печь не выйдет из строя при падении напряжения, но эффективность её при этом снизится многократно. Если отвезенная на дачу «микроволновка» перестала греть, не спешите везти её в ремонт – возможно, дело в низком напряжении сети. Стабилизатор легко устранит эту проблему.

Электроника (компьютеры, современные телевизоры, аудиотехника), оснащенная импульсными блоками питания, пониженного напряжения не боится. Обычно это указывается в руководстве или прямо на блоке питания: «INPUT: 100-240 V». Так что, если ваша проблема состоит в пониженном напряжении, стабилизатор такой технике не нужен. Другое дело, если оно повышенное – при длительном воздействии напряжения от 240 В и выше, нагрузка (как тепловая, так и электрическая) на электронику БП сильно возрастает, что довольно быстро приводит к выходу его из строя.

Энергосберегающие лампы (как люминесцентные, так и светодиодные) к пониженному напряжению довольно лояльны, а вот повышенного не любят. Если всплески напряжения в вашей сети не редкость, то их лучше защитить стабилизатором. Тем более что потребляют они немного, и одного недорогого стабилизатора мощностью в 300-500 ВА хватит на освещение частного дома.

Нагревательным приборам, лампам накаливания, электрочайникам, утюгам и прочей подобной технике падения напряжения вообще не опасны – у них просто снизится эффективность. Повышенное напряжение может ускорить их износ, но в целом, напряжение, на 10-20% превышающее номинал, для большинства подобных приборов неопасно. Эти приборы можно включать в «проблемную» сеть без стабилизатора. Правда, это не относится ко многим современным моделям, оснащенным сложными электронными устройствами управления.

Определившись с тем, какие приборы следует защитить, следует определиться с характеристиками стабилизатора.

Характеристики стабилизаторов

Тип стабилизатора напряжения

Релейные стабилизаторы напряжения представляют собой трансформатор с несколькими отводами входной или выходной обмотки, коммутируемыми силовыми реле.

При нормальном входном напряжении трансформатор работает как разделительный – не повышая и не понижая напряжение. При выходе входного напряжения за установленные границы, электроника включает соответствующее реле, превращая трансформатор в понижающий или повышающий.

Преимущества релейных стабилизаторов:

– Низкая цена.

– Высокая перегрузочная способность – даже самые простые модели выдерживают 200% перегрузки в течение нескольких секунд. Модели же с мощными силовыми реле, рассчитанные на высокие пусковые токи, выдерживают непродолжительные десятикратные перегрузки.

– Малое время переключения – напряжение полностью стабилизируется через 20-100 мс после выхода его за нормальные границы.

Недостатки:

– Ступенчатость регулирования. Трансформатор имеет ограниченное число отводов на обмотке, поэтому изменять напряжение может только ступенчато – по 5, 10, а на недорогих моделях – по 20 вольт на одну ступень регулирования. В целом это для техники неопасно, но на граничных напряжениях частые переключения реле, сопровождающиеся мерцанием ламп накаливания, могут раздражать.

– Шумность. Реле при переключении щелкает довольно громко.

– Износ контактов реле. Основной недостаток этого вида стабилизаторов – опасность прогара или пригара контактов реле. Если в первом случае напряжение на выходе стабилизатора просто пропадет, то второй вариант намного неприятнее. Если пригар случится во время пониженного входного напряжения, то при возврате напряжения в норму, реле останется включенным. Трансформатор продолжит работать, как повышающий и напряжение на выходе станет повышенным! Спокойный за свою электротехнику владелец стабилизатора даже не будет подозревать, что именно в этот момент он сжигает её высоким напряжением. Поэтому не стоит выбирать релейный стабилизатор, если в сети случаются частые перепады напряжения – чем чаще реле срабатывает, тем быстрее снижается его ресурс.

Электромеханические (сервоприводные) стабилизаторы напряжения представляют собой тороидальный трансформатор с передвигающимся над внешней обмоткой токосъемником, контактирующим с обмоткой с помощью угольной щетки. При падении или превышении входного напряжения сервопривод перемещает токосъемник, нормализуя выходное.

Преимущества электромеханических стабилизаторов:

– Высокая перегрузочная способность – 200% перегрузки в течение 4-х секунд.

– Плавность регулирования.

– Высокая точность регулирования.

– Низкий уровень шума при регулировании.

Недостатки:

– Большое время переключения – токосъемник движется по обмоткам довольно медленно. Чем больше перепад напряжения, тем медленнее стабилизатор его отрабатывает. Это может привести к появлению импульсных помех на выходе стабилизатора, вызывающих сбои в работе электротехники.

– Износ токосъемника. Токосъемник желательно периодически смазывать графитовой смазкой. Но даже своевременная смазка не предотвращает полностью износа трущихся деталей.

– Высокая цена.

Инверторный стабилизатор сделан на основе инвертора – ток сначала выпрямляется, потом, с помощью инвертора, вновь преобразуется в переменный.

Это позволяет достичь высокой точности регулирования и позволяет добиться полного отсутствия возмущений на выходе. Благодаря отсутствию движущихся контактов, у них низкий уровень шума, ресурс выше и опасности пригара контактов они лишены.

Недостатки инверторных стабилизаторов:

– Недорогие инверторы дают на выходе не чистую синусоиду, а ступенчатую. Некоторые электронные приборы (измерительные приборы, газовые котлы, аудио- и видеотехника) могут начать сбоить или вообще откажутся работать с такой синусоидой.

– Низкая перегрузочная способность. Допускается перегрузка 25-50% от номинала, в течение 1-4 секунд. Для защиты приборов, имеющих высокий пусковой ток, стабилизатор такого типа потребуется брать с большим запасом по мощности.

– Высокая чувствительность к мощным импульсным помехам. Впрочем, в бытовых сетях такие помехи — явление маловероятное.

Ступенчатые электронные стабилизаторы конструктивно схожи с релейными, однако коммутирование обмоток в них производится не с помощью реле, а с помощью мощных полупроводниковых приборов.

Это позволяет добиться высочайшей скорости регулирования (5-40 мс на переключение) при достаточно низкой цене. Эти стабилизаторы тоже не имеют движущихся контактов, бесшумны и обладают высоким ресурсом.

Но свои недостатки есть и у этого вида стабилизаторов:

– Низкая перегрузочная способность. Допускается перегрузка 20-40% от номинала, и то весьма непродолжительное время.

– Ступенчатость регулирования.

– Высокая чувствительность к мощным импульсным помехам. Если в сети нередки сильные кратковременные всплески напряжения, прослужит такой стабилизатор недолго.

Необходимая полная выходная мощность стабилизатора рассчитывается исходя из мощностей всех подключенных к нему электроприборов. При подсчете полной мощности следует иметь в виду, что та мощность (в Ваттах), которая приводится в паспорте на электроприбор – это его активная мощность, т.е., выделяющаяся в виде тепла или света.

Нагревательные приборы и лампы накаливания имеют полную мощность, равную активной. Но некоторые потребители, содержащие в себе электродвигатели или трансформаторы, создают вдобавок к активной еще и реактивную нагрузку. Для определения их полной мощности следует активную мощность поделить на коэффициент мощности (cos(φ)), обычно указанный в паспорте на электроприбор. Если найти это значение не удается, можно воспользоваться таблицей:

Полные мощности всех потребителей следует сложить и добавить к получившейся сумме 30% — дело в том, что мощность стабилизатора приводится для напряжения 220В. При выходе напряжения за пределы нормального, мощность стабилизатора падает на 20-30%. Именно это падение и следует компенсировать.

Но это еще не все – теперь полную мощность каждого потребителя следует помножить на пусковой коэффициент, также взяв его из паспорта или из таблицы. Сумма получившихся чисел (не забываем про 30%) – это пусковая мощность, и перегрузочная способность стабилизатора должна её обеспечивать.

Например, нам следует защитить холодильник мощностью 150 Вт, погружной насос мощностью 500 Вт и линию освещения со светодиодными лампочками суммарной мощностью 500 Вт. Необходимая полная мощность в ВА будет равна:

  • 150/0,8=187,5
  • 500/0,7=714,3
  • 500/0,95=526,3

Суммируем полученные данные и прибавляем 30%. Итого 1857 ВА.

Пусковая мощность будет равна:

  • 187,5*3=562,5
  • 714,3*7=5000
  • 526,3*1,5=790

Также суммируем, прибавляем 30%, получается 8258 ВА. Таким образом, нам нужен стабилизатор на 3000 ВА, способный выдержать перегрузку в три раза больше (релейный с усиленными реле), либо стабилизатор на 4500 ВА, способный выдержать в два раза больше перегрузки (релейный или электромеханический), либо электронный (ступенчатый или инверторный) на 9000 ВА.

Если такой подбор выглядит слишком сложным, то можно просто сложить активные мощности электроприборов (в Ваттах) и подобрать стабилизатор также по активной выходной мощности. Но такой подбор будет грубее: во-первых, этот метод не учитывает индивидуальных особенностей электроприборов, во-вторых, все производители по-разному рассчитывают зависимость полной и активной мощностей. И здесь также следует быть уверенным, что перегрузочная способность стабилизатора поможет ему выдержать пусковую мощность потребителей.

Разъем для подключения нагрузки может быть в виде клемм, либо в виде розеток. Если стабилизатор планируется использовать для защиты какой-либо линии электропитания (например, осветительной) предпочтительнее разъем в виде клемм.

Если же защищать планируется отдельных потребителей, то удобнее подключать их напрямую в евророзетки (СЕЕ 7), обратите внимание, чтобы количество розеток соответствовало количеству потребителей.

Некоторые стабилизаторы оснащены компьютерными розетками IEC 320 C13 – как правило, эти стабилизаторы предназначены для защиты персональных компьютеров и учитывают низкий коэффициент мощности этого вида техники.

Задержка запуска, как указывалось выше, может потребоваться для защиты некоторых видов техники, не приемлющих частых включений-выключений: холодильников, кондиционеров, насосов и пр.

Варианты выбора стабилизаторов

Для защиты отдельного маломощного потребителя – газового котла или циркуляционного насоса – будет достаточно стабилизатора полной мощностью до 1000 ВА.

Для защиты электроприборов, наиболее сильно подверженных влиянию пониженного или повышенного напряжения, будет достаточно стабилизатора в 3000-6000 ВА.

С защитой всех домашних электроприборов справится мощный стабилизатор.

Для защиты компьютера и периферии удобно использовать специализированный стабилизатор с компьютерными розетками.

Релейные и электромеханические стабилизаторы обладают высокой перегрузочной способностью и хорошо подходят для защиты электроприборов с высокими пусковыми токами.

Калькулятор расчета мощности стабилизатора напряжения для газового котла

Многие современные модели газовых котлов оснащены достаточно сложной системой электронного управления. Она обеспечивает поддержание заданного режима работы системы, управляет циркуляционными насосами, вентиляторами подачи воздуха в камеру сгорания, дает команду на срабатывание различных электромагнитных клапанов или кранов, иногда сохраняет в памяти необходимые настройки и даже способна анализировать внешние данные для выработки наиболее оптимального алгоритма всей системы отопления в целом.

Калькулятор расчета мощности стабилизатора напряжения для газового котлаКалькулятор расчета мощности стабилизатора напряжения для газового котла

Безусловно, это все удобно, но если в сети питания нет достаточной стабильности напряжения, то система управления может начать сбоить, а то и вовсе «зависать». Чтобы избежать подобных ситуаций, настоятельно рекомендуется оснащать подобное котельное оборудование специально выделенным для него стабилизатором. А правильно выбрать подходящую к конкретным условиям модель поможет калькулятор расчета мощности стабилизатора напряжения для газового котла.

Цены на стабилизаторы для газового котла

стабилизатор для газового котла

Если по ходу расчетов возникнут вопросы, то под калькулятором даны необходимые разъяснения по работе с ним.

Калькулятор расчета мощности стабилизатора напряжения для газового котла

Перейти к расчётам

Несколько необходимых пояснений к проведению расчетов

Критериев выбора стабилизатора напряжения – немало. Одним из них является его мощность. Если быть точным, то разговор, конечно, идет о вольт-амперной характеристике, то есть не о полезной мощности (ватт), а о тех параметрах выходного тока (вольт-ампер), которые прибор способен поддерживать в нормальном режиме своей работы. Но все равно исходными параметрами для расчета, безусловно, будут значения потребляемой мощности подключенных к стабилизатору приборов.

  • Простое суммирование – даст крайне неточный результат. Дело в том, что большинство приборов потребляют не только полезную, но еще и реактивную мощность. Она рассчитывается по специальной формуле, и ее следует принимать в расчет. В нашем калькуляторе это учтено.
  • Далее, при трансформации напряжения до необходимого номинала, обязательно происходят потери мощности, и они тем больше, чем значительнее отклонение от установленных 220 В. Поэтому прежде чем приступать к расчетам, рекомендуется провести своеобразное «исследование» — организовать измерение напряжения в сети, например, утром, днем и в вечерние пиковые часы потребления, в течение нескольких дней. Должна получиться наглядная картина —  и значение, наибольшим образом отличающееся от номинала, и станет исходным параметром для расчетов.
  • В калькуляторе будет запрашиваться потребляемая мощность котла. ВАЖНО: не путайте с тепловой мощностью котельного оборудования! Потребляемая мощность котла указывается в его паспорте, и касается исключительно его электротехнических параметров.
  • Если к стабилизатору планируется подключение внешних (не входящих в компоновку котла) циркуляционных насосов, то учитывается и их потребляемая мощность. В калькуляторе достаточно указать количество насосов.
  • Наконец, к стабилизатору иногда подключают и другое внешнее оборудование, необходимое для работы котельной (например, это может быть принудительная вентиляция). В этом случае в специальном поле калькулятора необходимо будет указать суммарную потребляемую мощность всех дополнительных приборов.

Результат будет получен в вольт-амперах. Он станет одним из ключевых критериев при дальнейшем выборе необходимой модели стабилизатора.

2016-08-09_182806Как выбрать оптимальную модель?

В продаже представлен широкий ассортимент приборов такого класса, различающихся как принципом действия, так и эксплуатационными характеристиками. Не ошибиться при выборе стабилизатора напряжения для котла поможет специальная публикация нашего портала.

Как выбрать стабилизатор напряжения для дома

стабилизатор люксеонВыбор стабилизаторов напряжения у многих рядовых пользователей вызывает массу вопросов, которые они в основном решают уже непосредственно при покупке в магазине у самого продавца-консультанта. При этом у менеджера всегда есть свой интерес в реализации именно того товара, который выгоден в первую очередь ему, а не вам.

Ознакомившись с советами в данной статье вы уже на 100% будете знать какой именно стабилизатор вам необходим и почему. Поход в магазин будет заключаться лишь в поиске наличия такого стабилизатора в их ассортименте и его цене.

Стабилизаторы локального и общего подключения

Первое с чем необходимо определиться, что вы будете подключать от стабилизатора — все электроприборы в доме или какой-то конкретный аппарат (телевизор, холодильник, компьютер).

Во втором случае вам потребуется стабилизатор локального типа. Мощность его не превышает 1-2кВт, напряжение 220в. Подключается он через шнур с вилкой в обычную розетку и на своей панели имеет другие розеточные разъемы, для питания того самого защищаемого аппарата.стабилизатор напряжения для бытовой техники в розетку

Для его установки и подключения не нужно вызывать электрика и обладать какими-либо техническими знаниями.

Другая группа стабилизаторов уже предназначена для электроснабжения всей квартиры или дома. Мощность их начинается от 5квт и выше.

Для обычной квартиры еще подойдут экземпляры мощностью в 5-9квт, а вот для дома уже нужно брать начиная от 9квт.

Эти стабилизаторы относятся к устройствам клеммного подключения. Устанавливаются они возле электрощитка сразу после счетчика. Подключение (вход и выход) выполняется медным кабелем через специальные клеммы. Если у вас нет необходимых навыков и знаний, то для их установки уже нужно привлекать профессиональных электриков.схема подключения стабилизатора напряжения в доме

При выборе всегда обращайте внимание в каких величинах производитель указывает мощность — в вольт-амперах (Ва) или в ваттах (Вт). При переводе Ва в Вт мощность разрешенная для подключения может оказаться меньше в зависимости от коэффициента cos f.

Это коэффициент мощности, который учитывается для таких приборов как двигатели, лампы ДРЛ, компрессоры и т.д. В большинстве своем его величина колеблется от 0,7 до 0,8. табличка косинуса фи на двигателе

таблица косинуса фи для бытовых приборовПоэтому не всегда нагрузку в районе 5квт, можно смело подключать к стабилизатору с биркой в 5ква. Только из-за cos f она уже изменяется на 20-30%

Виды стабилизаторов напряжения

Еще один немаловажный момент выбора — это тип стабилизатора, в зависимости от принципа выравнивания напряжения. Очень подробно какие типы стабилизаторов бывают, все плюсы и недостатки, видео сравнения их работы, можно ознакомиться в статье Виды стабилизаторов напряжения.

  • релейныестабилизатор напряжения sven
  • тиристорные-симисторныесимисторный стабилизатор вектор
  • сервоприводныесервопривод под корпусом
  • инверторныеинверторные стабилизаторы напряжения Штиль

Самыми распространенными моделями на данный момент являются релейные и тиристорные (или симисторные). Релейные — из-за своей дешевизны, тиристорные — из-за качества выравнивания напряжения и малошумности в работе.в чем отличия и разница симисторного от релейного стабилизатора напряжения

Менее распространены сервоприводные, в основном это китайские модели. Срок их службы оставляет желать лучшего — до 5 лет.

Ну а инверторные по причине дороговизны редко встречаются в широком ассортименте, хотя и обладают лучшими качествами среди всех остальных моделей. Еще их один минус — они предназначены в основном для малых нагрузок.

При выборе симисторных обращайте внимание на количество ступеней регулирования. Чем их больше, тем плавнее происходит выравнивание напряжения.ступени регулирования напряжения в стабилизаторах

Большинство имеют 12 ступеней — брать меньше не желательно, так как сильно будет заметно мигание лампочек освещения при переключениях.

 

А еще чем меньше ступеней, тем больше погрешность на выходе. У стабилизаторов имеющих 9 ступеней выравнивания, погрешность доходит до 15 Вольт.

  • 9 ступеней — погрешность 15В
  • 12 ступеней — погрешность 10-12В
  • 16 ступеней — погрешность 6В
  • 36 ступеней — погрешность 3В

Подороже модели обладают 16 и 32 ступенями. Обычно их в наличии не найти, только под заказ. Но они лучше подходят для защиты дорогой электронной техники.

Вот таблица некоторых популярных марок стабилизаторов часто встречающихся в наших магазинах и их цены:таблица выбора стабилизатора напряжения сравнение цен

Просмотреть текущие цены на сегодняшний день и подобрать нужную вам модель можно здесь.

Далее можете ознакомиться с видеообзором на каждую из марок представленных в таблице:

Одно и трехфазные стабилизаторы

При подборе стабилизатора напряжения учитывайте сколько фаз заведено в ваше помещение. В 90% квартир — напряжение 220В, и соответственно выбирать нужно однофазный стабилизатор. В частных домах и коттеджах нередко встречается 3-х фазка — 380 Вольт. Здесь стоит сделать выбор в сторону трех однофазных, вместо одного трехфазного.три однофазных стабилизатора вместо одного трехфазного

Хотя это по габаритам может занять место в 2 раза больше, зато в дальнейшей эксплуатации окупит себя вдвойне.

Преимущества трех однофазных:

  • при поломке одного стабилизатора не нужно везти в ремонт сразу 3 штуки
  • при отсутствии напряжения по фазе, два остальных будут работать исправновыход из строя одной из фаз на трехфазном стабилизаторе
  • нагрузку одной фазы можно перевести в режим байпас, чтобы например воспользоваться сварочным аппаратом. Остальные продолжат исправно защищать оборудование.режим байпас на стабилизаторе

Однако если у вас преобладает именно трехфазная нагрузка (двигатели, насосы, компрессор), то тогда нужно брать один стабилизатор на 380В.один стабилизатора на 380В для трехфазной нагрузки лучше

Замеры и расчеты при выборе стабилизатора

При подборе стабилизатора никак не получится обойтись без фактических замеров и расчетов напряжения и мощности.

Напряжение

Замерьте с помощью мультиметра уровень своего входящего напряжения. Повышено оно или понижено знать не достаточно, необходимо четко представлять в каких пределах оно «гуляет». низкое входное напряжениеБольшинство стабилизаторов хорошо справляются с уровнем регулировки от 160 до 255 Вольт.

А вот если оно у вас меньше или больше, тут уже нужно смотреть только в сторону инверторных моделей. Именно они обеспечивают стабилизацию в самых широких диапазонах от 90 до 310В. Остальные с этим справляются плохо.сравнение инверторного и релейного стабилизатора напряжения

Не дайте себя обмануть продавцу, когда он будет рассказывать про предельный или максимальный диапазон входных напряжений от 110В до 290В! Это напряжение при котором стабилизатор хоть как то, но еще будет работать, а не отключится от действия защит.

В первую очередь смотрите на параметр — рабочий диапазон входного напряжения.

Именно он показывает то напряжение, при котором аппарат будет стабильно выдавать на выходе 220 Вольт.

Расчет мощности

Определяетесь с мощностью. Для этого в первую очередь смотрите на сколько ампер у вас вводной автомат. По нему можно сориентироваться какую максимальную мощность вы сможете взять из общей сети.схема электрощитка с вводным автоматом на 40А

Для автомата на 40А

P=I*U=40А*220В=8800Вт

То есть нагрузку более 9квт вы просто не сможете подключить из-за ограничения вводного автоматического выключателя.

Кроме автомата не лишним будет проверить сечение питающего кабеля. Потому что при превышении нагрузки, автомат отключится не сразу, а с выдержкой времени, иногда в несколько десятков секунд. А вот тонкий кабель, начинает греться моментально с момента перегрузки. Проверить какую максимальную мощность можно подключить на вашу проводку можно по следующей таблице: таблица проверки сечения питающего кабеля по току

Теперь подсчитываем токоприемники, которые ОДНОВРЕМЕННО могут быть включены в розетки.подсчет суммарной нагрузки при выборе стабилизатора напряжения

мощности электроприемников для дома

Все электроприемники которые имеют в своей конструкции двигатели (холодильник, стиральная машинка и т.п.) обладают такой характеристикой как пусковой ток. Он в несколько раз больше номинального значения. Поэтому их паспортную мощность нужно умножать минимум на 3!

В итоге получаете некую сумму, например в 4квт. Напряжение на входе у вас — 170 Вольт. Эти входные 170В нужно разделить на желаемые 220 Вольт.

Расчет коэффициента:

170В/220В=0,77

Далее умножаете этот коэффициент на мощность стабилизатора который вы присмотрели, чтобы проверить «потянет» ли он вашу нагрузку или нет. Пусть это будет стабилизатор для дома в 9ква.

Расчет мощности в кВа:

0,77*9ква=6,93ква

Не забывайте что вам все нужно перевести в квт. Берем усредненный коэффициент мощности cosf=0,8 (если у вас нет двигательной нагрузки и реактивной мощности, то cosf=1!).

Итоговый расчет мощности в кВт:

6,93ква*0,8=5,54квт

То есть при вашем пониженном напряжении 170В стабилизатор будет вытягивать мощность в 5,5квт. А у вас одновременно включено не более 4квт. Делаем вывод что данная модель вам подойдет.

Выбирать стабилизатор, что называется «впритык» нельзя. Именно его перегрузка является самой частой причиной выхода из строя. Обязательно должен быть запас в 20-30% минимум!

Суммируя вышесказанное, вот на что вам нужно сделать акцент при выборе стабилизатора для дома:

1локальный или общий стабилизатор 2вид или тип стабилизатора 3однофазный или трехфазный 4напряжение на входе (его max и min значение) 5его мощность

Статьи по теме

различных типов стабилизаторов напряжения — для защиты ваших бытовых приборов

Колебания напряжения вызывают временный или постоянный сбой нагрузки. Эти колебания напряжения также сокращают срок службы бытовых приборов из-за нерегулируемого низкого или более высокого напряжения, чем предполагаемое напряжение, требуемое для нагрузки. Эти колебания напряжения возникают из-за внезапных изменений нагрузки или из-за неисправностей в энергосистеме. Таким образом, необходимо подавать стабильное напряжение на нагрузку, учитывая важность бытовых приборов и необходимость их защиты.Стабилизаторы напряжения используются для поддержания стабильного напряжения питания нагрузки, так что бытовая техника может быть защищена от повышенного и пониженного напряжения.

Что такое стабилизатор?

Стабилизатор — это вещь или устройство, используемое для поддержания чего-либо или количества устойчивым или стабильным. Существуют различные типы стабилизаторов в зависимости от количества, которое они используют для поддержания стабильности. Например, стабилизатор, используемый для поддержания стабильной величины напряжения в энергосистеме, называется стабилизатором напряжения.


What is Stabilizer? What is Stabilizer? Что такое стабилизатор? Стабилизатор напряжения
Стабилизатор напряжения

предназначен для поддержания стабильного уровня напряжения, чтобы обеспечить постоянную подачу, несмотря на любые колебания или изменения в питании для защиты бытовой техники. Обычно регуляторы напряжения используются для поддержания постоянного напряжения, и эти регуляторы напряжения, которые используются для обеспечения постоянного напряжения бытовых приборов, называются стабилизаторами напряжения.

Voltage Stabilizer Voltage Stabilizer Стабилизатор напряжения

Существуют различные типы регуляторов напряжения, такие как электронные регуляторы напряжения, электромеханические регуляторы напряжения, автоматические регуляторы напряжения и активные регуляторы.Аналогично, существуют различные типы стабилизаторов напряжения, такие как стабилизаторы серво напряжения, автоматические стабилизаторы напряжения, стабилизаторы напряжения переменного тока и стабилизаторы напряжения постоянного тока.

Работа стабилизатора напряжения

Работа стабилизатора напряжения может быть изучена с учетом различных типов стабилизаторов напряжения, таких как:

Стабилизаторы напряжения переменного тока

Эти стабилизаторы напряжения переменного тока подразделяются на различные типы, такие как вращение катушки переменного напряжения регуляторы, электромеханические регуляторы и трансформаторы постоянного напряжения.

PCBWay PCBWay
1. Регуляторы напряжения переменного тока с вращением катушки

Это более старый тип регулятора напряжения, который использовался в 1920-х годах. Работает по принципу, аналогичному вариопарам. Он состоит из двух полевых катушек: одна катушка неподвижна, а другая может вращаться вокруг оси, параллельной неподвижной катушке.

Coil Rotation AC Voltage Regulators Coil Rotation AC Voltage Regulators Регуляторы напряжения переменного тока с вращением катушки

Постоянное напряжение можно получить путем балансировки магнитных сил, действующих на подвижную катушку, что достигается путем размещения подвижной катушки перпендикулярно неподвижной катушке.Напряжение во вторичной катушке может быть увеличено или уменьшено путем вращения катушки в одном или другом направлении от центрального положения.

Механизм сервоуправления может использоваться для продвижения положения подвижной катушки для увеличения или уменьшения напряжения; При таком вращении катушки регуляторы напряжения переменного тока могут использоваться в качестве автоматических стабилизаторов напряжения.

2. Электромеханические регуляторы

Электромеханические регуляторы напряжения, которые используются для регулирования напряжения на распределительных линиях переменного тока, также называемые стабилизаторами напряжения или устройствами РПН.Чтобы выбрать соответствующий отвод из нескольких отводов автотрансформатора, эти стабилизаторы напряжения используют операцию сервомеханизма.

Electromechanical Regulators Electromechanical Regulators Электромеханические регуляторы

Если выходное напряжение не находится в диапазоне предполагаемого значения, то для переключения ответвления используется сервомеханизм. Таким образом, изменяя отношение витков трансформатора, вторичное напряжение может быть изменено для получения приемлемых значений выходного напряжения. Охота, которую можно определить как неспособность контроллера постоянно регулировать напряжение; это можно наблюдать в зоне нечувствительности, в которой контроллер не работает.

3. Трансформатор постоянного напряжения

Это тип насыщающего трансформатора, который используется в качестве стабилизатора напряжения; его также называют феррорезонансным трансформатором или феррорезонансным регулятором. Эти стабилизаторы напряжения используют цепь бака, состоящую из конденсатора, для генерирования почти постоянного среднего выходного напряжения с переменным входным током и высоковольтной резонансной обмоткой. По магнитному насыщению участок вокруг вторичной обмотки используется для регулирования напряжения.

Constant Voltage Transformer Constant Voltage Transformer Трансформатор постоянного напряжения

Простой, надежный метод используется для стабилизации источника переменного тока, который может быть обеспечен насыщающими трансформаторами.Из-за нехватки активных компонентов феррорезонансный подход является привлекательным методом, который основывается на характеристиках насыщения квадратного контура цепи резервуара для поглощения изменений входного напряжения.

Стабилизаторы напряжения постоянного тока

Регуляторы серии

или шунтирующие регуляторы часто используются для регулирования напряжения источников питания постоянного тока. Опорное напряжение подается с помощью регулятора шунта, как стабилитрон или регулятор напряжения трубки. Эти устройства стабилизации напряжения запускают проводимость при указанном напряжении и проводят максимальный ток для поддержания указанного напряжения на клеммах.Избыточный ток отводится на землю, часто используя низкочастотный резистор для рассеивания энергии. На рисунке показан стабилизатор напряжения постоянного тока с использованием микросхемы LM317.

DC Voltage Stabilizers DC Voltage Stabilizers DC напряжения Стабилизаторы

Выходной сигнал регулятора шунта используется только для обеспечения стандартного опорного напряжения к электронному устройству, называемому в качестве стабилизатора напряжения, который способен обеспечить гораздо большие токи, основанные на спросе.

Автоматические стабилизаторы напряжения

Эти стабилизаторы напряжения используются в генераторных установках, аварийных источниках питания, нефтяных вышках и т. Д.Это электронное силовое устройство, используемое для подачи переменного напряжения, и это может быть сделано без изменения коэффициента мощности или сдвига фазы. Стабилизаторы напряжения большого размера постоянно закреплены на распределительных линиях, а стабилизаторы напряжения малого размера используются для защиты бытовой техники от колебаний напряжения. Если напряжение источника питания меньше требуемого диапазона, то для повышения уровня напряжения используется повышающий трансформатор, и, аналогично, если напряжение больше требуемого диапазона, то он понижается с использованием понижающего уровня. трансформатор.

Automatic Voltage Stabilizers Automatic Voltage Stabilizers Автоматические стабилизаторы напряжения

Практический пример автоматического стабилизатора напряжения можно наблюдать в цепях электропитания, используемых для подачи питания на электронные и электронные схемы. Часто регулятор 7805 используется для обеспечения питания проектных комплектов на основе микроконтроллеров, так как микроконтроллеры работают при 5 В. В этом стабилизаторе напряжения 7805 первые две цифры представляют положительный ряд, а последние две цифры представляют значение выходного напряжения регулятора напряжения.

7805 Regulator 7805 Regulator 7805 Regulator

Развитие технологии разработало множество новых стабилизаторов напряжения тренда, которые автоматически регулируют уровни напряжения в требуемом диапазоне. В случае невозможности достижения этого требуемого диапазона напряжения, источник питания будет автоматически отключен от нагрузки для защиты бытовой техники от нежелательных колебаний напряжения. Для получения дополнительной технической информации о стабилизаторах напряжения, вы можете связаться с нами, разместив свои комментарии в разделе комментариев ниже.

Photo Credits:

  • Регуляторы переменного тока с вращением катушки by writework
  • Электромеханические регуляторы by wikimedia
  • Автоматические стабилизаторы напряжения путем нажатия
.
Guard — Руководство по покупке стабилизатора напряжения

Колебания напряжения на наших линиях электропередач являются обычными и тихими. Они наносят вред вашим электрическим приборам, таким как телевизор, холодильник, кондиционер и т. Д., И критически влияют на ваше ценное оборудование, даже оставляя их в поврежденном состоянии. Тщательно подобранный, правильный вид стабилизатора может избавить вас от этой проблемы. Он предотвращает нежелательные колебания напряжения, попадающие в ваши электрические приборы, что делает его работу без проблем.V-Guard с более чем тридцатилетним опытом работы в отрасли предлагает серию стабилизаторов, тщательно разработанных для удовлетворения различных требований применения в вашей повседневной жизни. Наши стабилизаторы разработаны и изготовлены с использованием новейших технологий и строгих мер качества, чтобы защитить все типы ваших электрических приборов от критических колебаний напряжения. Это никогда не будет платой, когда дело доходит до того, что ваше ценное оборудование шокирует вас расплатой.

Что делает стабилизатор напряжения? Как это защищает ваши приборы?
Стабилизаторы (часто называемые автоматическими и безопасными регуляторами напряжения) представляют собой статические устройства для стабилизации напряжения в сети перед подачей на подключенное оборудование.Он распознает колебания напряжения в электросети и регулирует его внутренне для обеспечения постоянного диапазона выходного напряжения, если напряжение в электросети низкое; Ваш стабилизатор распознает его, повышает его до требуемого уровня напряжения и затем подает на подключенное оборудование для работы без проблем. Это происходит наоборот в случае высокого напряжения, которое появляется в сети.

Стабилизаторы получают это, используя электронную схему, которая изменяет требуемые отводы встроенного автотрансформатора с помощью высококачественных электромагнитных реле для генерации желаемого напряжения.Если подаваемое напряжение находится за пределами диапазона, механизм переключает требуемый отвод трансформатора, тем самым подводя напряжение питания к безопасному диапазону.

Таким образом, стабилизатор действует в качестве надежного предохранителя между вашим оборудованием и утилитой, постоянно отслеживая и стабилизируя колебания напряжения, возникающие в утилите. Это гарантирует, что ваше ценное устройство получает стабильный стабилизированный диапазон напряжения в качестве входного сигнала для бесперебойной работы и длительного срока эксплуатации.

Как я могу выбрать правильный размер стабилизатора для моего приложения?
Выбор правильного стабилизатора, подходящего для ваших приложений, имеет решающее значение. Ключевыми областями, которые необходимо учитывать, являются характер, диапазон потребляемой мощности вашего приложения и уровень колебаний напряжения, которые наблюдаются в вашей местности. Вам необходимо знать номинальную мощность защищаемого оборудования — номиналы обычно упоминаются как кВ , кВА или ампер .Вам также необходимо знать номинальное напряжение и частоту линии.

Вот несколько простых советов по выбору стабилизатора:

  • Проверьте напряжение, ток и мощность устройства. Это написано на наклейке с техническими данными рядом с сетевой розеткой, иначе проверьте руководство пользователя.
  • В Индии стандартное рабочее напряжение будет 230 В, 50 Гц.
  • Для получения максимальной мощности — умножьте «230 x Макс. Номинальный ток» всего оборудования, которое должно быть подключено к стабилизатору.Добавьте 20-25% запас прочности, чтобы получить рейтинг стабилизатора. Если у вас есть планы добавить больше устройств позже, вы можете оставить для них буфер.
  • Следует также учитывать импульсный ток, который протекает при включении устройства.
  • Если стабилизатор напряжения также имеет номинальную мощность в ваттах, допустим, что коэффициент мощности составляет 0,8 (Вт = V * A * pf) .

Самое главное, чтобы знать характер нагрузки, подключенной к стабилизатору.Сначала вы должны записать мощность (или Вт) для всех приборов, которые будут подключены к стабилизатору. Общая сумма потребляемой мощности (или ватт) даст вам нагрузку на стабилизатор в ваттах. Но большинство размеров стабилизатора указаны в ВА (вольт-ампер) или кВА (киловольт-ампер, что равно 1000 вольт-ампер). Хотя для получения фактического значения VA (или Вольт-ампер) в ваттах (Вт) вам придется выполнить некоторые измерения, но для приблизительного приближения вы можете увеличить значение в ваттах на 20%, чтобы получить приблизительный размер ВА, который вам может понадобиться. ,

Так, например, если сумма ватт, подключенных к вашему стабилизатору, равна 1000, тогда вы можете взять стабилизатор 1200 ВА или 1,2 кВА. (Обратите внимание, что 20% подходит для жилых систем и может не работать в промышленности, если у вас плохой коэффициент мощности).

Обычно стабилизатор поставляется с различными рабочими диапазонами (рабочий диапазон — это диапазон напряжения, в котором стабилизатор работает / стабилизирует входное напряжение сети и обеспечивает желаемое выходное напряжение). Важно выбрать стабилизатор, соответствующий колебаниям напряжения в вашей местности.

Представьте себе уровень колебаний мощности, которые распространены в вашем регионе. (Например, зоны с очень низким / высоким напряжением, зоны с умеренным высоким / низким напряжением и т.д.). Вы должны выбрать рабочий диапазон ваших стабилизаторов, который будет соответствовать требованиям вашего местоположения. Например, вам может потребоваться выбрать стабилизатор с широким рабочим диапазоном, если ваше местоположение испытывает крайне низкие / высокие колебания напряжения.

Какие характерные особенности следует искать в стабилизаторе напряжения?

а.Крепление
Поскольку стабилизатор напряжения работает от электрической энергии, всегда существует риск того, что ваш стабилизатор промокнет или повредится, если его поместить на землю или в небезопасном месте. Вот почему большинство стабилизаторов могут быть установлены на стене или установлены на более высоком уровне, чтобы не только защитить их от любого повреждения, но и защитить вашу семью, особенно маленьких детей, от риска поражения электрическим током.

б. Показатели
Индикаторы отображают напряжение, которое было отрегулировано для подачи питания на прибор.Более новые модели также включены со светодиодными индикаторами.

гр. Системы с временной задержкой
Эта функция позволяет использовать промежуток времени, так что встроенный компрессор (в случае холодильника, кондиционера и т. Д.) Получает достаточно времени для балансировки тока, когда происходит кратковременное отключение электроэнергии.

д. Оцифрованный
Чтобы сделать функцию стабилизатора более точной и надежной, многие новейшие модели оцифрованы.Что интересно в этих новых моделях, так это то, что они не только оцифрованы, но и адаптируются к различным устройствам. Поэтому все, что вам нужно сделать, это переместить стабилизатор с одного устройства на другое, чтобы заставить его работать. Большинство из них также будут подключаться и адаптироваться к генераторам, если они установлены.

эл. Защита от перегрузки
Функция защиты от перегрузки полностью отключает выход стабилизатора в случае короткого замыкания или выгорания из-за перегрузки.

На большинство наших стабилизаторов предоставляется гарантия 3-5 лет, чтобы вы могли дольше пользоваться безопасной и достаточной защитой своих приборов. Всегда не забывайте выбирать стабилизатор, разработанный специально для вашей бытовой техники. Мы надеемся, что вы примете правильное решение.

ли современные холодильники / кондиционеры поставляются со встроенной стабилизацией напряжения?
Современные приборы (в основном, холодильники и кондиционеры) имеют больший диапазон напряжения для работы, т.е.е. Если в прошлом холодильники работали хорошо только между 200-240В, то теперь они имеют больший диапазон 170-290В. Холодильник поставляется со встроенным отключением высокого и низкого напряжения, но не поставляется со встроенными стабилизаторами напряжения . Использование стабилизатора напряжения с такими приборами может не потребоваться, если только напряжение в вашем районе не поднимется вверх или вниз намного выше или ниже предела, в котором прибор может работать.

Существуют ли разные стабилизаторы для разных приборов?
Стабилизаторы напряжения оптимально спроектированы в зависимости от устройства, для которого они будут использоваться.Они классифицируются на основе предела энергии и особенностей конкретного прибора. Каждый прибор в нашем доме имеет определенный предел энергии. Учитывая эти конкретные ограничения, соответствующие стабилизаторы разработаны. Различные типы стабилизаторов

а. Стабилизатор для кондиционера
б. Цифровой стабилизатор (ЖК-телевизор / LED-телевизор / Музыкальные системы)
с. Стабилизатор для холодильников
д.Стабилизаторы для телевизоров с ЭЛТ, Music Systems
е. Стабилизаторы для стиральной машины, беговая дорожка, духовка
е. Магистральные стабилизаторы

Нажмите здесь, чтобы просмотреть наш ассортимент стабилизаторов напряжения, классифицированных в соответствии с моделью использования и оборудованием.

Как решить, какой стабилизатор подходит вам?
Прежде всего, вам необходимо рассчитать общую мощность, потребляемую вашими приборами при подключении к стабилизатору, особенно при включении.Важно понимать мощность, потребляемую при включении устройств, подключенных к стабилизатору, потому что устройства или устройства потребляют вдвое больше энергии при запуске, чем при работе.

Вот таблица, показывающая требования к мощности для некоторых обычно используемых электроприборов.

Подкатегория — Модель Емкость в ВА Рабочий диапазон Бытовая техника
Стабилизатор для AC VG 400 2700 170 В — 270 В AC до 1.5 тонн переменного тока или 18 000 БТЕ / час.
VG 500 3350 170 В — 270 В AC до 2 тонн или 24 000 БТЕ / час.
VS 400 2700 170 В — 280 В AC до 1.5 тонн переменного тока или 18 000 БТЕ / час.
VS 500 3350 170 В — 280 В AC до 2 тонн или 24 000 БТЕ / час.
VND 400 3000 150 В-285 В AC до 1.5 тонн или 18 000 БТЕ / час.
VND 500 3700 150 В-285 В AC до 2 тонн или 24 000 БТЕ / час.
VND 400 Digital 2800 150 В-290 В AC до 1.5 тонн или 18 000 БТЕ / час.
VD 400 Digital 2800 150 В-290 В AC до 1,5 тонн или 18 000 БТЕ / ч.
VWR 400 3000 130В-300В AC до 1.5 тонн или 18 000 БТЕ / час.
VGB 500 3800 130В-300В AC до 2 тонн или 24 000 БТЕ / час.
VEW 400 Digital 3000 90В-300В AC до 1,5 тонн или 18 000 БТЕ / ч.
VGX 400 3000 130В-300В AC до 1,5 тонн или 18 000 БТЕ / ч.
Цифровые стабилизаторы (LED / LCD TV) Mini Crystal 320 90В-290В Один ЖК / LED телевизор до 81.3 см и DVD / DTH
VG Crystal 480 90В-290В Один ЖК / LED / 3D-телевизор до 107 см и домашний кинотеатр, DVD / DTH
Кристалл Плюс 720 90В-290В Один ЖК / LED / 3D-телевизор до 117 см и домашний кинотеатр, DVD / DTH
Digi 200 1380 140В-295В LCD / LED / 3D / Плазменный телевизор + DVD / DTH + Система домашнего кинотеатра или фотостата
Стабилизаторы для холодильников VG 50 500 135 В-280 В Один холодильник до 300 л
VGSD 50 500 130 В-290 В Один холодильник до 300 л
VGSJW 50 500 90В-260В Один холодильник до 300 л.
VEW 50 500 90В-280В Один холодильник до 300 л.
VEB 50 500 70В-300В Один холодильник до 300 л.
VG 100 1000 135 В-280 В Один морозильник до 4 ампер / холодильник до 600 л.
VGSD 100 1000 130В-290В Один морозильник до 4 ампер / холодильник до 600 л.
VGSJW 100 1000 90В-260В Один морозильник до 4 ампер / холодильник до 600 л.
VG 150 1500 150 В-280 В Один морозильник до 6 А / Холодильник / Воздухоохладитель / 0.ЦИФРОВОЙ ИБП 5 ТОНА / 800 ВА
VEW 150 1500 100В-300В Один морозильник до 6 ампер / Холодильник / Воздухоохладитель / 0,5 тонны переменного тока / 800 ВА ЦИФРОВОЙ ИБП
Стабилизаторы для ЭЛТ ТВ, Музыкальные системы VGD 20 200 90В-300В Один 63 см телевизор или один телевизор до 53 см + DVD / DTH
VG 30 250 135 В-290 В Один 73 см телевизор или один телевизор до 63 см + DVD / DTH и музыкальная система
VGD 30 250 90 В-300 В Один 73 см телевизор или один телевизор до 63 см + DVD / DTH и музыкальная система
Стабилизаторы для стиральных машин, беговых дорожек и духовок VM 300 2000 150 В — 280 В Одна микроволновая печь / беговая дорожка / стиральная машина
VM 500 3500 150 В — 280 В Одна микроволновая печь / беговая дорожка / стиральная машина
магистральных стабилизаторов VGMW 500 Digital 3700 90 В — 300 В Основная линия
VGMW 200 1500 100 В — 300 В Основная линия
VGMW 300 2300 100 В — 300 В Основная линия
VGMEW 500 3800 70 В — 280 В Основная линия
VGMW 1000 7300 120 В — 280 В Основная линия

Рекомендации:
У вас может быть больше вопросов об инвестировании в подходящий стабилизатор напряжения для вашего дома.Пожалуйста, посетите наш раздел часто задаваемых вопросов на веб-сайте V-Guard, чтобы узнать больше. Для любых дальнейших запросов, пожалуйста, не стесняйтесь писать в нашу службу поддержки.

Вот оно! Полное руководство по покупке стабилизатора напряжения. Благодаря этому мы уверены, что вы сможете принять мудрое решение о покупке стабилизатора напряжения, который наилучшим образом соответствует вашим потребностям.

,

Photovoltaic (PV) — Электрические расчеты

Фотоэлектрические элементы (фотоэлементы) (иногда называемые солнечными элементами) преобразуют солнечную энергию в электрическую энергию. С каждым годом все больше и больше фотоэлектрических систем устанавливаются. С этим растущим приложением для каждого практикующего специалиста будет хорошей идеей понять вычисления, связанные с фотоэлементами.

Существует огромное количество фотоэлементов, использующих многочисленные материалы. На очень простом уровне фотоэлементы функционируют, используя солнечную энергию для генерации электронно-дырочных пар, которые затем отделяются и протекают во внешней цепи как ток.Изучение физики того, как работает текущее поколение, не является целью данной заметки, скорее мы рассмотрим электрические расчеты, связанные с фактическим применением реальных систем.

Электрические параметры

Фотоэлементы

изготавливаются в виде модулей для использования в установках. Электрически важные параметры для определения правильной установки и производительности:

  • Максимальная мощность — это максимальная выходная мощность фотоэлектрического модуля (см. Кривую IV ниже)
  • Напряжение разомкнутой цепи — выходное напряжение фотоэлемента с ток без нагрузки
  • Ток короткого замыкания — ток, который протекает при коротком замыкании выхода продажи PV
  • Максимальное напряжение в точке питания — уровень напряжения на кривой IV, который создает максимальную мощность
  • Максимальный ток в точке питания — уровень ток на кривой IV, который вырабатывает максимальную мощность
  • Эффективность — мера количества солнечной энергии, преобразованной в электрическую пиковую энергию

Параметры для фотоэлементов измеряются при определенных стандартных условиях испытаний (STC).

STC обычно принимается за 1000 Вт / м 2 , 25 ° C и 1,5 АМ (масса воздуха).

Максимальная выходная мощность — это пиковая мощность, которую солнечный элемент может выдавать на STC. Несмотря на то, что обычно для оценки фотоэлектрических установок используется это значение, маловероятно, что эти уровни мощности будут достигнуты на практике.

Список используемых символов см. В конце заметки.

Расчет выходной мощности системы

Пример расчета

120 солнечных модулей, каждый по 250 Вт p и площадью 1.67 м 2 соединены для формирования фотоэлектрической системы. Эффективность системы составляет 0,75, а среднегодовая солнечная радиация составляет 1487 кВтч / м2. Рассчитайте ожидаемый годовой объем производства энергии. Используя приведенные выше уравнения:

Если поправочный коэффициент ориентации солнечного излучения и наклона равен 1.1, какова будет выходная мощность:

Номинальная номинальная максимальная ( кВт, р ) мощность вне солнечного массив из n модулей, каждый с максимальной мощностью Wp на STC, определяется следующим образом:


— пиковая номинальная мощность на основе 1 кВт / м 2 излучения на STC

Доступное солнечное излучение ( E мА () варьируется в зависимости от времени года и погодных условий.Однако, исходя из среднегодовой радиации для местоположения и принимая во внимание эффективность ( η ) ячейки, мы можем оценить средний выход энергии фотоэлектрической системы:


— среднегодовая выработка электроэнергии, кВтч

Примечание: E ma приведено в таблицах для конкретного местоположения и горизонтальной плоскости.

Для получения ожидаемой солнечной радиации требуются некоторые исследования (Интернет или местные отделы метеорологии).Если вы используете программное обеспечение для выполнения расчетов, эта информация обычно предоставляется как часть программы.

Общий КПД (η) солнечной установки (потери на затенение, потери на инверторе, потери на отражение, потери на температуру и т. Д.) В хорошо спроектированной системе составляют от 0,75 до 0,85.

Вышеуказанный расчет выполняется на ежегодной основе, но его можно легко сделать за любой период времени (часы, день, месяц и т. Д.), Заменив средним значением периода солнечной радиации на годовое значение.

Для максимальной мощности любая солнечная радиация должна ударять по фотоэлектрической панели под углом 90 °. В зависимости от того, где на поверхности земли, ориентация и наклон для достижения этого варьируются. Программное обеспечение обычно используется для расчета этого или использования поправочных коэффициентов из соответствующего местоположения.

Температура

При увеличении температуры фотоэлементов выход падает. Это учитывается в общей эффективности системы (η) с использованием коэффициента снижения температуры η t и определяется как:

Примечание: температурный коэффициент мощности (ϒ) обычно равен 0 ,005 для кристаллического кремния

Эффективность и производительность

Эффективность: измеряет количество солнечной энергии, падающей на фотоэлемент, которая преобразуется в электрическую энергию

На измерение эффективности фотоэлектрических элементов влияют несколько факторов, в том числе:

  • длина волны — PV ячейки по-разному реагируют на разную длину волны света, производя различное качество электричества
  • материалов — разные фотоэлектрические материалы ведут себя по-разному
  • температура — ячейки работают лучше при более низких температурах, с падением эффективности при более высоких температурах
  • отражение — любой отраженный свет уменьшается эффективность ячейки
  • сопротивление — электрическое сопротивление ячейки создает потери, влияющие на эффективность


Лучшее исследование ячейки Эффективность
Источник изображения: Национальная энергетическая лаборатория возобновляемых источников энергии
(NREL )

Изготовленные фотоэлементы или модули обычно сортируются с помощью процесса биннинга по различным уровням эффективности.Более эффективные элементы будут иметь большую электрическую мощность и, следовательно, более высокую стоимость.

Благодаря новейшим разработкам в области солнечных технологий, фотоэлементы в настоящее время начинают достигать теоретического максимального предела для полупроводниковых приборов. Изображение сбоку (щелкните для увеличения) показывает достижимый диапазон эффективности по сравнению с различными технологиями ячейки.

В лаборатории эффективность измеряется в стандартных условиях с использованием кривых I-V. Кривые I-V получены путем изменения внешнего сопротивления от нуля (короткое замыкание) до бесконечности (разомкнутая цепь).На рисунке показана типичная кривая I-V.


Кривые фотоэлементов, I-V и мощности

Мощность, вырабатываемая фотоэлементом, является произведением напряжения ( В, ) и тока ( I ). Как в разомкнутой, так и в замкнутой цепи поставленная мощность равна нулю. В какой-то момент между (около точки колена) доставленная мощность является максимальной.

Примечание: Максимальный ток, который может выдавать фотоэлемент, это ток короткого замыкания.Учитывая линейность тока в диапазоне напряжений от нуля до максимального напряжения питания, использование тока короткого замыкания для определения размеров кабеля и системы является разумным.

Коэффициент заполнения

Одним из способов измерения производительности солнечного элемента является коэффициент заполнения. Это отношение максимальной мощности к произведению напряжения разомкнутой цепи и тока короткого замыкания:

Чем выше коэффициент заполнения, тем лучше.Как правило, коммерческие фотоэлементы будут иметь коэффициент заполнения более 0,7. Ячейки с факторами ниже этого не рекомендуется для практического применения в крупных проектах по производству электроэнергии.

Отслеживание максимальной мощности (MPPT)

Кривую I-V фотоэлектрического модуля можно получить из эквивалентной схемы (см. Следующий раздел). Неотъемлемой частью формирования кривой I-V связи является текущий Ipv, генерируемый каждой фотоэлементом.

Ток ячейки зависит от количества световой энергии (освещенности), падающей на фотоэлемент, и температуры ячейки.

По мере уменьшения освещенности уменьшается не только величина мощности, но и точка пиковой мощности перемещается влево. Точно так же, как температура ячейки увеличивается, выходная мощность снижается, и точка максимальной мощности снова смещается влево.

Поскольку точка максимальной мощности является переменной величиной, зависящей от солнечного излучения и температуры элемента, современные инверторы имеют механизмы для отслеживания этого и всегда выдают максимально возможную мощность от фотоэлемента. Это называется отслеживанием максимальной мощности (MPPT).

Примечание. Системы управления , используемые для выполнения MPPT, изменяют работу вокруг текущей рабочей точки, чтобы увидеть, сместилась ли точка максимальной мощности. Затем они корректируют рабочие точки соответственно.

Эквивалентная схема фотоэлемента

Чтобы понять производительность фотоэлектрических модулей и массивов, полезно рассмотреть эквивалентную схему. Показанный ниже широко используется.


Эквивалентная схема модуля PV

Из эквивалентной схемы мы имеем следующие основные уравнения:

— ток нагрузки в амперах

— напряжение на шунтирующих ветвях

— ток через шунтирующий резистор

The ток через диод задается уравнением Шокли:

и

. Комбинируя вышеприведенные уравнения, получаем характеристическое уравнение фотоэлемента (модуля):

Примечание: могут использоваться характеристические уравнения для нахождения как выходного напряжения, так и ток.К сожалению, если напряжение и ток появляются так, как они есть, аналитического решения не существует. Обычно для решения уравнения используются численные методы.

В этих пределах легко использовать уравнение для определения напряжения холостого хода и тока короткого замыкания. В условиях разомкнутой цепи I = 0, и уравнение уменьшается до:

Обычно R sh является высоким по сравнению с напряжением разомкнутой цепи, и последним членом можно пренебречь.Пренебрегая термином и переставляя уравнение, получаем:

Аналогично для тока короткого замыкания мы можем установить выходное напряжение равным нулю, давая:

Предположение, что R sh много выше рупий и I o мало по сравнению с I . С этими допущениями можно пренебречь двумя последними слагаемыми:

Последовательное сопротивление ( Rs ), сопротивление шунта ( R sh ) и напряжение обратного насыщения ( I o ) зависят от площади фотоэлемента.Как правило, чем больше ячейка, тем больше I o (большая площадь диодного перехода) и чем меньше R с и R sh .

Характеристическое уравнение можно использовать для оценки влияния различных параметров на производительность фотоэлемента или модуля:

  • температура ( T ) — влияет на ячейку, являясь частью экспоненциального члена и значения обратного напряжения насыщения.При увеличении температуры экспоненциальное уменьшение обратного напряжения насыщения будет увеличиваться экспоненциально. Следующим эффектом является снижение напряжения холостого хода ячейки. Как правило, напряжение будет уменьшаться на 0,35-0,5% для каждого повышения температуры.
  • Сопротивление серии ( R с ) — увеличение аналогично влиянию температуры в том, что напряжение холостого хода начнет падать. Очень высокие значения рупий дополнительно уменьшат доступный ток короткого замыкания.
  • Сопротивление шунта ( R sh ) — уменьшение обеспечит больший путь для тока шунта, снова понижая напряжение элемента.

Список символов

Общие символы
I mpp — ток при максимальной мощности, A
I sc — ток короткого замыкания, A
U oc — напряжение разомкнутой цепи, В
U mpp — напряжение при максимальной мощности, В

PV Systems
E ma — среднегодовая солнечная радиация, кВтч / м 2
E p — расчетная пиковая поставленная энергия, кВтч
кВт p — номинальная пиковая энергия, кВт
n — количество модулей
η т — коэффициент снижения температуры
P max — максимальная мощность , Вт
Т с — температура фотоэлемент K
T stc — температура STC, 25 ° C, K
Вт p — пиковая энергия одного модуля, Вт
η — КПД системы
ϒ — температурный коэффициент мощности, ° C -1
Эквивалентная схема
I — ток через нагрузку, A
I d — ток через диод, A
I pv — ток генерируется PV, A
I ш — ток через шунтирующий резистор, A
R с — эквивалентное последовательное сопротивление цепи, Ом
R ш — эквивалентное сопротивление шунта цепи,
U — напряжение, приложенное к нагрузке, В
U ш — шунт V oltage, V

Уравнение диода Шокли
I o — обратный ток насыщения, V
k — постоянная Больцмана
== (1.3806488 × 10 −23 ), JK -1
n — коэффициент линейности (1 для идеального диода)
q — элементарный заряд
= (1,602176565 × 10 −19 ), C
T — абсолютная температура pn-перехода, K
V T — тепловое напряжение, V

См. Также

,

Power Calculator

Калькулятор энергопотребления: рассчитывает электроэнергию / напряжение / ток / сопротивление.

Калькулятор постоянного тока

Введите 2 значений , чтобы получить другие значения, и нажмите Рассчитать Кнопка :

Расчет мощности постоянного тока

Расчет напряжения (В) по току (I) и сопротивлению (R):

В (В) = I (А) × R (Ом)

Расчет комплексной мощности (S) по напряжению (В) и току (I):

P (Вт) = В (В) × I (А) = В 2 (В) / R (Ом) = Я 2 (A) × R (Ω)

Калькулятор переменного тока

Введите 2 величины + 2 фазовых угла , чтобы получить другие значения, и нажмите кнопку Рассчитать :

Расчет мощности переменного тока

Напряжение V в вольтах (В) равно току I в амперах (A), умноженному на полное сопротивление Z в омах (Ом):

В (В) = I (А) × Z (Ом) = (| I | × | Z |) ∠ ( θ I + θ Z )

Комплексная мощность S в вольт-амперах (VA) равна напряжению V в вольтах (V), умноженному на ток I в амперах (A):

S (ВА) = В (В) × I (А) = (| В | × | I |) ∠ ( θ В θ I )

Реальная мощность P в ваттах (Вт) равна напряжению V в вольтах (V), умноженному на ток I в амперах (A), умноженному на коэффициент мощности (cos φ ):

P (W) = V (V) × I (A) cos φ

Реактивная мощность Q в реактивных вольт-ампер (VAR) равна напряжению V в вольтах (V), умноженному на ток I в амперах (A), умноженному на синус комплексного угла фазы мощности ( φ ):

Q (VAR) = V (V) × I (A) × sin φ

Коэффициент мощности (FP) равен абсолютному значению косинуса комплексного угла фазы мощности ( φ ):

PF = | cos φ |

Калькулятор энергии и мощности

Введите 2 значения , чтобы получить другие значения, и нажмите кнопку Вычислить :

Расчет энергии и мощности

Средняя мощность P в ваттах (Вт) равна потребленной энергии E в джоулях (Дж), деленной на период времени Δ t в секундах (с):

P (Ш) = E (Дж) / Δ т (с)

Электроэнергия ►


См. Также

,

Отправить ответ

avatar
  Подписаться  
Уведомление о