Разница контактное и бесконтактное зажигание: Чем бесконтактное зажигание лучше контактного?

Содержание

Чем бесконтактное зажигание лучше контактного?

В состав автомобиля входит система зажигания. Система зажигания автомобиля служит для обеспечения воспламенения рабочей смеси в цилиндрах двигателя в соответствии с порядком их работы.

Схема системы зажигания:

Существует два типа: контактное и бесконтактное зажигание. Они отличаются наличием и отсутствием размыкающихся контактов в трамблере (датчике-распределителе). В момент размыкания контактов ток в первичной обмотке прекращается, изменяется магнитное поле, вследствие чего возникает индукционный ток высокой частоты и напряжения, который подается посредством высоковольтных проводов на свечи.

Бесконтактное зажигание лишено этих контактов. Они заменены коммутатором, который, в принципе, выполняет эту же функцию. Изначально на автомобили отечественного производства устанавливалась лишь контактная система. Бесконтактное зажигание ВАЗ стал устанавливать в начале 2000-х. Это было хорошим для него прорывом.

Прежде всего, бесконтактное зажигание обладает большей надежностью, поскольку фактически из системы был удален один довольно уязвимый элемент.

Сама замена контактного зажигания на бесконтактное не должна вызвать каких-либо трудностей, поскольку все сводится к откручиванию и прикручиванию деталей. Со временем автовладельцы стали сами устанавливать бесконтактное зажигание на классику, поскольку это серьезно облегчало обслуживание. Теперь исключалась возможность подгорания контактов. Кроме того, теперь в них не надо было регулировать зазор в момент размыкания. Помимо всего прочего, бесконтактное зажигание обладает и лучшими характеристиками тока, а именно, большей частотой и напряжением, что серьезно снижает износ электродов свечей. На лицо – плюсы во всех сферах эксплуатации.

Бесконтактная система зажигания повышает надежность из-за отсутствия подвижных контактов и необходимости систематической их регулировки и зачистки зазоров, а также повышает надежность пуска и работу при разгонах автомобиля благодаря более высокой энергии электрического разряда, который обеспечивает надежное воспламенение рабочей смеси в цилиндрах двигателя независимо от частоты вращения коленчатого вала. Кроме того, одним из преимуществ бесконтактной системы зажигания является отсутствие влияния вибрации и биения ротора-распределителя на равномерность момента искрообразования.

 

 

Чем отличается контактный трамблер бесконтактного по сути

Современный бесконтактный распределитель и катушка

Современная бесконтактная система зажигания или БСЗ является передовым и конструктивным решением, своеобразным продолжением старой контактно-транзисторной системы. Здесь обычный контакт-предохранитель заменен специальным и производительным регулятором. А чем же еще отличаются эти обе системы? Давайте узнаем.

КСЗ

КСЗ – первый, уже устаревший вариант зажигания, применяющийся до сих пор на редких автомоделях. В КСЗ ток и его сегрегация осуществляется трамблером с помощью контактной группы.

Включает в свой состав КСЗ такие компоненты, как мехраспределитель и мехпрерыватель, катушку зажигания, вакуум-датчик и т. д.

Мехпрерыватель или размыкатель

Контактная система зажигания схема

Это компонент, на который ложится функция осуществления разъединения звена низкого токового накала. Другими словами — тока, образующегося в первичной обмотке. Вольтаж идет на контактную группу, элементы которой защищены от обгорания специальным покрытием. Кроме того, предусмотрен конденсатор-теплообменник, подключенный симультанно контактной группе.

Катушка зажигания в КСЗ является преобразователем тока. Именно здесь ток низкого напряжения трансформируется в высокий ток. Как и в случае с БСЗ, используется два типа обмоток.

Механический распределитель или просто трамблер

Этот компонент способен обеспечить эффективную подачу высокого тока к СЗ. Сам трамблер состоит из множества элементов, но основными являются крышка и ротор или бегунок (народ.).

Крышка изготовлена так, что с внутренней стороны оснащена соединителями основного и дополнительного типа. Высокий ток принимается центральным контактом, а рассредотачивается по свечам – через боковые (дополнительные).

Мехпрерыватель и распределить – это единый тандем, как и датчик холла с коммутатором в БСЗ.

Они приводятся в действие приводом коленвала. В просторечье оба элемента называют единым словом «трамблер».

ЦРОЗ – регулятор, служащий для изменения УОЗ в зависимости от количества оборотов коленвала силовой установки. Априори состоит из 2-х грузиков, воздействующих на пластинку.

Настройка УОЗ

УОЗ другими словами, это угол поворота коленвала, такой при котором происходит непосредственная передача тока с высоким вольтажом на СЗ. Для того чтобы горючая смесь без остатков сгорела, зажигание осуществляется с опережением.

УОЗ в КСЗ выставляется с помощью спецприспособления.

ВРОЗ или вакуумный датчик

Он обеспечивает изменение УОЗ в зависимости от нагрузки на мотор. Другими словами, этот показатель – прямое следствие степени открытия дроссзаслонки, зависящей от силы нажатия педали акселератора. ВРОЗ находится за дроссзаслонкой, и способен изменять УОЗ.

Бронепровода – обязательные элементы, своеобразные коммуникации, служащие для передачи тока с высоким вольтажом к трамблеру и от последнего к свечам.

Функционирование КСЗ осуществляется следующим образом.

  • Контакт-прерыватель замкнут – в катушке задействован ток с низким вольтажом.
  • Контакт разомкнут – уже во вторичной обмотке задействуется ток, но с высоким вольтажом. Он подается на верхнюю часть трамблера, а затем растекается по бронепроводам дальше.
  • Увеличивается число вращений коленвала – одновременно повышается количество оборотов вала прерывателя. Грузики под воздействием расходятся, подвижная пластина перемещается. УОЗ увеличивается за счет размыкания контактов прерывателя.
  • Обороты коленвала силовой установки сокращаются – УОЗ автоматически уменьшается.

Вакуумный регулятрор трамблер

Контактно-транзисторная система зажигания – это дальнейшая модернизация старой КСЗ. Отличие в том, что стал применяться уже коммутатор. В результате этого увеличился срок службы контактной группы.

Катушка

В КСЗ одним из обязательных, важных элементов выступает катушка.

Она включает линейку очень значимых компонентов, таких как обмотки, трубка, резистор, сердечник и т. д.

Отличие низковольтной и высоковольтной обмотки заключается не только в характере напряжения. В первичной обмотке сделано меньшее количество витков, чем во вторичной. Разница достигать может очень большого количества. Например, 400 и 25000 витков, но размер этих самых витков будет в разы меньше.

Из каких элементов состоит БСЗ

БСЗ – это модернизированная трансформация КСЗ. В ней механический прерыватель заменен датчиком. Сегодня таким зажиганием оснащается большинство отечественных моделей и иномарок.

Примечание. БСЗ может выступать, как дополнительный элемент КСЗ или функционировать полностью автономно.

Использование БСЗ позволяет значительно увеличить мощностные показатели силовой установки. Особенно важно, что снижается топливный расход, а также выбросы СО2.

Катушка зажигания БСЗ

Одним словом, БСЗ включает целый ряд компонентов, среди которых особое место занимает выключатель, регулятор импульсов, коммутатор и т. д.

БСЗ – устройство, которое аналогично контактной системе зажигания, имеет целый ряд положительных сторон. Однако, как утверждают некоторые эксперты, не лишено и минусов.

Рассмотрим основные элементы БСЗ, чтобы составить более обзорное представление.

Датчик Холла

Регулятор импульсов или ДЭИ* — данный компонент предназначен для создания электроимпульсов низкого напряжения. В современной технопромышленности принято использовать 3 типа ДЭИ, но в автомобильной сфере широкое применение нашел лишь один из них – датчик Холла.

Как известно, Холл – гениальный ученый, которому первому пришла в голову идея рационально и эффективно применять магнитное поле.

Состоит регулятор этого типа из магнита, пластины-полупроводника с чипа и затвором с выемками, которые собственно и пропускают магнитное поле.

Примечание. Обтюратор имеет прорези, но помимо этого, еще и стальной экран. Последний ничего не просеивает, и таким образом, создается чередование.

ДЭИ – датчик электроимпульсов

Датчик Холла

Регулятор конструктивным образом соединяется с трамблером, тем самым способом, образуется устройство единого типа – регулятор-трамблер, внешне схожий во многих функциях с прерывателем. Например, оба имеют аналогичный привод от коленвала.

КТТ

Коммутатор транзисторого типа (КТТ) – полезнейший компонент, служащий для прерывания электричества в цепи катушки зажигания. Конечно же, КТТ функционирует в соответствие с ДЭИ, составляя вместе с последним единый и практичный тандем. Прерывается электрический заряд за счет отпирания/запирания выходного транзистора.

Катушка

И в БСЗ катушка выполняет те же функции, что и на КСЗ. Отличия, безусловно, имеются (подробно представлены ниже). Кроме этого, здесь применяется электрокоммутатор, осуществляющий прерывание цепи.

БСЗ-катушка надежнее и лучше во всех отношениях. Улучшается пуск силовой установки, эффектнее становится работа мотора на разных режимах.

Как функционирует БСЗ

Вращение коленвала силовой установки воздействует на тандем трамблер-регулятор. Таким образом формируются импульсы напряжения, передающиеся на КТТ. Последний создает ток в катушке зажигания.

Примечание. Следует знать, что в автоэлектрике принято говорить о двух типах обмоток: первичной (низкой) и вторичной (высокой). Импульс тока создается в низкой, а большой вольтаж – в высокой.

Схема функционирования БСЗ

Далее высокое напряжение передается из катушки на трамблер. В распределителе его принимает центральный контакт, от которого ток и передается по всем бронепроводам на свечи. Последние осуществляют воспламенение горючей смеси, и ДВС запускается.

Как только увеличиваются обороты коленвала, ЦРОЗ* осуществляет регулирование УОЗ**. А если нагрузка на силовую установку меняется, то за УОЗ отвечает уже вакуумный датчик.

ЦРОЗ – центробежный регулятор опережения зажигания

УОЗ – угол опережения зажигания

Безусловно, трамблер сам по себе, будь он старого или нового образца, является обязательным элементом системы зажигания автомобиля, способствующий появлению качественного искрообразования.

В трамблере нового образца устранены все недочеты распределителя контактного. Правда, новый распределить стоит на порядок дороже, но это окупается, как правило, впоследствии.

Как и было написано выше, при эксплуатации БСЗ применяется новый распределитель, не имеющий контактную группу. Здесь роль прерывателя и соединителя выполняют КТТ и датчик Холла.

ЭСЗ

Система зажигания, в которой распределение высокого напряжения по двигательным цилиндрам осуществляется с помощью электроустройств, называется ЭСЗ. В некоторых случаях данную систему принято называть также «микропроцессорной».

Отметим, что обе прежние системы – КСЗ и БСЗ тоже включали некоторые элементы электроустройств, но ЭСЗ вообще не подразумевает использование каких бы то ни было механических составляющих. По сути, это та же БСЗ, только более модернизированная.

Электронная система зажигания

На современных автомашинах ЭСЗ – это обязательная часть управляющей системы ДВС. А на более новых машинах, вышедших совсем недавно, ЭСЗ работает в группе с выпускной, впускной и охладительной системами.

Моделей таких систем на сегодняшний день немало. Это и всемирно известные Бош Мотроник, Симос, Магнетик Марелли, и менее именитые аналоги.

Отличия:

  1. В контактном зажигании прерыватели или контакты смыкаются механическим путем, а в БСЗ – электронным. Другими словами, в КСЗ применяются контакты, в БСЗ – датчик Холла.
  2. БСЗ – это больше стабильности и сильнее искра.

Отличия имеются и между катушками. У обоих систем разная маркировка и разные катушки зажигания. Так, у катушки БСЗ больше витков. Кроме того, катушка БСЗ считается надежнее и мощнее.

Таким образом, мы выяснили, что на сегодняшний день в применении 3 варианта зажигания. Используются, соответственно, и разные трамблеры.

Бесконтактное зажигание

Бесконтактное зажигание — самый надежный и эффективный способ поджигать топливо в цилиндрах бензинового двигателя

Двигатель

Современное бесконтактное зажигание с компьютерным управлением позволяет не только избежать перебоев в работе двигателя, но и добиться значительной экономии топлива.

В чем разница между «бесконтактным» и «электронным» зажиганием?

Бесконтактное, или «аналоговое» зажигание появилось гораздо раньше электронного как своего рода надстройка над традиционной системой контактного зажигания. Наиболее ненадежной частью традиционного зажигания был сложный механический прерыватель, следивший за движением коленвала и, соответственно, за положением поршней в цилиндрах. С развитием электронных компонентов появилась возможность организовать слежение за тактами двигателя при помощи импульсного датчика, более известного как «датчик Холла».

Наборы электронного зажигания от ВАЗ 2108 были настолько популярны, что их устанавливали не только владельцы «классики», но и обладатели «Волг», «Москвичей» и даже «Запорожцев»

С появлением в середине 80-х годов доступных по цене микропроцессоров разработчикам удалось полностью избавиться от механических элементов в системе зажигания. Основные преимущества микропроцессорной системы заключаются в том, что она обеспечивает не только автоматизированное, но и оптимизированное управление зажиганием в зависимости от ряда измеряемых датчиками параметров. Это частота вращения коленчатого вала, давление в впускном коллекторе, температура охлаждающей жидкости, положение дроссельной заслонки. Благодаря электронным коммутаторам удалось избавиться не только от подвижных элементов, но и от неплотно прилегающих контактов, а значит, обеспечить более мощную «искру» в цилиндрах.

Аналоговое бесконтактное зажигания

Система, которую сейчас принято назвать бесконтактным зажиганием, прошла несколько стадий развития. Первое «аналоговое» бесконтактное зажигание было разработано и испытано в 1948 году компанией Delco-Remy. Бренд Pontiac стал первым автопроизводителем, внедрившим бесконтактное зажигание с импульсным запуском Delcotronic в конструкцию серийных автомобилей 1963-го модельного года. Такая же система появилась в это же время на некоторых модификациях Chevrolet Corvette.

Для настройки современного зажигания ноутбук гораздо полезнее отвертки и гаечного ключа

Компания Lucas представила свой вариант транзисторного зажигания в 1955 году. Эта система была использована на двигателях BRM и Coventry Climax для болидов Формулы-1 в 1962 году. Спустя короткое время компания Ford оснастила бесконтактным зажиганием системы Lucas автомобили своего сателлитного бренда Lotus 25s. Система хорошо показала себя на гонках в Индианаполисе, и ее начали предлагать покупателям на некоторых серийных моделях Ford уже в 1965-м. В 1967 году со своей системой бесконтактного зажигания дебютировала компания Motorola. В Европе система появилась немногим позже — свою систему аналогового зажигания предложила компания Robert Bocsh, а затем и другие производители электроники.

Бесконтактное зажигание пользовалось безусловным успехом вплоть до появления в начале 80-х годов доступных по цене микропроцессорных систем. Дальнейшие разработки  в области бесконтактного зажигания так или иначе связаны с ними.

Цифровое электронное зажигание

На рубеже 20-го и 21-го века развитие цифровых технологий привело к исчезновению аналоговых систем бесконтактного зажигания. Достоинство схемы в том, что она способна выдать разряд практически в любое время в течение рабочего цикла, повинуясь управляющему сигналу микропроцессора. Такая система обладает огромным запасом гибкости, а значит, есть возможность оптимизировать с высокой точностью угол опережения зажигания, и динамично влиять на производительность двигателя в самых разных режимах работы.

Система управления двигателем, объединенная с цифровым зажиганием

Современные двигатели оснащают системой управления двигателем (EMS), полностью контролирующую подачу топлива и зажигание. Система основывает расчеты на показаниях первичных датчиков: угла поворота коленчатого вала (или датчика верхней мертвой точки (ВМТ)), ДМРВ, датчика положения дроссельной заслонки и еще целого ряда датчиков. Схема определяет, какой цилиндр нуждается в топливе, и сколько его нужно, затем открывает форсунку на строго определенный период времени, чтобы впрыснуть нужное количество. Когда топливовоздушная смесь оказывается в камере сгорания, система подает команду на свечу и вызывает искру, опять же, строго в нужный момент.

У электронного коммутатора зажигания тоже есть свой специфический «недуг» — старение электронных компонентов, из которых он собран

Некоторые схемы с использованием EMS сохраняют единую катушку зажигания как генератор тока высокого напряжения. Другие системы обходятся без распределителя и управляют катушками, установленными непосредственно на каждую свечу зажигания.

Установка бесконтактного зажигания на двигатели с контактным зажиганием

Двигатели старых автомобилей, как правило, можно модифицировать, установив бесконтактное зажигание. К примеру для старых двигателей General Motors можно купить специальный набор электронного зажигания под названием Hot Wire. В России самым распространенным случаем можно считать установку электронного зажигания от ВАЗ 2108 на старые автомобили «классических» серий.

Системы зажигания: от простой к лучшей!

Системы зажигания: от простой к лучшей!

Система зажигания является неотъемлемым атрибутом любого бензинового или газового двигателя. При всем многообразии технических нюансов в данном вопросе, все системы зажигания с динамическим распределением подаваемого напряжения можно разделить на контактные и бесконтактные. Нижеследующая статья посвящена их основным особенностям, а также причинам возникновения систем со статическим распределением напряжения (электронное зажигание).

Работа современных ДВС основана на сгорании топлива. В дизельных двигателях оно воспламеняется за счет сжатия, в бензиновых и газовых силовых агрегатах, а именно о них пойдет речь в последующем — посредством подведения к топливно-воздушной смеси искры высокого напряжения через свечи зажигания.

Топливо может загореться только при прохождении в зазоре свечи достаточно большого напряжения (от 2 до 30 кВ). Для обеспечения тока с таким высоким напряжением используется катушка зажигания, представляющие собой, по сути, повышающий трансформатор.

Основными элементами катушки зажигания являются сердечник и две обмотки — первичная и вторичная. Первичная обмотка запитывается от бортовой сети 12 В и предназначается для создания магнитного поля. В момент, когда на первичную обмотку перестает поступать ток, магнитное поле исчезает, причем происходит это настолько быстро, что при пересечении данным магнитным полем витков вторичной обмотки в ней индуцируется ток с очень высоким напряжением.

После того, как необходимое для воспламенения топлива напряжение было создано, его необходимо подать в цилиндры. Причем для обеспечения высокой эффективности и экономичности топливо должно загораться в определенный момент времени, а значит, искра должна подаваться одновременно не во все цилиндры. Именно в обеспечении данного базового принципа и проявляются различия между контактной и бесконтактной системами зажигания.


Контактная система зажигания

Контактная система зажигания включает следующие компоненты:

— Свечи зажигания;
— Источник электроэнергии: при включении автомобиля — аккумулятор, в нормальном режиме работы — генератор;
— Катушка зажигания;
— Высоковольтные и низковольтные провода;
— Прерыватель;
— Распределитель зажигания.

Прерыватель и распределитель зажигания объединяются в корпусе единого устройства, которое в народе получило название «трамблер».

Ключевой особенностью контактной системы является распределитель зажигания. Это механическое устройство определяет, на какую из свеч в данный момент времени будет подано напряжение.

Подобная организация распределения напряжения максимально проста, а значит, достаточно надежна, но в то же время обладает рядом существенных недостатков. Механическое распределение напряжения накладывает довольно существенные ограничения на мощность искры, т.к. с увеличением данного параметра стремительно ускоряется тепловой износ контактов. Кроме того, при работе двигателя на высоких оборотах контактная группа начинает «дребезжать», что на порядок снижает эффективность коммутации.


Бесконтактная система зажигания

Бесконтактные системы зажигания стали логическим продолжением классических систем искрораспределения. Их ключевой особенностью стала замена механического распределителя на электронный коммутатор. Первоначально такие блоки обладали крайне низкой надежностью (порой даже менее 10 тыс. км.) однако в процессе конструкторских доработок данный параметр был выведен на более-менее приемлемый уровень.

Бесконтактные системы зажигания позволили снизить расход топлива, упростить запуск автомобиля в холодное время года, повысить крутящий момент двигателя на малых оборотах и его мощность на высоких, а также несколько уменьшить вредность выхлопных газов благодаря увеличению мощности искры и более полному сгоранию топливно-воздушной смеси. Тем не менее, управление углом опережения зажигания осуществлялось с помощью физических датчиков, входящих в состав трамблера.

Прерыватель-распределитель («трамблер»)

Прерыватель-распределитель зажигания, также известный у автомобилистов под названием «трамблер», является неотъемлемой частью как контактной, так и бесконтактной систем зажигания, пусть во втором случае его конструкция и несколько отличается. Крайне важными компонентами прерывателя-распределителя являются вакуумный и центробежный регуляторы угла опережения зажигания — именно они определяют момент воспламенения топлива (а загораться оно должно раньше достижения поршнем ВМТ), а значит, данные устройства оказывают самое непосредственное влияние на работу двигателя. Рассмотрим их работу на примере контактной системы зажигания.

Центробежный регулятор опережения зажигания

Данное устройство отвечает за корреляцию момента возникновения искры со скоростью вращения коленвала. Центробежный регулятор состоит из двух плоских металлических грузиков, закрепленных на валике прерывателя-распределителя, который в свою очередь непосредственно контактирует с коленчатым валом двигателя. По мере увеличения числа оборотов коленвала ускоряется вращение валика трамблера, вследствие чего грузики под действием центробежной силы расходятся и набегающий кулачок смещается по ходу вращения навстречу молоточку контактов. Вследствие этого контакты размыкаются раньше и угол опережения зажигания увеличивается. При уменьшении величины центробежной силы грузики возвращаются назад под действием пружин — угол опережения зажигания уменьшается.

Вакуумный октан-корректор

Вакуумный октан-корректор изменяет угол опережения зажигания в зависимости от текущей нагрузки на ДВС. Прибор крепится к корпусу трамблера и представляет собой две взаимосвязанные полости, разделенные чувствительной мембраной. Одна из них непосредственно контактирует с окружающей атмосферой, другая — с полостью под дроссельной заслонкой. При увеличении нагрузки на двигатель разряжение под дроссельной заслонкой уменьшается. Вследствие этого пара «диафрагма-тяга» несколько сдвигает пластину с контактами от набегающего на нее кулачка контактов — угол опережения зажигания уменьшается. И, наоборот, при уменьшении подачи газа разряжение под дроссельной заслонкой увеличивается, после чего диафрагма сдвигает пластину с контактами в другую сторону.

Оба устройства работают схожим образом и в бесконтактной системе зажигания, однако вместо кулачка поворачивается экран бесконтактного датчика момента искрообразования.

Общие недостатки контактной и бесконтактной систем зажигания

Даже после устранения комплекса проблем, связанных с механическими контактами распределителя контактной системы зажигания, остался нерешенным процесс точной установки угла опережения зажигания. В обеих системах для этих целей использовались механические устройства, не обеспечивающие должную точность. Как результат — уменьшение мощности двигателя, его довольно ощутимый перегрев при работе. Именно для решения данной проблемы в дальнейшем и были использованы микроконтроллеры, ознаменовавшие появление электронной системы зажигания.

Другие статьи

#Бачок ГЦС

Бачок ГЦС: надежная работа гидропривода сцепления

14.10.2020 | Статьи о запасных частях

Многие современные автомобили, особенно грузовые, оснащаются гидравлическим приводом выключения сцепления. Достаточный запас жидкости для работы главного цилиндра сцепления хранится в специальном бачке. Все о бачках ГЦС, их типах и конструкции, а также о выборе и замене этих деталей читайте в статье.

Чем отличается контактная катушка зажигания от бесконтактной

Главная » Разное » Чем отличается контактная катушка зажигания от бесконтактной

Чем отличается катушка контактной системы зажигания от бесконтактной

Катушка системы зажигания – очень важный элемент, основная задача которого заключается в преобразовании напряжения из низковольтного в высоковольтное. Данное напряжение поступает непосредственно из аккумуляторной батареи или генератора. Катушка контактной системы зажигания довольно сильно отличается от аналогичного элемента в бесконтактной системе.

Катушка контактной системы зажигания

В контактной системе зажигания катушка состоит из нескольких важнейших элементов: сердечника, первичной и вторичной обмотки, картонной трубки, прерывателя и добавочного резистора. Особенность первичной обмотки по сравнению со вторичной – меньшее число витков медного провода (до 400). Во вторичной обмотке катушки их число может достигать 25 тысяч, но при этом их диаметр в разы меньше. Все медные провода в катушке зажигания хорошо изолированы. Сердечник катушки уменьшает образование вихревых токов, он состоит из полосок трансформаторной стали, которые также друг от друга хорошо изолированы. Нижняя часть сердечника устанавливается в специальный фарфоровый изолятор. Сейчас нет надобности перечислять принцип работы катушки подробно, достаточно лишь упомянуть, что в контактной системе такой элемент (преобразователь напряжения) имеет ключевое значение.

к содержанию ↑

Катушка бесконтактной системы зажигания

В бесконтактной системе зажигания катушка выполняет точно такие же функции. И отличие проявляется лишь в непосредственном строении элемента, преобразующего напряжение. Также стоит отметить, что электронный коммутатор осуществляет прерывание цепи питания первичной катушки. Что касается самой системы зажигания, то бесконтактная значительно лучше по многим параметрам: возможность пуска и работы двигателя при низкой температуре, в цилиндрах не замечается нарушения равномерности распределения искры, нет вибрации. Все эти преимущества дает сама катушка в бесконтактной системе зажигания.

к содержанию ↑

Сравнение катушек

Когда речь заходит о признаках отличия катушки контактной системы зажигания от бесконтактной, все сразу обращают внимание на маркировку. Действительно, по ней можно сразу узнать, для какой системы используется катушка. Однако нас интересует именно внешние и технические различия катушек, поэтому мы приведем отличия именно по этим параметрам:

  • Катушка в контактной системе зажигания имеет большее количество витков в первичной обмотке. Это изменение напрямую влияет на сопротивление и количество проходящего тока. Кроме того, ограничение тока на контактах связано с безопасностью (чтобы контакты не обгорали).
  • Контакты прерывателя катушки в бесконтактной системе зажигания не загрязняются и не обгорают. Такая надежность позволяет получить одно важное преимущество: установка момента зажигания не занимает много времени.
  • Катушка в бесконтактной системе зажигания мощнее и надежнее. Это преимущество связано непосредственно с тем, что самая бесконтактная система зажигания – более надежный вариант. Поэтому в такой системе катушка и дает большую мощность двигателя.
к содержанию ↑

Выводы TheDifference.ru

  1. У них разная маркировка, обозначающая различие между двумя катушками.
  2. В контактной системе катушка имеет большее количество витков.
  3. Контакты прерывателя катушки бесконтактной системы надежней.
  4. Сама катушка в бесконтактной системе зажигания дает большую мощность.

Чем отличается контактное зажигание от бесконтактного

Автомобиль – это сложное с конструктивной и технической стороны средство передвижения, состоящее из узлов, деталей и систем, работающих в регулярном взаимодействии. Повреждение или выход из строя любого механизма влечёт существенные отклонения в функциональности транспортного средства, а иногда, и абсолютную поломку машины. Одной из важных конструкций, влияющей на возможность бесперебойной эксплуатации, позиционируется профессионалами система зажигания автотранспорта. Большинство автовладельцев знают, что она отвечает непосредственно за подачу разряда искровой категории на свечи с конкретной тактичностью под ритм функционирования мотора. По мере технического прогрессирования история насчитывает три разновидности зажиганий, устанавливаемых на машины: контактные, бесконтактные и самые новые зажигания микропроцессорного класса. В этой статье рассмотрим различия между контактными и бесконтактными системами, которые устанавливаются на отечественные машины и некоторый транспорт заграничного производства, расскажем об особенностях функционирования, структуре и преимущественных сторонах систем второго поколения.

Выбор типа зажигания: контактное или бесконтактное.

Системы зажигания контактной категории

Классический механизм, несмотря на своё техническое устаревание и уступках по характеристикам новым системам, репрезентирует собой чрезвычайно сложную конструкцию. Система состоит из следующих элементов:

  1. Источник подачи питания, которым в режиме запуска двигателя выступает аккумулятор, а в режиме работы мотора эту функцию выполняет генератор.
  2. Выключатель или замок зажигания опционально позволяет осуществить подачу энергии на бортовую сеть и реле стартера транспортного средства.
  3. Накопитель или катушка, предназначением которой выступает скопление и преобразование напряжения, необходимого для организации разряда между электродами.
  4. Регламентируемые свечи зажигания.
  5. Распределительный механизм, элементы которого во взаимодействии отвечают за подачу в заданный момент энергии.
  6. Заизолированная, высоковольтная проводка, соединяющая конструктивные элементы системы.

Основополагающей особенностью функционирования контактной системы выступает деятельность так званых «кулачков», приводимых в действие посредством кручения валового привода распределителя. Посредством разъединения кулачки разрывают подачу напряжения в двенадцать вольт на наружную обмотку бобины. Когда на трансформаторе пропадает напряжение, в первичной обмотке образовывается электродвижущая индукция, что провоцирует образование во внутренней обмотке вольтажа, составляющего три тысячи единиц, необходимого для функционирования системы. Высоковольтное напряжение генерируется механически распределителем, откуда и подаётся переменно на свечи через аккумулятор или генератор, меняясь под такт деятельности мотора. Вырабатывается напряжение в удовлетворительном объёме для возникновения искрового разряда, способного пробить воздушный просвет между электродами свечей, что и является необходимым аспектом для воспламенения рабочей, топливной жидкости.

К преимущественным сторонам зажигания контактного типа профессионалы причисляют его простоту, которая изначально предопределяет надёжность и незамысловатость конфигурации. В системе не задействованы сложные конструктивные решения электронного класса, в виде современных блочных электросистем, которым свойственны сбои в работе и высокая товарная стоимость. Кулачковая система имеет и определённые недостатки, так как в ином случае отсутствовала бы потребность в её конструктивном усовершенствовании и модернизации. Основным недостатком кулачковой конфигурации выступает формирование искры: при процессе расщепления кулачков на металлических контактах со временем возникает нагар, который снижает качество контакта, что выливается в проблемы с заведением мотора. Нагарообразования провоцируют потребность в регулярном контроле зазора на свечах, их чистку и более частую замену для корректного функционирования системы.

Конструкция и особенности функционирования зажигания бесконтактного типа

Бесконтактную систему зажигания – БСЗ, профессионалы позиционируют как технологическое усовершенствование контактно-транзисторной конструкции, где вместо уязвимого механического токопрерывателя контактного действия установлен специальный датчик бесконтактного типа. Конструктивная структура БСЗ подобна предыдущей вариации, с модернизацией импульсным датчиком и коммутатором транзисторного типа. Чтобы разобраться, как бесконтактная система зажигания справляется с накоплением, преобразованием и распределением напряжения, необходимо понять принцип взаимодействия коммутатора и импульсного датчика, конструктивно отличающие концепцию устройств. Датчик процессуально реализует функцию организации электроимпульсной деятельности малого напряжения. По разновидности датчики распределяют на элементы оптического и индукционного класса, а также наиболее распространённые преобразователи, работающие с использованием эффекта Холла, заключающегося в формировании диаметрального расхождения потенциалов в проводниковой пластине под влиянием стабильной магнитной силы. Импульсный датчик в комплексе с распределителем визуально сходный с механическим трамблёром, работает от привода коленвала ДВС.

Прерывателем тока в первичной электрообмотке катушки выступает коммутатор транзисторной модификации, реагируя на сигналы, подаваемые датчиком. Разрывание процесса подачи тока выполняется посредством размыкания и затвора транзисторного выпускного элемента. Принцип работы бесконтактной системы зажигания, с учётом модернизированных элементов, базируется на формировании и передаче сигналов датчиком на коммутатор, при работающем коленчатом вале силового агрегата. Коммутатор образовывает импульсы электротока в наружной витковой обмотке. После обрывания тока, логическим продолжением процесса выступает индукция высоковольтного напряжения на вторичной электрообмотке бобины. Дальше происходит идентичный контактному функционированию системы процесс передачи напряжения на работающие элементы распределителя, с последующей его развёрсткой по электропроводам к свечам зажигания. Свечи, в свою очередь, реализуют непосредственное воспламенение рабочей жидкости.

Отличия КСЗ и БСЗ

Вопрос, какое зажигание лучше, контактное или бесконтактное, популярен среди владельцев отечественного транспорта, так как профессионалы часто позиционируют возможность замены аналогового, контактного на усовершенствованное бесконтактное зажигание. Каждая из вариаций имеет как преимущества, так и недостатки, что заставляет автовладельцев взвешивать различия систем, определяя для себя приоритетность каждой из них. Если анализировать характеристики контактной системы, то в её пользу свидетельствуют качества надёжности и простоты обслуживания, сравнительно бюджетной стоимости конструктивных элементов. Бесконтактная конструкция относится к более современным решениям, реже требует регулировки, отличается отсутствием уязвимых контактов, которым свойственно обгорание в процессе эксплуатации. Попробуем детально разобрать, как отличить визуально и по параметрам контактное зажигание от бесконтактного, ориентируясь на основные, предопределяющие разницу, компоненты систем. На замену проблемным элементам пришёл коммутатор, выполняющий задачи контактирующих конструктивных деталей, без сопроводительного образования нагара, за счёт отсутствия в процессе работы потребности в непосредственном механическом контакте. Следующая позиция, чем кардинально отличается контактная система от бесконтактной, заключается в улучшенных технических характеристиках, таких как частотность и напряжение повышенных параметров, предопределяемые особенностями строения катушек, что отображается на эксплуатационном ресурсе свечей. Отличие катушек бесконтактной системы зажигания от аналоговых элементов контактной конфигурации заключается в следующих нюансах:

  1. Катушка зажигания, применяемая в БСЗ, характеризуется превалирующей численностью витков на первичном ярусе. Этот показатель обуславливает сопротивление и величины протекающего тока.
  2. Токопрерыватель бесконтактного зажигания отличается особой надёжностью, за счёт ограничения системой тока на контактах.
  3. Повышенная мощность БСЗ, за счёт модификации более производительной катушкой, отображается положительно на рабочих показателях мотора.
  4. Маркировка катушек для разных систем отличается, предопределяя шифром принадлежность детали.

При замене аналоговой системы зажигания на усовершенствованную, бесконтактную, придётся заменить не только важные работающие элементы конструкции, но и поменять высоковольтную проводку. Вместо обычных проводов, необходимо установить улучшенные, однако, дорогие силиконовые, позволяющие проводить ток, больший по параметрам. Замена предусматривает существенные капиталовложения в покупку модернизированных компонентов БСЗ, однако, потребитель получит массу положительных моментов в результате модернизации системы:

  1. Бесперебойный запуск мотора, независимо от поры года и температуры за бортом.
  2. Фундаментальное решение проблемы с частичным сгоранием топливной жидкости.
  3. Улучшение динамических параметров функциональности двигателя и машины в целом.
  4. Отсутствие необходимости в частом контролировании состояния элементов системы зажигания.

Подведём итоги

Несмотря на существенные приоритетные стороны бесконтактной системы зажигания, кулачковый механизм до сих пор не утратил свою актуальность, имеет приверженцев среди автовладельцев. Демократичность деталей, простота и надёжность конструкции – это основные преимущества КСЗ. В свою очередь, БСЗ считается модернизированной и улучшенной конструкцией, соответствующей времени, позволяющей минимизировать вероятность поломок, и улучшить работоспособность транспортного средства. Описание особенностей функционирования систем, их существенных отличий, представленных в этой статье, поможет автовладельцам определиться с выбором, отдав предпочтение одной из конструкций.

Разница между катушкой контактной системы зажигания и бесконтактной. Чем отличается контактный трамблер бесконтактного и от электронного Формирование сигнала датчиком Холла

Катушка системы зажигания – очень важный элемент, основная задача которого заключается в преобразовании напряжения из низковольтного в высоковольтное. Данное напряжение поступает непосредственно из аккумуляторной батареи или генератора. Катушка контактной системы зажигания довольно сильно отличается от аналогичного элемента в бесконтактной системе.

Катушка контактной системы зажигания

В контактной системе зажигания катушка состоит из нескольких важнейших элементов: сердечника, первичной и вторичной обмотки, картонной трубки, прерывателя и добавочного резистора. Особенность первичной обмотки по сравнению со вторичной – меньшее число витков медного провода (до 400). Во вторичной обмотке катушки их число может достигать 25 тысяч, но при этом их диаметр в разы меньше. Все медные провода в катушке зажигания хорошо изолированы. Сердечник катушки уменьшает образование вихревых токов, он состоит из полосок трансформаторной стали, которые также друг от друга хорошо изолированы. Нижняя часть сердечника устанавливается в специальный фарфоровый изолятор. Сейчас нет надобности перечислять принцип работы катушки подробно, достаточно лишь упомянуть, что в контактной системе такой элемент (преобразователь напряжения) имеет ключевое значение.

Катушка бесконтактной системы зажигания

В бесконтактной системе зажигания катушка выполняет точно такие же функции. И отличие проявляется лишь в непосредственном строении элемента, преобразующего напряжение. Также стоит отметить, что электронный коммутатор осуществляет прерывание цепи питания первичной катушки. Что касается самой системы зажигания, то бесконтактная значительно лучше по многим параметрам: возможность пуска и работы двигателя при низкой температуре, в цилиндрах не замечается нарушения равномерности распределения искры, нет вибрации. Все эти преимущества дает сама катушка в бесконтактной системе зажигания.

Сравнение катушек

Когда речь заходит о признаках отличия катушки контактной системы зажигания от бесконтактной, все сразу обращают внимание на маркировку. Действительно, по ней можно сразу узнать, для какой системы используется катушка. Однако нас интересует именно внешние и технические различия катушек, поэтому мы приведем отличия именно по этим параметрам:

  • Катушка в контактной системе зажигания имеет большее количество витков в первичной обмотке. Это изменение напрямую влияет на сопротивление и количество проходящего тока. Кроме того, ограничение тока на контактах связано с безопасностью (чтобы контакты не обгорали).
  • Контакты прерывателя катушки в бесконтактной системе зажигания не загрязняются и не обгорают. Такая надежность позволяет получить одно важное преимущество: установка момента зажигания не занимает много времени.
  • Катушка в бесконтактной системе зажигания мощнее и надежнее. Это преимущество связано непосредственно с тем, что самая бесконтактная система зажигания – более надежный вариант. Поэтому в такой системе катушка и дает большую мощность двигателя.

Выводы сайт

  1. У них разная маркировка, обозначающая различие между двумя катушками.
  2. В контактной системе катушка имеет большее количество витков.
  3. Контакты прерывателя катушки бесконтактной системы надежней.
  4. Сама катушка в бесконтактной системе зажигания дает большую мощность.

Современная бесконтактная система зажигания или БСЗ является передовым и конструктивным решением, своеобразным продолжением старой контактно-транзисторной системы. Здесь обычный контакт-предохранитель заменен специальным и производительным регулятором. А чем же еще отличаются эти обе системы? Давайте узнаем.

КСЗ

КСЗ – первый, уже устаревший вариант зажигания, применяющийся до сих пор на редких автомоделях. В КСЗ ток и его сегрегация осуществляется трамблером с помощью контактной группы.

Включает в свой состав КСЗ такие компоненты, как мехраспределитель и мехпрерыватель, катушку зажигания, вакуум-датчик и т. д.

Мехпрерыватель или размыкатель

Это компонент, на который ложится функция осуществления разъединения звена низкого токового накала. Другими словами — тока, образующегося в первичной обмотке. Вольтаж идет на контактную группу, элементы которой защищены от обгорания специальным покрытием. Кроме того, предусмотрен конденсатор-теплообменник, подключенный симультанно контактной группе.

Катушка зажигания в КСЗ является преобразователем тока. Именно здесь ток низкого напряжения трансформируется в высокий ток. Как и в случае с БСЗ, используется два типа обмоток.

Механический распределитель или просто трамблер

Этот компонент способен обеспечить эффективную подачу высокого тока к СЗ. Сам трамблер состоит из множества элементов, но основными являются крышка и ротор или бегунок (народ.).

Крышка изготовлена так, что с внутренней стороны оснащена соединителями основного и дополнительного типа. Высокий ток принимается центральным контактом, а рассредотачивается по свечам – через боковые (дополнительные).

Мехпрерыватель и распределить – это единый тандем, как и датчик холла с коммутатором в БСЗ. Они приводятся в действие приводом коленвала. В просторечье оба элемента называют единым словом «трамблер».

ЦРОЗ – регулятор, служащий для изменения УОЗ в зависимости от количества оборотов коленвала силовой установки. Априори состоит из 2-х грузиков, воздействующих на пластинку.

УОЗ другими словами, это угол поворота коленвала, такой при котором происходит непосредственная передача тока с высоким вольтажом на СЗ. Для того чтобы горючая смесь без остатков сгорела, зажигание осуществляется с опережением.

УОЗ в КСЗ выставляется с помощью спецприспособления.

ВРОЗ или вакуумный датчик

Он обеспечивает изменение УОЗ в зависимости от нагрузки на мотор. Другими словами, этот показатель – прямое следствие степени открытия дроссзаслонки, зависящей от силы нажатия педали акселератора. ВРОЗ находится за дроссзаслонкой, и способен изменять УОЗ.

Бронепровода – обязательные элементы, своеобразные коммуникации, служащие для передачи тока с высоким вольтажом к трамблеру и от последнего к свечам.

Функционирование КСЗ осуществляется следующим образом.

  • Контакт-прерыватель замкнут – в катушке задействован ток с низким вольтажом.
  • Контакт разомкнут – уже во вторичной обмотке задействуется ток, но с высоким вольтажом. Он подается на верхнюю часть трамблера, а затем растекается по бронепроводам дальше.
  • Увеличивается число вращений коленвала – одновременно повышается количество оборотов вала прерывателя. Грузики под воздействием расходятся, подвижная пластина перемещается. УОЗ увеличивается за счет размыкания контактов прерывателя.
  • Обороты коленвала силовой установки сокращаются – УОЗ автоматически уменьшается.

Контактно-транзисторная система зажигания – это дальнейшая модернизация старой КСЗ. Отличие в том, что стал применяться уже коммутатор. В результате этого увеличился срок службы контактной группы.

Катушка

В КСЗ одним из обязательных, важных элементов выступает

Чем отличается контактный трамблер бесконтактного и от электронного — Auto-Self.ru

Современный бесконтактный распределитель и катушка

Современная бесконтактная система зажигания или БСЗ является передовым и конструктивным решением, своеобразным продолжением старой контактно-транзисторной системы. Здесь обычный контакт-предохранитель заменен специальным и производительным регулятором. А чем же еще отличаются эти обе системы? Давайте узнаем.

КСЗ

КСЗ – первый, уже устаревший вариант зажигания, применяющийся до сих пор на редких автомоделях. В КСЗ ток и его сегрегация осуществляется трамблером с помощью контактной группы.

Включает в свой состав КСЗ такие компоненты, как мехраспределитель и мехпрерыватель, катушку зажигания, вакуум-датчик и т. д.

Мехпрерыватель или размыкатель

Контактная система зажигания схема

Это компонент, на который ложится функция осуществления разъединения звена низкого токового накала. Другими словами — тока, образующегося в первичной обмотке. Вольтаж идет на контактную группу, элементы которой защищены от обгорания специальным покрытием. Кроме того, предусмотрен конденсатор-теплообменник, подключенный симультанно контактной группе.

Катушка зажигания в КСЗ является преобразователем тока. Именно здесь ток низкого напряжения трансформируется в высокий ток. Как и в случае с БСЗ, используется два типа обмоток.

Механический распределитель или просто трамблер

Этот компонент способен обеспечить эффективную подачу высокого тока к СЗ. Сам трамблер состоит из множества элементов, но основными являются крышка и ротор или бегунок (народ.).

Крышка изготовлена так, что с внутренней стороны оснащена соединителями основного и дополнительного типа. Высокий ток принимается центральным контактом, а рассредотачивается по свечам – через боковые (дополнительные).

Мехпрерыватель и распределить – это единый тандем, как и датчик холла с коммутатором в БСЗ. Они приводятся в действие приводом коленвала. В просторечье оба элемента называют единым словом «трамблер».

ЦРОЗ – регулятор, служащий для изменения УОЗ в зависимости от количества оборотов коленвала силовой установки. Априори состоит из 2-х грузиков, воздействующих на пластинку.

Настройка УОЗ

УОЗ другими словами, это угол поворота коленвала, такой при котором происходит непосредственная передача тока с высоким вольтажом на СЗ. Для того чтобы горючая смесь без остатков сгорела, зажигание осуществляется с опережением.

УОЗ в КСЗ выставляется с помощью спецприспособления.

ВРОЗ или вакуумный датчик

Он обеспечивает изменение УОЗ в зависимости от нагрузки на мотор. Другими словами, этот показатель – прямое следствие степени открытия дроссзаслонки, зависящей от силы нажатия педали акселератора. ВРОЗ находится за дроссзаслонкой, и способен изменять УОЗ.

Бронепровода – обязательные элементы, своеобразные коммуникации, служащие для передачи тока с высоким вольтажом к трамблеру и от последнего к свечам.

Функционирование КСЗ осуществляется следующим образом.

  • Контакт-прерыватель замкнут – в катушке задействован ток с низким вольтажом.
  • Контакт разомкнут – уже во вторичной обмотке задействуется ток, но с высоким вольтажом. Он подается на верхнюю часть трамблера, а затем растекается по бронепроводам дальше.
  • Увеличивается число вращений коленвала – одновременно повышается количество оборотов вала прерывателя. Грузики под воздействием расходятся, подвижная пластина перемещается. УОЗ увеличивается за счет размыкания контактов прерывателя.
  • Обороты коленвала силовой установки сокращаются – УОЗ автоматически уменьшается.

Вакуумный регулятрор трамблер

Контактно-транзисторная система зажигания – это дальнейшая модернизация старой КСЗ. Отличие в том, что стал применяться уже коммутатор. В результате этого увеличился срок службы контактной группы.

Катушка

В КСЗ одним из обязательных, важных элементов выступает катушка. Она включает линейку очень значимых компонентов, таких как обмотки, трубка, резистор, сердечник и т. д.

Отличие низковольтной и высоковольтной обмотки заключается не только в характере напряжения. В первичной обмотке сделано меньшее количество витков, чем во вторичной. Разница достигать может очень большого количества. Например, 400 и 25000 витков, но размер этих самых витков будет в разы меньше.

Из каких элементов состоит БСЗ

БСЗ – это модернизированная трансформация КСЗ. В ней механический прерыватель заменен датчиком. Сегодня таким зажиганием оснащается большинство отечественных моделей и иномарок.

Примечание. БСЗ может выступать, как дополнительный элемент КСЗ или функционировать полностью автономно.

Использование БСЗ позволяет значительно увеличить мощностные показатели силовой установки. Особенно важно, что снижается топливный расход, а также выбросы СО2.

Катушка зажигания БСЗ

Одним словом, БСЗ включает целый ряд компонентов, среди которых особое место занимает выключатель, регулятор импульсов, коммутатор и т. д.

БСЗ – устройство, которое аналогично контактной системе зажигания, имеет целый ряд положительных сторон. Однако, как утверждают некоторые эксперты, не лишено и минусов.

Рассмотрим основные элементы БСЗ, чтобы составить более обзорное представление.

Датчик Холла

Регулятор импульсов или ДЭИ* — данный компонент предназначен для создания электроимпульсов низкого напряжения. В современной технопромышленности принято использовать 3 типа ДЭИ, но в автомобильной сфере широкое применение нашел лишь один из них – датчик Холла.

Как известно, Холл – гениальный ученый, которому первому пришла в голову идея рационально и эффективно применять магнитное поле.

Состоит регулятор этого типа из магнита, пластины-полупроводника с чипа и затвором с выемками, которые собственно и пропускают магнитное поле.

Примечание. Обтюратор имеет прорези, но помимо этого, еще и стальной экран. Последний ничего не просеивает, и таким образом, создается чередование.

ДЭИ – датчик электроимпульсов

Датчик Холла

Регулятор конструктивным образом соединяется с трамблером, тем самым способом, образуется устройство единого типа – регулятор-трамблер, внешне схожий во многих функциях с прерывателем. Например, оба имеют аналогичный привод от коленвала.

КТТ

Коммутатор транзисторого типа (КТТ) – полезнейший компонент, служащий для прерывания электричества в цепи катушки зажигания. Конечно же, КТТ функционирует в соответствие с ДЭИ, составляя вместе с последним единый и практичный тандем. Прерывается электрический заряд за счет отпирания/запирания выходного транзистора.

Катушка

И в БСЗ катушка выполняет те же функции, что и на КСЗ. Отличия, безусловно, имеются (подробно представлены ниже). Кроме этого, здесь применяется электрокоммутатор, осуществляющий прерывание цепи.

БСЗ-катушка надежнее и лучше во всех отношениях. Улучшается пуск силовой установки, эффектнее становится работа мотора на разных режимах.

Как функционирует БСЗ

Вращение коленвала силовой установки воздействует на тандем трамблер-регулятор. Таким образом формируются импульсы напряжения, передающиеся на КТТ. Последний создает ток в катушке зажигания.

Примечание. Следует знать, что в автоэлектрике принято говорить о двух типах обмоток: первичной (низкой) и вторичной (высокой). Импульс тока создается в низкой, а большой вольтаж – в высокой.

Схема функционирования БСЗ

Далее высокое напряжение передается из катушки на трамблер. В распределителе его принимает центральный контакт, от которого ток и передается по всем бронепроводам на свечи. Последние осуществляют воспламенение горючей смеси, и ДВС запускается.

Как только увеличиваются обороты коленвала, ЦРОЗ* осуществляет регулирование УОЗ**. А если нагрузка на силовую установку меняется, то за УОЗ отвечает уже вакуумный датчик.

ЦРОЗ – центробежный регулятор опережения зажигания

УОЗ – угол опережения зажигания

Безусловно, трамблер сам по себе, будь он старого или нового образца, является обязательным элементом системы зажигания автомобиля, способствующий появлению качественного искрообразования.

В трамблере нового образца устранены все недочеты распределителя контактного. Правда, новый распределить стоит на порядок дороже, но это окупается, как правило, впоследствии.

Как и было написано выше, при эксплуатации БСЗ применяется новый распределитель, не имеющий контактную группу. Здесь роль прерывателя и соединителя выполняют КТТ и датчик Холла.

ЭСЗ

Система зажигания, в которой распределение высокого напряжения по двигательным цилиндрам осуществляется с помощью электроустройств, называется ЭСЗ. В некоторых случаях данную систему принято называть также «микропроцессорной».

Отметим, что обе прежние системы – КСЗ и БСЗ тоже включали некоторые элементы электроустройств, но ЭСЗ вообще не подразумевает использование каких бы то ни было механических составляющих. По сути, это та же БСЗ, только более модернизированная.

Электронная система зажигания

На современных автомашинах ЭСЗ – это обязательная часть управляющей системы ДВС. А на более новых машинах, вышедших совсем недавно, ЭСЗ работает в группе с выпускной, впускной и охладительной системами.

Моделей таких систем на сегодняшний день немало. Это и всемирно известные Бош Мотроник, Симос, Магнетик Марелли, и менее именитые аналоги.

Отличия:

  1. В контактном зажигании прерыватели или контакты смыкаются механическим путем, а в БСЗ – электронным. Другими словами, в КСЗ применяются контакты, в БСЗ – датчик Холла.
  2. БСЗ – это больше стабильности и сильнее искра.

Отличия имеются и между катушками. У обоих систем разная маркировка и разные катушки зажигания. Так, у катушки БСЗ больше витков. Кроме того, катушка БСЗ считается надежнее и мощнее.

Таким образом, мы выяснили, что на сегодняшний день в применении 3 варианта зажигания. Используются, соответственно, и разные трамблеры.

Поделитесь с друзьями в соц.сетях:

Facebook

Twitter

Google+

Telegram

Vkontakte

В чем разница между контактной и бесконтактной системами зажигания?

В техническом и конструктивном плане автомобиль представляет собой  достаточно сложное средство передвижения. Входящие в него узлы и механические детали и системы  в нем должны работать слажено и исправно. При повреждении одного узла и неисправной работе любой детали  может произойти существенное отклонение в функциональности автомобиля или его поломка.  Среди большинства важных конструкций авто одной из наиболее значимых считается система зажигания. Она существенно влияет на возможность бесперебойной эксплуатации авто. Сегодня известно о трех разновидностях систем зажигания, которые могут быть установлены на автомобиле: контактное, бесконтактное и микропроцессорное. Последнее считается самым новым достижением в автомобилестроении. В этом полезном материале подробнее будут рассмотрены бесконтактные и контактные системы, а также описаны их различия.

Контактная система зажигания: в чем особенность?

контактная система зажигания представляет собой классический механизм, в котором есть источник подачи питания, выключатель или замок зажигания, а также катушка, свечи зажигания, специальный распределительный механизм и заизолированная высоковольтная проводка. Источником питания выступает аккумулятор в режиме запуска авто, а в режиме работы мотора непосредственно генератор.  Замок зажигания позволяет осуществить подачу энергии на бортовую сеть и реле стартера, а вот катушка зажигания  предназначена накапливать и преобразовывать напряжение для  образования заряда между электродами. Особенностью контактной системы зажигания в том, что в ней есть так называемые «кулачки», которые приводятся в действие путем кручения валового привода распределителя. Такая система считается более простой, имеет незамысловатую конфигурации и отличается надежностью. В системе не предусмотрено задействование  сложных конструктивных  решений вроде современных блочных электросистем.

Зажигание бесконтактного типа: особенности

В бесконтактной системе зажигания вместо уязвимого механического токопрерывателя контактного действия предусмотрен специальный датчик бесконтактного типа.  По своей конструкции такое зажигание  похоже на контактное, однако в нем предусмотрена модернизация импульсного датчика и коммутатора транзисторного типа. Датчик в бесконтактной системе зажигания выполняет организацию электроимпульсной деятельности малого напряжения. По видам датчики распределяются на элементы индукционного и оптического типа, а также с использованием эффекта Холла. В данной системе прерывателем тока в первичной обмотке катушки выступает коммутатор транзисторного типа, который реагирует на сигналы, что подаются датчиком.  Что касается разрыва подачи тока, то этот процесс происходит посредством размыкания и затвора транзисторного выпускного элемента.

Подробнее о бесконтактной системе зажигания пот речь в этом видеоматериале:

Опубликовано: 20 мая 2019

Чем бесконтактное зажигание лучше контактного?

В состав автомобиля входит система зажигания. Система зажигания автомобиля служит для обеспечения воспламенения рабочей смеси в цилиндрах двигателя в соответствии с порядком их работы.

Схема системы зажигания:

Существует два типа: контактное и бесконтактное зажигание. Они отличаются наличием и отсутствием размыкающихся контактов в трамблере (датчике-распределителе). В момент размыкания контактов ток в первичной обмотке прекращается, изменяется магнитное поле, вследствие чего возникает индукционный ток высокой частоты и напряжения, который подается посредством высоковольтных проводов на свечи.

Бесконтактное зажигание лишено этих контактов. Они заменены коммутатором, который, в принципе, выполняет эту же функцию. Изначально на автомобили отечественного производства устанавливалась лишь контактная система. Бесконтактное зажигание ВАЗ стал устанавливать в начале 2000-х. Это было хорошим для него прорывом. Прежде всего, бесконтактное зажигание обладает большей надежностью, поскольку фактически из системы был удален один довольно уязвимый элемент.

Сама замена контактного зажигания на бесконтактное не должна вызвать каких-либо трудностей, поскольку все сводится к откручиванию и прикручиванию деталей. Со временем автовладельцы стали сами устанавливать бесконтактное зажигание на классику, поскольку это серьезно облегчало обслуживание. Теперь исключалась возможность подгорания контактов. Кроме того, теперь в них не надо было регулировать зазор в момент размыкания. Помимо всего прочего, бесконтактное зажигание обладает и лучшими характеристиками тока, а именно, большей частотой и напряжением, что серьезно снижает износ электродов свечей. На лицо – плюсы во всех сферах эксплуатации.

Бесконтактная система зажигания повышает надежность из-за отсутствия подвижных контактов и необходимости систематической их регулировки и зачистки зазоров, а также повышает надежность пуска и работу при разгонах автомобиля благодаря более высокой энергии электрического разряда, который обеспечивает надежное воспламенение рабочей смеси в цилиндрах двигателя независимо от частоты вращения коленчатого вала. Кроме того, одним из преимуществ бесконтактной системы зажигания является отсутствие влияния вибрации и биения ротора-распределителя на равномерность момента искрообразования.

 

 

Как работают автомобильные системы зажигания

Система зажигания вашего автомобиля должна работать согласованно с остальным двигателем. Цель состоит в том, чтобы зажечь топливо в нужное время, чтобы расширяющиеся газы могли выполнять максимальную работу. Если система зажигания сработает не в то время, мощность упадет, а потребление газа и выбросы могут увеличиться.

Когда горит топливно-воздушная смесь в цилиндре, температура повышается, и топливо преобразуется в выхлопные газы.Это преобразование вызывает резкое повышение давления в цилиндре и заставляет поршень опускаться.

Чтобы получить максимальный крутящий момент и мощность от двигателя, цель состоит в том, чтобы максимизировать давление в цилиндре во время рабочего хода . Максимальное давление также обеспечивает максимальную эффективность двигателя, что напрямую влияет на увеличение пробега. Выбор момента зажигания имеет решающее значение для успеха.

Имеется небольшая задержка от момента искры до момента, когда вся топливно-воздушная смесь сгорит и давление в цилиндре достигнет максимума.Если искра возникает прямо тогда, когда поршень достигает верхней точки такта сжатия, поршень уже переместится вниз на часть своего рабочего хода, прежде чем газы в цилиндре достигнут своего максимального давления.

Чтобы максимально использовать топливо, искра должна возникнуть до того, как поршень достигнет верхней точки такта сжатия , поэтому к тому времени, когда поршень начнет свой рабочий ход, давление будет достаточно высоким, чтобы начать полезную работу.

Работа = Сила * Расстояние

В цилиндре:

  • Сила = Давление * Площадь поршня
  • Расстояние = Длина хода

Итак, когда мы говорим о цилиндре, работа = давление * площадь поршня * длина хода . А поскольку длина хода и площадь поршня фиксированы, единственный способ максимизировать работу — увеличить давление.

Время зажигания очень важно, и это может быть либо , , либо , , в зависимости от условий.

Время, необходимое для сжигания топлива, примерно постоянно. Но скорость поршней увеличивается с увеличением оборотов двигателя. Это означает, что чем быстрее работает двигатель, тем раньше должна возникнуть искра. Это называется опережением зажигания . : чем выше частота вращения двигателя, тем больше требуется опережение.

Другие цели, такие как минимизация выбросов , имеют приоритет, когда максимальная мощность не требуется. Например, замедляя синхронизацию зажигания (перемещая искру ближе к вершине такта сжатия), можно снизить максимальное давление и температуру в цилиндре.Снижение температуры помогает уменьшить образование оксидов азота (NO x ), которые являются регулируемым загрязнителем. Задержка синхронизации также может устранить детонацию; некоторые автомобили с датчиками детонации делают это автоматически.

Далее мы рассмотрим компоненты, которые создают искру.

.

7 признаков неисправной катушки зажигания (и стоимость замены в 2021 г.)

Последнее обновление 13 мая 2020 г.

В этой статье мы поговорим о катушке зажигания, чтобы вы знали ее основные функции, симптомы плохая катушка зажигания, как проверить, а также средняя стоимость замены.

Ищете хорошее онлайн-руководство по ремонту? Щелкните здесь, чтобы увидеть 5 лучших вариантов.

Как работает катушка зажигания

Катушки зажигания известны как компактные электрические трансформаторы.Их цель — взять низкий 12-вольтовый ток, который обычно присутствует в автомобильных аккумуляторах, и преобразовать его в гораздо более высокое напряжение, необходимое для зажигания топлива и запуска двигателя.

У каждой свечи зажигания в автомобиле своя катушка зажигания. Катушка либо физически соединена со свечой зажигания с помощью проводов, либо располагается поверх свечи зажигания без использования проводов.

Свече зажигания требуется от 15 000 до 20 000 вольт электричества, чтобы образовалась электрическая искра, способная воспламенить топливо.Если у вас нет мощных катушек зажигания, это приведет к низкому расходу топлива или пропускам зажигания в двигателе.

Важно отметить, что неисправность катушки зажигания также может быть связана с низким или ненормально высоким напряжением батареи. Это также вызовет ряд других проблем с автомобилем, и при замене его на новую батарею многие проблемы исчезнут.

Многие батареи в старых автомобилях могут просто выйти из строя с возрастом, и одним из признаков плохой батареи является то, что она не показывает как минимум 12.65 В при полной зарядке, вы знаете, что есть проблемы с аккумулятором.

Признаки неисправной катушки зажигания

Если автомобиль ведет себя периодически и создает проблемы для водителя при плавном вождении, это может указывать на неисправность катушки зажигания этого автомобиля.

Признаки неисправности или слабости катушки зажигания могут различаться в зависимости от серьезности неисправности катушки зажигания. Вот некоторые из наиболее распространенных признаков неисправности катушки зажигания.

# 1 — Обратный огонь

Обратный огонь, вызванный вашим автомобилем, может указывать на симптомы отказа катушки зажигания на ранних стадиях.Возгорание автомобиля происходит, когда неиспользованное топливо в цилиндрах сгорания двигателя выходит через выхлопную трубу.

Если оставить эту проблему неразрешенной, то ремонт может быть дорогостоящим. Проблема с обратным зажиганием обычно может быть обнаружена по выбросу черного дыма через выхлопную трубу. Запах бензина в этом дыме также может указывать на неисправность катушки зажигания.

# 2 — Низкая экономия топлива

Еще одним признаком неисправности катушки зажигания является низкая экономия топлива.Если у вашего автомобиля пробег заметно меньше, чем был раньше, это может означать, что произошла неисправность катушки зажигания.

# 3 — Пропуски зажигания в двигателе

Пропуски зажигания в двигателе будут видны в автомобиле, у которого вышли из строя катушки зажигания. Попытка запустить двигатель такого транспортного средства приведет к пропуску зажигания в двигателе, который звучит как кашляющий шум.

При движении на высоких скоростях в поведении автомобиля будут заметны рывки и плевки.Автомобиль с неисправной катушкой зажигания также будет вызывать вибрацию при движении на холостом ходу у знака остановки или светофора.

# 4 — Остановка автомобиля

Отказ катушки зажигания также может привести к остановке этого транспортного средства. Это может происходить из-за нерегулярных искр, посылаемых на свечи зажигания неисправной катушкой. Ваш автомобиль может полностью выключиться, когда его останавливают, и вы, надеюсь, столкнетесь с проблемой его перезапуска.

# 5 — Дергание двигателя, резкий холостой ход, недостаточная мощность

Другой симптом — резкий холостой ход двигателя, рывки и колебания при ускорении.Во время движения будет казаться, что вашему автомобилю не хватает мощности.

# 6 — Контрольная лампа двигателя горит / код DTC

Часто на приборной панели загорается контрольная лампа двигателя. Чаще всего код двигателя P0351 (катушка зажигания — неисправность первичной / вторичной цепи) появляется при сканировании с помощью автомобильного диагностического прибора.

Сканирование кода ошибки, вероятно, является самым простым способом устранения проблемы с катушкой, поэтому, если вы видите этот индикатор двигателя, возьмите сканирующий инструмент или обратитесь в мастерскую для подтверждения.

# 7 — Двигатель с трудом запускается

Двигатель с трудом запускается — это симптом, который возникает, особенно если в вашем автомобиле используется одна катушка. Если катушка неисправна, это означает, что двигатель будет запускаться без искр внутри цилиндров.

Средняя стоимость замены катушки зажигания

Стоимость новой катушки зажигания зависит от марки и модели автомобиля. Некоторые катушки стоят всего 75 долларов, а другие — 300 долларов.Если вы сделаете замену профессионально, тогда затраты на рабочую силу будут составлять от 50 до 100 долларов в час.

Таким образом, вы можете рассчитывать на то, что заплатите не менее 150–200 долларов, если вы отнесете свой автомобиль в автомастерскую и попросите заменить катушку зажигания. Если вы решите обратиться в автосалон, рассчитывайте заплатить еще больше.

Читайте также: Средняя стоимость замены топливного фильтра

Как проверить катушку зажигания

Вот несколько советов по тестированию катушки зажигания в зависимости от того, являются ли они CNP (Coil-Near-Plug) или COP (Coil- На вилке).

Катушка CNP Тип
  • Чтобы провести тест катушки зажигания, сначала выключите двигатель автомобиля и откройте капот. Снимите или вытащите из него провод свечи зажигания (если в вашей машине используются катушки CNP). Эти провода обычно начинаются от крышки распределителя и идут к свече зажигания. Используйте резиновые перчатки и изолированные инструменты при работе с этими электрическими компонентами, иначе вы можете получить хороший толчок.
  • Теперь прикрепите новую свечу зажигания к проводу свечи зажигания (новая или старая свеча зажигания для проверки искры катушки).Используйте изолированные плоскогубцы, чтобы удерживать свечу зажигания на какой-либо металлической части двигателя так, чтобы резьбовая часть свечи касалась металла.
  • Используйте инструмент для снятия предохранителя или плоскогубцы, чтобы извлечь предохранитель из топливного насоса, чтобы отключить его и подготовиться к запуску двигателя. Вам может потребоваться дополнительный человек, чтобы повернуть ключ в замке зажигания, потому что вы удерживаете свечу зажигания плоскогубцами.
  • После запуска двигателя обратите внимание на синие искры, образующиеся вдоль зазора свечи зажигания.Если вы видите синие искры, ваша катушка зажигания исправна.
  • Если вы не видите искр или если вы видите оранжевые искры, это признак неисправности катушки зажигания.
  • Когда вы закончите испытание, отсоедините свечу зажигания, вставьте ее обратно в отверстие, снова подсоедините к ней провода свечи зажигания и вставьте обратно предохранитель топливного насоса.
COP Coil Type
  • Запустите двигатель.
  • Обеспечивает работу двигателя на холостом ходу.
  • Откройте болт катушки зажигания номер 1, а затем потяните катушку вверх, чтобы посмотреть, как работает двигатель.

Если состояние двигателя меняется на грубый холостой ход, это означает, что катушка зажигания номер 1 исправна. Затем вы можете продолжить этот шаг с оставшимися катушками по очереди, пока не найдете виновника. Когда вы вытаскиваете неисправную катушку зажигания, состояние двигателя / холостой ход не должно измениться.

.Смарт-карта

— разница между командой APDU между контактным и бесконтактным интерфейсом

Переполнение стека
  1. Около
  2. Продукты
  3. Для команд
  1. Переполнение стека Общественные вопросы и ответы
  2. Переполнение стека для команд Где разработчики и технологи делятся частными знаниями с коллегами
  3. Вакансии Программирование и связанные с ним технические возможности карьерного роста
  4. Талант Нанимайте технических специалистов и создавайте свой бренд работодателя
  5. Реклама Обратитесь к разработчикам и технологам со всего мира
  6. О компании
.

Что такое бесконтактный платеж?

Говоря о популярных терминах, стоит обратить внимание на бесконтактные платежи. Поскольку бесконтактные платежи осуществляются через ваше мобильное устройство, эта технология делает транзакции намного быстрее и проще.

Бесконтактные платежи — как и платежи EMV — также намного безопаснее, чем платежи с помощью карт с магнитной полосой. Карты с магнитной полосой сильно устарели (они существуют с 1960-х годов). Информация, связанная с вашим банковским счетом на карте с магнитной полосой, статична (она находится прямо на ней).Поэтому, если мошенники завладеют вашей картой, им будет относительно легко получить и клонировать ваши данные (и отправиться за покупками).

В бесконтактной оплате не так уж и много. Вот некоторая информация о том, что такое бесконтактные платежи и почему они так безопасны:

Бесконтактный платеж, как следует из названия, не требует физического контакта между смартфоном или кредитной картой покупателя и POS. Возможно, вы также слышали термин NFC, который означает «связь ближнего радиуса действия».«Это технология, обеспечивающая бесконтактные платежи посредством радиочастотной идентификации (называемой RFID). Транзакции NFC происходят на определенной радиочастоте, которая позволяет карте или смартфону связываться со считывателем платежей, когда они находятся близко друг к другу (обычно 10 сантиметров или меньше).

Принимайте Apple Pay и чиповые карты везде.

Заказать Квадратный бесконтактный и чип-ридер.

Технология бесконтактных платежей — краткая история

NFC — это тип технологии радиочастотной идентификации (или RFID), которая позволяет нам идентифицировать вещи с помощью радиоволн.В RFID нет ничего нового — он использовался десятилетиями для таких вещей, как сканирование продуктов в продуктовых магазинах и багажа при выдаче багажа, а также маркировка крупного рогатого скота. Сейчас он все чаще используется для бесконтактных мобильных платежей (а также в технологиях видеоигр).

Некоторые дебетовые и кредитные карты имеют технологию NFC, которая позволяет покупателю оплачивать товары, касаясь или размахивая своей картой над устройством для чтения платежей. Эти типы карт называются бесконтактными платежными картами.

Стало нормой использовать приложения для всего, от заказа еды на вынос до бронирования уроков, но, как потребитель, вы можете с осторожностью использовать свой телефон для покупок.Что ж, этого не должно быть, и вот почему: бесконтактные платежи на самом деле намного безопаснее, чем карты с магнитной полосой, чья невероятно устаревшая технология позволяет их относительно легко клонировать. Это означает, что вы можете стать жертвой мошенничества и кражи личных данных. Бесконтактные платежи — это платежи с аутентификацией, а это значит, что их действительно сложно взломать. При бесконтактной оплате данные вашей кредитной карты в файле зашифрованы и постоянно меняются. Так что даже если мошенники взломают систему, данные, которые они там найдут, будут бесполезны.

Пожалуй, самый обсуждаемый пример бесконтактной оплаты — Apple Pay. Он работает на iPhone 6, 6 Plus и Apple Watch, которые оснащены технологией NFC. В iPhone 6 и 6 Plus также есть технология отпечатков пальцев Apple Touch ID, поэтому даже если ваш телефон украден, никто не сможет получить доступ к кредитным картам, хранящимся в вашем приложении. Чтобы совершить покупку с помощью Apple Pay, просто подождите, пока не загорится индикатор на считывателе платежей, а затем поднесите устройство к нему, удерживая палец на кнопке Touch ID.

Чтобы использовать Apple Pay в своем магазине, вам нужно приобрести ридер. Бесконтактный считыватель Square и считыватель чипов принимает карты Apple Pay и EMV.

Android Pay

Android Pay — это технология мобильного кошелька Google и одно из самых популярных приложений для мобильных платежей NFC. Он доступен на всех устройствах с поддержкой NFC, работающих под управлением Android версии 4.4 или новее. Чтобы использовать Android Pay, клиенты просто открывают приложение на своем телефоне (для чего у пользователя должен быть защищенный экран блокировки) и завершают транзакцию, удерживая свое устройство над устройством для чтения платежей.

Samsung Pay

Samsung Pay работает на более новых версиях устройств Samsung Galaxy. Samsung Pay также работает с бесконтактными считывателями NFC. В отличие от Android Pay и Apple Pay, чтобы инициировать бесконтактный платеж NFC с помощью Samsung Pay, вы проводите пальцем вверх с главного экрана. На данный момент вы не можете использовать Samsung Pay для онлайн-платежей в приложениях.

Карты с магнитной полосой намагничиваются. Когда вы проводите по ним, платежный процессор считывает магнитные поля и сопоставляет их с информацией о вашем банковском счете.Однако эти данные статичны, что позволяет мошенникам получить банковскую информацию и клонировать ее на новую карту.
С другой стороны, данные на чиповых картах EMV постоянно меняются, что затрудняет их выделение и извлечение. Чтобы изолировать и клонировать его, кто-то должен будет проникнуть в схему физического чипа и манипулировать вещами, чтобы получить информацию о вашем банке. Это крайне сложно даже для самых искушенных мошенников.

.

Разница между контактными и бесконтактными силами

Автор: Admin

Контактные и бесконтактные силы

Силы — это явление или понятие, которое используется для описания механической активности в физике и математике. Идея силы очень важна в таких областях, как механика, астрономия, физика, математика, статика и других областях. Контактные силы и неконтактные силы — это два способа классификации сил.Обе эти силы являются общими по своей природе и жизненно важны для понимания естественной системы. В этой статье мы собираемся обсудить, что такое силы, что такое контактные силы и бесконтактные силы, их определения, сходство между контактными силами и бесконтактными силами, при каких обстоятельствах возникают контактные силы и бесконтактные силы и, наконец, разница между контактными силами и бесконтактными силами.

Что такое контактные силы?

Чтобы понять, что такое контактные силы, нужно сначала иметь правильное понимание концепции силы.Распространенное толкование силы — это способность выполнять работу. Однако все силы не работают. Некоторые силы просто пытаются работать. Помимо силы, есть и другие причины для работы. Тепло тоже может работать. Правильное определение силы — это «любое влияние, которое вызывает или пытается заставить свободное тело претерпеть изменение ускорения или формы тела». Ускорение можно изменить либо путем изменения скорости объекта, либо путем изменения направления объекта, либо и того, и другого.

Контактные силы — это силы, возникающие при контакте двух

.

Контактная и бесконтактная система зажигания ВАЗ 2107

На автомобилях ВАЗ 2107 применяются два типа зажигания: устаревшая контактная и современная бесконтактная система. Последний тип начал применяться на «классике» ВАЗа относительно недавно, в основном на моделях, оборудованных инжекторными двигателями. Однако преимущества бесконтактной схемы в полной мере раскрываются и на карбюраторных моторах ВАЗ.

Содержание страницы:

Контактная система зажигания ВАЗ 2107

Классическая контактная система, применяемая на ВАЗ, состоит из 6 компонентов:

  • Выключатель зажигания.
  • Прерыватель-распределитель.
  • Свечи зажигания.
  • Низковольтные провода.
  • Катушка зажигания.
  • Высоковольтные провода.

Выключатель зажигания совмещает в себе две детали: замок с противоугонным устройством и контактную часть. Выключатель крепится двумя винтами слева от рулевой колонки.

Катушка зажигания является повышающим трансформатором, преобразующим ток низкого напряжения в высокое напряжение, необходимое для получения искры в свечах зажигания. Первичная и вторичная обмотки катушки помещены в корпус и залиты трансформаторным маслом, обеспечивающим их охлаждение во время работы.

Распределитель зажигания – наиболее сложный элемент системы, состоящий из множества деталей. Функция распределителя – преобразования постоянного низкого напряжения в высокое импульсное с распределением импульсов по свечам зажигания. В конструкцию распределителя входят прерыватель, центробежный и вакуумный регуляторы опережения зажигания, подвижная пластина, крышка, корпус и прочие детали.

Свечи зажигания воспламеняют бензино-воздушную смесь в цилиндрах двигателя при помощи искровых разрядов. Во время эксплуатации сечей необходимо контролировать зазор между электродами и исправность изоляторов.

Бесконтактная система зажигания ВАЗ 2107

Название «бесконтактной» электронная схема зажигания ВАЗ 2107 получила потому, что размыкание/замыкание цепи производится не контактами прерывателя, а электронным коммутатором, управляющим работой выходного полупроводникового транзистора. Комплекты электронной (бесконтактной) системы зажигания ВАЗ 2107 на карбюраторных и инжекторных двигателях несколько отличаются, поэтому существует ошибочное мнение, что электронное и бесконтактное зажигание являются разными системами. В реальности принцип работы электронных систем зажигания одинаков.

Как и контактная система зажигания, электронное зажигание включает в себя свечи, провода, катушку зажигания и трамблер. Разница лишь в наличии коммутатора, который управляет подачей высокого напряжения к свечам зажигания.

Бесконтактная система отличается повышенной надежностью благодаря отсутствию контактов, нуждающихся в очистке и регулировке зазора. Полупроводниковый транзистор обеспечивает стабильное распределение искры по цилиндрам. Благодаря высокому напряжению разряда искры (25-30 вместо 9-12 кВ) происходит более полное сгорание рабочей смеси в цилиндрах, что улучшает динамические характеристики двигателя и показатели экологической безопасности выхлопа. При малом напряжении аккумулятора напряжение в свечах остается достаточно высоким для воспламенения смеси, что облегчает запуск двигателя в сильный мороз.

Регулировка зажигания


В домашних условиях выставить угол опережения зажигания можно «на слух», выставив угол опережения так, чтоб в данном положении обороты прогретого двигателя были наиболее высокими и ровными. Во время движения на скорости 50 км/ч на четвертой передаче при полном нажатии педали газа должен возникать звук «детонации», до тех пор, пока скорость не увеличится на 3-5 км/ч. Если звук слышен дольше, угол опережения необходимо уменьшить.

В условиях автосервиса регулировка зажигания производится при помощи специализированного оборудования.

Какое зажигание лучше контактное или бесконтактное


Чем бесконтактное зажигание лучше контактного?

В состав автомобиля входит система зажигания. Система зажигания автомобиля служит для обеспечения воспламенения рабочей смеси в цилиндрах двигателя в соответствии с порядком их работы.

Схема системы зажигания:

Существует два типа: контактное и бесконтактное зажигание. Они отличаются наличием и отсутствием размыкающихся контактов в трамблере (датчике-распределителе). В момент размыкания контактов ток в первичной обмотке прекращается, изменяется магнитное поле, вследствие чего возникает индукционный ток высокой частоты и напряжения, который подается посредством высоковольтных проводов на свечи.

Бесконтактное зажигание лишено этих контактов. Они заменены коммутатором, который, в принципе, выполняет эту же функцию. Изначально на автомобили отечественного производства устанавливалась лишь контактная система. Бесконтактное зажигание ВАЗ стал устанавливать в начале 2000-х. Это было хорошим для него прорывом. Прежде всего, бесконтактное зажигание обладает большей надежностью, поскольку фактически из системы был удален один довольно уязвимый элемент.

Сама замена контактного зажигания на бесконтактное не должна вызвать каких-либо трудностей, поскольку все сводится к откручиванию и прикручиванию деталей. Со временем автовладельцы стали сами устанавливать бесконтактное зажигание на классику, поскольку это серьезно облегчало обслуживание. Теперь исключалась возможность подгорания контактов. Кроме того, теперь в них не надо было регулировать зазор в момент размыкания. Помимо всего прочего, бесконтактное зажигание обладает и лучшими характеристиками тока, а именно, большей частотой и напряжением, что серьезно снижает износ электродов свечей. На лицо – плюсы во всех сферах эксплуатации.

Бесконтактная система зажигания повышает надежность из-за отсутствия подвижных контактов и необходимости систематической их регулировки и зачистки зазоров, а также повышает надежность пуска и работу при разгонах автомобиля благодаря более высокой энергии электрического разряда, который обеспечивает надежное воспламенение рабочей смеси в цилиндрах двигателя независимо от частоты вращения коленчатого вала. Кроме того, одним из преимуществ бесконтактной системы зажигания является отсутствие влияния вибрации и биения ротора-распределителя на равномерность момента искрообразования.

 

 

В чем разница между контактной и бесконтактной системами зажигания?

В техническом и конструктивном плане автомобиль представляет собой  достаточно сложное средство передвижения. Входящие в него узлы и механические детали и системы  в нем должны работать слажено и исправно. При повреждении одного узла и неисправной работе любой детали  может произойти существенное отклонение в функциональности автомобиля или его поломка.  Среди большинства важных конструкций авто одной из наиболее значимых считается система зажигания. Она существенно влияет на возможность бесперебойной эксплуатации авто. Сегодня известно о трех разновидностях систем зажигания, которые могут быть установлены на автомобиле: контактное, бесконтактное и микропроцессорное. Последнее считается самым новым достижением в автомобилестроении. В этом полезном материале подробнее будут рассмотрены бесконтактные и контактные системы, а также описаны их различия.

Контактная система зажигания: в чем особенность?

контактная система зажигания представляет собой классический механизм, в котором есть источник подачи питания, выключатель или замок зажигания, а также катушка, свечи зажигания, специальный распределительный механизм и заизолированная высоковольтная проводка. Источником питания выступает аккумулятор в режиме запуска авто, а в режиме работы мотора непосредственно генератор.  Замок зажигания позволяет осуществить подачу энергии на бортовую сеть и реле стартера, а вот катушка зажигания  предназначена накапливать и преобразовывать напряжение для  образования заряда между электродами. Особенностью контактной системы зажигания в том, что в ней есть так называемые «кулачки», которые приводятся в действие путем кручения валового привода распределителя. Такая система считается более простой, имеет незамысловатую конфигурации и отличается надежностью. В системе не предусмотрено задействование  сложных конструктивных  решений вроде современных блочных электросистем.

Зажигание бесконтактного типа: особенности

В бесконтактной системе зажигания вместо уязвимого механического токопрерывателя контактного действия предусмотрен специальный датчик бесконтактного типа.  По своей конструкции такое зажигание  похоже на контактное, однако в нем предусмотрена модернизация импульсного датчика и коммутатора транзисторного типа. Датчик в бесконтактной системе зажигания выполняет организацию электроимпульсной деятельности малого напряжения. По видам датчики распределяются на элементы индукционного и оптического типа, а также с использованием эффекта Холла. В данной системе прерывателем тока в первичной обмотке катушки выступает коммутатор транзисторного типа, который реагирует на сигналы, что подаются датчиком.  Что касается разрыва подачи тока, то этот процесс происходит посредством размыкания и затвора транзисторного выпускного элемента.

Подробнее о бесконтактной системе зажигания пот речь в этом видеоматериале:

Опубликовано: 20 мая 2019

кулачковое или электронное 🚩 Установка МПСЗ на классику 🚩 Запчасти и аксессуары

Поговорка о том, что новое – это не лучшее, актуальна не всегда. Если говорить о системах зажигания, здесь она не применима. Старая, проверенная годами, кулачковая (контактная) система зажигания уже забылась, так как на смену ей пришла бесконтактная, которая не только новее, но и практичнее, и эффективнее, и надежнее. Но какие плюсы и минусы есть у каждой из систем? Вот в этом стоит подробнее разобраться и сделать окончательный вывод о том, что же лучше.

Итак, проверенная уже не одним поколением авто- и мотолюбителей система зажигания вполне работоспособная и широко использовалась на ВАЗовской классике, например. Если вы ездили на автомобилях с такой системой зажигания, вы знаете, насколько важно правильно выставить зазор в контактной группе. Немного ошибешься и не видать хорошей искры.

Но есть один большой плюс у этой системы. Конечно же, это простота, так как нет никаких электронных блоков, надежность которых вызывает сомнение. В качестве прерывателя: кулачковый механизм, высоковольтная катушка и распределитель зажигания с коррекцией момента зажигания вакуумом. Просто, а что самое главное – дешево.

Но минусы влияют на всю конструкцию. В момент расцепления происходит образование искры, которая пагубно влияет на металлические контакты. Они покрываются черным нагаром, который ухудшает контакт. По этой причине на свечах зажигания не образуется искра, а двигатель невозможно завести. Приходится время от времени чистить контакты и регулировать зазор.

Бесконтактное (электронное) зажигание на автомобилях ВАЗ начали ставить, начиная с восьмого семейства. Преимущество системы в том, что в качестве прерывателя используется датчик Холла. Отсутствуют контакты, зато есть более уязвимое место – коммутатор, в задачу которого входит усиление сигнала от датчика. Выполнен коммутатор на полупроводниковых элементах, что оказывается не всегда надежным. Большинство автомобилистов предпочитают возить с собой в машине запасной коммутатор и датчик Холла.

Это два элемента системы зажигания, которые выходят из строя и ремонту не подлежат. Но с другой стороны, бесконтактная система намного эффективнее, нежели кулачковая, да и служит она дольше. Качественные датчик Холла и коммутатор могут прослужить много лет, ни разу не подведут. И в каком-либо уходе они не нуждаются. Важно только, чтобы коммутатор был крепко установлен на кузове для лучшего охлаждения. А провода от датчика Холла, которые находятся внутри распределителя зажигания, не соприкасались с движущимися деталями.

Оценив все плюсы и минусы, можно сказать, что намного лучше окажется бесконтактная система зажигания, нежели кулачковая. Минимум ухода она требует и довольно эффективна в работе. А кулачковая устарела на данный момент и нуждается в частой регулировке зазора и чистке (замене) контактов.

Чем отличается контактный трамблер бесконтактного и от электронного — Auto-Self.ru

Современный бесконтактный распределитель и катушка

Современная бесконтактная система зажигания или БСЗ является передовым и конструктивным решением, своеобразным продолжением старой контактно-транзисторной системы. Здесь обычный контакт-предохранитель заменен специальным и производительным регулятором. А чем же еще отличаются эти обе системы? Давайте узнаем.

КСЗ

КСЗ – первый, уже устаревший вариант зажигания, применяющийся до сих пор на редких автомоделях. В КСЗ ток и его сегрегация осуществляется трамблером с помощью контактной группы.

Включает в свой состав КСЗ такие компоненты, как мехраспределитель и мехпрерыватель, катушку зажигания, вакуум-датчик и т. д.

Мехпрерыватель или размыкатель

Контактная система зажигания схема

Это компонент, на который ложится функция осуществления разъединения звена низкого токового накала. Другими словами — тока, образующегося в первичной обмотке. Вольтаж идет на контактную группу, элементы которой защищены от обгорания специальным покрытием. Кроме того, предусмотрен конденсатор-теплообменник, подключенный симультанно контактной группе.

Катушка зажигания в КСЗ является преобразователем тока. Именно здесь ток низкого напряжения трансформируется в высокий ток. Как и в случае с БСЗ, используется два типа обмоток.

Механический распределитель или просто трамблер

Этот компонент способен обеспечить эффективную подачу высокого тока к СЗ. Сам трамблер состоит из множества элементов, но основными являются крышка и ротор или бегунок (народ.).

Крышка изготовлена так, что с внутренней стороны оснащена соединителями основного и дополнительного типа. Высокий ток принимается центральным контактом, а рассредотачивается по свечам – через боковые (дополнительные).

Мехпрерыватель и распределить – это единый тандем, как и датчик холла с коммутатором в БСЗ. Они приводятся в действие приводом коленвала. В просторечье оба элемента называют единым словом «трамблер».

ЦРОЗ – регулятор, служащий для изменения УОЗ в зависимости от количества оборотов коленвала силовой установки. Априори состоит из 2-х грузиков, воздействующих на пластинку.

Настройка УОЗ

УОЗ другими словами, это угол поворота коленвала, такой при котором происходит непосредственная передача тока с высоким вольтажом на СЗ. Для того чтобы горючая смесь без остатков сгорела, зажигание осуществляется с опережением.

УОЗ в КСЗ выставляется с помощью спецприспособления.

ВРОЗ или вакуумный датчик

Он обеспечивает изменение УОЗ в зависимости от нагрузки на мотор. Другими словами, этот показатель – прямое следствие степени открытия дроссзаслонки, зависящей от силы нажатия педали акселератора. ВРОЗ находится за дроссзаслонкой, и способен изменять УОЗ.

Бронепровода – обязательные элементы, своеобразные коммуникации, служащие для передачи тока с высоким вольтажом к трамблеру и от последнего к свечам.

Функционирование КСЗ осуществляется следующим образом.

  • Контакт-прерыватель замкнут – в катушке задействован ток с низким вольтажом.
  • Контакт разомкнут – уже во вторичной обмотке задействуется ток, но с высоким вольтажом. Он подается на верхнюю часть трамблера, а затем растекается по бронепроводам дальше.
  • Увеличивается число вращений коленвала – одновременно повышается количество оборотов вала прерывателя. Грузики под воздействием расходятся, подвижная пластина перемещается. УОЗ увеличивается за счет размыкания контактов прерывателя.
  • Обороты коленвала силовой установки сокращаются – УОЗ автоматически уменьшается.

Вакуумный регулятрор трамблер

Контактно-транзисторная система зажигания – это дальнейшая модернизация старой КСЗ. Отличие в том, что стал применяться уже коммутатор. В результате этого увеличился срок службы контактной группы.

Катушка

В КСЗ одним из обязательных, важных элементов выступает катушка. Она включает линейку очень значимых компонентов, таких как обмотки, трубка, резистор, сердечник и т. д.

Отличие низковольтной и высоковольтной обмотки заключается не только в характере напряжения. В первичной обмотке сделано меньшее количество витков, чем во вторичной. Разница достигать может очень большого количества. Например, 400 и 25000 витков, но размер этих самых витков будет в разы меньше.

Из каких элементов состоит БСЗ

БСЗ – это модернизированная трансформация КСЗ. В ней механический прерыватель заменен датчиком. Сегодня таким зажиганием оснащается большинство отечественных моделей и иномарок.

Примечание. БСЗ может выступать, как дополнительный элемент КСЗ или функционировать полностью автономно.

Использование БСЗ позволяет значительно увеличить мощностные показатели силовой установки. Особенно важно, что снижается топливный расход, а также выбросы СО2.

Катушка зажигания БСЗ

Одним словом, БСЗ включает целый ряд компонентов, среди которых особое место занимает выключатель, регулятор импульсов, коммутатор и т. д.

БСЗ – устройство, которое аналогично контактной системе зажигания, имеет целый ряд положительных сторон. Однако, как утверждают некоторые эксперты, не лишено и минусов.

Рассмотрим основные элементы БСЗ, чтобы составить более обзорное представление.

Датчик Холла

Регулятор импульсов или ДЭИ* — данный компонент предназначен для создания электроимпульсов низкого напряжения. В современной технопромышленности принято использовать 3 типа ДЭИ, но в автомобильной сфере широкое применение нашел лишь один из них – датчик Холла.

Как известно, Холл – гениальный ученый, которому первому пришла в голову идея рационально и эффективно применять магнитное поле.

Состоит регулятор этого типа из магнита, пластины-полупроводника с чипа и затвором с выемками, которые собственно и пропускают магнитное поле.

Примечание. Обтюратор имеет прорези, но помимо этого, еще и стальной экран. Последний ничего не просеивает, и таким образом, создается чередование.

ДЭИ – датчик электроимпульсов

Датчик Холла

Регулятор конструктивным образом соединяется с трамблером, тем самым способом, образуется устройство единого типа – регулятор-трамблер, внешне схожий во многих функциях с прерывателем. Например, оба имеют аналогичный привод от коленвала.

КТТ

Коммутатор транзисторого типа (КТТ) – полезнейший компонент, служащий для прерывания электричества в цепи катушки зажигания. Конечно же, КТТ функционирует в соответствие с ДЭИ, составляя вместе с последним единый и практичный тандем. Прерывается электрический заряд за счет отпирания/запирания выходного транзистора.

Катушка

И в БСЗ катушка выполняет те же функции, что и на КСЗ. Отличия, безусловно, имеются (подробно представлены ниже). Кроме этого, здесь применяется электрокоммутатор, осуществляющий прерывание цепи.

БСЗ-катушка надежнее и лучше во всех отношениях. Улучшается пуск силовой установки, эффектнее становится работа мотора на разных режимах.

Как функционирует БСЗ

Вращение коленвала силовой установки воздействует на тандем трамблер-регулятор. Таким образом формируются импульсы напряжения, передающиеся на КТТ. Последний создает ток в катушке зажигания.

Примечание. Следует знать, что в автоэлектрике принято говорить о двух типах обмоток: первичной (низкой) и вторичной (высокой). Импульс тока создается в низкой, а большой вольтаж – в высокой.

Схема функционирования БСЗ

Далее высокое напряжение передается из катушки на трамблер. В распределителе его принимает центральный контакт, от которого ток и передается по всем бронепроводам на свечи. Последние осуществляют воспламенение горючей смеси, и ДВС запускается.

Как только увеличиваются обороты коленвала, ЦРОЗ* осуществляет регулирование УОЗ**. А если нагрузка на силовую установку меняется, то за УОЗ отвечает уже вакуумный датчик.

ЦРОЗ – центробежный регулятор опережения зажигания

УОЗ – угол опережения зажигания

Безусловно, трамблер сам по себе, будь он старого или нового образца, является обязательным элементом системы зажигания автомобиля, способствующий появлению качественного искрообразования.

В трамблере нового образца устранены все недочеты распределителя контактного. Правда, новый распределить стоит на порядок дороже, но это окупается, как правило, впоследствии.

Как и было написано выше, при эксплуатации БСЗ применяется новый распределитель, не имеющий контактную группу. Здесь роль прерывателя и соединителя выполняют КТТ и датчик Холла.

ЭСЗ

Система зажигания, в которой распределение высокого напряжения по двигательным цилиндрам осуществляется с помощью электроустройств, называется ЭСЗ. В некоторых случаях данную систему принято называть также «микропроцессорной».

Отметим, что обе прежние системы – КСЗ и БСЗ тоже включали некоторые элементы электроустройств, но ЭСЗ вообще не подразумевает использование каких бы то ни было механических составляющих. По сути, это та же БСЗ, только более модернизированная.

Электронная система зажигания

На современных автомашинах ЭСЗ – это обязательная часть управляющей системы ДВС. А на более новых машинах, вышедших совсем недавно, ЭСЗ работает в группе с выпускной, впускной и охладительной системами.

Моделей таких систем на сегодняшний день немало. Это и всемирно известные Бош Мотроник, Симос, Магнетик Марелли, и менее именитые аналоги.

Отличия:

  1. В контактном зажигании прерыватели или контакты смыкаются механическим путем, а в БСЗ – электронным. Другими словами, в КСЗ применяются контакты, в БСЗ – датчик Холла.
  2. БСЗ – это больше стабильности и сильнее искра.

Отличия имеются и между катушками. У обоих систем разная маркировка и разные катушки зажигания. Так, у катушки БСЗ больше витков. Кроме того, катушка БСЗ считается надежнее и мощнее.

Таким образом, мы выяснили, что на сегодняшний день в применении 3 варианта зажигания. Используются, соответственно, и разные трамблеры.

Поделитесь с друзьями в соц.сетях:

Facebook

Twitter

Google+

Telegram

Vkontakte

Лекция №6-3 Бесконтактная система зажигания

 Исторически сложилось так, что для первых бензиновых моторов использовалась батарейная (аккумуляторная) система зажигания, основанная на эффекте самоиндукции. Самой первой была контактная, ставшей впоследствии классической, система. По мере совершенствования автомашины развивались и его отдельные компоненты, так появилась контактно транзисторная система зажигания.

 

НОВЫЙ ЭТАП РАЗВИТИЯ

Основным элементом, благодаря которому новая схема приобрела улучшенные характеристики, относительно прежней, классической, стал транзистор. Причем он явился причиной, что контактно-транзисторная система зажигания получила новый узел – коммутатор.

Отличительной особенностью, присущей транзистору, является то, что небольшой ток, поступающий на управление (в базу), позволяет управлять током гораздо большей величины, протекающим через прибор.

 

 

 

Контактно транзисторная система зажигания, несмотря на незначительные, на первый взгляд, изменения и сохранение принципа работы, приобрела новые свойства, недоступные классической системе. Но прежде чем оценивать достоинства и недостатки, которыми обладает контактно-транзисторная схема, необходимо коснуться отличий в работе.

Главное отличие от классического зажигания заключается в том, что прерыватель воздействует не на бобину, а на базу транзистора. В остальном контактно-транзисторная схема работает так же, как обычная система зажигания. При прерывании, в первичной обмотке бобины протекания тока, во вторичной наводится высоковольтное напряжение. Не касаясь деталей внутреннего устройства коммутатора и его подключения, можно отметить, что транзисторная схема зажигания даже в таком упрощенном виде обладает следующими достоинствами:

Контактно-транзисторное управление процессами, происходящими в катушке зажигания, обеспечивает возможность увеличить в первичной обмотке ток, вследствие чего:

  1. можно повысить величину вторичного напряжения;
  2. увеличить между электродами свечи зазор;
  3. улучшить процесс искрообразования, сделать его более устойчивым, а также улучшить запуск двигателя при пониженной температуре;
  4. повысить количество оборотов и увеличить мощность двигателя.

Однако подобная контактно-транзисторная схема требует использования катушки зажигания с отдельными обмотками (первичной и вторичной).
Повысилась надёжность: контактно-транзисторная система позволяет снизить нагрузку на контакты прерывателя, уменьшив значение проходящего через них тока, следствием чего является уменьшение подгорания контактов.
Однако не все так хорошо, как кажется с первого взгляда.

Контактно-транзисторная система зажигания имеет и свои недостатки.

Вызваны они использованием прерывателя, т.е. система начинает работать и формировать искру, когда контактно разрывается цепь прохождения тока в обмотке бобины. Величина тока, поступающего в базу транзистора, существенно влияет на его работу, и уменьшение тока из-за качества контактов скажется на работе всей системы.

 

     Для того чтобы бензиновый двигатель заработал, в его цилиндрах должно произойти воспламенение топлива. Это истина. Поэтому система зажигания (сначала, естественно, контактная) и возникла одновременно с автомобилем. Но прогресс не стоит на месте. Он, конечно же, коснулся и системы зажигания: на смену традиционному способу образования искры пришел более эффективный и надежный, а именно, бесконтактный. О нем и пойдет речь в данной статье.

Основные различия традиционной и бесконтактной систем зажигания

При работе бензинового двигателя искрообразование (то есть подача высокого напряжения на свечу) происходит в момент, когда осуществляется размыкания низковольтной цепи питания катушки зажигания.

В традиционной системе в качестве такого «выключателя» выступают контакты механического прерывателя, которые периодически размыкаются при соприкосновении с кулачками вращающегося ротора прерывателя.

Именно этот узел и был заменен при переходе на бесконтактную систему.

Управляющий сигнал в ней формируется специальным сенсором (индуктивным, оптическим или датчиком Холла), установленным под крышкой распределителя. Электрический импульс поступает на полупроводниковый коммутатор, который и осуществляет управление первичной обмоткой катушки зажигания.

 

     Датчик Холла получил свое название по имени Э.Холла, американского физика, открывшего в 1879 г. важное гальваномагнитное явление.

    Суть данного явления заключалась в следующем: Если на полупроводник, по которому (вдоль) протекает ток, воздействовать магнитным полем, то в нем возникает поперечная разность потенциалов (ЭДС Холла). Возникающая поперечная ЭДС может иметь напряжение только на 3 В меньше, чем напряжение питания.

а — нет магнитного поля, по полупроводнику протекает ток питания — АВ; б — под действием магнитного поля — Н появляется ЭДС Холла — ЕF; в — датчик Холла     

Эфект Холла

Рисунок. Эффект Холла

  • Av А2 — соединения, полупроводниковый слой
  • UH — напряжение Холла
  • В — магнитное поле (плотное)
  • Iv — постоянный ток питания

   

    Датчик Холла имеет щелевую конструкцию.

   С одной стороны щели расположен полупроводник, по которому при включенном зажигании протекает ток, а с другой стороны — постоянный магнит. В щель датчика входит стальной цилиндрический экран с прорезями. При вращении экрана, когда его прорези оказываются в щели датчика, магнитный поток воздействует на полупроводник с протекающим по нему током и управляющие импульсы датчика Холла подаются в коммутатор, в котором они преобразуются в импульсы тока в первичной обмотке катушки зажигания.

На примере датчика Холла, применяемого в бесконтактной системе зажигания автомобилей ВАЗ 2108, 2109, 21099.

      На практике это выглядит так: датчик Холла автомобилей ВАЗ 2108, 2109, 21099 установлен на опорной пластине распределителя и состоит из двух частей – магнита и элемента Холла с усилителем. На датчик Холла подается напряжение с коммутатора (вывод 5) через токовый красный провод. «Масса» так же с коммутатора – бело-черный провод с вывода 3. Магнит создает магнитное поле, элемент Холла принимает его, создает напряжение, которое усиливает усилитель и через зеленый импульсный провод напряжение подается на коммутатор (вывод 6).

        

      Для изменения магнитного поля применяется экран с четырьмя прорезями, который вращается вместе с валом распределителя зажигания (трамблера) проходя между магнитом и принимающей частью датчика Холла. При прохождении в пазу датчика прорези экрана магнитное поле имеет определенную величину и соответственно датчик выдает на коммутатор электрический ток определенного напряжения (9-12 В).

      При прохождении в пазу датчика зубца экрана магнитное поле экранируется и не поступает на приемник датчика, при этом напряжение, поступающее на коммутатор, падает (0-0,5 В).

     

     Соответственно коммутатор прерывает электрический ток, подающийся на катушку зажигания, магнитное поле в ней резко сжимается и, пересекая витки обмотки, наводит ЭДС 22-25 кВ (ток высокого напряжения). Ток через бронепровода попадает на распределитель и далее на свечи зажигания, производя разряд, поджигающий топливную смесь. Прохождение каждого из четырех зубцов экрана в прорези датчика соответствует такту сжатия в одном из четырех цилиндров двигателя.

 

 

1 — свечи зажигания; 2 — датчик-распредепитель; 3 — коммутатор; 4 — генератор; 5 — аккумуляторная батарея; 6 — монтажный блок; 7 — репе зажигания; 8 — катушка зажигания; 9 — датчик Холла

Данные системы являются системами зажигания с регулированием времени накопления энергии. Данная система зажигания пришла на смену TSZi, чтобы исправить 2 недостатка:

  1. Форма и величина выходного напряжения магнитоэлектрического датчика изменяются с частотой вращения, что влияет на момент искрообразования.
  2. Уменьшение вторичного напряжения при росте частоты вращения коленчатого вала. Поэтому более перспективна система с регулированием времени накопления энергии.

На рисунке представлена электрическая схема системы зажигания с датчиком Холла:

Стабилизация величины вторичного напряжения достигается в схеме двумя путями — во-первых, регулированием времени нахождения транзистора VT1 в открытом состоянии, т.е. времени включения первичной цепи обмотки зажигания в сеть, во-вторых, ограничением величины тока в первичной цепи величиной около 8 А. Последнее, кроме того, предотвращает перегрев катушки.

Принцип работы: С датчика Холла на вход коммутатора приходит сигнал прямоугольной формы, величина которого приблизительно на 3 В меньше напряжения питания, а длительность, соответствует прохождению выступов экрана мимо чувствительного элемента датчика. Нижний уровень сигнала 0,4 В соответствует прохождению прорези. В момент перехода от высокого уровня к низкому происходит искрообразование.

 

В микросхеме коммутатора сигнал в блоке формирования периода, накопления энергии сначала инвертируется, затем интегрируется. На выходе интегратора образуется пикообразное напряжение, величина которого тем больше, чем меньше частота вращения двигателя. Это напряжение поступает на вход компаратора, на другой вход которого подано опорное напряжение. Компаратор преобразует величину напряжения во время. Сигнал на входе компаратора имеет место тогда, когда величина пилообразного напряжения достигает опорного и превышает его. При большой частоте вращения величина пилообразного напряжения мала, соответственно мала и длительность сигнала на выходе компаратора. С исчезновением выходного сигнала компаратора через схему управления открывается транзистор VT1, и первичная .цепь зажигания включается в сеть. Следовательно, время накопления энергии в катушке соответствует времени отсутствия сигнала на выходе компаратора. Уменьшение длительности выходного сигнала компаратора позволяет увеличить относительную величину времени накопления энергии и тем самым стабилизировать ее абсолютное значение.

Блок ограничения силы выходного тока срабатывает по сигналу, снимаемому с резисторов, включенных последовательно в первичную цепь зажигания. Если этот сигнал достигает уровня соответствующего силе тока 8 А, блок переводит выходной транзистор в активное состояние с фиксированием этой величины тока.

Блок безискровой отсечки отключает катушку зажигания в случае, если включено электропитание, но вал двигателя неподвижен. При этом, если при остановленном двигателе выходное напряжение датчика соответствует низкому уровню, катушка отключается сразу, в противном случае отключение происходит через 2 — 5 с.

Схема насыщена элементами защиты от всплесков напряжения и включения обратной полярности питания. Регулировка угла опережения зажигания осуществляется традиционными способами, т.е. центробежным и вакуумным регуляторами.

     Датчики индуктивного типа используются главным образом для измерения скорости и положения вращающихся деталей. Их действие основывается на известном принципе электрической индукции (изменение магнитного потока наводит э.д.с. в катушке). В результате вращения ротора датчика управляющих импульсов изменяется магнитное поле и в индукционной обмотке (статоре) создается представленное на рисунке а, б переменное напряжение. При этом напряжение увеличивается по мере приближения зубцов ротора к зубцам статора. Положительный полупериод напряжения достигает своего максимального значения, когда расстояние между зубцами статора и ротора минимальное. При увеличении расстояния магнитный поток резко меняет свое направление и напряжение становится отрицательным.

Рисунок. Датчик управляющих импульсов по принципу индукции
а) Технологическая схема

  1. Постоянный магнит
  2. Индукционная обмотка с сердечником
  3. Изменяющийся воздушный зазор
  4. Ротор датчика управляющих импульсов

б) временная характеристика переменного напряжения, индуктируемого датчиком управляющих импульсов tz = момент зажигания

В этот момент времени (tz) в результате прерывания первинного тока коммутатором инициируется процесс зажигания.

Количество зубцов ротора и статора в большинстве случаев соответствует количеству цилиндров. В этом случае ротор вращается с уменьшенной вдове частотой вращения коленчатого вала. Пиковое напряжение (± U) при низкой частоте вращения составляет прибл. 0,5 В, при высокой — прибл. до 100 В.

Момент зажигания можно проконтролировать только при работающем двигателе, поскольку без вращения ротора изменение магнитного поля не происходит и в результате не создается сигнал.

 

1 — свечи зажигания; 2 — датчик-распределитель, 3 — коммутатор, 4 — катушка зажигания

      Данные системы являются бесконтактными системами зажигания с нерегулируемым временем накопления энергии. Бесконтактная система зажигания с нерегулируемым временем накопления энергии принципиально отличается от контактно-транзисторной только тем, что в ней контактный прерыватель заменен бесконтактным датчиком. На рисунке ниже приведена электрическая схема системы:

Принцип работы: Сигнал с обмотки L магнитоэлектрического датчика через диод VD2, пропускающий только положительную полуволну напряжения, и резисторы R2, R3 поступает на базу транзистора VT1. Транзистор открывается, шунтирует переход база-эмиттер транзистора \/Т2, который закрывается. Закрывается и транзистор VT3, ток в первичной обмотке катушки зажигания прерывается, и на выходе вторичной обмотки возникает высокое напряжение. В отрицательную полуволну напряжения транзистор VT1 закрыт, открыты VT2 и VT3, и ток начинает протекать через первичную обмотку Катушки возбуждения. Очевидно, что число пар полюсов датчика должно соответствовать числу цилиндров двигателя.

Цепь R3-C1 осуществляет фазосдвигающие функций, компенсирующие фазовое запаздывание протекания тока в базе транзистора VT1 из-за значительной индуктивности обмотки датчика L, чем снижается погрешность момента искрообразования.

Стабилитрон VD3 и резистор R4 защищают схему коммутатора от повышенного напряжения в аварийных режимах, так как, если напряжение в бортовой цепи превышает 18 В, цепочка начинает пропускать ток, транзистор VT1 открывается и закрывается выходной транзистор VT3. Цепями защиты от опасных импульсов напряжения служат конденсаторы СЗ, С4, С5, С6; диод VD4 защищает схему от изменения полярности бортовой сети. Форма и величина выходного напряжения магнитоэлектрического датчика изменяются с частотой вращения, что влияет на момент искрообразования.

Давайте обобщим всё прочитанное. Не смотря на разность датчиков, системы схожи в построении и различаются внутренним устройством некоторых компонентов. Давайте взглянем на систему и опишем последовательно работу:

Итак, водитель поворачивает ключ в замке зажигания, тем самым замыкая цепь. Ток начинает поступать из аккумулятора по замкнутому замку зажигания.

Можно сказать, что питание цепи происходит по схеме: Аккумулятор->Стартер->Генератор. При нахождении ключа в положении «стартер» замыкаются контакты 50 и 30. Электрический ток поступает на реле стартера. Там появляется магнитное поле, что приводит к тому, что бендикс стартера вводится в зацепление с шестернёй маховика. Включается электродвигатель стартера и он начинает крутить маховик. Тот в свою очередь начинает раскручиваться и при достижении скорости, большей чем допустимая скорость вращения вала шестерни стартера привод стартера выводит её из зацепления. В свою очередь, вращение коленчатого вала передаётся на вращение вала генератора, что в свою очередь приводит к выработке электрического тока на нём, который питает бортовую сеть автомобиля и подзаряжает аккумулятор.

1 —  свечи зажигания; 2 — датчик-распределитель; 3 — распределитель; 4 — датчик импульсов; 5 — коммутатор; 6 — катушка зажигания; 7 — монтажный блок; 8 — реле зажигания; 9 — выключатель зажигания; А — к клемме генератора.

     Электрический ток поступает на первичную обмотку катушки зажигания(6).

     Коммутатор, получая сигнал с датчика(4), прерывает или наоборот включает первичную обмотку. Когда протекание тока по первичной обмотке прерывается, то во вторичной обмотке возникает ток высокого напряжение, который подаётся по высоковольтному проводу на распределитель.

   Распределитель, вал которого приводится в движение от шестерни привода масляного насоса или коленчатого вала(зависит от конкретного устройства двигателя) распределяет искру по свечам, тем самым воспламеняя смесь в нужном цилиндре двигателя в нужное время.

Преимущества БСЗ

Задача системы зажигания — обеспечение в нужный момент искры зажигания достаточной энергии для воспламенения топливной смеси. Чем точнее выполняется этот процесс, тем выше мощность и эффективность двигателя. Правильно выставленное зажигание позволяет повысить мощность двигателя, снизить расход топлива и выбросы вредных веществ.

     В последние годы и десятилетия эти цели приобретали все большую актуальность. Контактная система зажигания не смогла справиться с требованиями, которые к ней предъявлялись. Максимально передаваемую энергию, необходимую для зажигания рабочей смеси, увеличить не удалось, хотя это было необходимо для двигателей с высокой компрессией и мощностью, частота вращения которых становились все больше. Кроме того, из-за постоянного износа контактов не возможно обеспечить точное соблюдение заданного момента воспламенения. Это вызывало перебои в работе двигателя, повышение расхода топлива и выбросам вредных веществ атмосферу.

     Благодаря развитию электроники удалось инициировать процесс воспламенение бесконтактно, в результате чего решились проблемы износа и технического обслуживания. При этом заданный момент зажигания точно соблюдается практически в течение всего срока службы. В первую очередь, это достигается благодаря индуктивному формированию сигнала (бесконтактная транзисторная система зажигания с накоплением энергии в индуктивности) и формированию сигнала датчиком Холла (TSZ-h). Поскольку обе эти системы экономичны и относительно недорогие, они используются и сегодня на некоторых двигатетелях малого объема.

 

Основные преимущества бесконтактной системы зажигания:

  • отсутствие износа и технического обслуживания,
  • постоянный момент воспламенения,
  • отсутствие дребезга контактов и, как следствие, возможность увеличения частоты вращения,
  • регулирование накопления энергии и ограничение первичного тока,
  • более высокое вторичное напряжение системы зажигания
  • отключение постоянного тока.

разница, принцип работы, какое зажигание лучше

4868 Просмотров

Система зажигания автомобиля представляет собой совокупность устройств, создающих искру и воспламеняющих смесь топлива и воздуха внутри цилиндра в необходимый момент времени. С начала возникновения поршневых двигателей является их неотъемлемой частью.

На современных автомобилях могут быть как контактными, так и бесконтактными, основное различие которых заключается в комплектации. В остальном, принцип работы обоих систем практически идентичен.

Контактное зажигание

Контактная система зажигания – это самый аутентичный тип зажигания. К его достоинствам можно отнести высокую надежность, малую стоимость, простоту в обслуживании и ремонтопригодность, даже в полевых условиях.

В настоящее время больше не устанавливается на серийные автомобили – его заменила более новая бесконтактная система, т. к. ее характеристики намного лучше. Тем не менее, среди владельцев старых авто продолжаются споры о том, какой тип лучше, поэтому на многих машинах продолжает использоваться система, использующая контактный принцип работы.

Контактная система зажигания имеет один большой недостаток – это сами контакты, которые имеют свойство греться, а также выгорать, во время длительной и непрерывной работы. Кроме того, в то время, когда контакты замкнуты, происходит потеря напряжения, что ведет к разрядке аккумулятора и нагреву катушки, даже при неработающем двигателе.

Состав

Контактная система зажигания включает в себя следующие узлы:

  • Выключатель, он же – центральный замок зажигания. Это устройство необходимо для замыкания и размыкания электрической цепи автомобиля.
  • Механический прерыватель – это устройство, которое размыкает цепь главной

бесконтактное зажигание — определение — английский

Примеры предложений с «бесконтактным зажиганием», память переводов
Польские Патенты Бесконтактная система зажигания для двигателей внутреннего сгорания Common crawlЦифровой бесконтактный замок зажигания с использованием передовой технологии RFID. WikiMatrix Бабетта была известна своим электронным зажиганием — впервые В мопеде использовалось транзисторное бесконтактное зажигание. Схема управления бесконтактным электронным зажиганием в двигателях внутреннего сгорания с искровым зажиганием WikiMatrix В 1973 году T603 стал первым чехословацким автомобилем с бесконтактным тиристорным зажиганием.Патенты-wipo Бесконтактное устройство зажигания для двигателя общего назначения без батареи, в котором первичная катушка и зарядная катушка имеют желаемую индуктивность и полное сопротивление, а устройство зажигания имеет небольшую, простую и высоконадежную конфигурацию. двигатели и двигатели, дистанционно управляемые стартеры зажигания для транспортных средств и специальные технологии, контактные и бесконтактные электронные системы зажигания для транспортных средств, катушки зажигания, сплиттеры для автомобильной и мотоциклетной промышленности, динамо-машины, динамо-стартеры, генераторы, регуляторы, магниты

Показаны страницы 1.Найдено 7 предложения с фразой бесконтактное зажигание.Найдено за 2 мс.Накопители переводов создаются человеком, но выравниваются с помощью компьютера, что может вызвать ошибки. Найдено за 1 мс.Накопители переводов создаются человеком, но выравниваются с помощью компьютера, что может вызвать ошибки. Они поступают из многих источников и не проверяются. Имейте в виду.

.

Почему США так отстают от бесконтактных платежей?

Статистика по странам за пределами США показывает, насколько сильно США отстают в отношении бесконтактных и бесконтактных платежей. Возьмем, к примеру, Австралию, страна счастлива! Практически каждый австралиец знает, что у него есть карта, с помощью которой он может быстро расплачиваться и платить. Более 75% личных транзакций Visa осуществляются бесконтактно.

Транзакции в режиме Tap-and-Go завершаются менее чем за 5/10 секунды.

Банки в Австралии разумно выпускают карты с «двойным интерфейсом», что означает, что каждая карта поставляется с небольшой антенной для связи ближнего поля (в дополнение к чипу EMV), которая позволяет бесконтактно касаться карты.Это также означает, что потребителю не нужно вставлять микросхему и ждать, пока линии восстановятся и возникнут проблемы. Фактически, транзакции в режиме «коснитесь и работайте» выполняются менее чем за 5/10 секунды.

Канада, Юго-Восточная Азия и некоторые части Европы находятся на аналогичной траектории. В 2016 году более 95% канадских кредитных карт были бесконтактными, и более 75% розничных продавцов принимали бесконтактные платежи. Аналогичным образом, по состоянию на 4 квартал 2016 года в Великобритании было роздано более 100 миллионов бесконтактных карт. Это более 63% всех карт.Вся Лондонская транспортная система теперь принимает бесконтактные перевозки, на которые приходится более 1 миллиона поездок в день, и все это осуществляется простым нажатием на бесконтактную карту.

Что движет им?


Заметили, что статистика постоянно указывает на «карты» и ни разу не упоминает мобильные кошельки? Фактически, мобильные кошельки — это даже не сноска. Почему нет? Во-первых, существует огромная разница между чистым количеством карт в обращении и количеством загруженных мобильных кошельков.

Предложение потребительской ценности еще не достаточно убедительно, чтобы стимулировать как принятие, так и частоту использования. Платежи, включая Apple Pay, при всей помпезности, изо всех сил пытаются стимулировать принятие и повторное использование. По данным InfoScout, в регулярном исследовании PMYNTS.com количество людей, установивших Apple Pay и использовавших его хотя бы один раз, больше, чем было раньше. Но повторное использование сокращается — и с марта 2015 года наблюдается обратная тенденция.

Сейчас только 3,5% подходящих транзакций для этих потребителей осуществляется через Apple Pay, по сравнению с 5.9% в марте 2015 года и 4,6% в октябре. И подходящие транзакции — это подмножество, в котором у потребителя есть правильный телефон, а у продавцов есть право использовать технологию POS.

«Мы наблюдаем рост числа потребителей с кошельками Apple Pay в магазинах, которые их принимают и которые не использовали их, говорят, что они не использовали их, потому что, ну, они не хотели». Сказал Карен Вебстер, президент PYMNTS.com. «Они приняли сознательное решение вытащить карту для оплаты покупки.”

Так что же на самом деле движет им?

Повсеместное распространение и удобство простой бесконтактной карты и достаточное количество мест, которые принимают эту карту, являются настоящими движущими силами бесконтактного взрыва на этих рынках. Это не означает, что мобильные кошельки не будут иметь значения с течением времени, а только тогда, когда они будут приносить потребителям и продавцам достаточную ценность, чтобы склонить чашу весов.

Скорость, удобство и возможности оказываются слишком неотразимыми.

В нашем нынешнем состоянии и в обозримом будущем скорость, удобство и возможность использования знакомой, но съемной карты, которая принимается практически повсюду, оказывается слишком неотразимой, чтобы потребители могли ее избежать.Такое возгорание вынудило торговцев быстро освоить бесконтактные POS-терминалы или пойти путем глючного кнута.

А как насчет бесконтактной связи в США?

Да, сильно отстаем. Переход на EMV начался намного позже, и, да, он намного сложнее, чем для описанных мною концентрированных рынков. Но фундаментальные технологии, движущие силы и настроения потребителей очень похожи. Сейчас у нас есть около трех миллионов новых POS-терминалов с возможностью бесконтактной связи, но бесконтактное проникновение практически отсутствует со стороны потребителей.Почему это?

Крупные заинтересованные стороны в США совершили большую ошибку, не приняв близко к сердцу глобальные уроки (особенно те, которые были на годы впереди нас). Возможно, самая большая ошибка исходит от банков-эмитентов: банкам было предписано выпускать чиповые карты, совместимые с EMV, к концу 2016 года, и большинство из них выбрали минималистский путь. Они сэкономили ~ 35 центов на карте, отправив нам чип-карты с «одним интерфейсом» без бесконтактной антенны.

Ух!

Эта простая ошибка по-прежнему заставляет потребителей «ждать и ждать» при оплате в одном из трех миллионов новых блестящих терминалов.Не знаю, как вы, но даже как потребитель я бы доплатил 35 центов за карту с функцией «нажми и работай». Банки должны видеть, что такие варианты использования приведут бесконтактные карты к вершине кошелька!

Риск упустить новые бесконтактные технологии


Инновационные бесконтактные технологии регулярно разрабатываются для увеличения продаж, устранения трений и уменьшения мошенничества в платежной экосистеме. Однако до тех пор, пока U.Южные банки переходят на бесконтактную связь, потребители и продавцы в США не имеют выхода к морю и имеют ограниченные возможности для получения прибыли.

Фактически, наш небольшой стартап xPressTap из Саннивейла, Калифорния, запускает свою платежную платформу в Австралии, Канаде и Юго-Восточной Азии, чтобы еще больше упростить торговлю в точках продаж и в Интернете. Наша компания позволяет совершать транзакции на мобильном телефоне простым нажатием на чип-карту.

Торговцам и продавцам нужна только одна вещь, которая никогда не покидает их бок (или карман) — телефон.Мы также избавляемся от затрат, обслуживания и хлопот, связанных с перевозкой отдельного оборудования.

xPressTap доступен для рынков, где повсеместно используются бесконтактные карты или мобильные кошельки. К сожалению, в США нет ни того, ни другого.

Но все это может скоро измениться

Инфраструктурные разработки, которые ведутся в США для приема чиповых карт, позволяют переключать некоторые переключатели для бесконтактного включения. Таким образом, хотя банки не спешат осознавать масштабы возможности, терминалы находятся в стадии готовности.Примерно 3 миллиона из 12 миллионов (и их количество продолжает расти) полностью поддерживают EMV и поддерживают бесконтактную связь.

И один банк, в частности, не ждет, чтобы воспользоваться преимуществами. Citi Bank недавно выпустил кобрендовые «бесконтактные» карты Visa в рамках гигантской сделки с Costco. 11 миллионов из нас теперь могут начать прослушивание. Недавно я воспользовался своей карточкой Costco в магазине Trader Joe’s, и, к удивлению обслуживающего персонала и ряда людей, это сработало как шарм.

Никакого погружения и ожидания, просто быстрое нажатие, когда другие клиенты спрашивали, где они могут получить бесконтактную карту.

Эта карта теперь находится прямо в моем кошельке! По мере того как потребители поймут и осознают резкое улучшение, Citi увидит более широкое преимущество первопроходца. Другим банкам придется последовать их примеру, иначе они рискуют оказаться на дне кошелька. Практически во всех остальных случаях миграции на EMV за пределами США это было доказано, и мы не исключение.

Так что ожидайте, что 2018 год станет годом бесконтактности для США

.

Что такое бесконтактный платеж?

Говоря о популярных терминах, стоит обратить внимание на бесконтактные платежи. Поскольку бесконтактные платежи осуществляются через ваше мобильное устройство, эта технология делает транзакции намного быстрее и проще.

Бесконтактные платежи — как и платежи EMV — также намного безопаснее, чем платежи с помощью карт с магнитной полосой. Карты с магнитной полосой сильно устарели (они существуют с 1960-х годов). Информация, связанная с вашим банковским счетом на карте с магнитной полосой, является статической (она находится прямо здесь, на полосе).Таким образом, если мошенники завладеют вашей картой, им будет относительно легко получить и клонировать ваши данные (и отправиться за покупками).

В бесконтактной оплате не так уж и много. Вот некоторая информация о том, что такое бесконтактные платежи и почему они так безопасны:

Бесконтактный платеж, как следует из названия, не требует физического контакта между смартфоном или кредитной картой покупателя и POS. Возможно, вы также слышали термин NFC, который означает «связь ближнего радиуса действия».«Это технология, обеспечивающая бесконтактные платежи посредством радиочастотной идентификации (называемой RFID). Транзакции NFC происходят на определенной радиочастоте, которая позволяет карте или смартфону связываться со считывателем платежей, когда они находятся близко друг к другу (обычно 10 сантиметров или меньше).

Принимайте Apple Pay и чиповые карты везде.

Заказать Квадратный бесконтактный и чип-ридер.

Технология бесконтактных платежей — краткая история

NFC — это тип технологии радиочастотной идентификации (или RFID), которая позволяет нам идентифицировать вещи с помощью радиоволн.В RFID нет ничего нового — он использовался на протяжении десятилетий для таких вещей, как сканирование продуктов в продуктовых магазинах и багажа при выдаче багажа, а также маркировка крупного рогатого скота. Сейчас он все чаще используется для бесконтактных мобильных платежей (а также в технологиях видеоигр).

Некоторые дебетовые и кредитные карты имеют технологию NFC, которая позволяет покупателю оплачивать товары, касаясь или размахивая своей картой над устройством для чтения платежей. Эти типы карт называются бесконтактными платежными картами.

Стало нормой использовать приложения для всего, от заказа еды на вынос до бронирования уроков, но, как потребитель, вы можете с осторожностью использовать свой телефон для покупок.Что ж, этого не должно быть, и вот почему: бесконтактные платежи на самом деле намного безопаснее, чем карты с магнитной полосой, чья невероятно устаревшая технология позволяет их относительно легко клонировать. Это означает, что вы можете стать жертвой мошенничества и кражи личных данных. Бесконтактные платежи — это платежи с аутентификацией, а это значит, что их действительно сложно взломать. При бесконтактной оплате данные вашей кредитной карты в файле зашифрованы и постоянно меняются. Так что даже если мошенники взломают систему, данные, которые они там найдут, будут бесполезны.

Пожалуй, самый обсуждаемый пример бесконтактной оплаты — Apple Pay. Он работает на iPhone 6, 6 Plus и Apple Watch, которые оснащены технологией NFC. В iPhone 6 и 6 Plus также есть технология отпечатков пальцев Apple Touch ID, поэтому даже если ваш телефон украден, никто не сможет получить доступ к кредитным картам, хранящимся в вашем приложении. Чтобы совершить покупку с помощью Apple Pay, просто подождите, пока не загорится индикатор на устройстве чтения платежей, а затем поднесите устройство к нему, удерживая палец на кнопке Touch ID.

Чтобы использовать Apple Pay в своем магазине, вам нужно приобрести ридер. Бесконтактный считыватель Square и чип-ридер принимает карты Apple Pay и EMV.

Android Pay

Android Pay — это технология мобильного кошелька Google и одно из самых популярных приложений для мобильных платежей NFC. Он доступен на всех устройствах с поддержкой NFC, работающих под управлением Android версии 4.4 или новее. Чтобы использовать Android Pay, клиенты просто открывают приложение на своем телефоне (для чего у пользователя должен быть защищенный экран блокировки) и завершают транзакцию, удерживая свое устройство над устройством для чтения платежей.

Samsung Pay

Samsung Pay работает на более новых версиях устройств Samsung Galaxy. Samsung Pay также работает с бесконтактными считывателями NFC. В отличие от Android Pay и Apple Pay, чтобы инициировать бесконтактный платеж NFC с помощью Samsung Pay, вы проводите пальцем вверх с главного экрана. На данный момент вы не можете использовать Samsung Pay для онлайн-платежей в приложениях.

Карты с магнитной полосой намагничиваются. Когда вы проводите по ним, платежный процессор считывает магнитные поля и сопоставляет их с информацией о вашем банковском счете.Однако эти данные статичны, что позволяет мошенникам получить банковскую информацию и клонировать ее на новую карту.
С другой стороны, данные на чиповых картах EMV постоянно меняются, что затрудняет их выделение и извлечение. Чтобы изолировать и клонировать его, кто-то должен проникнуть в схему физического чипа и манипулировать вещами, чтобы получить информацию о вашем банке. Это крайне сложно даже для самых искушенных мошенников.

.

бесконтактная микросхема — определение — английский

Примеры предложений с «бесконтактной микросхемой», память переводов
tmClassEncoded карты, бесконтактные карты IC патенты-wipoПортативный терминал с бесконтактной микросхемой IC, включая область применения, используемую множеством пользователей. Патенты-wipoLoop антенна патенты-wipoБесконтактные IC-картыtmClassБесконтактные IC-карты, используемые для электронных платежей, патенты-wipoContactless ic labelmClassПериферийное оборудование, а именно считыватели карт данных, сканеры штрих-кода и считыватели для бесконтактных IC-карт и мобильных телефонов. который имеет микросхему IC и может бесконтактно обмениваться данными с внешним считывателем.WikiMatrix В проекте бесконтактной телефонной карты NTT с ИС присоединились три стороны: Tokin-Tamura-Siemens, Hitachi (контракт Philips на техническую поддержку) и Denso (производство только для Motorola) .patents-wipo Чтобы предоставить рамочную антенну, способную ослаблять сигнал на расстоянии электрическое поле с ослаблением магнитного потока вблизи сдерживаемой электромагнитной волны и устройство чтения / записи бесконтактных карт IC. tmClassContactless IC карты, персональные компьютеры, игровые консоли, цифровое телевидение, записывающие устройства с жесткими дисками, сотовые телефоны, карты памяти, дисковые медиаплееры и записывающие устройства, терминалы беспроводной локальной сети, сетевые терминалы, программное обеспечение для сетевых коммуникаций, программное обеспечение для управления цифровыми правами, программное обеспечение для защиты данных в компьютерных системах KFTT Поскольку карта является бесконтактной ИС, вы можете пролистывать автоматическую проверку билетов, просто коснувшись это слегка с карточкой, прикрепленной внутри футляра прохода; нет необходимости вынимать карту из футляра каждый раз при прохождении чекера.Патенты-wipo Цель настоящего изобретения состоит в том, чтобы карта электронных денег (бесконтактная карта с ИС) выполняла заранее определенный процесс (например, оплату) при условии, что модуль ИС используется, не полагаясь на функциональность устройства (расчетный терминал ) на стороне приема платежей. patents-wipo Множественные области хранения включают в себя по крайней мере две из области хранения оптических носителей (14), интегральную схему контактного типа (ИС) (18), ИС бесконтактного типа (20), магнитная полоса (22) и штрих-код (24).Распространенные продукты включают в себя диспенсеры подарочных карт, компоненты киоска самообслуживания, компоненты киоска оплаты парковки, устройства выдачи кредитных и дебетовых карт, торговые автоматы для монет, компоненты торговых автоматов для карт, диспенсеры для сдачи, диспенсеры карт, диспенсеры билетов, устройство чтения смарт-карт Contact IC / писатель, считыватель магнитных карт, считыватель штрих-кода, устройство считывания / записи бесконтактных карт IC, диспенсеры для смарт-карт или бумажных карт, монетоприемники и монетоприемники.patents-wipoПереключатель с датчиком холла ic для бесконтактного определения положения, в частности, в автомобилях. термостойкой ИС-метки имеет такую ​​конфигурацию, что зазор между ИС-меткой бесконтактного типа и первым контейнером (4) делается пустым, или, по крайней мере, часть зазора заполняется теплоизоляционным материалом (5), содержащим открытые клетки.Springer Позволяет осуществлять бесконтактную одноранговую связь, чтение / запись бесконтактных карт и, в сочетании с ИС смарт-карты, эмуляцию бесконтактной карты. Патенты-wipo Карта с интегральной схемой (ИС) бесконтактного типа для поддержки множества протоколов для обеспечивают связь с терминалом для карт и способ связи с ним. patents-wipo Портативный терминал включает в себя микросхему IC, имеющую функцию бесконтактной связи, позволяющую использовать множество услуг. patents-wipoБлок микросхемы IC-карты выполняет бесконтактную передачу данных с внешний передатчик-приемник на близком расстоянии.Common crawlInfineon предлагает полный портфель масштабируемых ИС-продуктов с контактными и бесконтактными интерфейсами, предоставляемыми в различных пакетах. Патенты-wipo ИС-карта бесконтактного типа включает в себя: приемопередающий блок для передачи и приема радиочастотного сигнала на / от терминала для карт с использованием множество протоколов; множество протокольных блоков обработки для обработки сигналов, принятых через приемопередающий блок, согласно соответствующим протоколам; и блок выбора протокола для передачи сигнала запроса, принятого через приемопередающий блок, на множество блоков обработки протокола, приема значений проверки ошибок данных от множества блоков обработки протокола и выбора одного из блоков обработки протокола, который будет использоваться для связи. с терминалом для карт, соответствующим принятому сигналу на основе значения проверки ошибок данных.Патенты-wipo Терминал (200) по изобретению, который может быть реализован в различных вариантах осуществления, например в качестве терминала контроля доступа, таксофона, торгового терминала, торгового автомата по продаже билетов или банкомата содержит сенсорный дисплей (100) и средство для бесконтактной связи с IC-картой (10), которая используется для выполнения транзакций, запрошенных держатель IC-карты (10) .WikiMatrix Наибольшее распространение в настоящее время ректенн используется в RFID-метках, бесконтактных картах и ​​бесконтактных смарт-картах, которые содержат интегральную схему (IC), питающуюся от небольшого элемента ректенны.

Показаны страницы 1. Найдено 32 предложения с фразой бесконтактный ic.Найдено за 7 мс.Накопители переводов создаются человеком, но выравниваются с помощью компьютера, что может вызвать ошибки. Найдено за 1 мс.Накопители переводов создаются человеком, но выравниваются с помощью компьютера, что может вызвать ошибки. Они поступают из многих источников и не проверяются. Имейте в виду.

.

бесконтактная карта — определение — английский

Примеры предложений с «бесконтактной картой», память переводов
Common crawlПосле сертификации Imprim’vert в 2009 году ISRA расширит свой ассортимент ISBIO бесконтактными картами. Патенты-wipoИзобретения подходят для бесконтактных карт, транспондеры и т. д. WikiMatrixКак смарт-карты с контактами, у бесконтактных карт нет батареи. Tatoeba-2020.08Могу ли я расплачиваться здесь бесконтактной картой?Патенты-wipo Изобретение относится к способу изготовления бесконтактной карты или смешанной карты.patents-wipoПолевой тест на бесконтактных картахstmClassBlank электронных чип-карт, пустых смарт-карт, включая бесконтактные картыpatents-wipoContactless card readertmClassReaders бесконтактных карт, брелоков и браслетов в качестве контроллеров для рулевого управления электрических замковпатенты-wipoБесконтактные картыпатенты-wipoСхема обнаружения и предотвращения столкновений для систем бесконтактных платежей патенты-wipoБесконтактное устройство автоматической регистрации и проверки картыОбщее сканированиеСчитыватели карт и кодировщики карт для карт с магнитной полосой, смарт-карт, Mifare и бесконтактных карт.Патенты-wipo Метод обнаружения устройства NFC, имитирующего несколько бесконтактных карт, которые могут использовать множество протоколов. Патенты-wipo. Метод для изготовления бесконтактных карт путем ламинирования и бесконтактных карт, полученных с помощью указанного метода. Патенты-wipo. Изобретение применимо к автономным микромодулям и микромодулям, встроенным в бесконтактные карты. или гибридные карты.patents-wipoБесконтактная карта состоит из первых и вторых данных.patents-wipoПлатежный терминал, принимающий оплату с помощью бесконтактных картtmClassМикросхемы на гибкой пленке для приложений с чип-картами, бесконтактные карты, идентификация по радиочастотеpatents-wipoБесконтактный считыватель карт, интегрированный в сенсорную панельtmClassContactContactless card reader devicestmClass приемопередающее устройство, в частности для считывания бесконтактных картпатенты-wipoАнтенна для бесконтактных карт, гибридных карт и электронных этикеток

Показаны страницы 1.Найдено 366 предложения с фразой бесконтактная карта.Найдено за 7 мс.Накопители переводов создаются человеком, но выравниваются с помощью компьютера, что может вызвать ошибки. Найдено за 1 мс.Накопители переводов создаются человеком, но выравниваются с помощью компьютера, что может вызвать ошибки. Они поступают из многих источников и не проверяются. Имейте в виду.

.

определение бесконтактного по The Free Dictionary

Visa недавно объявила, что Robinsons, одна из крупнейших сетей торговых центров на Филиппинах, теперь принимает бесконтактные платежи в своих универмагах и супермаркетах в стране. Fact.MR объявила о добавлении «Прогноза рынка бесконтактных билетов на смарт-карты», Trend Анализ и отслеживание конкуренции — Global Market Insights с 2018 по 2028 год ». С воскресенья, 28 июля, KINCHBUS запускает первый в мире бесконтактный платеж с отводом и отводом для всех своих сервисов.Компания Visa, занимающаяся глобальными платежами, объединилась с группой Robinsons Retail, чтобы обеспечить возможность бесконтактной оплаты покупок на сумму ниже P2000 в сети отделений и супермаркетов последней. Все автобусы, действующие в регионе Ливерпуль, будут принимать бесконтактные платежи с конца июля. выбрал встроенную бесконтактную технологию CPI, Adaptive, для обеспечения бесконтактных транзакций для Flip, своего нового устройства для бесконтактных платежей. С момента запуска своей новой бесконтактной технологии год назад Commercial Bank успешно достиг более 1 миллиона нажатий со стороны клиентов, использующих свои любимые бесконтактные карты. местные и международные магазины.«Бесконтактный» — это немного неправильное название, поскольку оно включает в себя подключение дебетовой или кредитной карты к считывателю карт для совершения платежа. Network International, ведущий поставщик платежных решений в регионе Ближнего Востока и Африки (MEA), сотрудничает с JCB International (JCBI), дочерняя компания JCB Co Ltd по международным операциям, запустит бесконтактный прием JCB в ОАЭ. В прошлом году ежедневно проводились около 20 миллионов платежей по принципу «нажми и работай», а это означает, что в настоящее время осуществляется более одной из трех транзакций по картам. бесконтактные, цифры из выставки торговой ассоциации UK Finance.БОЛЕЕ миллиона человек использовали бесконтактные способы оплаты в автобусах Stagecoach в Чешире, Мерсисайде и Южном Ланкашире с тех пор, как они были внедрены в их автопарке. .

В чем разница между обычными, электронными и безраспределительными системами зажигания?

Если вы, как и многие люди, знаете, что когда вы поворачиваете ключ в замке зажигания, двигатель заводится, и вы можете управлять автомобилем. Однако вы можете не знать, как работает эта система зажигания. Если на то пошло, вы можете даже не знать, какой тип системы зажигания используется в вашем автомобиле.

Различные типы систем зажигания

  • Обычная : Хотя это называется «обычной» системой зажигания, это что-то вроде неправильного названия.Они не используются на современных автомобилях, по крайней мере, в США. Это система зажигания более старого типа, в которой используются точки, распределитель и внешняя катушка. Они требуют больших затрат в обслуживании, но легко ремонтируются и довольно дешевы. Интервалы обслуживания варьировались от каждых 5000 до 10 000 миль.

  • Электронное : Электронное зажигание является модификацией традиционной системы, и вы найдете ее широко распространенной сегодня, хотя системы без распределителя становятся все более распространенными.В электронной системе у вас все еще есть распределитель, но точки были заменены на приемную катушку, и есть электронный модуль управления зажиганием. У них гораздо меньше шансов выйти из строя, чем у обычных систем, и они обеспечивают очень надежную работу. Интервалы обслуживания для этих типов систем обычно рекомендуются каждые 25 000 миль или около того.

  • Без дистрибьютора : это новейший тип системы зажигания, и он начинает широко применяться на новых автомобилях.Он сильно отличается от двух других типов. В этой системе катушки расположены непосредственно на свечах зажигания (нет проводов свечей зажигания), и система полностью электронная. Он управляется компьютером машины. Возможно, вы более знакомы с ней как с системой «прямого зажигания». Они требуют очень небольшого обслуживания, и некоторые автопроизводители требуют 100 000 миль между услугами.

Развитие систем зажигания дало ряд преимуществ. Водители с более новыми системами получают лучшую топливную экономичность, более надежную работу и меньшие затраты на техническое обслуживание (обслуживание систем дороже, но, поскольку техническое обслуживание требуется только каждые 100 000 миль, многим водителям, возможно, никогда не придется платить за обслуживание).

В чем разница между обычными, электронными и безраспределительными системами зажигания?

Если вы, как и многие люди, знаете, что когда вы поворачиваете ключ в замке зажигания, двигатель заводится, и вы можете управлять автомобилем. Однако вы можете не знать, как работает эта система зажигания. Если на то пошло, вы можете даже не знать, какой тип системы зажигания используется в вашем автомобиле.

Различные типы систем зажигания

  • Обычная : Хотя это называется «обычной» системой зажигания, это что-то вроде неправильного названия.Они не используются на современных автомобилях, по крайней мере, в США. Это система зажигания более старого типа, в которой используются точки, распределитель и внешняя катушка. Они требуют больших затрат в обслуживании, но легко ремонтируются и довольно дешевы. Интервалы обслуживания варьировались от каждых 5000 до 10 000 миль.

  • Электронное : Электронное зажигание является модификацией традиционной системы, и вы найдете ее широко распространенной сегодня, хотя системы без распределителя становятся все более распространенными.В электронной системе у вас все еще есть распределитель, но точки были заменены на приемную катушку, и есть электронный модуль управления зажиганием. У них гораздо меньше шансов выйти из строя, чем у обычных систем, и они обеспечивают очень надежную работу. Интервалы обслуживания для этих типов систем обычно рекомендуются каждые 25 000 миль или около того.

  • Без дистрибьютора : это новейший тип системы зажигания, и он начинает широко применяться на новых автомобилях.Он сильно отличается от двух других типов. В этой системе катушки расположены непосредственно на свечах зажигания (нет проводов свечей зажигания), и система полностью электронная. Он управляется компьютером машины. Возможно, вы более знакомы с ней как с системой «прямого зажигания». Они требуют очень небольшого обслуживания, и некоторые автопроизводители требуют 100 000 миль между услугами.

Развитие систем зажигания дало ряд преимуществ. Водители с более новыми системами получают лучшую топливную экономичность, более надежную работу и меньшие затраты на техническое обслуживание (обслуживание систем дороже, но, поскольку техническое обслуживание требуется только каждые 100 000 миль, многим водителям, возможно, никогда не придется платить за обслуживание).

Пропустить мастерскую

Наши механики звонят на дом

Autoblog сотрудничает с YourMechanic, чтобы предоставить вам многие из необходимых вам услуг по ремонту и техническому обслуживанию.
Получите обслуживание на дому или в офисе 7 дней в неделю по справедливым и прозрачным ценам.

Получите мгновенную цитату

Понимание систем зажигания точки прерывания — Журнал газовых двигателей

Гэри Гриннелл

1/4

Рисунок 1: Точки зажигания должны быть правильно выстроены, когда они закрыты.Если они не закрываются (слева) или не выровнены (в центре), система не будет работать.

2/4

Рисунок 2: Испытательное сопротивление катушки с мультиметром, установленным на Ом. Проверить заземление аккумуляторной батареи с помощью мультиметра, установленного на вольт постоянного тока.

3/4

Рисунок 3: Проверка на короткое замыкание в точках с мультиметром, установленным на непрерывность. Проверка выключателя зажигания с помощью мультиметра, установленного на вольт постоянного тока. Измеритель должен показывать от 12 до 13 вольт.

4/4

Рисунок 4

❮ ❯

Системы зажигания с точкой прерывания использовались до появления электронных систем зажигания на миллионах двигателей.От двигателей ромовиков 1930-х годов до всех этих джипов времен Второй мировой войны — все они имели систему зажигания с точкой прерывания. Простые в устранении и ремонте, они, как и все остальное, бесконечно сложны, если вы не понимаете основ их работы.

Основные сведения о точке прерывания

Цепь системы зажигания прерывателя начинается и заканчивается аккумулятором. Когда двигатель работает, аккумулятор постоянно заряжается генератором переменного тока или, в старых системах, генератором.Ток течет от положительного полюса аккумуляторной батареи к замку зажигания и катушке зажигания. Катушка зажигания на самом деле представляет собой трансформатор, который увеличивает 12-вольтовый ток батареи примерно до 25000 вольт. В двигателях со средней и высокой степенью сжатия такое напряжение необходимо для надежной дуги в зазоре свечи зажигания и создания достаточного количества огня для воспламенения топливно-воздушной смеси в цилиндре.

Катушка имеет две цепи; первичная обмотка, которая проходит от положительного вывода катушки к отрицательному выводу катушки; и вторичная цепь, которая идет от положительной клеммы на катушке к проводу зажигания в центре крышки распределителя.Отрицательный провод в первичной цепи проходит от катушки к основанию распределителя и к точкам прерывания внутри. Это может показаться немного запутанным, но это имеет смысл, если вы понимаете, что точки действуют, открывая и замыкая цепь заземления.

Точки прерывателя размыкаются и закрываются при вращении вала распределителя. Одна половина набора точек зафиксирована, другая половина вращается, а на подвижной половине набора точек имеется натяжной блок. Вал распределителя имеет выступы, контактирующие с трущимся блоком.Эти выступы действуют как кулачки, открывая точки, тем самым разрывая электрическое соединение между точками. Острия имеют пружинный зажим, который удерживает точки в закрытом состоянии, и эта пружина заставляет подвижную точку снова входить в контакт с неподвижной точкой, установленной на распределительной пластине, когда кулачок выходит из контакта. Если это неясно, снимите крышку распределителя с двигателя, оборудованного точкой прерывателя, и проверните двигатель вручную, наблюдая за движением деталей. Взаимодействие станет очевидным.

Пружинный зажим электрически изолирован от корпуса распределителя, так что первичная цепь заземляется только при замкнутых точках. Когда точки соприкасаются друг с другом, электричество проходит от батареи через катушку и к блоку двигателя, который заземлен на отрицательную клемму батареи. Ток, протекающий через обмотки катушки зажигания, создает мощное электрическое поле, которое возникает при разделении точек. Электричество, которое больше не может заземляться через точки, устремляется через вторичную цепь к проводу катушки к верхней части крышки распределителя, где оно передается на ротор распределителя.

Ротор прикреплен к верхней части вала распределителя и вращается вокруг внутренней части распределителя, его контакт дает каждому столбу на окружности крышки распределителя разряд электричества, когда он проходит мимо. К стойкам прикреплены провода, которые ведут к свечам зажигания, воспламеняющим топливно-воздушную смесь в цилиндре.

Искра должна быть синхронизирована так, чтобы она выделяла газ в правой части поршневого цикла, обычно, когда поршень находится рядом с верхней частью цилиндра.На большинстве двигателей установка угла опережения зажигания осуществляется ослаблением прижимного болта распределителя и вращением распределителя для увеличения или уменьшения угла опережения зажигания. Старые гаражные жокеи устанавливали время на слух, поворачивая распределитель до тех пор, пока двигатель не зазвучал «правильно». Большинство механиков используют индикатор времени, который принимает сигнал от провода свечи зажигания и испускает импульс света каждый раз, когда через провод свечи зажигания проходит электричество. Свет направлен на один из шкивов в передней части двигателя, и распределитель поворачивается до тех пор, пока выемка на шкиве не совпадет с меткой на кожухе шкива.

Устранение неполадок

Знание того, как работает система точек прерывания, поможет вам отремонтировать ее, когда она выйдет из строя. Если ваш двигатель не работает, и вы подозреваете, что система зажигания работает, первое, что нужно сделать, это осмотреть все, что явно не так, например, ослабленные или обрываемые провода.

Сильно надавите на чехлы на концах проводов свечей зажигания, чтобы убедиться, что они надежно закреплены. Взгляните на точки; если они выглядят корродированными, замените их.Проверьте зазор между точками (пространство, образовавшееся, когда точки максимально открыты) с помощью щупа, получив надлежащую спецификацию для зазора из руководства по ремонту. Типичная настройка составляет от 0,015 до 0,020 дюйма. Используйте головку и прерыватель, чтобы повернуть двигатель так, чтобы острия находились в самом широком зазоре. Калибр типа проволоки или щупа должен просто скользить между точками, не раздвигая их.

Если это не решит проблему, попробуйте отследить всю цепь, начиная с батареи.Проверьте аккумулятор с помощью вольтметра и ареометра. Вы хотите, чтобы батарея показывала не менее 12,6 вольт, если у вас 12-вольтная система. Если аккумулятор необходимо перезарядить, обязательно используйте зарядное устройство с постоянным током — зарядное устройство, рассчитанное на ток не более 2 ампер. Зарядные устройства с высоким усилителем могут испортить аккумулятор при частом использовании, чему мне пришлось научиться на собственном горьком опыте.

Еще раз проверьте аккумулятор с помощью ареометра.

Обязательно надевайте брызгозащитные очки. Каждая ячейка должна читаться почти так же, как другие.Если вы получаете совершенно разные показания в одной ячейке, возможно, у вас плохой аккумулятор.

С помощью вольтметра снимите показания на концах кабелей аккумуляторной батареи. Напряжение должно быть таким же, как на самом аккумуляторе. Если нет, очистите концы кабелей и попробуйте еще раз. Если вы все еще наблюдаете падение напряжения на концах кабелей, выбросьте их и купите новые. Пока вы это делаете, попробуйте пошевелить кабелями, надежно прикрепив щупы вольтметра. Если вы видите низкие или несуществующие показания, значит, кабель корродирован изнутри.

Предполагая, что у вас исправная, полностью заряженная батарея, хорошие кабели батареи и чистые, плотные соединения, вы можете начать тестирование других частей схемы. Поместите положительный щуп измерительного прибора на положительную клемму аккумуляторной батареи, а отрицательный щуп на чистую часть блока цилиндров. Это проверяет заземление между отрицательной клеммой аккумулятора и блоком. Если показания вольтметра ниже, чем у батареи, необходимо очистить и / или подтянуть заземляющее соединение.

Вы можете пройти по всей цепи, проверяя напряжение на каждом проводе и компоненте.Если вы обнаружите значительное падение напряжения, остановитесь, чтобы проверить плохое соединение или провод. Некоторые двигатели имеют внешний резистор рядом с катушкой зажигания. Это повлияет на показания напряжения, которые вы получите в зависимости от силы резистора.

Проверить резистор можно омметром. Получите сопротивление резистора из руководства к вашему двигателю (на некоторых резисторах может быть указано их номинальное сопротивление). Катушку можно проверить таким же образом.

С помощью вольтметра проверьте отсутствие замыкания на массу между аккумулятором и точками.Заблокируйте открытые точки с помощью небольшого куска дерева и поместите один щуп на соответствующую клемму аккумулятора, а другой щуп на саму точку. Просто убедитесь, что у вас ровная полярность. При открытых заблокированных точках одна будет положительной, а другая отрицательной. Если измеритель не показывает напряжение, когда датчик находится на «пружинном зажиме», возможно, у вас плохая изолирующая шайба на распределителе, которая пропускает электричество на землю через блок перед переходом к точкам. Проверьте целостность цепи между блоком и отрицательной клеммой катушки, чтобы подтвердить эту теорию.Проверьте целостность цепи между блоком и неподвижной точкой, прикрепленной к распределительной пластине.

Проверните двигатель, пока точки не закроются. Используйте мультиметр, чтобы проверить хорошее соединение между точками. Небольшой промежуток, когда точки должны быть закрыты, помешает вашей машине работать.

Если у вас нет тестового прибора, вы можете использовать тестовую лампу с автономным питанием, чтобы сделать то же самое. Всегда используйте контрольную лампу при отключенном аккумуляторе. Когда цепь замкнута, свет будет светиться.Если у вас есть неисправность в цепи, например, обрыв провода, свет не загорится.

Пуск от аккумуляторной батареи, кабели проходят по цепи, проверяя каждый провод и соединение. Заблокируйте открытые точки и поместите каждый датчик в одну из точек. Если индикатор горит, значит, проблема обнаружена. Внимательно посмотрите, чтобы найти оголенный участок изоляции или недостающую резиновую шайбу на проводе распределителя.

Когда точки соприкасаются, а щупы на каждой точке, свет должен сиять для вас.Если свет не горит, они на самом деле не касаются друг друга или они настолько корродированы, что не проводят электричество. Вы можете спилить их или, еще лучше, заменить. Рекомендуется одновременно заменить точечный конденсатор. Конденсатор обычно находится внутри распределителя, но иногда присоединяется к внешнему корпусу. Он имеет единственный вывод, который подключается к точкам, где присоединяется отрицательный провод от катушки зажигания.

Если вам все еще не повезло, попробуйте проверить сопротивление проводов свечей зажигания.Я знаю, что многие из нас ненавидят руководства, но хорошо иметь спецификации для вашего железяка, чтобы вы могли это проверить. Любые провода свечей зажигания с потрескавшейся изоляцией следует заменить.

Используйте мультиметр для проверки свечей зажигания. Между верхней частью вилки и электродом должна быть непрерывность. Между резьбой винта и электродом не должно быть непрерывности. Вставьте конец свечи в чехол на конце провода зажигания и проверьте целостность цепи между электродом и концом провода свечи.Это исключит плохой провод вилки или плохое соединение между вилкой и проводом.

Если вы прошли через все это и по-прежнему не видите искры, обратите внимание на крышку и ротор. Обычно это первые детали, которые заменяются при повреждении системы зажигания. Если они выглядят старыми или поврежденными, я заменю их.

Пройдя через все это, вы должны хорошо понимать, как работает ваша система зажигания точки прерывания, и как действовать, когда у вас возникают проблемы, связанные с зажиганием.Понимание того, как работает система, является ключевым моментом, и если вы не торопитесь и отследите систему, вы всегда найдете способ заставить ее работать.

Свяжитесь с энтузиастом двигателей Гэри Гриннеллом по адресу: 9 Laurel Park, Northampton, MA 01060-1196.

СТАТЬИ ПО ТЕМЕ

Обратите внимание на этот 25-сильный двигатель на попутном газе, замеченный в 2020 году Ассоциацией паровых и газовых двигателей Северо-Западного Миссури.

Узнайте об истории создания уникальных двигателей Abenaque с водяным охлаждением.

Оцените этот уникальный двигатель Ajax / Either около 1905 года с откидным верхом и узнайте о его увлекательной истории.

Первичный контур системы зажигания.

Первичная цепь состоит из батареи, переключателя зажигания, резистора, модуля зажигания или контактных точек и первичной проводки катушки. Они покрываются в том порядке, в котором через них проходит электричество. Напряжение первичной цепи низкое, работает от батареи 12 вольт.Проводка в этой схеме покрыта тонким слоем изоляции для предотвращения коротких замыканий.



Аккумулятор.


Чтобы лучше понять работу первичных цепей системы зажигания, мы начнем с батареи и проследим прохождение электричества через систему. Аккумулятор является источником электроэнергии, необходимой для работы системы зажигания. Аккумулятор накапливает и вырабатывает электричество за счет химического воздействия. Когда он заряжается, он преобразует электричество в химическую энергию.Когда он разряжается (вырабатывая ток), батарея преобразует химическую энергию в электричество. Для правильной работы батарея должна быть в таком состоянии или заряжена, чтобы производить максимальную электрическую мощность.

Выключатель зажигания.

Первичный контур начинается от аккумуляторной батареи и течет к замку зажигания. Он контролирует поток электроэнергии через терминалы. Выключатель зажигания может иметь дополнительные клеммы, которые подают электричество в другую систему автомобиля при включении ключа. Большинство выключателей зажигания установлено на рулевой колонке.

Резистор.


Некоторые системы зажигания включали резистор в свои первичные цепи. Электричество течет от замка зажигания к резистору. Резисторы контролируют количество тока, достигающего катушки. Это может быть калиброванный провод сопротивления или балластный тип.

Большинство резисторов просто состоят из калиброванного провода резистора, встроенного в жгут проводов между переключателем зажигания и катушкой. Провод сопротивления понижает напряжение аккумуляторной батареи примерно до 9,5 В при нормальной работе двигателя.Однако, когда двигатель запускается, катушка получает полное напряжение батареи от байпасного провода, байпасный провод подает на катушку полное напряжение батареи от переключателя зажигания и соленоида стартера, пока двигатель проворачивается. когда ключ отпущен, цепь получает питание через провод сопротивления.

Балластный резистор, который используется на некоторых автомобилях, представляет собой термочувствительный блок с переменным сопротивлением. Балластный резистор предназначен для нагрева на низких оборотах двигателя, когда через катушку будет протекать больший ток.По мере того, как он нагревается, значение его сопротивления увеличивается, в результате чего меньшее напряжение проходит через катушку. По мере увеличения оборотов двигателя продолжительность протекания тока уменьшается. Это вызывает понижение температуры. При понижении температуры резистор позволяет напряжению на катушке увеличиваться.

На высокой скорости, когда требуется более горячая искра, катушка получает полное напряжение батареи. Балластный резистор представляет собой катушку из никель-хромовой или нихромовой проволоки. Свойства нихромовой проволоки имеют тенденцию увеличивать или уменьшать напряжение прямо пропорционально теплу проволоки.На следующем рисунке показано, что в некоторых транзисторных системах зажигания используются два балластных резистора для управления напряжением катушки. От резистора ток идет к катушке. В большинстве современных автомобилей с электронным зажиганием резистор в цепи зажигания не используется. Большинство современных электронных систем зажигания постоянно используют полное напряжение батареи.

Принципы балластного резистора. A — Это иллюстрирует длительную пульсацию тока

, проходящего через провод специального балластного резистора при низких оборотах двигателя

.Ток нагревает специальный провод и снижает величину тока, достигающего

катушки, B — Это иллюстрирует короткую пульсацию

на высоких скоростях. Это позволяет проводу остыть, и через катушку течет более сильный ток

.

Катушка зажигания.

Первичная цепь ведет от переключателя зажигания или резистора к катушке зажигания. Катушка зажигания на самом деле представляет собой трансформатор, способный повышать напряжение батареи до 100 000 вольт, хотя большинство катушек вырабатывают около 50 000-60 000 вольт.Катушки различаются по размеру и форме, чтобы соответствовать требованиям различных транспортных средств.

Конструкция змеевика.

Катушка со специальным ламинированным железным сердечником. Вокруг этого центрального сердечника намотаны многие тысячи витков очень тонкой медной проволоки. Эта тонкая проволока покрыта тонким слоем высокотемпературного изоляционного лака. Один конец тонкого провода подсоединяется к клемме высокого напряжения, а другой — к проводу первичной цепи внутри катушки. Все эти витки тонкой проволоки от так называемой вторичной обмотки.

Несколько сотен витков более тяжелого медного провода намотаны вокруг обмотки вторичной катушки. Каждый конец подключен к клемме первичной цепи на катушке. Эта обмотка также изолирована. Витки более тяжелого провода от первичной обмотки.

Сердечник с присоединенной вторичной и первичной обмотками помещен внутри многослойной железной оболочки. Задача оболочки — помочь сконцентрировать магнитные силовые линии, которые будут развиваться обмотками. Затем все это устройство помещается в стальной, алюминиевый или бакелитовый корпус.В некоторых конструкциях катушек корпус заполнен маслом или парафиноподобным материалом. В других конструкциях обмотки катушек заключены в тяжелый пластик. Змеевик герметизирован, чтобы предотвратить попадание грязи или влаги. Клеммы первичной и вторичной обмоток тщательно герметизированы, чтобы выдерживать вибрацию, нагревание, влагу и воздействие высокого наведенного напряжения.

Несколько различных катушек зажигания и их конструкция.

A — Выносная высокоэнергетическая катушка зажигания (HEI)

B — Конструкция катушки HEI в разрезе.

C-образный разрез катушки обычного типа.

Работа катушки.

При включении зажигания ток течет через первичные обмотки катушки на землю. Когда через провод течет ток, вокруг проводника создается магнитное поле. Поскольку в первичных обмотках несколько сотен витков провода, создается сильное поле. Это магнитное поле окружает как вторичную, так и первичную обмотки. Если происходит быстрое и четкое прерывание тока на пути к земле после прохождения через катушку, магнитное поле схлопнется в ламинированном железном сердечнике.

По мере того, как поля исчезают через первичную обмотку, напряжение в первичных обмотках будет увеличиваться. Это называется самоиндукцией, поскольку первичные обмотки создают собственное повышение напряжения. Напряжение, индуцированное в первичных обмотках, составляет около 200 вольт. Поскольку он состоит всего из нескольких сотен витков провода, самоиндукция не влияет на работу вторичной обмотки, но может вызвать точечное искрение в системе точек контакта.

Когда магнитное поле схлопывается, оно проходит через вторичную обмотку, производя крошечный ток на каждом витке.Вторичные обмотки содержат тысячи витков провода, так как напряжение каждого витка провода умножается на количество витков. Это может привести к возникновению напряжения, превышающего 100 000 вольт. Это называется индукцией. Высокое напряжение, создаваемое вторичными обмотками, выходит из вывода катушки высокого напряжения и направляется к свечам зажигания.

Большинство катушек имеют клеммы первичной обмотки, отмеченные (+) и (-). Знак «плюс» указывает на положительный результат, а «минус» — на отрицательный. Катушка должна быть установлена ​​в первичной цепи в соответствии с заземлением батареи.Это совмещение положительной и отрицательной клемм заземлено, отрицательная клемма катушки должна быть подключена через модуль зажигания или распределитель к земле, если применимо. Это сделано для обеспечения правильной полярности свечи зажигания.

Схема подключения, показывающая, как катушка индуцирует ток

, протекающий во вторичной катушке.

Работа катушки зажигания. 1-первичная обмотка. 2- Вторичная обмотка

. Ток теперь покидает кишечную палочку на своем пути, чтобы зажечь свечи

через распределитель.

Фактический выход катушки.

Даже несмотря на то, что выходное напряжение некоторых катушек может превышать 100 000 вольт, катушка вырабатывает напряжение, достаточное только для возникновения искры. Оно может составлять всего 2000 вольт на холостом ходу на более старом автомобиле без средств контроля выбросов или до 60 000 вольт на новом автомобиле с максимально обедненной смесью и под нагрузкой. Для управления мощностью катушки у большинства двигателей есть распределитель. Задача распределителя — привести в действие катушку и распределить ток высокого напряжения на правую свечу зажигания в нужное время.

Обрушение первичного поля. Когда первичная цепь

разрывается, магнитное поле разрушается через вторичную обмотку

к сердечнику.

Способы отключения тока.

Чтобы вызвать коллапс магнитного поля катушки, ток через первичные обмотки должен быть мгновенно и чисто прерван, без пробоя (скачки тока или дуги в пространстве) в точке отключения в течение примерно 75 лет. потоки тока контролировались с помощью набора контактных точек для разрыва потока и сжатия первичного поля катушки.За последние 20 лет системы контактных точек были заменены электронными системами зажигания, в которых для управления первичной цепью используются транзисторы.

Электронное зажигание может производить искру высокого напряжения, необходимую для воспламенения бедных смесей, используемых в современных транспортных средствах. В то время как старая система точек контакта могла производить не более 20 000 или 30 000 вольт, электронные системы зажигания позволяют использовать до 100 000 вольт. Все современные автомобили используют системы зажигания с электронным управлением первичной цепью, основное различие между системами зажигания в точке контакта и электронными системами зажигания заключается в методе прерывания первичной цепи катушки.

Контактный пункт.

Контактные точки, используемые на старых автомобилях, представляли собой простой механический способ замыкания и размыкания первичной цепи катушки. Стационарная деталь заземлена через монтажную пластину точки контакта распределителя. Этот раздел предназначен только для настройки начальной точки.

Вторая деталь — подвижная точка контакта. Поворачивается на стальной стойке. Волокнистая пружина прижимает подвижный контактный рычаг к неподвижному блоку, заставляя две точки контакта касаться друг друга.Подвижный рычаг выталкивается наружу кулачками распределителя, которые поворачиваются за счет того, что вал распределителя открывает и закрывает точки при вращении. Количество лепестков соответствует количеству цилиндров.

Типовая конструкция точки контакта. Большинство из них включает регулируемую точку

в регулируемую опорную базу. Технические характеристики зазора средней точки

(от 0,018 до 0,022 дюйма)

Кулачок вращается и перемещает контактный рычаг через оптоволоконный блок трения. Он прикреплен к контактному рычагу и трется о кулачок.Для уменьшения износа на блоке используется высокотемпературная смазка. Подвижный контактный рычаг изолирован, поэтому, когда первичная цепь не будет заземлена, точки контакта соприкасаются.

Контактный пункт Жилая.

Число градусов, на которое кулачок распределителя поворачивается от момента закрытия до момента, когда они снова открываются, называется задержкой и иногда упоминается, поскольку это влияет на накопление магнитного поля в первичных обмотках. Чем дольше точки закрыты, тем больше магнитное накопление.Однако слишком долгая выдержка может привести к искрению и возгоранию. Если задержка слишком мала, точки откроются и схлопнут поле до того, как в нем накопится достаточно напряжения, чтобы произвести удовлетворительную искру.

При установке габаритов точки контакта по мере уменьшения габаритов время задержки увеличивается. Когда габарит увеличен, задержка уменьшается. Задержка не может быть отрегулирована в электронных системах зажигания, но может быть измерена для помощи при диагностике. Всегда проверяйте спецификацию производителя на задержку при установке точек.

Эти точки зажигания закрываются на 1 и остаются закрытыми, когда кулачок поворачивается

на 2. Число градусов, образованных этим углом, определяет

задержки.

Конденсатор.

Конденсатор, иногда называемый конденсатором, поглощает избыточный первичный ток при размыкании точек контакта. Конденсатор предотвращает точечное искрение и, как следствие, перегрев, точечную коррозию и чрезмерный износ. Помимо увеличения срока службы точки контакта, конденсатор позволяет магнитному полю катушки быстро разрушаться, вызывая сильную мгновенную искру.

Большинство конденсаторов состоит из двух листов очень тонкой фольги, разделенных двумя или тремя слоями изоляции. Фольга и изоляция скручены в цилиндрическую форму. Затем цилиндр помещается в небольшой металлический корпус и герметизируется для предотвращения проникновения влаги. Близкое расположение полос фольги создает емкость или способность притягивать электроны.

Когда точки замкнуты, конденсатор активен, так как магнитное поле катушки начинает нарастать, когда точки открываются, магнитное поле начинает коллапсировать, а напряжение в первичных обмотках возрастает из-за самоиндукции.Если бы конденсатор не использовался, напряжение в первичной цепи было бы дугой в точках, потребляя энергию катушки до того, как магнитное поле пройдет через вторичные обмотки.

Однако конденсатор притягивает избыточное первичное напряжение, предотвращая дугу в точках. К тому времени, когда конденсатор полностью зарядился, точки слишком сильно разомкнули ток, чтобы дуга магнитного поля схлопывалась через вторичные обмотки, создавая быструю сильную искру.

Конденсаторный блок герметично заключен в металлический корпус.Обратите внимание на

, как конденсатор прикреплен к распределителю.

Электронное зажигание.

Схема на рисунке представляет собой простую электронную схему зажигания. Обратите внимание, что нет никаких механических устройств для замыкания и размыкания цепи. Весь процесс осуществляется в электронном виде. Ток течет от замка зажигания через модуль зажигания к катушке. Модуль зажигания содержит электронные компоненты, которые заставляют катушку производить искру высокого напряжения. Модули зажигания обрабатывают входные данные от других компонентов зажигания.

Схема, показывающая поток энергии через один тип электронной цепи зажигания

.

Модули зажигания иногда устанавливаются на брандмауэре двигателя или на внутреннем крыле, чтобы защитить их от чрезмерного нагрева двигателя. Остальные модули расположены в распределителе, установлены снаружи на корпусе распределителя или как часть узла змеевика. Ток от замка зажигания поступает в модуль и проходит через силовой транзистор, прежде чем достигнет катушки. Силовой транзистор действует как проводник, пропуская полный ток в цепи.Это начинает нарастание магнитного поля в катушке.

Когда силовой транзистор сигнализируется срабатывающим устройством и другими схемами модуля, он становится изолятором. Поскольку ток течет через изолятор, это останавливает протекание тока через первичную цепь катушки. Когда ток прекращается, магнитное поле схлопывается, создавая ток высокого напряжения во вторичных обмотках. После завершения схлопывания катушки процесс повторяется, поскольку ток через силовой транзистор снова начинается.


A и B — Покомпонентные изображения распределителя в сборе, в котором находится электронный модуль зажигания

.

C — Схема системы зажигания с электронным модулем зажигания

.

Электронные пусковые устройства.

Электронные пусковые устройства посылают ток сигнала на модуль зажигания, который затем разрывает первичную цепь. Детали спускового устройства не изнашиваются, что дает им гораздо больший срок службы, чем контактные точки, поскольку спусковое устройство не меняется.Это улучшает характеристики двигателя, выбросы выхлопных газов и надежность. В настоящее время используются три типа пусковых устройств:

  • Магнитное.
  • Эффект Холла.
  • Оптический.

Большинство пусковых устройств приводится в действие вращением вала распределителя. Некоторые пусковые устройства установлены в блоке цилиндров или на нем и приводятся в действие вращением коленчатого и / или распределительного вала.

Магнитный датчик.

Магнитный датчик установлен в распределителе и реагирует на скорость распределителя, которая составляет половину скорости вращения коленчатого вала, этот датчик вырабатывает переменный ток.Выделяемый ток невелик (около 250 милливольт), но его легко считывает модуль зажигания. Узел вращающегося зуба называется реле или спусковым колесом. Стационарный узел называется приемной катушкой или статором.

Воздушный зазор между вращающимися и неподвижными зубьями предотвращает физический контакт и исключает износ. Когда зуб реактора совмещается с зубцом датчика, сигнал напряжения отправляется на модуль зажигания, который выключает силовой транзистор и прерывает первичный ток в катушке зажигания, вызывая зажигание свечи зажигания.Некоторые датчики устанавливаются возле коленчатого вала. реакторное колесо является частью коленчатого вала и находится в его средней точке. Между этим датчиком и реактором также существует воздушный зазор. Когда датчик находится в середине каждого слота, транзистор отключается и прерывает ток к катушке зажигания, вызывая срабатывание свечи зажигания. Воздушный зазор имеет решающее значение для всех магнитных датчиков и должен быть установлен в соответствии со спецификацией.

Несколько различных магнитных датчиков положения коленчатого вала

. A — Между реактором

и приемной катушкой имеется воздушный зазор.Установлен на распределителе

B — Этот датчик

формирует переменный ток. C — Датчик положения и реактор, расположенный на

коленчатом валу.

Переключатель на эффекте Холла.

Переключатель Холла может быть установлен в распределителе или на коленчатом валу. Датчик Холла представляет собой тонкую пластину из полупроводникового материала, на которую постоянно подается напряжение. Напротив датчика расположен магнит, между датчиком и магнитом есть воздушный зазор.Магнитное поле воздействует на датчик до тех пор, пока между датчиком и магнитом не появится металлический язычок, обычно называемый заслонкой. Этот металлический язычок не касается магнита или датчика. Когда контакт между магнитным полем и датчиком прерывается, его выходное напряжение уменьшается. Это сигнализирует модулю зажигания о необходимости выключить силовой транзистор. Это прерывает первичный ток в катушке зажигания, вызывая ее возгорание.

A — Магнитное поле может воздействовать на датчик Холла.

B-Когда металлический язычок, прикрепленный к валу распределителя

, вращается между магнитом и датчиком Холла, магнитное поле

прерывается.Катушка зажигания посылает на распределитель высокое напряжение

каждый раз, когда магнитное поле прерывается

Оптический датчик

.

Оптический датчик обычно находится в распределителе. Пластина ротора имеет множество прорезей, через которые свет проходит от светодиода (LED) к фоточувствительному диоду (светоприемник). Когда пластина ротора вращается, она прерывает световой луч от светодиода к фотодиоду. Когда фотодиод не обнаруживает свет, он посылает сигнал напряжения на модуль зажигания, заставляя его запускать катушку.

Оптический датчик положения коленчатого вала использует светодиод для передачи луча

света на фотодиод через прорези в пластине ротора.

Пластина ротора, используемая с оптическим датчиком. Обратите внимание на расстояние между прорезями

.

Система зажигания без распределителя.

Система зажигания без распределителя не имеет распределителя. В нем используется датчик положения коленчатого вала, который является магнитным датчиком переключателя на эффекте Холла. Датчик коленчатого вала установлен на блоке двигателя или в нем.Некоторые системы без распределителя имеют второй датчик на распределительном валу. датчик выполняет ту же работу, что и приемная катушка или переключатель на эффекте Холла в распределителе, соответствует ходу. Преимущество этой системы — отсутствие распределителя или узла, ротора и крышки распределителя.

Электрический сигнал генерируется всякий раз, когда коленчатый вал вращается, и сигнал отправляется на модуль зажигания и / или бортовой компьютер. Этот сигнал позволяет компьютеру определять положение каждого поршня в двигателе.В системах с датчиками коленчатого и распределительного валов показания обоих датчиков используются для определения положения поршня. Вход датчика может также использоваться компьютером для определения числа оборотов двигателя и величины опережения угла опережения зажигания.

A — Схема электронной системы зажигания без распределителя зажигания.

B — Один из возможных вариантов расположения компонентов для системы зажигания без распределителя.

При зажигании без распределителя создается свеча зажигания высокого напряжения с использованием нескольких катушек зажигания. На каждые два цилиндра приходится одна катушка зажигания.Версия с четырьмя цилиндрами имеет две катушки, шестицилиндровый — три катушки, а V-B использует четыре катушки, необходимо использовать несколько катушек, поскольку нет крышки распределителя и ротора для распределения искры.

Все катушки зажигания без распределителя имеют две разрядные клеммы. Эти клеммы подключаются к двум свечам зажигания двигателя через обычные провода резисторной свечи. Когда катушка срабатывает, искра выходит из одного вывода, проходит через провод свечи зажигания и возвращается к другому выводу катушки через блок двигателя, при этом другой провод свечи зажигания фактически зажигает обе свечи одновременно. .Провода катушки расположены так, что катушка зажигает одну свечу в верхней части такта выпуска, не влияет на работу двигателя и часто называется отработанной искрой. Поскольку для перескока язычка свечи зажигания на такте выпуска требуется очень небольшое напряжение, катушка достаточно мощная, чтобы зажигать обе свечи.

Интегрированная система прямого зажигания представляет собой разновидность безраспределительной системы зажигания. В этой системе вместо проводов свечей зажигания используются токопроводящие полоски для передачи электричества от катушек к свечам зажигания.Как и во всех безраспределительных системах, каждая катушка обслуживает две свечи зажигания.

Изображение системы прямого зажигания в разобранном виде. Эта установка с двумя катушками

для использования с четырехцилиндровым двигателем.

Система прямого зажигания.

Система прямого зажигания аналогична системе зажигания без распределителя. Однако в системе прямого зажигания на каждую свечу зажигания приходится по одной катушке. Между катушками и свечами не используются провода свечей зажигания или другие проводники. Вместо этого башни катушек подключаются непосредственно к свечам зажигания.

Покомпонентное изображение, показывающее расположение катушки и свечи зажигания

для одного цилиндра двигателя V-B с прямым зажиганием

. Каждая свеча в этом двигателе имеет свою катушку

.

Вы проследили прохождение тока через первичную систему.

Пройдя через контактный модуль или точки контакта, он возвращает на

аккумулятор через металлические части автомобиля, к которым он заземлен.

Заявка на патент США на бесконтактный выключатель зажигания Заявка на патент (Заявка № 20020196113 от 26 декабря 2002 г.)

ПЕРЕКРЕСТНАЯ ССЫЛКА НА РОДСТВЕННЫЕ ПРИЛОЖЕНИЯ

& lsqb; 0001 & rsqb; В этом заявлении испрашивается преимущество даты подачи заявки U.S. Предварительная заявка сер. № 60/291,596, поданной 16 мая 2001 г., идеи которой включены в настоящий документ посредством ссылки.

ОБЛАСТЬ ИЗОБРЕТЕНИЯ

& lsqb; 0002 & rsqb; Настоящее изобретение в целом относится к переключателям зажигания и, в частности, к устройству и системе для включения переключателя зажигания с бесконтактными элементами для обеспечения недорогого и экологически безопасного переключателя зажигания.

ПРЕДПОСЫЛКИ ИЗОБРЕТЕНИЯ

& lsqb; 0003 & rsqb; Почти все дизельные или газовые двигатели оснащены системами выключения зажигания.Такие переключатели зажигания можно найти на множестве машин и оборудования, включая системы HVAC, транспортные средства и т.п. Такие системы обычно представляют собой систему зажигания с ключом или кнопочные системы. Обычная система зажигания с ключом для транспортных средств обычно подключается к источнику питания, например. аккумулятор транспортного средства через провод. Такой ключ зажигания также обычно имеет несколько положений. Они могут включать вспомогательное оборудование, элемент управления, запуск и начальное положение.

& lsqb; 0004 & rsqb; В автомобилях системы автомобиля обычно отключаются, когда ключ зажигания находится в выключенном или контрольном положении.Когда ключ повернут в положение для принадлежностей или работы, аксессуары автомобиля, например звуковая система, электрические стеклоподъемники, люк с электроприводом и т. д. подключены к источнику питания, поэтому ими можно управлять, пока автомобиль не движется. В рабочем положении переключатель зажигания также обычно обеспечивает соединение между источником питания и контроллером двигателя. Наконец, когда ключ повернут в положение запуска, между источником питания и контроллером двигателя устанавливается соединение для запуска двигателя транспортного средства.Кроме того, в таких случаях обычно срабатывает релейный механизм для положений запуска и работы. Точно так же такие системы зажигания с ключом или системы кнопок могут использоваться в другом оборудовании или механизмах.

& lsqb; 0005 & rsqb; В обычных выключателях зажигания обычно используются металлические контакты, такие как дворники, для подачи питания на различные цепи, например цепи запуска и запуска в зависимости от положения устройства ввода. В транспортных средствах, и в частности строительных транспортных средствах, загрязнения, такие как вода, грязь и пыль, могут проникать через отверстие для ключа.Вода может вызвать коррозию металлических контактов, а загрязняющие вещества отрицательно сказываются на надежности замка зажигания.

& lsqb; 0006 & rsqb; Соответственно, в данной области техники существует потребность в бесконтактном переключателе зажигания, который устраняет необходимость в металлических контактах. Кроме того, в данной области техники существует потребность в недорогом переключателе зажигания, который может работать в суровых условиях окружающей среды и который может использоваться в различных приложениях, требующих переключателей зажигания.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

& lsqb; 0007 & rsqb; Примерный бесконтактный переключатель зажигания в соответствии с изобретением включает в себя: по меньшей мере, один элемент привода датчика; датчик, расположенный на расстоянии от исполнительного элемента датчика, причем датчик сконфигурирован так, чтобы обеспечивать выходной сигнал в ответ на положение исполнительного элемента датчика; и схему управления для обеспечения вывода состояния зажигания в ответ на вывод.Приводной элемент датчика может быть магнитом, а датчик может быть датчиком Холла.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

& lsqb; 0008 & rsqb; Преимущества настоящего изобретения будут очевидны из следующего подробного описания примерных вариантов его осуществления, которое следует рассматривать вместе с прилагаемыми чертежами, на которых:

& lsqb; 0009 & rsqb; ИНЖИР. 1 — блок-схема примерной системы бесконтактного переключателя зажигания в соответствии с настоящим изобретением;

& lsqb; 0010 & rsqb; ИНЖИР.2 — принципиальная схема примерного варианта бесконтактного переключателя зажигания, использующего селективно намагниченный носитель и бесконтактные магнитные датчики;

& lsqb; 0011 & rsqb; ИНЖИР. 3 — покомпонентное изображение примерного бесконтактного переключателя зажигания в соответствии с изобретением;

& lsqb; 0012 & rsqb; ИНЖИР. 4 — вид сверху примерного селективно намагниченного носителя в соответствии с изобретением; и

& lsqb; 0013 & rsqb; ИНЖИР. 5 — примерная справочная таблица положений зажигания для различных положений бесконтактного переключателя зажигания.

ПОДРОБНОЕ ОПИСАНИЕ

& lsqb; 0014 & rsqb; Обращаясь к фиг. 1 проиллюстрирована блок-схема системы 100 бесконтактного переключателя зажигания в соответствии с настоящим изобретением. Бесконтактный держатель 102 может быть соединен с обычным выключателем зажигания. Бесконтактный датчик 104 может быть расположен рядом с бесконтактным держателем. Когда пользователь переключает устройство ввода в различные положения управления, бесконтактный держатель 102 задействуется для перемещения на соответствующую величину.Бесконтактный датчик 104 предназначен для обнаружения относительного движения бесконтактного держателя 102 и для отправки соответствующих сигналов контроллеру 106. Источник 108 питания, например аккумуляторная батарея транспортного средства, обеспечивает питание контроллера 106 и подает соответствующее питание. схемы по мере необходимости. Когда устройство ввода переводится либо в положение пуска, либо в положение работы, соответствующие реле 110 пуска и пуска соответственно активируются для запуска и работы двигателя.

& lsqb; 0015 & rsqb; Преимущественно бесконтактный датчик (и) 104 положения и бесконтактный держатель 102 не соединены металлическими контактами, так что они более непроницаемы для загрязнений.В одном варианте осуществления датчик может быть одним или множеством магнитных датчиков, таких как датчики Холла, а бесконтактный носитель 102 может быть селективно намагниченным кодировщиком. Датчики Холла расположены так, чтобы определять изменяющийся магнитный поток, создаваемый движением держателя 102. Можно использовать один или несколько датчиков Холла.

& lsqb; 0016 & rsqb; Однако специалисты в данной области техники поймут, что можно использовать множество средств восприятия. Например, оптические, магниторезистивные, феррозащитные датчики и т. Д.может быть полезным в связи с датчиком в соответствии с настоящим изобретением. Другие датчики, такие как датчики скорости, например, обычные электрические, электрооптические, известны в данной области техники, и датчики тока могут использоваться для подачи дополнительных сигналов на контроллер 106 с подробным описанием текущих рабочих условий носителя 102. Кроме того, другой носитель и датчик комбинации, включающие в себя индуктивные или оптические системы, могут использоваться без выхода за рамки настоящего изобретения.

& lsqb; 0017 & rsqb; Обращаясь к фиг.2 проиллюстрирована принципиальная схема одного примерного варианта бесконтактного выключателя зажигания, использующего магнитные датчики, такие как датчики Холла. Специалисты в данной области техники распознают множество конфигураций, которые могут использоваться в бесконтактном переключателе зажигания в соответствии с настоящим изобретением. Следовательно, следует понимать, что описанные здесь варианты осуществления описаны в качестве иллюстрации, а не ограничения.

& lsqb; 0018 & rsqb; В показанном на фиг.2 используются два датчика Холла 202 и 204. Опять же, один или несколько датчиков Холла могут использоваться в зависимости от системных требований. Преимущественно такие датчики 202 и 204 Холла могут быть оснащены функцией режима ожидания. Такая функция позволяет снизить рассеиваемую мощность и использовать регулируемое напряжение питания.

& lsqb; 0019 & rsqb; Носитель 206 может быть избирательно намагничен, так что датчики 202 и 204 Холла выдают высокий или низкий сигнал в зависимости от относительной ориентации держателя 206 относительно датчиков Холла.В проиллюстрированном варианте осуществления проиллюстрированы три функции, соответствующие трем различным состояниям для двух датчиков Холла 202 и 204. Если на выходе первого датчика Холла 202 высокий уровень, а на выходе второго датчика Холла 204 высокий уровень, результирующая функция управления отключается, что соответствует входному положению переключателя зажигания. Низкий выходной сигнал и высокий выходной сигнал от первого 202 и второго 204 датчиков Холла приводят к функции управления «зажиганием», а аналогичные низкие выходные сигналы от первого и второго датчика Холла приводят к функции управления «запуском».Специалисты в данной области техники поймут, что любое разнообразие состояний может использоваться для достижения множества функций управления в зависимости от системных требований, не выходя за пределы объема настоящего изобретения.

& lsqb; 0020 & rsqb; Выходные сигналы 208 и 210 от датчиков Холла 202 и 204 вводятся в различные схемы цифрового логического управления. Различные вентили ИЛИ-НЕ или некоторая другая комбинация логических вентилей могут использоваться для создания требуемых управляющих сигналов и схем управления, таких как схема 212 драйвера зажигания или запуска и схема 214 запуска.Такие схемы управления приводят в действие соответствующие реле стартера и работы 218.

& lsqb; 0021 & rsqb; Преимущественно примерный бесконтактный переключатель зажигания может также напрямую переключать катушки зажигания, не требуя релейного интерфейса с катушками зажигания и вспомогательными катушками. Это снижает стоимость и повышает надежность. Кроме того, низкое напряжение около 0,5 В может быть необходимо только для цепей выходного переключателя.

& lsqb; 0022 & rsqb; Такая примерная система также обеспечивает защиту от быстрых ручных манипуляций.Например, для некоторых обычных переключателей зажигания обычно требуется, чтобы переключатель был повторно переключен в выключенное положение, чтобы снова включить функцию запуска. Однако, быстро выключив, а затем снова включив выключатель, функцию запуска можно снова включить, даже если двигатель все еще работает. Примерная система защищает от таких манипуляций, поскольку чувствительный механизм основан на бесконтактных датчиках, а не на металлических контактах.

& lsqb; 0023 & rsqb; Источник 220 питания может включать в себя аккумулятор 219.Преимущественно источник 220 питания может также включать в себя схему защиты от обратного напряжения и / или схему защиты от перенапряжения, обеспечивающую защиту от короткого замыкания батареи 219. Источник 220 питания обеспечивает необходимую мощность для выполнения необходимых функций, таких как запуск двигатель.

& lsqb; 0024 & rsqb; Обращаясь к фиг. 3 проиллюстрировано изображение в разобранном виде примерного бесконтактного переключателя 300 зажигания в соответствии с настоящим изобретением. Вариант исполнения на фиг.3 использует селективно намагниченный кодер или держатель 302. Различные бесконтактные или магнитные датчики, например датчики Холла, определяют относительное положение держателя 302. Бесконтактная схема 304 обеспечивает соединение с контроллером для выполнения различных функций в зависимости от получены сигналы от датчиков. Функции могут включать, например, функции управления, запуска или запуска.

& lsqb; 0025 & rsqb; Обращаясь к фиг. 4 проиллюстрирован примерный носитель 402. Носитель избирательно намагничивается в различных областях, так что связанные магнитные датчики могут выборочно выводить высокий или низкий сигнал в зависимости от относительного положения носителя 402.Следовательно, по мере вращения держателя 402 различные магнитные области вращаются на соответствующую величину, и выборочно размещенные магнитные датчики обнаруживают результирующее изменение магнитного потока и выдают соответствующие высокие или низкие сигналы. Следовательно, комбинация держателя 402 и датчика предоставляет информацию о положении контроллеру и, следовательно, соответствующие операции переключения выходов.

& lsqb; 0026 & rsqb; Кроме того, носитель 402 может быть избирательно намагничен в любом количестве конфигураций в зависимости от системных требований.Можно использовать несколько выходов для каждого положения переключателя. Например, положение выключения может быть настроено для обеспечения напряжения батареи и управления аксессуарами. Каждая другая позиция, такая как позиция запуска или начала, может аналогичным образом иметь несколько выходов. Селективно намагниченный носитель 402 может также иметь селективную северную и южную намагниченность на различных намагниченных полосках.

& lsqb; 0027 & rsqb; Во время работы, когда пользователь бензинового или дизельного двигателя перемещает переключатель зажигания между различными положениями, такими как положения управления, работы или запуска, водило 402 перемещается на соответствующее расстояние.Это движение может быть вращательным движением, как в проиллюстрированном варианте осуществления, или любым другим относительным движением, таким как линейное движение. Датчики обнаруживают это движение и предоставляют контроллеру данные о положении.

& lsqb; 0028 & rsqb; Информация о положении, вводимая с бесконтактных датчиков, может использоваться для создания примерной справочной таблицы 500, как проиллюстрировано на фиг. 5. В примерной справочной таблице 500 есть четыре положения, которые может активировать переключатель зажигания. Это положение аксессуара 502, элемента управления 504, хода 506 и начала 508.Когда водило 402 повернуто на минус 40 градусов, вспомогательное положение находится на 510. Когда водило 402 находится в начальном положении или положении 0 градусов, контрольное положение 504 находится на 512. Аналогично, когда водило повернуто на плюс Положение 40 градусов, рабочее положение 514 включено, и, наконец, когда носитель повернут на полный или плюс 82 градуса, начальное положение включено.

& lsqb; 0029 & rsqb; Когда водило 402 поворачивается к другим более узким зонам 518, 520, 522 и 524 относительно его начального положения или положения 0 градусов, управляемому двигателю может быть разрешено включиться только один раз.Когда держатель 402 поворачивается к другим узким зонам 526, ему может быть разрешено включиться.

& lsqb; 0030 & rsqb; Однако варианты осуществления, которые были описаны здесь, являются лишь некоторыми из нескольких, в которых используется это изобретение, и изложены здесь для иллюстрации, но не для ограничения. Очевидно, что многие другие варианты осуществления, которые будут очевидны специалистам в данной области техники, могут быть выполнены без существенного отклонения от сущности и объема изобретения, определенных в прилагаемой формуле изобретения.

Блок зажигания (системы TCI и CDI) | Мотоциклетные изделия

  • TCI и CDI
  • Блок зажигания для мотоциклов

Блок зажигания — это компонент, который охватывает последнюю часть процесса зажигания и сжигания топлива, подаваемого в цилиндр (цилиндры) двигателя.

Использование и совместимость

Использование Зажигание двигателя
Совместимые продукты Мотоциклы, малые универсальные двигатели и судовые двигатели

Продукты

Система зажигания с транзисторным управлением (TCI)

Когда транзистор включен, ток проходит через первичную обмотку катушки зажигания (далее катушка) от батареи для хранения энергии.И когда транзистор выключен, ток отключается, вызывая внезапное изменение тока, генерируя высокое напряжение на вторичной стороне катушки и инициируя зажигание.

Характеристики
  • Зажигание возможно даже без подключения аккумулятора
  • Встраиваемый электролитический конденсатор для кикстарта
  • Совместим со всеми типами управления, такими как зажигание и нагрузка автомобиля, управляемая бортовым процессором
  • Структура цепи TCI

CDI (воспламенитель разряда конденсатора)

Конденсатор заряжается через прямое соединение с напряжением от ACG или батареи, или напряжение увеличивается для зарядки конденсатора.Заряженная электрическая нагрузка полностью разряжается, создавая высокое напряжение на вторичной стороне катушки, инициируя воспламенение и горение.

Характеристики
  • Зажигание возможно даже без подключения аккумулятора
  • Устойчивое зажигание возможно до высоких оборотов
  • Встраиваемый электролитический конденсатор для кикстарта
  • Совместим со всеми типами управления, такими как зажигание и нагрузка автомобиля, управляемая бортовым процессором
  • Использование собственных повышающих трансформаторов, диодов и тиристоров для обеспечения высокой надежности при низкой стоимости
  • Структура схемы CDI
Принципы работы системы зажигания магнето поршневого двигателя самолета

В магнето, особом типе генератора переменного тока с приводом от двигателя, в качестве источника энергии используется постоянный магнит.Благодаря использованию постоянного магнита (основное магнитное поле), катушки с проводом (сосредоточенные отрезки проводника) и относительного движения магнитного поля в проводе генерируется ток. Сначала магнето вырабатывает электроэнергию за счет вращения двигателя постоянного магнита и протекания тока в обмотках катушки. Когда ток течет через обмотки катушки, он создает собственное магнитное поле, которое окружает обмотки катушки. В нужное время этот ток останавливается, магнитное поле схлопывается во втором наборе обмоток катушки, и генерируется высокое напряжение.Это напряжение, используемое для образования дуги в промежутке свечи зажигания. В обоих случаях для выработки высокого напряжения, которое заставляет искру прыгать через зазор свечи зажигания в каждом цилиндре, необходимы три основных элемента, необходимых для выработки электроэнергии. Работа магнето синхронизируется с двигателем, так что искра возникает только тогда, когда поршень находится в правильном ходе при определенном количестве градусов коленчатого вала до положения поршня в верхней мертвой точке.

Теория работы высоковольтной магнитной системы

Магнито-система высокого напряжения может быть разделена для целей обсуждения на три отдельные цепи: магнитную, первичную электрическую и вторичную электрические цепи.


Магнитная цепь

Магнитная цепь состоит из постоянного многополюсного вращающегося магнита, сердечника из мягкого железа и полюсных наконечников. [Рис. 1] Магнит соединен с двигателем самолета и вращается в зазоре между двумя полюсными наконечниками, создавая магнитные силовые линии (поток), необходимые для создания электрического напряжения. Полюса магнита расположены с чередующейся полярностью, так что поток может проходить от северного полюса через сердечник катушки и обратно к южному полюсу магнита.Когда магнит находится в положении, показанном на Рисунке 1A, количество магнитных силовых линий, проходящих через сердечник катушки, является максимальным, потому что два магнитно противоположных полюса идеально выровнены с полюсными наконечниками.

Рисунок 1. Магнитный поток в трех положениях вращающегося магнита

Это положение вращающегося магнита называется положением полного регистра и создает максимальное количество магнитных силовых линий, поток потока по часовой стрелке через магнитную цепь и слева направо через сердечник катушки.Когда магнит перемещается из положения полного регистра, величина магнитного потока, проходящего через сердечник катушки, начинает уменьшаться. Это происходит из-за того, что полюса магнита удаляются от полюсных наконечников, позволяя некоторым линиям потока проходить более короткий путь через концы полюсных наконечников.

По мере того, как магнит перемещается дальше от положения полного регистра, через концы полюсных наконечников закорачивается больше линий магнитного потока. Наконец, в нейтральном положении 45 ° от положения полного регистра все магнитные линии закорочены, и поток через сердечник катушки не протекает.[Рисунок 1B] По мере того, как магнит перемещается из полного регистра в нейтральное положение, количество магнитных линий через сердечник катушки уменьшается таким же образом, как и постепенное схлопывание магнитного потока в магнитном поле обычного электромагнита.

Нейтральное положение магнита — это когда один из полюсов магнита находится по центру между полюсными наконечниками магнитной цепи. Когда магнит перемещается по часовой стрелке из этого положения, магнитные линии, которые были закорочены через концы полюсных башмаков, снова начинают протекать через сердечник катушки.Но на этот раз магнитные линии проходят через сердечник катушки в противоположном направлении. [Рисунок 1C] Поток магнитного потока меняется на противоположный, когда магнит движется из нейтрального положения, потому что северный полюс вращающегося постоянного магнита находится напротив правого полюсного наконечника, а не левого. [Рисунок 1A]

Когда магнит снова перемещается на 90 °, достигается другое положение полного регистра с максимальным потоком потока в противоположном направлении. Ход магнита на 90 ° показан на рисунке 2, где кривая показывает, как плотность потока в сердечнике катушки без первичной катушки вокруг сердечника изменяется при вращении магнита.

Рисунок 2. Изменение плотности магнитного потока при вращении магнита

На рисунке 2 показано, что когда магнит перемещается из положения полного регистра 0 °, поток уменьшается и достигает нулевого значения, когда он перемещается в нейтральное положение 45 °. Пока магнит движется через нейтральное положение, поток потока меняется на противоположный и начинает увеличиваться, как показано кривой под горизонтальной линией. В положении 90 ° достигается другое положение максимального магнитного потока.Таким образом, на один оборот на 360 ° четырехполюсного магнита есть четыре положения максимального магнитного потока, четыре положения нулевого потока и четыре реверсирования потока.

Это обсуждение магнитной цепи демонстрирует, как вращающийся магнит влияет на сердечник катушки. Он подвергается воздействию увеличивающегося и уменьшающегося магнитного поля и изменения полярности на каждые 90 ° хода магнита.

Когда катушка с проволокой как часть первичной электрической цепи магнето наматывается вокруг сердечника катушки, на нее также влияет переменное магнитное поле.

Первичная электрическая цепь

Первичная электрическая цепь состоит из набора точек контакта выключателя, конденсатора и изолированной катушки. [Рис. 3] Катушка состоит из нескольких витков толстого медного провода, один конец которого заземлен на сердечник катушки, а другой конец — на незаземленную сторону точек прерывателя. [Рис. 3] Первичная цепь замыкается только тогда, когда незаземленная точка выключателя контактирует с заземленной точкой выключателя. Третий блок в цепи, конденсатор (конденсатор), подключается параллельно с точками выключателя.Конденсатор предотвращает возникновение дуги в точках размыкания цепи и ускоряет разрушение магнитного поля вокруг первичной катушки.

Рисунок 3. Первичная электрическая цепь высоковольтного магнето

Первичный выключатель замыкается примерно в положении полного регистра. Когда точки прерывания замкнуты, первичная электрическая цепь замыкается, и вращающийся магнит индуцирует ток в первичной цепи.Этот поток тока генерирует собственное магнитное поле, направленное в таком направлении, что препятствует любому изменению магнитного потока контура постоянного магнита.

В то время как индуцированный ток протекает в первичной цепи, он препятствует любому уменьшению магнитного потока в сердечнике. Это соответствует закону Ленца, который гласит: «Индуцированный ток всегда течет в таком направлении, что его магнетизм противодействует движению или вызвавшему его изменению». Таким образом, ток, протекающий в первичной цепи, удерживает поток в сердечнике на высоком уровне в одном направлении до тех пор, пока вращающийся магнит не успеет повернуться через нейтральное положение в точку на несколько градусов дальше нейтрали.Это положение называется положением E-зазора (E означает эффективность).

Когда магнитный ротор находится в положении E-зазора, а первичная катушка удерживает магнитное поле магнитной цепи с противоположной полярностью, очень высокая скорость изменения магнитного потока может быть получена путем размыкания точек первичного прерывателя. Открытие точек прерывания останавливает прохождение тока в первичной цепи и позволяет магнитному ротору быстро изменять направление поля через сердечник катушки. Это внезапное изменение направления потока вызывает высокую скорость изменения магнитного потока в сердечнике, который пересекает вторичную катушку магнето (намотанную и изолированную от первичной катушки), вызывая импульс высоковольтного электричества во вторичной обмотке, необходимый для зажигания свеча зажигания.По мере того как ротор продолжает вращаться приблизительно до положения полного регистра, точки первичного прерывателя снова замыкаются, и цикл повторяется для зажигания следующей свечи зажигания в порядке зажигания. Теперь можно более подробно рассмотреть последовательность событий, чтобы объяснить, как возникает состояние экстремального магнитного напряжения.

С точками прерывания, кулачком и конденсатором, подключенными в цепь, как показано на рисунке 4, действие, которое происходит при вращении магнитного ротора, изображено кривой графика на рисунке 5.Вверху (A) рисунка 5 показана исходная кривая статического потока магнитов. Под кривой статического потока показана последовательность размыкания и замыкания точек магнитного выключателя. Обратите внимание, что открытие и закрытие точек выключателя синхронизируется кулачком выключателя. Точки закрываются, когда через сердечник катушки проходит максимальное количество магнитного потока, и открываются в положении после нейтрали. Поскольку на кулачке имеется четыре выступа, точки прерывателя замыкаются и размыкаются одинаково для каждого из четырех нейтральных положений магнита ротора.Также примерно равны интервалы открытия и закрытия точки.

Рисунок 4. Компоненты цепи магнето высокого напряжения
Рисунок 5. Кривые магнитного потока

Начиная с положения максимального магнитного потока, обозначенного 0 ° в верхней части рисунка 5, происходит последовательность событий, описанных в следующих параграфах.

Когда магнитный ротор поворачивается в нейтральное положение, величина магнитного потока, проходящего через сердечник, начинает уменьшаться. [Рис. 5D] Это изменение магнитных потоков индуцирует ток в первичной обмотке. [Рис. 5C] Этот индуцированный ток создает собственное магнитное поле, которое противодействует изменению потоковых связей, вызывающих ток. При отсутствии тока, протекающего в первичной катушке, поток в сердечнике катушки уменьшается до нуля, когда магнитный ротор поворачивается в нейтральное положение и начинает увеличиваться в противоположном направлении (пунктирная кривая статического потока на рисунке 5D).Но электромагнитное действие первичного тока предотвращает изменение потока и временно удерживает поле вместо того, чтобы позволить ему измениться (результирующая линия потока на рисунке 5D).

В результате процесса удержания в магнитной цепи возникает очень высокое напряжение к тому моменту, когда магнитный ротор достигает положения, при котором точки размыкания вот-вот откроются. При размыкании точки прерывателя работают вместе с конденсатором, прерывая ток в первичной обмотке, вызывая чрезвычайно быстрое изменение потоковых связей.Высокое напряжение во вторичной обмотке проходит через зазор в свече зажигания, воспламеняя топливно-воздушную смесь в цилиндре двигателя. Каждая искра фактически состоит из одного пикового разряда, после которого происходит серия небольших колебаний.



Они продолжаются до тех пор, пока напряжение не станет слишком низким для поддержания разряда. Ток течет во вторичной обмотке в течение времени, необходимого для полного разряда искры. К моменту замыкания контактов энергия или напряжение в магнитной цепи полностью рассеиваются для образования следующей искры.Узлы прерывателя, используемые в системах магнитного зажигания высокого напряжения, автоматически размыкают и замыкают первичный контур в нужное время в зависимости от положения поршня в цилиндре, в который подается искра зажигания. Прерывание первичного тока достигается через пару точек контакта прерывателя, сделанных из сплава, который сопротивляется точечной коррозии и горению.

Большинство прерывателей, используемых в системах зажигания самолетов, относятся к бесшарнирному типу, в которых одна из точек прерывателя является подвижной, а другая — неподвижной.[Рисунок 6] Подвижная точка прерывателя, прикрепленная к пластинчатой ​​пружине, изолирована от корпуса магнето и соединена с первичной обмоткой. [Рис. 6] Стационарная точка прерывателя заземлена на корпус магнето для замыкания первичной цепи, когда точки замкнуты, и может быть отрегулирована так, чтобы точки могли размыкаться в нужное время.

Рисунок 6. Бесшпиндельный выключатель в сборе и кулачок

Другой частью узла прерывателя является толкатель кулачка, который подпружинен против кулачка металлической пластинчатой ​​пружиной.Кулачковый толкатель представляет собой блок Micarta или аналогичный материал, который движется по кулачку и движется вверх, чтобы оттеснить подвижный контакт прерывателя от неподвижного контакта прерывателя каждый раз, когда выступ кулачка проходит под толкателем. На нижней стороне металлической рессоры расположена войлочная масленка для смазки и предотвращения коррозии кулачка.

Кулачок включения прерывателя может приводиться в движение непосредственно валом ротора магнето или через зубчатую передачу от вала ротора. В большинстве больших радиальных двигателей используется компенсированный кулачок, предназначенный для работы с конкретным двигателем и имеющий по одному выступу для каждого цилиндра, который запускается магнето.Лепестки кулачков шлифуются на станке с неравными интервалами, чтобы компенсировать эллиптическую траекторию шарнирных шатунов. Этот путь вызывает изменение положения верхней мертвой точки поршней от цилиндра к цилиндру в отношении вращения коленчатого вала. Компенсированный 14-лепестковый кулачок вместе с двух-, четырех- и восьмилепестковым некомпенсированным кулачком показан на Рисунке 7.

Рис. 7. Типовые узлы выключателя

Неравномерный интервал компенсированных кулачков кулачка, хотя и обеспечивает одинаковое относительное положение поршня для возникновения зажигания, вызывает небольшое изменение положения электронного зазора вращающегося магнита и, таким образом, небольшое изменение высоковольтных импульсов, генерируемых магнето.Так как расстояние между каждым выступом адаптировано к конкретному цилиндру конкретного двигателя, компенсированные кулачки отмечены, чтобы показать серию двигателя, расположение главных стержней, выступ, используемый для синхронизации магнето, направление вращения кулачка и спецификация E-зазора в градусах относительно нейтрали вращения магнита. В дополнение к этим отметкам на лицевой стороне кулачка прорезается ступенька, которая при совмещении с отметками на корпусе магнето помещает вращающийся магнит в положение E-зазора для синхронизирующего цилиндра.Поскольку точки прерывателя должны начать открываться, когда вращающийся магнит перемещается в положение E-зазора, совмещение ступеньки на кулачке с метками на корпусе обеспечивает быстрый и простой метод определения точного положения E-зазора для проверки и регулировки. точки прерывания.

Вторичная электрическая цепь

Вторичный контур содержит вторичные обмотки катушки, ротор распределителя, крышку распределителя, провод зажигания и свечу зажигания. Вторичная обмотка состоит из обмотки, содержащей примерно 13 000 витков тонкого изолированного провода; один конец которого электрически заземлен с первичной обмоткой или с сердечником обмотки, а другой конец подсоединен к ротору распределителя.Первичная и вторичная обмотки заключены в непроводящий материал. Затем весь узел крепится к полюсным наконечникам винтами и зажимами.

Когда первичная цепь замкнута, ток, протекающий через первичную катушку, создает магнитные силовые линии, которые пересекают вторичные обмотки, создавая электродвижущую силу. Когда ток в первичной цепи прекращается, магнитное поле, окружающее первичные обмотки, схлопывается, в результате чего вторичные обмотки перерезаются силовыми линиями.Сила напряжения, индуцированного во вторичных обмотках, когда все остальные факторы постоянны, определяется количеством витков провода. Поскольку у большинства высоковольтных магнето есть много тысяч витков провода во вторичной обмотке катушки, во вторичной цепи генерируется очень высокое напряжение, часто достигающее 20 000 вольт. Наведенное во вторичной обмотке высокое напряжение направляется к распределителю, который состоит из двух частей: вращающейся и неподвижной. Вращающаяся часть называется ротором распределителя, а неподвижная часть — блоком распределителя.Вращающаяся часть, которая может принимать форму диска, барабана или пальца, изготовлена ​​из непроводящего материала со встроенным проводником. Стационарная часть состоит из блока, также сделанного из непроводящего материала, который содержит клеммы и клеммные колодки, в которые крепится проводка провода зажигания, соединяющая распределитель со свечой зажигания. Это высокое напряжение используется для перепрыгивания через воздушный зазор электродов свечи зажигания в цилиндре для воспламенения топливно-воздушной смеси.

Когда магнит перемещается в положение E-зазора для No.1 цилиндр и точки прерывания просто разделяются или открываются, ротор распределителя совмещается с электродом № 1 в блоке распределителя. Вторичное напряжение, индуцируемое при размыкании точек прерывателя, попадает в ротор, где образует небольшой воздушный зазор с электродом № 1 в блоке.

Поскольку распределитель вращается с половинной частотой вращения коленчатого вала на всех четырехтактных двигателях, блок распределителя имеет столько же электродов, сколько цилиндров двигателя, или столько же электродов, сколько цилиндров, обслуживаемых магнето.Электроды расположены по окружности вокруг распределительного блока, так что, когда ротор вращается, цепь замыкается на другой цилиндр и свечу зажигания каждый раз, когда происходит совмещение между пальцем ротора и электродом в распределительном блоке. Электроды распределительного блока пронумерованы последовательно в направлении движения ротора распределителя. [Рисунок 8]

Рис. 8. Связь между номерами клемм распределителя и номерами цилиндров

Номера распределителей представляют собой порядок зажигания магнето, а не номера цилиндров двигателя.Электрод-распределитель с маркировкой «1» подключается к свече зажигания в цилиндре №1; электрод-распределитель с пометкой «2» ко второму зажигающемуся цилиндру; распределительный электрод с пометкой «3» к третьему цилиндру, который будет поджигаться, и так далее.

На рисунке 8 палец ротора распределителя совмещен с электродом распределителя, обозначенным «3», который запускает цилиндр № 5 девятицилиндрового радиального двигателя. Поскольку порядок зажигания девятицилиндрового радиального двигателя составляет 1-3-5-7-9-2-4-6-8, третий электрод в порядке зажигания магнето обслуживает электрод №5 цилиндр.

Магнето и вентиляция распределителя

Поскольку узлы магнето и распределителя подвержены резким перепадам температуры, при их проектировании учитываются проблемы конденсации и влаги. Влага в любом виде — хороший проводник электричества. При поглощении непроводящим материалом в магнето, таким как распределительные блоки, распределительные пальцы и корпуса катушек, он может создать паразитный электрический проводящий путь. Ток высокого напряжения, который обычно проходит через воздушные зазоры распределителя, может мигать через влажную изолирующую поверхность на землю, или ток высокого напряжения может быть направлен неверно на какую-то свечу зажигания, отличную от той, которая должна зажигаться.Это состояние называется пробоем и обычно приводит к пропускам зажигания в цилиндре. Это может вызвать серьезное состояние двигателя, называемое преждевременным зажиганием, которое может привести к его повреждению. По этой причине змеевики, конденсаторы, распределители и роторы распределителей покрыты воском, так что влага на таких блоках выделяется отдельными каплями и не образует замкнутый контур для перекрытия.

Пробой может привести к слежению за углеродом, которое проявляется в виде тонкой карандашной линии на устройстве, поперек которой происходит пробой. Углеродный след возникает в результате сжигания электрической искрой частиц грязи, содержащих углеводородные материалы.Вода в углеводородном материале испаряется во время пробоя, оставляя углерод, который образует проводящий путь для тока. Когда влаги больше нет, искра продолжает идти по углеродистой дорожке к земле. Это предотвращает попадание искры на свечу зажигания, поэтому цилиндр не загорается.

Магнето не может быть герметично закрыто, чтобы предотвратить попадание влаги в устройство, потому что магнито подвержено изменениям давления и температуры на высоте. Таким образом, адекватный дренаж и надлежащая вентиляция снижают склонность к перекрытию и слежению за углеродом.Хорошая магнито-циркуляция также обеспечивает унос агрессивных газов, образующихся в результате нормального образования дуги через воздушный зазор распределителя, таких как озон. В некоторых установках герметизация внутренних компонентов магнето и других различных частей системы зажигания является существенной для поддержания более высокого абсолютного давления внутри магнето и устранения пробоя из-за полета на большой высоте. Этот тип магнето используется в двигателях с турбонаддувом, которые работают на больших высотах. Вероятность возникновения пробоев на большой высоте выше из-за более низкого давления воздуха, что облегчает прохождение электричества через воздушные промежутки.Путем повышения давления внутри магнето поддерживается нормальное давление воздуха, а электричество или искра удерживаются в соответствующих областях магнето, даже если окружающее давление очень низкое.

Даже в находящемся под давлением магнето воздух может проходить через корпус магнето и выходить из него. За счет подачи большего количества воздуха и выпуска небольшого количества воздуха для вентиляции магнето остается под давлением. Независимо от используемого метода вентиляции, воздухоотводчики или клапаны не должны иметь препятствий.Кроме того, воздух, циркулирующий через компоненты системы зажигания, должен быть свободен от масла, поскольку даже незначительное количество масла на деталях зажигания приводит к перекрытию и отслеживанию нагара.

Жгут зажигания

Провод зажигания направляет электрическую энергию от магнето к свече зажигания. Жгут проводов зажигания содержит изолированный провод для каждого цилиндра, который магнето обслуживает в двигателе. [Рис. 9] Один конец каждого провода подсоединяется к блоку распределителя магнето, а другой конец подсоединяется к соответствующей свече зажигания.Жгуты проводов зажигания служат двойной цели. Он обеспечивает проводящий путь для высокого напряжения к свече зажигания. Он также служит экраном для рассеянных магнитных полей, которые окружают провода, поскольку они на мгновение переносят ток высокого напряжения. Проводя эти магнитные силовые линии к земле, жгут проводов зажигания снижает электрические помехи для радио самолета и другого электрически чувствительного оборудования.

Рисунок 9.Жгут зажигания высокого напряжения

Магнито — это устройство, излучающее высокочастотное излучение (радиоволны) во время его работы. Волновые колебания, создаваемые в магнето, неконтролируемы, охватывают широкий диапазон частот и должны быть экранированы. Если бы провода магнето и зажигания не были экранированы, они образовали бы антенны и улавливали бы случайные частоты от системы зажигания. Свинцовая защита представляет собой оплетку из медной сетки, которая окружает поводок по всей длине.Свинцовая защита предотвращает излучение энергии в окружающую среду.

Емкость — это способность сохранять электростатический заряд между двумя проводящими пластинами, разделенными диэлектриком. Свинцовая изоляция называется диэлектриком, что означает, что она может накапливать электрическую энергию в виде электростатического заряда. Примером накопления электростатической энергии в диэлектрике является статическое электричество, накопленное в пластиковом гребне для волос. Когда вокруг провода зажигания помещается экран, емкость увеличивается за счет сближения двух пластин.Электрически провод зажигания действует как конденсатор и имеет способность поглощать и накапливать электрическую энергию. Магнето должно производить достаточно энергии, чтобы зарядить емкость, вызванную проводом зажигания, и иметь достаточно энергии, чтобы зажечь свечу.
Емкость выводов зажигания увеличивает электрическую энергию, необходимую для образования искры в зазоре свечи. Для зажигания вилки с экранированным проводом требуется больший первичный ток магнето. Эта емкостная энергия разряжается в виде пламени через зазор свечи после каждого зажигания свечи.Путем изменения полярности во время обслуживания путем поворота свечей в новые места износ свечей выравнивается на электродах. В самом центре провода зажигания находится высоковольтный носитель, окруженный силиконовым изоляционным материалом, который окружен металлической сеткой или экраном, покрытым тонким покрытием из силиконовой резины, которое предотвращает повреждение двигателя из-за тепла, вибрации или погодных условий.

Вид в разрезе типичного провода зажигания показан на рисунке 10. Провода зажигания должны быть проложены и закреплены правильно, чтобы избежать горячих точек на выхлопе и точек вибрации, когда провода проложены от магнето к отдельным цилиндрам.Провода зажигания обычно являются всепогодными, жестко соединены с распределителем магнето и прикреплены к свече зажигания с помощью резьбы. Клемма свечи зажигания с экранированным проводом зажигания доступна для любых погодных условий с диаметром цилиндра 3/4 дюйма и цилиндрической гайкой зажигания диаметром 5/8 дюйма. [Рис. 11] Для заглушки 5/8–24 нужен ключ 3/4 на ходовой гайке, а для заглушки 3/4–20 — гаечный ключ 7/8 на ходовой гайке. В конструкции 3/4 дюйма, предназначенной для любых погодных условий, используется клеммное уплотнение, обеспечивающее лучшую изоляцию клеммной колодки.Это рекомендуется, поскольку вывод свечи зажигания полностью защищен от влаги.

Рис. 10. Провод зажигания

Рис. 11. Вывод зажигания Конец свечи зажигания

Жгут проводов зажигания более старого типа для радиального двигателя представляет собой коллектор, предназначенный для размещения вокруг картера двигателя с гибкими удлинителями, заканчивающимися на каждой свече зажигания.Типичный высоковольтный жгут зажигания показан на Рисунке 12. Многие старые однорядные системы зажигания самолетов с радиальным двигателем используют систему двойного магнето, в которой правый магнето подает электрическую искру для передних свечей в каждом цилиндре, а левый. магнето зажигает задние свечи.

Рис. 12. Жгут проводов зажигания девятицилиндрового двигателя, устанавливаемый на аксессуарах

Выключатели зажигания

Все блоки в системе зажигания самолета управляются выключателем зажигания.Тип используемого переключателя зависит от количества двигателей на самолете и типа используемых магнето. Однако все переключатели включают и выключают систему примерно одинаково. Выключатель зажигания отличается по крайней мере в одном отношении от всех других типов выключателей: когда выключатель зажигания находится в выключенном положении, цепь замыкается через выключатель на массу. В других электрических переключателях выключенное положение обычно размыкает или размыкает цепь.

Выключатель зажигания имеет одну клемму, подключенную к первичной электрической цепи между катушкой и точками контакта выключателя.Другой вывод переключателя подключен к наземной конструкции самолета. Как показано на Рисунке 13, замкнуть первичный контур можно двумя способами:

  1. Через замкнутый выключатель указывает на массу и
  2. Через замкнутый ключ зажигания на массу

Рис. 13. Типовой выключатель зажигания в выключенном положении


На рис. 13 показано, что первичный ток не прерывается при размыкании контактов выключателя, поскольку еще есть путь к заземлению через замкнутый или выключенный переключатель зажигания.Поскольку первичный ток не прекращается, когда контактные точки размыкаются, не может быть внезапного схлопывания магнитного поля первичной катушки и высокого напряжения, индуцированного во вторичной катушке, чтобы зажечь свечу зажигания.

Когда магнит вращается за положение электрического зазора (E-зазора), происходит постепенный пробой поля первичного магнитного потока. Но этот пробой происходит так медленно, что индуцированное напряжение становится слишком низким для зажигания свечи зажигания. Таким образом, когда ключ зажигания находится в выключенном положении с замкнутым переключателем, точки контакта так же полностью закорочены, как если бы они были удалены из цепи, и магнето не работает.

Когда переключатель зажигания помещается в положение «включено», выключатель разомкнут, прерывание первичного тока и быстрое падение магнитного поля первичной катушки снова контролируются или запускаются размыканием точек контакта выключателя. [Рис. 14] Когда переключатель зажигания находится в положении «включено», переключатель абсолютно не влияет на первичный контур.

Рис. 14. Типичный выключатель зажигания в положении «включено»


Выключатель зажигания / стартера или выключатель магнето управляет включением и выключением магнето, а также может подключать соленоид стартера для включения стартера.Когда пусковой вибратор, коробка, излучающая пульсирующий постоянный ток (DC), используется на двигателе, переключатель зажигания / стартера используется для управления вибратором и точками замедления. Эта система подробно описывается далее в этой главе. Некоторые переключатели зажигания и стартера имеют функцию включения зажигания во время цикла запуска. Эта система позволяет дополнительному топливу распыляться во впускной канал цилиндра во время цикла запуска.

Одинарная и двойная система высокого напряжения Magnetos

Магнето системы высокого напряжения, используемое в авиационных двигателях, представляет собой магнето одинарного или двойного типа.Конструкция с одним магнето включает в себя распределитель в корпусе с узлом выключателя магнето, вращающимся магнитом и катушкой. [Рис. 15] Двойной магнето включает в себя два магнето, размещенных в одном корпусе. Один вращающийся магнит и кулачок являются общими для двух наборов прерывателей и катушек. В магнето смонтированы два отдельных распределительных устройства. [Рисунок 16]

Рис. 15. Вырез магнето

Рисунок 16.Двойной магнето с двумя распределителями

Системы крепления магнето

Фланцевые магнето прикреплены к двигателю фланцем вокруг ведомого конца вращающегося вала магнето. [Рисунок 17] Удлиненные прорези на монтажном фланце позволяют регулировку в ограниченном диапазоне, чтобы помочь синхронизировать магнито с двигателем. Некоторые магнето крепятся за фланец и используют зажимы с каждой стороны, чтобы прикрепить магнето к двигателю. Эта конструкция также позволяет регулировать время.Установленные на основании магнето используются только на очень старых или старинных авиационных двигателях.

Рис. 17. Монтажный фланец магнето

Магнитная система низкого напряжения

Системы зажигания высокого напряжения претерпели множество доработок и улучшений в конструкции. Это включает в себя новые электронные системы, которые управляют не только зажиганием цилиндров. Высокое напряжение создает определенные проблемы с передачей высокого напряжения от магнето внутри и снаружи к свечам зажигания.В первые годы было трудно обеспечить изоляторы, которые могли бы удерживать высокое напряжение, особенно на больших высотах, когда давление воздуха было снижено. Еще одно требование к высоковольтным системам заключалось в том, чтобы всепогодные и радиооборудованные самолеты имели провода зажигания, закрытые экраном для предотвращения радиопомех из-за высокого напряжения. Многие самолеты были с турбонаддувом и эксплуатировались на повышенных высотах. Низкое давление на этих высотах могло бы позволить высоковольтной утечке еще больше.Для решения этих проблем были разработаны системы зажигания низкого напряжения.

Электронно система низкого напряжения отличается от системы высокого напряжения. В системе низкого напряжения низкое напряжение генерируется в магнето и течет к первичной обмотке катушки трансформатора, расположенной рядом со свечой зажигания. Там напряжение повышается до высокого за счет действия трансформатора и подводится к свече зажигания по очень коротким высоковольтным проводам. [Рисунок 18]

Рисунок 18.Упрощенная схема низковольтной системы зажигания

Система низкого напряжения практически исключает перекрытие как в распределителе, так и в жгуте проводов, поскольку воздушные зазоры внутри распределителя были устранены за счет использования распределителя щеточного типа, а высокое напряжение присутствует только в коротких проводах между трансформатором и искрой. затыкать.

Хотя определенная степень утечки электрического тока характерна для всех систем зажигания, она более выражена на радиоэкранированных установках, поскольку металлический кабелепровод находится под потенциалом земли и находится близко к проводам зажигания по всей их длине.Однако в системах низкого напряжения эта утечка значительно снижается, поскольку ток по большей части системы передается с потенциалом низкого напряжения. Хотя провода между катушками трансформатора и свечами зажигания низковольтной системы зажигания короткие, они являются высоковольтными проводниками высокого напряжения и подвержены тем же сбоям, что и в высоковольтных системах. Системы зажигания низкого напряжения имеют ограниченное применение в современных самолетах из-за превосходных материалов и защиты, доступных для создания выводов зажигания высокого напряжения, и дополнительной стоимости катушки для каждой свечи зажигания с системой низкого напряжения.


СВЯЗАННЫЕ ЗАПИСИ

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *