Выпускной коллектор что такое: Выпускной коллектор — Википедия – Что такое коллектор. Впускной и выпускной в устройстве автомобиля. Да все просто.

Что такое выпускной коллектор

Выпускной коллектор — это одна из частей навесного оборудования мотора (или ДВС), предназначенная для сбора выхлопных газов в одну трубу из нескольких цилиндров.

Строение выпускного коллектора

Выпускной колектор изготаливается, как правило, из чугуна. С одной стороны, он крепится к катализатору (или к выхлопной трубе), с другой — непосредственно к ДВС. Из-за особенности расположения коллектор работает в экстремальных условиях. В ходе работы ДВС выхлопные газы нагреваются до температуры в несколько тысяч градусов. После глушения мотора происходит достаточно скорое их охлаждение, что неминуемо приводит к образования конденсата. В результате на коллекторе быстро появляется ржавчина.

выпускной коллекторКакие функции выполняет выпускной коллектор:

— удаление из камеры сгорания выхлопных газов;
— наполнение и продув камеры сгорания. Это обеспечивают резонирующие волны выхлопа. Когда открывается впускной клапан, в коллекторе давление находится в пределах нормы, а в камере сгорания рабочая смесь находится под давлением. После того, как открылся выпускной клапан, из-за большой разницы давлений образуется волна. Она отражается от ближайшего препятствия (в обычных машинах это катализатор или резонатор) и возвращается к цилиндру. Затем, в среднем диапазоне оборотов эта волна подходит к цилиндру к началу такта выпуска, тем самым помогая покидать цилиндр следующей порции газов отработанных.

Резонанс (стоячие волны) появляются в трубе ДВС при достаточно широком диапазоне оборотов. При этом волна распространяется со скоростью выхода из цилинда, а не со скоростью звука. По этой причине, чем выше обороты ДВС, тем быстрее выходят газы, тем скорее возвращается и движется волна, успевающая к более короткому циклу.

выпускной коллектор паукДля создания благоприятных и одинаковых условий работы каждого цилиндра необходимо, чтобы для каждого цилиндра была персональная выпускная труба (для образования стоячих волн и разделения цилиндров).

Во избежание ожогов и для повышения пожарной безопасности выпускной коллектор, как правило, огораживают металлическим экраном.

Цельные или трубчатые коллекторы

Трубчатые коллекторы могут значительно улучшить мощность ДВС, но они не всегда являются наилучшим выбором для форсированного мотора. Хотя именно эти коллекторы более эффективны в средних диапазонах оборотах. Однако, если мотор работает с низкими оборотами, то хорошие рабочие характеристики могут дать коллекторы из чугуна (цельные). Они более компактны и менее склонны к появлению утечек.

выпускной коллектор своими рукамиАвтотюнинг и спорт

В сфере автотюнинга и автоспорта важное значение имеет выпускной коллектор. «Паук» — это название он получил за свой внешний вид. Иногда на гоночных машинах выпускной коллектор отсутствует — у каждого цилиндра есть своя выхлопная труба без глушителя и катализатора, определенной длины. Для автотюнинга сейчас выпускается множество моделей коллекторов с различными характеристиками, которые заметно влияют на работу двигателя. Также возможно сделать выпускной коллектор своими руками.

Практически все эти детали изготовлены из керамики или из нержавеющей стали. Выпускной коллектор из керамики более легкий, но при сильном нагреве на нем могут появиться трещины, которые негативно будут влиять на работу ДВС.

обзор материалов + сам процесс

Сварка выпускных коллекторов: классификация проблем выхлопной системы + алгоритм замены треснувшего коллекторы на новый + 3 способа сварки чугунного коллектора + 3 оптимальных вариации электродов для сварки + лучший вариант сварки выпускных коллекторов из нержавейки + анализ, можно ли сварить коллектор холодной сваркой.

Вопросы о коллекторах в сети довольно распространены, и касаются они автомобилей. Если мы говорим о транспорте, то здесь возможны 2 вариант коллекторов – впускной и выпускной.

Большим нагрузкам подвержен именно первый. Высокие температуры + остатки топлива буквально «прожигают» деталь, выводя ее из строя в транспортном средстве.

Как именно происходит сварка выпускных коллекторов + имеет ли смысл ее проводить вообще, мы рассмотрим в сегодняшней статье. Приступаем.

Что такое коллектор + причины его поломок


В системе автомобиля под коллектором подразумевают впускную или выпускную деталь, расположенную по обеим частям двигателя. Как правило, элементы не имеют точек соприкосновения, к тому же, в 90% случаев выполнены из различных сплавов металла.

Задачи коллектора определяются его типом:

  • впускной. Задача детали – это подвод и помощь в смешивании смеси топлива до того, как она попадет в цилиндры двигательной системы;
  • выпускной. Выполняет отводящую функцию, где в качестве транспортного сырья выступают сгоревшие газы. Отходы поступают сначала в катализатор, а потом подаются на глушитель.

Структура обоих типов коллекторов также имеет большое сходство – это от 2 до 6 трубок, объединённые в одну, которые «одеваются» на цилиндры двигателя. Число трубок зависит от числа цилиндров, а в 2020 году могут встречаться как старые модели (та же «ОКА») с 2 цилиндрами, или продвинутые американские бензинопожирающие «монстры» с 6-ю цилиндрами. По классике – это 4 цилиндра.

struktura-kollektorov-

struktura-kollektorov-

Фото впускного коллектора представлено выше. Его подключение происходит к системе по подаче топлива + воздуха. В верхней части детали будет расположена или заслонка дросселя, или карбюратор.


rabota-vypusknogo-kollektorarabota-vypusknogo-kollektora

Принцип работы выпускного коллектора:

  1. После поступления в двигатель топлива, клапаны закрываются.
  2. Происходит поджигание смеси свечей зажигания.
  3. Поршень смещается вниз благодаря получившейся взрывной силе.
  4. В работу вступают клапана на выпуске, которые отводят сгоревшие остатки топлива и газы в выпускной коллектор. К каждой трубе идет подвод коллектора, который в конце объединяет все ответвления в единое целое.
  5. Катализатор поджигает смесь из трубы.
  6. Горючие частички отправляются или в трубоотвод, или сразу в глушитель.
  7. Газы выходят во внешнюю среду.

Выходной коллектор + глушитель подавляют звуки от работы мотора, делая ход транспортного средства для окружающих, в звуковом плане, комфортным.


shema-vyhlopnoj-sistemy-avtoshema-vyhlopnoj-sistemy-avto

Важно: выпускной коллектор постоянно подвергается значительным температурным ударам – от 600 до 950 градусов по Цельсию. Логично предположить, что материал изготовления детали обязан иметь высокие показатели теплоустойчивости, а обеспечить это могут только тугоплавкие металлы.

Аналогичная ситуация и со сваркой. Если для залатывания коллектора будет использован низкокачественный материал, о долговечности проделанной работы не может быть и речи. В большинстве случаев отводящий коллектор дополняют специальным датчиком, который помогает отслеживать уровень кислорода в выхлопе. Он помогает корректировать состав топливной смеси, что подается в двигатель. Как итог – незримая взаимосвязь между составляющими системы.

Теперь поговорим о классификации проблем выхлопной системы.

ПроблемаОписание
КатализаторФильтр используется с целью задержки сажи, которая имеется в газах выхлопа. Из-за постоянного влияния высокой температуры и засорения, элементы детали плавятся крайне быстро. О неполадках сигнализирует отсутствие дыма из трубы, либо его слабое проявление с сизым оттенком.
Датчик кислородаПричин поломки может быть несколько – корпус разгерметизировался, перегрев, износ, отсутствие контакта по электрической цепи или банальное механическое повреждение.
ГофраЭлемент глушителя цилиндрообразной формы с гофрированной трубкой внутри и внешним покрытием из нержавейки. Благодаря эластичности детали, она поглощает колебания и защищает систему от разрыва. Поломка происходит, когда забит фильтр сажи + происходит резкий скачок давления.
РезонаторЧасто называют малым глушителем. Расположен перед своим старшим собратом. Возможная поломка – 1-2 элемента детали прогорели.
ГлушительПризнаки более чем говорящие – дребезжание в месте крепления системы, снижение мощности движка и громкое звуковое сопровождение.
Выпускной коллекторВозможные проблемы – разрыв патрубка или дырка в коллекторе. Признаком проблемы служит аромат выхлопных газов в помещении салона.

Оговоренные проблемы возникают из-за влияния химических веществ, которые содержаться в смесях, распространяемых во время гололедицы. Вторая причина – износ детали. Система постоянно находится под влиянием высоких температур. Плавление и прогорание ее компонентов не диковинка.

Сварка выпускных коллекторов собственноручно: особенности и рекомендации


В сути проблемы и ее возможных причинах разобрались. Теперь давайте решим вопрос ремонта выпускного коллектора. Единственный вариант решения проблемы – это сварка. Сама по себе конструкция детали не предусматривает возникновения других проблем, кроме как сквозные дырки или трещины по причине высоких температур и влияния агрессивных веществ. Второе решение – замена коллектора на новый самостоятельно или на станции технического обслуживания.

Сварка алюминия при помощи электрода

1) Как снять/установить выпускной коллектор в авто?

В зависимости от степени сложности проводимого ремонта, может возникнуть необходимость в покупке нового коллектора, ибо сварка обойдется по той же цене, а иногда даже дороже. Для большинства владельцев проще будет обратиться в СТО, но есть и категория автомобилистов, которые предпочитают производить мелкие ремонтные работы собственными руками.

zamena-starogo-kollektora

zamena-starogo-kollektora

Набор инструментов для замены старого коллектора на новый:

  • емкость, в которую можно слить жидкость для охлаждения;
  • ручной/гидравлический/пневматический или любой другой домкрат;
  • комплект ключей рожкового, накидного и торцового типов;
  • трещотка-ключ + набор насадок к нему + удлинитель;
  • плоская отвертка и крестовинка.

Покупая новый коллектор, в комплекте сразу нужно менять 2 типа прокладок – в связке коллектор/ГБЦ и коллектор/приемная трубка системы выпуска. О том, какой именно брать коллектор, скажет маркировка старого + проконсультироваться у продавца – это святое.

Алгоритм замены выхлопного коллектора:

  1. Предварительно изучаем технику безопасности при ремонте двигательной системы транспортных средств.
  2. Выключаем аккумулятор.
  3. Сливаем жидкость для охлаждения. Для этого потребуются перчатки из резины, гаечные ключи, чистая вода и емкость для слива (зайдет обычный тазик).
  4. zhidkost-dlja-ohlazhdenija

    zhidkost-dlja-ohlazhdenija
  5. В зависимости от наличия карбюратора, может потребоваться снятие ресивера инжектора. Вторая деталь к демонтажу – воздушный фильтр.
  6. Берем подходящий ключ и занимаемся выкруткой гаек/болтов в точках крепления коллектора к головкам блока цилиндров. Если речь идет о восьми клапанных двигателях, придется сначала снять впускной коллектор, потом только выпускной, ибо в таких системах крепления относятся к обоим типам детали.
  7. Занимаемся чисткой плоскости головок блоков цилиндров от остатков предыдущей прокладки. При существенных засорениях, можно воспользоваться наждачкой или напильником.
  8. Иногда приходится восстанавливать резьбу или устанавливать новые шпильки, что будут крепить коллектор.
  9. Ставим новые прокладки.
  10. Делаем установку нового впускного коллектора. Если это восьмиклапанный мотор, то параллельно устанавливаем и впускной коллектор, что снимали до этого.
  11. Закручиваем болты с гайками на ГБЦ.
  12. Соединяем коллектор с трубами системы выпуска и ставим новую прокладку. Гайки с болтами закручиваем не до конца.
  13. Проверяем верность установки деталей и сопровождающих прокладок и затягиваем болты с гайками.
  14. Фильтруем радиатор и заливаем в него новую жидкость для охлаждения.
  15. Подключаем аккумулятор.

Всего 14 шагов. Весь процесс может занять от 1 до 3 часов. Конечно же, если у человека все в порядке с прямотой рук. Если не уверены в своих способностях, лучше обратиться в сервисный центр. Дороже, но качественней.

2) Как происходит сварка выпускных коллекторов из чугуна?


Перед началом работы требуется определиться из какого материала изготовлен выпускной коллектор. Здесь 2 варианта – чугун или путем сварки труб из стальных сплавов с примесями для предотвращения коррозийных процессов. Чугунные детали более распространённые в рамках РФ, потому основной объем дальнейших пояснений будет именно о них.

Способы сварки при работе с чугуном:

  • Горячая технология. Когда заготовка разогревается до пиковой температуры от 600 до 660 градусов;
  • Полугорячая технология. Процесс сварки протекает при температурных условиях 300-350 градусов по Цельсию;
  • Холодная технология. Сварка производится в стандартных условиях, без какого-либо нагрева.

Последний вариант отличается методикой прокладки швов – короткие отрезки, на которые накладываются повторные слои. Такое подход позволяет избежать коробления материала выпускного коллектора.

Классификация типов сварки

ТипОсобенностиПопулярность (из 5 ★)
ГазоваяМетодика показывает одни из лучших результатов в работе с чугуном. Предотвращается большое выгорание углерода без потери качества в швах.★★★★
ПолуавтоматомОдно из условий успеха – качественная подготовка детали к сварке. Важно запомнить порядок выполнения действий во время процесса. Присадкой будет специализированные вариации проволоки.★★★
TIG-сваркаРучная сварка с применением неплавящегося электрода на основе вольфрама, где в качестве защитного газа используется аргон. Для обработки чугуна методика вполне приемлема.★★★★
ИнверторомТип ручной сварки с большим количеством предварительных работ, связанных с зачисткой поверхности места сварки выпускного коллектора, обезжириванием и углублением трещины до конусообразного вида расшивки. Сам процесс происходит слоями с опорой в качестве стальных шпилек.★★★★★

Если мы говорим о работе в домашних условиях, то единственный приемлемый вариант – холодная сварка инвертором. Из-за хрупкости чугуна, профаны не смогут качественно заделать даже мелкую трещину.

Что такое сварка MIG и MAG

Какие электроды использовать:

  • ОЗЧ 2 или 6. Электроды в основе которых медный стержень с обмазкой из порошкового железа;
  • железо + никель. Хорошая электродная связка для чугуна. Заходит для сварки при постоянном токе;
  • железо + никель + медь. Получаемые швы могут противостоять коррозийным атакам, и способны без последствий контактировать со средами агрессивного характера + горячими газами.

При выявлении трещины в выпускном коллекторе, не советуется ожидать пока та приведет к срыву патрубка. Советуется как можно скорее снять деталь с двигателя и произвести ее ремонт. Для чугунных коллекторов при сварке требуется увеличение углерода – от 3% до 7%.


svarka-chuguna-pri-izgotovleniisvarka-chuguna-pri-izgotovlenii

Если используется горячая сварка, деталь необходимо предварительно разогревать. Температура поддерживается на одном уровне (плюс/минус 10%) на протяжении всего процесса сварки. Учитывайте физические свойства чугуна – металл очень быстро остывает.

porjadok-zapolnenija-razdelki-treshhin

porjadok-zapolnenija-razdelki-treshhin

Из-за повышенной текучести чугуна, вдоль трещины можно либо просверлить отверстия, либо воспользоваться прокладками из графита, подложив их под место сваривания также вдоль будущего шва. Порообразование во время выгорания углерода может исказить конечный результат работы, в том числе, а потому, в процессе работы будьте предельно внимательны.

3) Особенности сварки выпускного коллектора из нержавейки


Тут уже свои особенности. В зависимости от сплава, применимого в процессе сборки выпускного коллектора, могут меняться и способы сварки детали. У большинства элементов имеется примесь никеля, хрома и прочих цветных металлов, что усложняет процесс заделывания трещин и прогаров.

osobennosti-svarki-vypusknogo-kollektora

osobennosti-svarki-vypusknogo-kollektora

Обратите внимание: во избежание выгорания добавок в сплавах нержавейки, настоятельно рекомендуется производить сварку деталей исключительно в среде защитных газов.

Вторичное последствие – деформация детали из-за температурного режима сварки. При полном соблюдении технологии, обрабатывать фланец не потребуется. В обратном случае, получаем швы со сниженными антикоррозийными свойствами. Причина – преодоление отметки в 500 градусов. При достижении пиковой точки наступает процесс межкристаллической коррозии из-за перераспределения молекул металлов внутри сплава.

Популярные типы сварки для нержавейки:

  • инвертор общего типа (TIG, AC) + инертная среда + электроды из вольфрама;
  • ручной тип сваривания с использованием электродов со специализированным типом покрытия;
  • проволока из нержавейки + среда инертного газа + полуавтоматическая сварка.

Если речь о гаражном ремонте выпускного коллектора из нержавейки, оптимальным решением станет наложение сварочных швов электродами, имеющими ММА покрытие. Можно выбрать электрод на основе титана с рутиловым покрытием.

jelektrod-na-osnove-titana

jelektrod-na-osnove-titana

Менее привлекательные варианты, но тоже рабочие – это опять-таки электроды из двуоксиного титана с покрытием из кальция/карбоната магния. Толщина электрода идет по ГОСТу 10052.

Сварка чугунных изделий аргоном

Одна из вариации варки чугунного коллектора сварочным аппаратом:

4) Можно ли сварить выпускной коллектор холодной сваркой?

Хотя прямого отношения к металлическому завариванию швов холодная сварка и не имеет, некоторые мастера ее все же используют на временной основе. Применять метод советуется лишь тем личностям, кто знаком с технологией исполнения.

Когда рационально использовать холодную сварку:

  • если при сварке традиционным методом деталь деформируется;
  • геометрия вашего коллектора имеет сложный вид, а трещина пошла в самом неудобном месте, куда электродом не подползти;
  • шов располагается на границе разных металлов.

Для сварки коллектора из нержавейки холодную сварку в виде клея еще можно использовать, но, если деталь из чугуна – вы только зря потратите время. На сколько хватит шва? Километров 500 от силы, но в 80% случаев сварка отлетает уже спустя 50-100 тысяч метров, так как на сдвиг и кручение шов не работает, к слову, совсем.

Подводя итоги, отметим, что наиболее рациональная сварка выпускных коллекторов – инвертор со специализированными электродами для чугуна, и сваривание ММА электродами для нержавейки. Без опыта в сварке будьте готовы к массе косяков и срывов швов. Если желаете сэкономить нервы, лучше обратиться в СТО или замените коллектор вовсе. Удачи на дорогах!

Что такое выпускной и впускной коллектор в двигателя: устройство, принцип работы

Многие автовладельцы имеют весьма смутное представление об устройстве своего «железного коня», в случае поломок полагаясь на знания и умения сервисменов. И это касается почти всех систем машины. Один из любопытных примеров – система питания и система выпуска. Почти каждый автолюбитель в курсе, что в 1-ой присутствует инжектор, а во 2-ую входит глушитель, но в то же время не все способны назвать деталь, которая наличествует и там, и там – коллектор. Тут логично задать вопрос – а что такое выпускной и впускной коллектор?

Коллектор представляет собой одну из составных частей впускной (выпускной) системы авто. Всего их 2, и они служат для диаметрально противоположных целей – через впускной цилиндры поступает топливно-воздушная смесь, а через выпускной удаляются выхлопные газы.

Оба коллектора монтируются на одной стороне двигателя (на рядных; у V-образных они разнесены по бокам), но никак не сообщаются друг с другом.

 

Строение выпускного и впускного коллектора

В сильно упрощенном виде конструкцию коллектора можно объяснить так: это одна труба, которая разделяется на 4 или более (а иногда и менее). Количество труб, что у впускного, что у выпускного коллектора напрямую зависит от числа цилиндров в двигателе. Например, у небезызвестной малолитражки «Ока» был 2-х цилиндровый мотор. У некоторых двигателей марки «Шкода» 3 цилиндра, в то время как ряд силовых агрегатов «Ауди» – 5-ти цилиндровые. Это если говорить о рядных моторах; у V-образных двигателей обычно от 6 до 12 цилиндров, однако у них 4 коллектора (по 2 на каждую сторону), да и форма несколько другая, нежели у рядных, хотя зависимость количества труб от кол-ва цилиндров сохраняется.

Теперь подробнее о деталях, с которыми сопрягаются оба коллектора.

Впускной является частью системы питания, и к нему подключен (у бензиновых моторов) карбюратор (сейчас такое уже почти не встречается) или дроссельный узел. У современных дизелей вместо всего этого стоит аккумуляторная топливная система, более известная как «Common Rail».

Выпускной соединяется с приемной трубой (она же «штаны»), далее идет катализатор, резонатор и глушитель. На старых автомобилях катализатор отсутствует.

Устройство впускного коллектора

Предназначение впускного коллектора заключается в подведении топливно-воздушной смеси или только воздуха к цилиндрам. Почему или? Все зависит от особенностей конструкции системы питания. Впрочем, об этом ниже.

Обычно эта деталь – металлическая, но иногда встречаются коллекторы из специального пластика, выдерживающего высокие температуры. Так делают для снижения стоимости и для облегчения веса мотора, а через это – и машины.

Соединяется впускной коллектор разветвленной частью с головкой блока цилиндров (ГБЦ) через прокладку. При открывании впускных клапанов создается разряжение, с помощью которого топливно-воздушная смесь (или воздух) попадает в цилиндр, после чего клапана закрываются, и начинается такт сжатия.

Несмотря на то, что ни воздух, ни смесь его с горючим не обладают высокой температурой, коллектор все равно нагревается от ГБЦ до 100°С. Поэтому если его делают из пластика, то берут специальный, высокотемпературный тип.

Вернемся к вопросу с воздухом и топливно-воздушной смесью. Последняя подается через коллектор, если впрыск распределенный (т.е. форсунки инжектора установлены перед клапанами). Потом они открываются, и смесь топлива с воздухом попадает в цилиндр.

Если же впрыск непосредственный, и топливо подается сразу в камеру сгорания, через коллектор проходит только воздух, а смешение происходит прямо в цилиндре.

Устройство выпускного коллектора

Задача выпускного коллектора – отведение выхлопных газов. На такте выпуска одноименные клапана открываются, и под воздействием движущегося наверх поршня газы попадают в коллектор.

Он тоже подсоединен через прокладку разветвленной частью к ГБЦ, однако, посадочное место у него свое. Пройдя через коллектор, выхлопные газы попадают в приемную трубу, далее (на современных авто) в катализатор, где оседает значительная часть вредных веществ, потом в резонатор, снижающий громкость выхлопа, затем в глушитель, где звук исчезает полностью, и отводятся в атмосферу. У моторов с турбонаддувом газы после коллектора оказываются в специальном канале и крутят турбину, и только потом уходят в приемную трубу.

У инжекторных двигателей и современных дизелей в конструкции выпускного коллектора предусмотрено место для установки лямбда-зонда – датчика, который контролирует количество различных газов в выхлопе.

Основываясь в том числе и на показаниях лямба-зонда, электронный блок управления двигателем соответствующим образом дозирует подачу топлива, что приводит к возникновению взаимосвязи при работе коллекторов.

Может ли сломаться один из коллекторов

В автомобиле нет таких агрегатов и деталей, которые не могут сломаться. Так что и коллекторы тоже не вечны, хотя выпускной обычно служит на протяжении всего срока эксплуатации автомобиля, не требуя замены. Впускной же менее долговечен, особенно если сделан из пластика; он может треснуть, и тогда единственный выход – замена. Металлический гораздо более прочен, хотя и он не застрахован от трещин, однако в отличие от пластмассового его можно заварить, что решит проблему.

Несмотря на примитивность конструкции (оба коллектора по сути – трубы специфической формы), без них двигатель современного автомобиля не сможет правильно работать, ведь они не только выполняют свои прямые функции, но и помогают сильно оптимизировать работу системы питания и системы выпуска за счет информации, поступающей в ЭБУ от лямбда-зонда. Оба коллектора взаимосвязаны и одинаково важны для автомобиля, и если они работают неправильно, вы просто не сможете нормально передвигаться на своей машине.

Выпускная система и выпускные коллекторы — Блог блог — АвтоМастера.нет

 

Выпускная система и выпускные коллекторы

 Ваши представления о том, как двигатель внутреннего сгорания выдает мощность, станут точнее с изучением динамики движения газов. Это более чем справедливо для выпускной системы. Хотя многие из «движущихся» деталей в этой системе не требуют смазки или периодического обслуживания, они, тем не менее, испытывают существенные динамические нагрузки. В пространстве, ограниченном тонкой сталью, есть место, где газы с температурой более 1100° С и под давлением, движутся со скоростью звука, взаимодействуют с окружающей средой либо для помощи двигателю в освобождении его цилиндров от отработанных газов, либо для противодействия этому процессу. Эта глава поможет вам заглянуть внутрь выпускной системы и покажет легкие пути для увеличения мощности с помощью уменьшения сопротивления и увеличения продувания выпускного тракта. Вы также узнаете о некоторых специальных технологиях, которые можно использовать для оптимизации потока выхлопных газов и увеличения мощности.

 

 

Выпускная система уменьшает шумы. Используемые для этого глушители действуют подобно пробке. Лучшие глушители для форсированных двигателей — это не глушители точно отштампованные, точно настроенные и имеющие высокотехнологичную конструкцию. Лучшие глушители — это просто отсутствие глушителей!

 Если выпускная система была бы просто скоплением труб, которые направляет поток выхлопных газов к задней части автомобиля, то работа по оптимизации системы была бы относительно простой. Однако выпускная система рассчитана на выполнение как минимум одной дополнительной задачи: она должна уменьшать шум двигателя. Эти не связанные с форсировкой требования приводят к необходимости использования глушителей, а глушители существенно усложняют задачу получения максимальной мощности. Распредвалы могут быть доработаны до полного профиля, головки блоков цилиндров могут иметь отработанные каналы, карбюраторы могут быть точно настроены, и все эти модификации могут улучшать мощность. А лучшие глушители это не те, которые точно оптимизированы, точно настроены или имеют высокотехнологичную конструкцию. Лучшие глушители — это отсутствие глушителей!

Обратное давление и мощность

 Глушители работают подобно пробке. Они создают сопротивление потоку газов, увеличивают обратное давление в выпускной системе, и в результате этого частично уменьшаются шумы. Хотя снижение шума приятно уху, оно ухудшает мощность двигателя и экономию топлива.

Уменьшение обратного давления выхлопных газов всегда улучшает мощность и экономию топлива при условии, что соотношение воздух/топливо и момент зажигания тщательно оптимизированы, а до и после выпускной системы обратное давление увеличивается. Если вы уменьшите обратное давление в выпускной системе и оптимизируете двигатель для этих условий, то в 999 случаях из 1000 вы обнаружите прирост мощности.

 Измерение обратного давления

 В простом понимании высокофорсированный двигатель может быть определен как двигатель, который выдает больший объем выхлопных газов, чем стандартный двигатель того же рабочего объема. Так как мощность двигателя получается из-за сгорания топлива, то чем больше топлива эффективно сгорит в двигателе, тем большую мощность (и объем выхлопных газов он произведет). Следовательно, каждая модификация двигателя, которая улучшает мощность, будет увеличивать обратное давление, если не сделать необходимых изменений на выхлопной системе. Фактически, увеличение мощности на 40% обычно удваивает обратное давление, а если вы рассчитываете удвоить мощность двигателя, то обратное давление увеличится в 4 раза. Но не спешите сразу же выбрасывать свои глушители и выхлопные трубы. Вначале вы должны измерить, какое обратное давление развивается в вашей выпускной системе. К счастью, для решения этой задачи не требуется дорогое диагностическое оборудование. Все, что вам потребуется — это манометр, несколько соединителей и трубок. Манометр должен быть рассчитан на измерение давления порядка 0,7 кгс/см3; в крайнем случае, можно воспользоваться манометром для измерения давления топлива. Лучше всего иметь манометр с крупной шкалой для облегчения измерений. Вварите кусок «резьбы» в выхлопную систему перед глушителями, а если автомобиль оборудован катализатором, то добавьте еще и резьбу перед ним. Резьба может представлять собой простую шестигранную гайку с резьбой для установки трубки диаметром 3,2 или 6,3 мм. Из-за высоких температур в системе подсоединение манометра к резьбовому отверстию требует дополнительных операций. Просверлите маленькое отверстие через заглушку выхлопной трубы (эта заглушка должна иметь такой же размер резьбы, как и в приваренной гайке) и впаяйте высокотемпературным припоем кусок стальной трубки длиной 300-450 мм, внутренним диаметром 3,2 мм(1/8 дюйм), которая часто используется в качестве тормозной трубки, в просверленное отверстие. Стальная трубка будет рассеивать избыточное тепло от горячей выпускной системы, чтобы можно было подсоединить резиновый шланг, идущий к манометру. Следите за тем, чтобы шланг не касался других раскаленных деталей выпускной системы. После измерений обратного давления можно снять трубку и заглушить выпускную систему резьбовой заглушкой без отверстия для трубки.

Обратное давление измеряется при разгоне автомобиля с широко открытой дроссельной заслонкой. При регулярном повышении оборотов определяйте значения давления по манометру. Любое обратное давление является нежелательным, но к этому нужно подходить практически. Так как невозможно добиться нулевого сопротивления потоку, то нужно добиваться реальных целей. Полученные графики обратного давления иллюстрируют, что стандартная выпускная система может создавать давления до 0,6 кгс/см2 (и даже больше на некоторых обычных автомобилях). При тщательном подборе глушителей, катализаторов и выхлопных труб тот же самый двигатель будет развивать обратное давление величиной не более 0,15 кгс/см2. Если при измерениях будут получены значения обратного давления более 0,35 кгс/ см2 при работе с полностью открытой дроссельной заслонкой в какой-либо области оборотов, то выпускная система нуждается в доработке.

 

Проверка обратного давления в выпускной системе. 1 — манометр; 2 — катализатор; 3 — для проверки обратного давления катализатора вварите в систему гайку с резьбой здесь; 4 — для проверки обратного давления только глушителя вварите в систему гайку с резьбой здесь; 5 — глушитель.

 Глушители

 После катализатора следующей большой помехой потоку газов является глушитель. Хорошо сконструированный глушитель будет уменьшать шум от работы двигателя, не создавая избыточное обратное давление и не «придушивая» двигатель. К сожалению, не все глушители хорошо сконструированы. Фактически, некоторые глушители являются такими «хорошими» в создании обратного давления, что они могут отнять от 30 до 40 л. с. у форсированного в заводских условиях двигателя V8. Но вместе с тем есть и отлично работающие глушители и, подобрав глушитель правильной конструкции, вы можете получить существенную прибавку мощности.

 

Глушители уменьшают шум тремя способами: с помощью ограничения, поглощения и отражения.

 Глушители можно разделить на три основные категории: ограничители, поглотители и отражатели. «Тишина» большинства промышленных глушителей достигается путем создания ограничений потоку, что делается продавливанием выхлопных газов через каналы небольшого диаметра. К сожалению, эта методика также создает большое обратное давление и отбирает большую мощность. Специальные глушители, с другой стороны, часто основаны на поглощении, когда звук, поступающий в корпус, преобразуется в тепло при своем взаимодействии с поглощающим материалом, подобным фиберглассу, путем процесса трения. Этот метод создает меньшее обратное давление, но он менее эффективно заглушает шум. Глушители также используют внутренние перегородки для отражения звуковых волн обратно к входной стороне. Лучшие глушители для форсированных двигателей часто сочетают методики отражения и поглощения для улучшения шумопоглощающих свойств, сохраняя в то же время большие внутренние каналы для уменьшения сопротивления потоку газов. Превосходным примером таких конструкций может служить глушитель CYCLONE SONIC TURBO. Он использует поглощение в стеклопакете и обратные акустические «зеркала» для отражения звуковых волн.

 Имидж «Турбо»

 В течение последних 20 лет некоторые глушители с репутацией «Турбо» стали популярными для использования в форсированных двигателях. Первый «турбо»-глушитель был разработан в США для двигателя с турбонаддувом, устанавливаемого на модели CHEVROLET CORVAIR в 60-е годы. Он использовал комбинацию систем отражения и поглощения и был разработан для уменьшения уже низкого шума от двигателя с турбонаддувом (турбонагнетатели существенно уменьшают шум от выхлопных газов). Так как очень сильного снижения шума не требуется, обратное  давление глушителя было довольно низким. Конструкторы автомобилей типа «хот-род» вскоре начали верить, что его можно использовать в этой области, хотя его «заглушающие» свойства на нормальных атмосферных двигателях были довольно ограничены. Откликаясь на требования рынка, некоторые фирмы-производители использовали этот имидж «турбо-глушителя» для увеличения объема продаж. Глушители, которые многие продавали благодаря их технической «похожести» на оригинальную конструкцию, не всегда были плохими и некоторые из них вполне могли бы быть установлены на форсированные двигатели. Фактически, некоторые турбо-конструкции подтвердили, что они имеют большее сопротивление, чем стандартные глушители.

Обратный поток                Прямой поток

Правильная и неправильная установка керамического блока с отверстиями, пробитыми внутрь. 1 — обратный поток; 2 — прямой поток.

Выхлопные газы, нормально проходящие через центральную трубу с отверстиями, пробитыми внутрь, будут ударяться о верхнюю кромку каждого отверстия и будут двигаться назад вдоль такого зубца, что существенно увеличивает сопротивление. Однако, если глушитель установить наоборот, то поток выхлопных газов будет разрываться около каждого зубца. Разница между прямым и обратным потоком может быть очень большой и достигает почти 50%. Однако установка керамического блока с отверстиями, пробитыми внутрь, также увеличивает уровень шума. Фактически, так как «обратные», т. е. внутренние, отверстия стремятся закрыть входные каналы к материалу блока, то уровень шума, может быть даже выше, чем у глушителя с отверстиями в центральной трубе, пробитыми наружу.

 

Всегда проверяйте отверстия, пробитые в центральной трубе. Если отверстия пробиты наружу от центральной трубы и по направлению к наружному корпусу, а центральная труба большая (как показано внизу), то такой глушитель можно считать хорошим.

 Построение выпускной системы

 Выпускная система состоит из системы соединительных труб, которые направляют выхлопные газы от выпускных коллекторов к задней части автомобиля.

 Конструкция системы и размер труб

 Прежде всего, каждый форсированный двигатель V8 должен быть оснащен двойной выпускной системой. Среднестатистический двигатель V8 выдает значительный объем горячих выхлопных газов на высоких оборотах двигателя. Если все эти газы направляются через одну выхлопную трубу и глушитель, то такая система почти всегда страдает от избыточного обратного давления. Чтобы избежать этого, можно пойти двумя путями. Первый: установить практичную двойную выпускную систему с глушителями, обеспечивающими высокие значения потока газов. Второй: найти пространство для трубы с отверстием от 89 до 100 мм и для одинарного глушителя, который пропускает поток от 17 до 23,7 м3/мин, например, глушитель от грузовика с диаметром 300 мм и длиной до 1200 мм.

Предполагая, что ваш выбор остановился на более практичной двойной выпускной системе, вопрос теперь заключается в том, каким должен быть диаметр трубы, которая соединяет выпускные коллекторы с глушителями. Большинство фирм по форсировке двигателей устанавливает трубу диаметром 63,5 мм, так как это является обычным размером для стандартных глушителей, а большие трубы часто требуют дополнительного изгиба и могут создать проблемы с зазором у днища кузова. Рассуждая с практической точки зрения, труба с диаметром 63,5 мм подходит для большинства двигателей для повседневного использования мощностью до 400 л. с. и даже более. Если двигатель выдает значительно большую мощность или оснащен выпускными коллекторами, которые имеют приемные трубы размером 100 мм, то вам могут потребоваться трубы увеличенного размера. Однако ограничения по зазору могут потребовать «ступенчатого» решения. К примеру, труба размером 100 мм отходит от приемных труб на короткое расстояние, а затем постепенно сужается до размера 63,5 мм у глушителей. Однако перед тем как вы решите использовать трубы, размер которых превышает 63,5 мм, всегда имейте в виду, что относительно прямая труба, идущая от фланца приемной трубы к глушителю, имеет, меньшее сопротивление потоку по сравнению с глушителями. Используйте только лучшие высокопоточные глушители (часто с диаметром труб, превышающим 57,2 и 63,5 мм) и, если это возможно, используйте трубы, которые по диаметру не меньше, чем входное отверстие глушителя.

Давайте рассмотрим ситуацию, которая может иметь место в случае двигателя для повседневного использования, когда дорожный просвет является важным фактором. Труба с размером 57,2 мм является наибольшим размером, который может быть использован для соединения коллектора и глушителя. Однако глушитель с входным отверстием 57,2 мм и внутренней трубой такого же размера почти наверняка пропускает меньший поток, чем глушитель с трубой размером 63,5 мм. Для оптимизации этой системы используйте глушитель большего размера с внутренней трубой диаметром 63,5 мм (так как даже самый большой глушитель остается самым ограничивающим элементом системы) и добавьте короткий переходник перед глушителем, чтобы увеличить размер труб с 57,2 до 63,5 мм. Никогда не уменьшайте размер приемной трубы выпускного коллектора при переходе к глушителю с центральной трубой меньшего размера.

 Изгибы в выпускной системе

 Практически невозможно использовать в выпускной системе только прямые трубы. Изгибать трубы необходимо, чтобы обойти детали трансмиссии и подвески. К сожалению, каждый изгиб увеличивает обратное давление и уменьшает мощность двигателя. Сопротивление потоку будет уменьшено, если в областях с изгибами будут использоваться трубы большего размера. Всегда используйте изгибы как можно большего диаметра. Избегайте острых изгибов или гибки труб, так как любые внутренние неровности в трубах увеличивают обратное давление.

 

Тщательно спланируйте выпускную систему.

 

Поперечные трубы

Большое количество стендовых и ходовых испытаний показали, что простая поперечная труба, соединяющая две стороны в двойной выпускной системе чуть позади приемных труб и перед глушителями, может увеличить мощность двигателя. Прирост мощности от использования поперечной трубы имеет место как на обычных, так и на гоночных автомобилях, но причины роста в разных случаях отличаются.

 

Выпускные системы с поперечными трубами могут быть созданы различными путями. Единственная ровная поперечная труба допускается, когда емкость глушителя по потоку достаточно высока. Система с двумя поперечными трубами будет увеличивать мощность, если глушители имеют больше сопротивление потоку или если она используется на двигателях с мощностью более 350 л. с. Чем большее сопротивление имеют глушители, тем большая мощность может быть получена от использования системы с поперечной трубой.

 

На гоночном автомобиле с открытой выпускной системой и с поперечной трубой между приемными трубами эта труба передает ударные волны выхлопных газов с одной стороны системы на другую. На обычных автомобилях поперечная труба выполняет дополнительную функцию: поперечная труба позволяет каждой стороне двигателя частично разделять емкость потока комбинированного глушителя. Хотя даже самая эффективная поперечная труба не удвоит поток в системе, улучшение на 25% является обычным делом.

 

Многочисленные испытания на стенде и в движении продемонстрировали, что простая поперечная труба, соединяющая две стороны двойной выпускной системы сразу же после приемных труб и перед глушителями, может увеличить мощность двигателя.

 Спаренные глушители

 Иногда бывает невозможно уменьшить обратное давление выхлопных газов до приемлемого уровня с помощью одного глушителя в каждой стороне выпускной системы. Это часто происходит на высокофорсированных двигателях большого рабочего объема (т. е. более 6500 см5). Если измеренное давление в системе составляет более 0,35 кгс/см2, то может потребоваться использовать по два глушителя на каждой стороне, которые соединены параллельно.

 

Ступенчатое расположение глушителей.

 

В этих случаях выхлопные газы от каждого блока цилиндров проходят через два глушителя (см. рис. далее) и для двигателя V8 требуется всего 4 глушителя. Если переходник Y-образной формы, который распределяет выхлопные газы между каждой парой глушителей, сконструирован правильно, то эффективный поток двух глушителей будет примерно удвоен по сравнению с одиночным глушителем на одной из сторон.

Наиболее очевидным недостатком спаренных глушителей, кроме цены, является то, что на большинстве автомобилей имеется недостаточный зазор под кузовом, чтобы разместить два глушителя рядом друг с другом. Некоторые конструкторы используют ступенчатое расположение спаренных глушителей, что требует меньшего пространства, но во всех случаях важно помнить, что изгибы и переходы от одной трубы к двум и обратно должны быть плавными, большего диаметра и по возможности известного производителя.

 

Практические примеры

 

Очевидным вопросом здесь может быть следующий: какой прирост мощности и экономичности можно ожидать, если полностью переделать всю выпускную систему с упором на уменьшение обратного давления? Прирост может быть разным, но приводимые далее примеры покажут, что возможно получить.

Первый двигатель представляет собой экспериментальный четырехцилиндровый двигатель для испытаний на стенде, изначально оснащенный глушителем промышленной конструкции (типичная конструкция с обратным потоком, используемая на многих автомобилях) и короткой прямой выхлопной трубой большого диаметра. После измерения основной кривой мощности стандартный глушитель был заменен специальной конструкцией, которая обеспечивала почти нулевое сопротивление потоку. Фактически, проверки, проведенные на стенде, показали довольно заметное увеличение мощности по сравнению с прежней выпускной системой. При отсутствии других изменений на двигателе уменьшенное обратное давление дало прирост мощности в 8% во всем диапазоне оборотов. Было замечено улучшение экономии топлива в 3-8 % с типичным значением около 6%.

Практическое использование обсуждаемых изменений можно также было видеть на одном из испытательных двигателей V8 с рабочим объемом 5735 см5, изначально оснащенного промышленной одинарной выпускной системой. Для определения базового уровня была измерена стандартная мощность, которая составила 152 л. с. с выпускной системой, которая имеет ненормально высокое обратное давление в 1,13 кгс/см2. Затем стандартный катализатор с шариками был убран, а промышленный глушитель был заменен глушителем CYCLONE SONIC TURBO. Мощность при этом подскочила до 210 л. с., а обратное давление в выпускной системе снизилось до 0,25 кгс/см2. В заключение была установлена двойная выпускная система, которая была тщательно изготовлена для уменьшения обратного давления. Этот узел, оснащенный двойными турбо-глушителями CYCLONE SONIC, но по-прежнему использующий стандартные выпускные коллекторы, обеспечивал заметный прирост мощности до 47% по сравнению со стандартной выпускной системой. Измеренная мощность составила 224 л. с., а обратное давление в системе составило величину менее 0,07 кгс/см2. Однако такой прирост мощности дается не только путем больших материальных затрат при покупке деталей. Двойная выпускная система с высоким потоком может быть заметно шумнее стандартной или даже модифицированной одинарной выпускной системы. Фактически, некоторые системы с турбо-глушителями могут не удовлетворять требованиям по шумности.

Если автомобиль должен удовлетворять требованиям по токсичности выхлопных газов, то частью выпускной системы должен стать катализатор. К счастью потери мощности могут быть уменьшены, если используются катализаторы с двойной сотовой структурой. Они должны быть расположены перед глушителями и по возможности ближе к выпускным коллекторам. Сопротивление может быть уменьшено еще больше путем изменения входной и выходной частей катализатора в длинные конусные каналы. В качестве дополнительного преимущества катализаторы также уменьшают шум от выпускной системы.

 

Выпускные коллекторы

 

На первый взгляд задача отвода выхлопных газов из цилиндров может показаться простой, не требующей каких-то особых конструкторских ухищрений. Однако, как говорилось ранее, двигатель внутреннего сгорания является сложным агрегатом, который функционирует при тщательно продуманном взаимодействии многих динамических систем. Хотя выпускные коллекторы позволяют двигателю легче «выдыхать» путем уменьшения потерь при прокачке, которые имеют место, когда поршень движется вверх при такте выпуска. Это является наиболее очевидным преимуществом, которое могут предложить трубчатые впускные коллекторы.

Если такт выпуска происходит только один раз, то создание выпускных коллекторов было бы просто задачей по уменьшению сопротивления потоку. Но даже при 2000 об/мин двигатель V8 выдает примерно 70 тактов выпуска за секунду на один блок из четырех цилиндров. Эти импульсы давления, как мы увидим, взаимодействуют с потоком выхлопных газов, образуя сложную динамическую смесь, которая может воздействовать на оптимальный размер труб коллектора, их длину и на общую конструкцию. Может быть, довольно сложно полностью понять динамику потока, но настройка выпускной системы может быть «ключом» к получению дополнительной мощности. Вам потребуется правильная комбинация, и здесь будут даны некоторые рекомендации по достижению лучших результатов.Трубчатые или цельные коллекторы?

 

Выпускные трубчатые коллекторы могут улучшить мощность двигателя, но они не всегда являются лучшим выбором для обычного форсированного (не гоночного) двигателя. Хотя трубчатые коллекторы являются более эффективными в диапазонах средних и особенно высоких оборотов, но если двигатель работает с низкими оборотами, то литые чугунные коллекторы дают хорошие рабочие характеристики, являются более.дешевыми (если вы уже имеете их), более компактными и менее склонными к образованию утечек выхлопных газов. Идеальной областью использования для литых коллекторов являются грузопассажирские автомобили, для которых важен крутящий момент на низких оборотах. Если у вас двигатель высокой степени форсиров-ки, то вы сможете получить заметный прирост мощности и топливной эффективности путем использования выпускных коллекторов, которые устанавливаются  на обычные  мощные  двигатели.

 

 

Показанный здесь двигатель FORD INDY с двумя верхними распределительными валами использует одну из хорошо известных конструкций трубчатого выпускного коллектора.

 

Цельные выпускные коллекторы неэффективны при больших объемах потоков и на высоких оборотах из-за особенностей их конструкции. Почти все коллекторы, включая даже конструкции для форсированных двигателей, имеют короткие каналы, которые объединяются в общую камеру, имеющую конструкцию, которая не «заботится» о потоке. Когда выхлопные газы попадают в выпускной коллектор, они встречают два главных препятствия:

  • каналы с сопротивлением потоку;
  • импульсы от каждого цилиндра влияют друг на друга и сильно увеличивают сопротивление потоку, так как длины отдельных труб для разных отверстий часто очень малы.

 

 

 

 

Как работают выпускные коллекторы

 

Трубчатые выпускные коллекторы подвержены обоим недостаткам, указанным выше. При увеличении длины каждой трубы и плавных изгибов, а также эффективной изоляции отдельных каналов, применение выпускного коллектора трубчатого типа улучшает поток и практически убирает влияние цилиндров друг на друга. Когда выпускные коллекторы сочетаются с эффективной выпускной системой (высокопоточные глушители и т. д.), то дополнительную мощность можно получить путем продувки цилиндров.

 Инерционная и волновая продувка

Может показаться, что устройство, сделанное из металлических труб, и в котором нет движущихся деталей, может втягивать свежую топливовоздушную смесь через открытый впускной клапан почти над малоподвижным поршнем и поможет освобождать камеру сгорания от выхлопных газов. Это напоминает установку турбонагнетателя, которому не нужен подвод мощности: нет приводных ремней, нет вращающихся турбин; он выдает необходимую дополнительную мощность. Может показаться удивительным, но трубчатые выпускные коллекторы могут обеспечить этот прирост мощности, когда они правильно изготовлены. Поэтому, давайте заглянем внутрь труб и рассмотрим, как работает этот воображаемый «турбонагнетатель».

 

Эта «путаница» труб большого диаметра — выпускной коллектор STREET HEMI выпуска фирмы STAHL, который использует инерционную продувку и резонансную настройку для очистки камер сгорания от выхлопных газов и улучшения мощности.

 Когда импульсы давления проходят через каждую выхлопную трубу, они могут переносить энергию, которая действует двумя путями для генерации эффекта продувки и улучшения мощности. Во-первых, движущая масса газов имеет инерционные свойства. Инерция представляет собой тенденцию движущихся тел к сопротивлению любым изменениям в их движении. Поток газов высокого давления, который выходит из каналов головки блока цилиндров, имеет тенденцию сохранять движение через трубы коллектора, и инерция этих газов, если она достаточно сильная, будет втягивать дополнительную топливовоздушную смесь через открытые впускные и выпускные клапаны при перекрытии клапанов.

Также имеется второй путь, которым выпускные коллекторы помогают удалить выхлопные газы из цилиндра: ударная волна низкого давления, образуемая, когда импульс выпускных газов высокого давления выходит из системы, может помочь втянуть дополнительную топливовоздушную смесь в цилиндр при перекрытии клапанов. Чтобы легче понять, как этот механизм работает, выберем одну трубу коллектора. Как уже указывалось, когда впускной клапан открывается, выходящие под высоким давлением газы «выскакивают» в трубу и образуется импульс давления. Этот импульс, движущийся со скоростью звука, быстро достигает конца выхлопной трубы, где образуется отраженная волна с давлением ниже атмосферного. Эта обратная волна движется обратно по трубе к выпускному клапану также со скоростью звука, которая изменяется с температурой, но обычно составляет 360-400 м/сек. Путем изменения длины первичной трубы коллектора время, требуемое для возврата импульса к выходному отверстию, будет изменяться. С помощью тщательного подбора этой длины возможно подобрать время возврата волны низкого давления к оборотам двигателя. Для трубы конкретной длины и определенного значения оборотов двигателя, импульс низкого давления может быть точно настроен так, что он достигнет выпускного отверстия при перекрытии клапанов, когда он поможет выдуть остаточные выхлопные газы, которые поршень не может выдавить из камеры сгорания. Эта отраженная волна, в свою очередь, вызывает втягивание потока топливовоздушной смеси в цилиндр через открытый впускной клапан перед тем, как поршень начнет такт впуска.

Регулировка длины трубчатого выпускного коллектора для оптимизации продувки обратной волной называется резонансной настройкой. К сожалению, в двигателестроении всегда имеются недостатки,’ которые сопровождают получение прироста мощности. Длина трубы выпускного коллектора обеспечивает нужное время для возврата обратного импульса только в узком диапазоне оборотов двигателя. Если эта труба относительно короткая, то резонансный эффект наступает в области высоких оборотов; если она относительно длинная, то эффект проявляется в области низких оборотов двигателя.

 Настройка выпускного коллектора

 Подобно другим важным деталям для получения мощности, находящимся внутри или снаружи двигателя, выпускной коллектор является одной из частей системы «дыхания» двигателя. Чтобы быть наиболее эффективным, он должен работать совместно с другими деталями этой системы. «Командным центром», определяющим характеристики выпускной системы «дыхания» двигателя, является распределительный вал, а общие характеристики выпускной системы могут быть непосредственно связаны с фазами газораспределения распредвала. Выбор распредвала существенным образом определяет, в какой области оборотов двигателя будут достигаться- максимальная мощность и крутящий момент. Для гоночного двигателя длины и диаметры деталей выпускного коллектора должны сочетаться с характеристиками, определяемыми распред-валом. Для высоких оборотов конструкция выпускного коллектора должна включать в себя трубы большого диаметра и относительно короткие и приемные трубы большого диаметра. Для работы на двигателях повседневного применения и топливной экономичности выпускные коллекторы имеют конструкцию с трубами малого диаметра и относительно большой длины.

Всегда опасно делать какие-либо обобщения, но из-за общности конструкций большинства двигателей V8 можно сделать два заявления. Первое состоит в том, что за исключением автомобилей с выдуванием отработанных газов, выпускные коллекторы без приемных труб практически не работают. Конструкция с одинарной трубой эффективна на автомобилях, рассчитанных на использование гоночного топлива, так как турбокомпрессор полностью продувает цилиндры, направляя трубы коллектора к другим деталям. Во-вторых, практически все «обычные» выпускные коллекторы состоят из четырех отдельных труб, соединяющихся в большую приемную трубу. Такая конструкция делает возможным использование взаимодействующих ударных волн, образующихся в двигателе V8 от цилиндра к цилиндру, и является самым лучшим выбором для форсированных и гоночных двигателей.

 

 

Выпускной коллектор лучшей конструкции состоит из 4 отдельных труб, соединяемых в приемную трубу большого диаметра.

&nbs

Коллектор — Википедия

Материал из Википедии — свободной энциклопедии

Колле́ктор (англ. collector) — объект, устройство и т. п., что-либо собирающее.

  • Коллектор — технический элемент, в том числе в котлах, в системах отопления и водоснабжения, для смешения среды из разных параллельных веток или раздачи по ним. Обеспечивает выравнивание параметров за счёт относительно большого поперечного сечения и, соответственно, низкой скорости.
    • Коллектор — виды фитингов типа тройник и крестовина.
  • Коллектор — участок канализационной сети.
  • Коллектор для инженерных коммуникаций — тоннель(обычно проходной) для размещения теплопроводов, водопроводов, электрических кабелей, кабелей связи, трубопроводов сжатого воздуха и холодопроводов.
  • Впускной коллектор — деталь двигателя внутреннего сгорания.
  • Выпускной коллектор — деталь двигателя внутреннего сгорания, обеспечивающая первоначальный отбор в выхлопную трубу выхлопа из нескольких цилиндров.
  • Коллектор — участок воздуховода, к которому присоединяются воздуховоды из двух или большего числа этажей.
  • Коллектор — деталь в коллекторном электродвигателе.
  • Коллектор — наряду с эмиттером, один из электродов полупроводникового прибора.
  • Солнечный коллектор — устройство для сбора тепловой энергии Солнца.
  • Гидрогеологический коллектор — горная порода, водопроницаемость которой значительно выше водопроницаемости смежных горных пород.
  • Коллектор углеводородов — горная порода, содержащая пустоты (поры, каверны или системы трещин) и способная вмещать и фильтровать флюиды (нефть, газ, воду).
  • Коллекторское агентство — компания, основной деятельностью которой является сбор просроченной задолженности (как правило, по банковским кредитам).
  • Коллектор (оптика) — предназначен для передачи света от одного или нескольких источников освещения к одному или нескольким объектам исследования, находящимся в труднодоступных местах, применяются в оптической, медицинской, авиационной и других отраслях приборостроения.
  • Коллектор (фильм) — российский художественный кинофильм 2016 года.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *