Жидкостный насос системы охлаждения – ГОСТ Р 53839-2010 Двигатели автомобильные. Насосы жидкостные систем охлаждения. Технические требования и методы испытаний

Ремонт жидкостного насоса системы охлаждения

В процессе эксплуатации двигателя в жидкостном насосе изнашиваются подшипники и базовые отверстия под подшипники в корпусе, уплотнительный узел и вал насоса. Подшипники имеют уплотнители, удерживающие смазочный материал и защищающие их от загрязнения. С увеличением диаметров отверстий (переднего — более допустимого) корпус подшипников должен быть заменен.

Торцовая часть поверхности прилегания уплотнительной шайбы не должна иметь выработки. Допуск торцового биения торца в корпусе подшипников по отношению к посадочным поверхностям под подшипники не должен превышать 0,05 мм. При большем торцовом биении торец следует отремонтировать. Вал при износе более допустимого значения необходимо заменить новым. Допуск изгиба вала не должен превышать 0,03 мм. Трещины и сколы на крыльчатке не допускаются. Диаметр отверстия под вал в крыльчатке должен быть в пределах допустимого. Посадка крыльчатки на валу должна быть свободной, крыльчатка должна крепиться на валу с торца винтом.

При износе подшипников и деталей уплотнительного узла (уплотнительной шайбы и манжеты) их заменяют новыми. При замене деталей узла уплотнения нужно снять корпус насоса, выпрессовать из корпуса вал в сборе с подшипниками, крыльчаткой и уплотнителем, заменить изношенные детали уплотнительного узла и собрать насос в последовательности, обратной разборке. Перед разборкой следует очистить насос от масла и грязи и промыть его в обезжиривающем растворе.

Разборку насоса рекомендуется проводить в следующем порядке:

  • отвернуть болты крепления вентилятора и снять вентилятор и шкив со ступицы. Для снятия ступицы следует использовать съемные болты или специальный съемник;
  • отвернуть торцовым ключом гайки крепления корпуса крыльчатки к корпусу подшипников, разъединить их, слегка постукивая по ним деревянным молотком, снять прокладку, осторожно отделяя ее от корпуса отверткой;
  • при помощи отвертки снять уплотнитель в сборе, уплотнительную текстолитовую шайбу, затем разъединить резиновую манжету с пружиной;
  • снять замочное кольцо переднего подшипника с помощью пассатижей;
  • отвернуть болт крепления крыльчатки на валу насоса, придерживая отверткой от проворачивания вал, снять крыльчатку с вала при помощи съемника;
  • выпрессовать вал с подшипниками в сборе из корпуса на прессе;
  • вывернуть масленку и контрольную пробку;
  • закрепить вал насоса в тисках, снять стопорное кольцо и водосбрасывающую шайбу;
  • спрессовать подшипники с вала на верстачном прессе, при этом одновременно спрессовываются передний и задний подшипники и освобождается распорная втулка, находящаяся между подшипниками.

Разборка жидкостного насоса

Рис. Разборка жидкостного насоса:
а — снятие ступицы шкива при помощи съемных болтов; б — снятие ступицы шкива при помощи съемника; в — снятие замочного кольца переднего подшипника при помощи пассатижей; г — снятие крыльчатки с вала при помощи съемника

Перед сборкой нужно промыть детали насоса, очистить от коррозии корпус насоса, проверить годность деталей. При сборке насоса необходимо следить за наличием торцового зазора между крыльчаткой и корпусами подшипников и насоса. Сборку насоса следует производить в последовательности, обратной разборке. Торцовые поверхности уплотнительной текстолитовой шайбы нужно смазать тонким слоем графитной смазки, после чего шайбу необходимо закрепить обоймой. Шпильки при замене рекомендуется ввертывать в корпус, предварительно смазав суриком или резиловой смолой.

7. Система охлаждения жидкостная закрытого типа.

Системой охлаждения называется совокупность устройств, осуществляющих принудительный регулируемый отвод и передачу теплоты от деталей двигателя в окружающую среду. Система охлаждения предназначена для поддержания оптимального температурного режима, обеспечивающего получение максимальной мощности, высокой экономичности и длительного срока службы двигателя.

Для принудительного и регулируемого отвода теплоты в двигателях автомобилей применяют два типа системы охлаждения. Тип системы охлаждения определяется теплоносителем (рабочим веществом), используемым для охлаждения двигателя. В жидкостной системе охлаждения используются специальные охлаждающие жидкости — антифризы различных марок, имеющие температуру загустевания — 40 °С и ниже. Антифризы содержат антикоррозионные и антивспенивающие присадки, исключающие образование накипи. Они очень ядовиты и требуют осторожного обращения. По сравнению с водой антифризы имеют меньшую

 теплоемкость и поэтому отводят теплоту от стенок цилиндров двигателя менее интенсивно.

По сравнению с воздушной жидкостная система охлаждения более эффективная, менее шумная, обеспечивает меньшую среднюю температуру деталей двигателя, улучшение наполнения цилиндров горючей смесью и более легкий пуск двигателя при низких температурах, а также использование жидкости для подогрева горючей смеси и отопления салона кузова автомобиля. Однако в системе возможно подтекание охлаждающей жидкости и имеется вероятность переохлаждения двигателя в зимнее время.

Конструкция и работа жидкостной системы охлаждения

В двигателях автомобилей применяется закрытая (герметичная) жидкостная система охлаждения с принудительной циркуляцией охлаждающей жидкости. Внутренняя полость закрытой системы охлаждения не имеет постоянной связи с окружающей средой, а связь осуществляется через специальные клапаны (при определенном давлении или вакууме), находящиеся в пробках радиатора или расширительного бачка системы. Охлаждающая жидкость в такой системе закипает при 110… 120 °С. Принудительная циркуляция охлаждающей жидкости в системе обеспечивается жидкостным насосом. Система охлаждения двигателя состоит из рубашки охлаждения головки и блока цилиндров, радиатора, насоса, термостата, вентилятора, расширительного бачка, соединительных трубопроводов и сливных краников. Кроме того, в систему охлаждения входит отопитель салона кузова автомобиля. При непрогретом двигателе основной клапан термостата 19 (рис. 11) закрыт, и охлаждающая жидкость не проходит через радиатор 10. В этом случае жидкость нагнетается насосом 17 в рубашку охлаждения 8 блока и головки цилиндров двигателя. Из головки блока цилиндров через шланг 3 жидкость поступает к дополнительному клапану термостата и попадает вновь в насос. Вследствие циркуляции этой части жидкости двигатель быстро прогревается. Одновременно меньшая часть жидкости поступает из головки блока цилиндров в обогреватель (рубашку) впускного трубопровода двигателя, а при открытом кране — в отопитель салона кузова автомобиля.

Рис. 11. Система охлаждения двигателя: 1, 2, 3, 5, 15, 18 — шланги; 4 — патрубок; 6 — бачок; 7, 9 — пробки; 8 — рубашка охлаждения; 10 — радиатор; 11 — кожух; 12 — вентилятор; 13, 14 — шкивы; 16— ремень; 17— насос; 19 — термостат

При прогретом двигателе дополнительный клапан термостата закрыт, а основной клапан открыт. В этом случае большая часть жидкости из головки блока цилиндров попадает в радиатор, охлаждается в нем и через открытый основной клапан термостата поступает в насос. Меньшая часть жидкости, как и при непрогретом двигателе, циркулирует через обогреватель впускного трубопровода двигателя и отопитель салона кузова. В некотором интервале температур основной и дополнительный клапаны термостата открыты одновременно, и охлаждающая жидкость циркулирует в этом случае по двум направлениям (кругам циркуляции). Количество циркулирующей жидкости в каждом круге зависит от степени открытия клапанов термостата, чем обеспечивается автоматическое поддержание оптимального температурного режима Двигателя. Расширительный бачок 6, заполненный охлаждающей жидкостью, сообщается с атмосферой через резиновый клапан, Установленный в пробке 7 бачка. Бачок соединен шлангом с наливной горловиной радиатора, которая имеет пробку 9 с клапанами. Бачок компенсирует изменения объема охлаждающей жидкости, и в системе поддерживается постоянный объем циркулирующей жидкости. Для слива охлаждающей жидкости из системы охлаждения имеются два сливных отверстия с резьбовыми пробками, одно из которых находится в нижнем бачке радиатора, а другое в блоке цилиндров двигателя. Температура жидкости в системе контролируется указателем, датчик которого установлен в головке блока цилиндров двигателя. Жидкостный насос обеспечивает принудительную циркуляцию жидкости в системе охлаждения двигателя. На двигателях автомобилей применяют лопастные насосы центробежного типа (рис. 12). Вал 6 насоса установлен в отлитой из алюминиевого сплава крышке 4 в двухрядном неразборном подшипнике 5. Подшипник размещен и зафиксирован в крышке стопорным винтом 8. На одном конце вала напрессована литая чугунная крыльчатка 1, а на другом конце — ступица 7и шкив 11 вентилятора 15. При вращении вала насоса охлаждающая жидкость через патрубок 10 поступает к центру крыльчатки, захватывается ее лопастями, отбрасывается к корпусу 2 насоса под действием центробежной силы и через окно 3 в корпусе направляется в рубашку охлаждения блока цилиндров двигателя. Уплотнительное устройство Р, состоящее из самоподжимной манжеты и графитокомпозитного кольца, установленное на валу насоса, исключает попадание жидкости в подшипник вала. Привод насоса и вентилятора осуществляется клиновым ремнем 12 от шкива 13, который установлен на переднем конце коленчатого вала двигателя. С помощью этого ремня также вращается шкив 14 генератора. Нормальную работу насоса и вентилятора обеспечивает правильное натяжение ремня. Натяжение ремня регулируют путем перемещения генератора в сторону от двигателя (показано на рис. 12 стрелкой а). Насос корпусом 2, отлитым из алюминиевого сплава, крепится к фланцу блока цилиндров в передней части двигателя.

Рис. 12. Жидкостный насос (а) и вентилятор (б) двигателя: 1 — крыльчатка; 2 — корпус; 3 — окно; 4 — крышка; 5 — подшипник; 6 — вал; 7 — ступица; 8 — винт; 9 — уплотнительное устройство; 10 — патрубок; 11, 13,14 — шкивы; 12 — ремень; 13 — вентилятор; 16 — накладка; 17 — болт

Рассмотрим устройство насоса, привод которого осуществляется зубчатым ремнем (рис. 13). Вал 4 насоса установлен в корпусе 5 из алюминиевого сплава в неразборном двухрядном шариковом подшипнике 3. Подшипник стопорится в корпусе винтом 2 и уплотняется специальным устройством 6, включающим в себя графитокомпозитное кольцо и манжету. На переднем конце вала напрессован зубчатый шкив 1 из спеченного материала, а на заднем конце — крыльчатка 8. В крыльчатке сделаны два сквозных отверстия 7, которые соединяют между собой полости с охлаждающей жидкостью, расположенные по обе стороны крыльчатки. Благодаря этим отверстиям выравнивается давление охлаждающей жидкости на крыльчатку с обеих сторон, что исключает осевые нагрузки на вал насоса при его работе. Вал насоса приводится во вращение через шкив 1 зубчатым ремнем привода распределительного вала от коленчатого вала. При вращении вала жидкость поступает к центру крыльчатки и под действием центробежной силы направляется в рубашку охлаждения двигателя. Насос крепится корпусом к блоку цилиндров двигателя через уплотнительную прокладку. Термостат способствует ускорению прогрева двигателя и регулирует в определенных пределах количество охлаждающей жидкости, проходящей через радиатор. Термостат представляет собой автоматический клапан. В двигателях автомобилей применяют неразборные двухклапанные термостаты с твердым наполнителем.

Рис. 13. Жидкостный насос двигателя: 1 — шкив; 2 — винт; 3 — подшипник; 4 — вал; 5 — корпус; 6 — уплотнительное устройство; 7 — отверстие; 8 — крыльчатка

Термостат (рис. 14) имеет два входных патрубка 1 и 11, выходной патрубок 6, два клапана (основной 8, дополнительный 2) и чувствительный элемент. Термостат установлен перед входом в насос охлаждающей жидкости и соединяется с ним через патрубок 6. Через патрубок 1 термостат соединяется с головкой блока цилиндров двигателя, а через патрубок 11 — с нижним бачком радиатора.

Рис. 14. Термостат

Чувствительный элемент термостата состоит из баллона 4, резиновой диафрагмы 5 и штока 9. Внутри баллона между его стенкой и резиновой диафрагмой находится твердый наполнитель 10 (мелкокристаллический воск), обладающий высоким коэффициентом объемного расширения. Основной клапан 8 термостата с пружиной начинает открываться при температуре охлаждающей жидкости более 80 °С. При температуре менее 80 °С основной клапан закрывает выход жидкости из радиатора, и она поступает из двигателя в насос, проходя через открытый дополнительный клапан 2 термостата с пружиной 3. При возрастании температуры охлаждающей жидкости более 80 С в чувствительном элементе плавится твердый наполнитель, и объем его увеличивается. Вследствие этого шток 9 выходит из баллона 4, и баллон перемещается вверх. Дополнительный клапан 2 при этом начинает закрываться и при температуре более 94 С перекрывает проход охлаждающей жидкости от двигателя к насосу. Основной клапан 8 в этом случае открывается полностью, и охлаждающая жидкость циркулирует через радиатор. Расширительный бачок служит для компенсации изменений объема охлаждающей жидкости при колебаниях ее температуры и для контроля количества жидкости в системе охлаждения. Он также содержит некоторый запас охлаждающей жидкости на ее естественную убыль и возможные потери. На автомобилях применяют полупрозрачные пластмассовые бачки с заливной горловиной, закрываемой пластмассовой пробкой. Через горловину система заполняется охлаждающей жидкостью, а через клапаны, размещенные в пробке, осуществляется связь внутренней полости бачка и системы охлаждения с атмосферой. В пробке расширительных бачков часто имеется один резиновый клапан, срабатывающий при давлении, близком к атмосферному. При сливе охлаждающей жидкости из системы пробку снимают с расширительного бачка. Расширительный бачок размещается в подкапотном пространстве отделения двигателя, где крепится к кузову автомобиля. Радиатор обеспечивает отвод теплоты охлаждающей жидкости в окружающую среду. На легковых автомобилях применяются трубчато-пластинчатые радиаторы.

Радиатор автомобиля (рис. 15, а) — неразборный, имеет вертикальное расположение трубок и горизонтальное расположение охлаждающих пластин. Бачки радиатора и трубки латунные, а охлаждающие пластины стальные, луженые. Трубки и пластины образуют сердцевину 5 радиатора. В верхнем бачке J радиатора имеется горловина 2, через которую систему охлаждения заполняют жидкостью. Горловина герметично закрывается пробкой J, имеющей два клапана — впускной 7 и выпускной 8. Выпускной клапан открывается при избыточном давлении в системе 0,05 МПа, и закипевшая охлаждающая жидкость через патрубок 6 и соединительный шланг выбрасывается в расширительный бачок. Впускной клапан не имеет пружины и обеспечивает связь внутренней полости системы охлаждения с окружающей средой через расширительный бачок и резиновый клапан в его пробке, который срабатывает при давлении, близком к атмосферному. Впускной клапан перепускает жидкость из расширительного бачка при уменьшении ее объема в системе (при охлаждении) и пропускает в расширительный бачок при увеличении объема (при нагревании жидкости). Радиатор установлен нижним бачком 4 на кронштейны кузова на двух резиновых опорах, а вверху закреплен двумя болтами через стальные распорки и резиновые втулки.

Рис. 15. Неразборный радиатор (а) и кожух (б) вентилятора двигателя: 1 — пробка; 2 — горловина; 3,4— бачки; 5 — сердцевина; 6 — патрубок; 7, 8 — клапаны; 9 — кожух; 10 — уплотнитель

Для направления воздушного потока через радиатор и более эффективной работы вентилятора за радиатором установлен стальной кожух 9 вентилятора (рис. 15, 6), состоящий из двух половин. Обе половины кожуха имеют резиновые уплотнители 10, которые уменьшают проход воздуха к вентилятору помимо радиатора и предохраняют от поломок кожух и радиатор при колебаниях двигателя на резиновых опорах крепления. Радиатор не имеет жалюзи и утепляется в случае необходимости специальным съемным чехлом-утеплителем. Радиатор автомобиля, приведенный на рис. 16, — разборный, с горизонтальным расположением трубок и вертикальным расположением охлаждающих пластин. Радиатор не имеет заливной горловины и выполнен двухходовым — охлаждающая жидкость входит в него и выходит через левый бачок, который разделен перегородкой. Бачки радиатора пластмассовые. Левый бачок 8 имеет три патрубка, через которые соединяется с расширительным бачком, термостатом и выпускным патрубком головки блока цилиндров. Правый бачок 1 имеет сливную пробку 10, в нем установлен датчик 3 включения вентилятора. К бачкам через резиновые уплотнительные прокладки Скрепится сердцевина 2радиатора. Она состоит из двух рядов алюминиевых круглых трубок и алюминиевых пластин с насечками. В части трубок вставлены пластмассовые турбулизаторы в виде штопоров. Двойной ход жидкости через радиатор, насечки на охлаждающих пластинах и турбулизаторы в трубках обеспечивают турбулентное движение жидкости и воздуха, что повышает эффективность охлаждения жидкости в радиаторе. Алюминиевая сердцевина и пластмассовые бачки существенно уменьшают массу радиатора. Радиатор установлен на трех резиновых опорах 9. Две опоры находятся снизу под левым и правым бачками, а третья опора — сверху. Резиновые опоры и прокладки между сердцевиной и бачками делают радиатор нечувствительным к вибрациям.

Рис. 16. Разборный радиатор (а) и электровентилятор (6) двигателя: 1, 8— бачки; 2 — сердцевина; 3 — датчик; 4 — прокладка; 5 — вентилятор; 6 — электродвигатель; 7 — кожух; 9 — опора; 10 — пробка

Вентилятор увеличивает скорость и количество воздуха, проходящего через радиатор. На двигателях автомобилей устанавливают четырех- и шестилопастные вентиляторы. Вентилятор 15 двигателя (см. рис. 12) — шестилопастный. Лопасти его имеют скругленные концы и расположены под утлом к плоскости вращения вентилятора. Вентилятор крепится накладкой 16 и болтами 17 к ступице и приводится во вращение от шкива коленчатого вала. На некоторых двигателях (см. рис. 16) применяется электровентилятор. Он состоит из электродвигателя 6 и вентилятора 5. Вентилятор — четырехлопастный, крепится на валу электродвигателя. Лопасти на ступице вентилятора расположены неравномерно и под углом к плоско

Разбор и чистка помпы Thermaltake P500 системы жидкостного охлаждения | Обзоры

И снова здравствуйте, уважаемые читатели блогов! В этот раз я решил разместить не обзор очередного нового «девайса», а небольшую публикацию, затрагивающую обслуживание ранее полученного устройства.

При подготовке обзоров авторы, естественно, стараются раскрыть особенности конкретных устройств, их частей и компонентов, но жесткие рамки на выполнение публикации, как правило, не дают успеть столкнуться с критично важными особенностями и тонкостями, всплывающими только в ходе долгой эксплуатации.

Введение

Мой личный опыт установки системы жидкостного охлаждения (СЖО) начался с готового набора в стиле «собери сам» — Pacific RL-120 Water Cooling Kit от компании Thermaltake. Неплохого, кстати сказать, «конструктора» с точки зрения скорости подготовки к работе и сборки, с заделом на будущее расширение и апгрейд отдельных компонентов. Качество современных комплектов DIY, в большинстве своем, гарантирует долгую беспроблемную работу и редкое техническое обслуживание СЖО. Высококачественные нержавеющие фитинги, обеспечивают высокую степень герметизации сочленений, водоблоки и радиаторы охлаждения, отливаются, паяются и покрываются слоями защиты от коррозии еще на заводе, гарантируя первоклассную герметичность, толстостенные трубки из высококачественных эластичных материалов прочны и держат достаточно высокие температуры, чтобы не переживать за спонтанный разрыв.

Но, раз появилась эта публикация, значит, где-то есть подвох? Спросите вы и будете правы. В большинстве случаев слабым звеном всего контура СЖО остается главный компонент, «сердце» системы охлаждения — помпа (насос). От ее безотказной длительной работы и обеспечения нормальной циркуляции при условии высокого нагрева жидкости всецело зависит эффективность работы СЖО. Беседуя с друзьями и коллегами энтузиастами, при обсуждении «водянок», разговор часто сводился к тому, что многие предпочитают массивные воздушные системы охлаждения не столько из-за более низкой, в большинстве случаев, стоимости, сколько из-за опасений выхода из строя, в самый ответственный момент, помпы или ее излишне навязчивого стрекотания при работе. Кстати, последний аргумент, на самом деле, весьма актуален. По степени назойливости звук помпы иногда более раздражающий, чем аналогичный по громкости монотонный шум воздуха, создаваемый вентиляторами классических кулеров. В ущерб общей производительности СЖО громкость «стрекота» можно компенсировать подключением через реобас или средствами управления вентиляторами на материнской плате. А как быть с надежностью долгосрочной работы? Здесь, к сожалению, владелец СЖО получает лотерею, с непредсказуемым влиянием на вероятность форс-мажора некоторых дополнительных факторов. Даже такое безобидное моддинговое действие, как добавление дополнительных красителей в охлаждающую жидкость может, в редких случаях, стать причиной полного коллапса, вследствие непредвиденных химических реакций компонентов красителя и антифриза, которые начинают кристаллизоваться и превращаются в хлопья.

Конструкция помп приблизительно одинакова и, по сути своей, не сложная, но подвержена механическому износу вращающихся частей. Да, по сравнению с «сухими» подшипниками, крыльчатка помпы постоянно находится в жидкости, что обеспечивает смазку и охлаждение, но опасность может таиться в одном оторвавшемся металлическом заусенце, или мелком соре, оставшемся внутри радиатора охлаждения или водоблока еще при производстве на заводе. Производители СЖО почему-то пренебрегают копеечными фильтрами грубой очистки на вводе жидкости в помпу, мотивируя владельцев СЖО на промывку контура дистиллированной водой еще до первого запуска СЖО, но даже хорошая промывка не гарантирует чистоту контура на 100%.

Проблема?

Много «воды» и «введения» скажет нетерпеливый читатель, к чему все это идет? Отвечу — «Да, после 4 месяцев работы, в один прекрасный день, на моем домашнем компьютере непредвиденно перестала работать помпа Thermaltake P500 в контуре СЖО Pacific RL-120 Water Cooling Kit«. Собственно, данный факт замечен был не сразу, недели две я периодически работал на компьютере с процессором Intel Core i5-3570K без разгона и не замечал факта поломки, даже при работе простеньких 3D игрушек сына, контур СЖО Pacific RL-120 Water Cooling Kit без циркуляции жидкости вполне спокойно удерживал температуру процессора ниже 77 градусов. Единственным косвенным признаком приходом «пушистого зверька» стал появившийся небольшой звук, с периодом в несколько секунд, похожий на свист дросселей, который я списывал на дефект работы видеокарты или блока питания, но все не было времени выявить виновника новоявленного раздражителя слуха. И лишь запуск одной новой игры заставил наконец заглянуть внутрь системного блока, в связи с появлением предупреждения ПО мониторинга ASUS AI Suite II (шло в комплекте с материнской платой) о высокой температуре на центральном процессоре, вышедшей на уровень 80 градусов Цельсия.

Беглый осмотр и подозрительные 0 rpm на разъеме подключения помпы к материнской плате. Тщательный осмотр, диагностика подключения в другие разъемы и вердикт — помпа не работает.

Учитывая, что СЖО не приобреталась в магазине, а была получена напрямую от вендора, о гарантии речи не шло. Поэтому было решено попытаться разобрать помпу и попробовать отремонтировать ее своими силами. Еще одним, а скорее двумя, мотиваторами самостоятельного ремонта была стоимость новой помпы и тот факт, что найти отдельно в продаже в России P500, или продвинутый вариант Pacific P1 Black D5, не так-то просто.

Свистящие периодические звуки, как оказалось, издавала сама помпа и, косвенно, они свидетельствовали о том, что не может запуститься «крыльчатка» или есть какие-то проблемы с электронной платой управления, что, вместе с отсутствием видимых деформаций от перегрева, сулило неплохие шансы на успешный ремонт.

Разбор помпы

С устройством помпы Thermaltake P500 повезло, конструкция корпуса полностью разборная, на винтовых соединениях, что позволяет быстро разобрать ее на отдельные составляющие. Фактически помпа состоит из двух половинок корпуса, стянутых 5-ю болтами с гайками и соединительной о-образной резиновой прокладкой, платы управления, закрытой перфорированной крышкой, и ротора с крыльчаткой, зафиксированного на валу пластиковой шайбой.

Вид «сверху» на составляющие.

Изучение внутренностей P500 озадачило. Крыльчатка крутилась очень туго, рукой ее было тяжело провернуть. На внутренней поверхности помпы было достаточно много солеподобных отложений, а на роторе, так как его корпус магнитный еще и локальные скопления чего-то подобного металлической пыли. Фотоаппарат взять в руки сразу не догадался. но, даже на высушенной и уже очищенной (протиранием тряпкой без усилий) внутренней поверхности, остались следы этих отложений и красителя охлаждающей жидкости.

На наружной части вала крыльчатки еще и следы глубоких задиров, в глубине которых, опять же непонятные отложения, очень трудно счищаемые.

После хорошенькой чистки и сборки крыльчатку уже спокойно можно было крутануть рукой и он по инерции делал N-ное количество оборотов, т.е. отложения на стенках помпы и особенно на внутренней поверхности, надеваемой на вал, реально мешали вращению. Опасение, что клин помпы привел к выходу из строя обмоток статора, не подтвердилось и после сборки помпа уверенно запустилась.

Далее был обычный процесс установки на место резервуара с помпой в корпус ПК и заливка контура охлаждающей жидкостью. Помпа уверенно работает уже несколько дней. Из эффектов которые стали заметны после чистки:

1. Помпа стала работать чуть-чуть тише, до процесса «стрекот» начинался от 1700-1800 оборотов и выше, после, на этих оборотах, ее практически не слышно.

2. Скорость вращения выросла оборотов на 200. Косвенно это могло быть и из-за замены куска шланга между радиатором охлаждения и водоблоком, так как старый, по неопытности, был сделан коротким, из-за чего на изгибе немного деформировался, сужая полезный диаметр трубки.

Заключение

Однозначный вывод для себя что стало причиной клина помпы я сделать не смог, вернее, сказать то, что это было из-за проблем механического плана можно точно, но было ли это застревание мелкого металлического мусора, оставившего задиры на валу крыльчатки или накопление солеподобных отложений от не очень качественной охлаждающей жидкости (она шла посылкой весной и условия хранения и транспортировки вполне могли не соответствовать требуемым) сказать тяжело. Возможно сразу оба фактора. Изначально, попытка ремонта своими силами не была запланирована для написания этой публикации, поэтому сперва начал разбирать/чистить, в процессе, решил сфотографировать и оформить. В любом случае, помпу Thermaltake P500 можно назвать весьма стойким устройством, так как работа в заклинившем состоянии на протяжении нескольких недель и никаких видимых последствий для обмоток статора — было достаточно удивительно для меня. Но главное, что проблема была устранена, за счет чего сэкономлено N-ное количество денег и получено немного exp в копилку опыта.

Спасибо, что уделили внимание этой публикации, высказывайте ваше видение причин поломки компонентов СЖО и пишите в комментариях о своем опыте устранения мелких недочетов.

Система охлаждения

Система охлаждения предназначена для поддержания оптимального теплового режима двигателя, чтобы он не перегревался и не переохлаждался.

Порядок замены охлаждающей жидкости

Если не менять охлаждающую

жидкость во время , это приведет к повышенному…

Требования к системе охлаждения:

• автоматическое поддержание оптимального теплового режима в двигателе, независимого от режима работы и внешних условий;
• быстрый прогрев двигателя до рабочей температуры;
• длительное сохранение теплоты после остановки двигателя;
• малые энергетические затраты, связанные с приводом агрегатов системы охлаждения.


Сгорание горючей смеси сопровождается выделением значительного количества теплоты. Если двигатель не охлаждать или охлаждать недостаточно, го его детали могут нагреться до высокой температуры, а это уменьшает их прочность и наполнение цилиндров, ухудшает условия работы смазочной системы вследствие снижения вязкости перегретого масла, ускоряет срабатывание присадок к маслам и увеличивает количество отложений и нагара на деталях.

«Большинство автомобильных двигателей имеют жидкостные системы охлаждения закрытого типа» .

Жидкостная система охлаждения

Жиддкостная система охлаждения более инерционна, двигатель медленно прогревается, но и медленно остывает. Кроме того, большая теплоемкость охлаждающей жидкости обеспечивают интенсивный и равномерный теплоотвод и меньшую температуру деталей.

Теплота, отводимая от двигателей, используется для подогрева впускного трубопровода и улучшения смесеобразования, а также для отопления кабины или салона автомобиля в холодную погоду.

Приборы системы охлаждения:

радиатора 3, вентилятора 1, жидкостного насоса 8, рубашки охлаждения блока цилиндров, рубашки охлаждения головки блока цилиндров, термостата 10, патрубков 6,17 шлангов 9, расширительного бачка, приборов контроля температуры жидкости 13, сливных краников 18, 19.

Устройство системы охлаждения двигателя

Работа системы охлаждения

Циркуляцию жидкости в системе охлаждения осуществляют по двум кругам: малому и большому.

По малому кругу жидкость циркулирует при пуске холодною двигателя, обеспечивая его быстрый прогрев в такой последовательности: жидкостной насос — распределительные трубы — рубашка охлаждения блока цилиндров — рубашка охлаждения головки блока цилиндров — верхний патрубок термостата (клапан закрыт) — перепускной шланг приемная полость жидкостного насоса.

По большому кругу жидкость циркулирует при прогретом двигателе: жидкостной насос (как и по малому кругу) — термостат (клапан открыт) — резиновый шланг — патрубок радиатора — верхний бачок радиатора — сердцевина радиатора — нижний бачок радиатора — патрубок — шланги — приемная полость жидкостного насоса.

жидкостная система охлаждения

Переохлаждение двигателя сопровождается ростом механических потерь из-за повышения вязкости масла, ухудшением процессов смесеобразования и сгорания, следствием чего является повышенный расход топлива. Конденсация паров воды в картерной полости холодного двигателя и на стенках цилиндров приводит к коррозии. В отрабатавших газах повышается содержание углеводородов не сгоревшего топлива и высокотоксичных альдегидных соединений.
Принудительный отвод теплоты от деталей двигателя осуществляется с помощью жидкости или воздуха, в связи с чем различают двигатели жидкостного и воздушного охлаждения.

Радиатор является теплообменником системы охлаждения, где поступающая из двигателя жидкость передаст теплоту потоку воздуха.

Радиатор состоит из верхнего и нижнего бачков, соединенных между собой трубками, образующими его охлаждающую решетку (сердцевину ра­диатора). Верхний бачок радиатора имеет наливную горловину с пробкой, а нижний — сливной кран. В наливную горловину впаяна пароотводная трубка, соединенная с расширительным бачком. Пароотводная трубка за­глублена в радиатор, где отводимые пары конденсируются. К верхнему и нижнему бачкам припаяны боковые стойки. Стойки и пластина образуют каркас радиатора. Сердцевина радиатора состоит из нескольких рядов тру­бок, впаянных в верхний и нижний бачки. К трубкам крепятся гонкие ох­лаждающие пластины или гофрированные ленты, изготовленные из лату­ки, алюминия или красной меди.

Пробка заливной горловины в закрытых системах жидкостного охлажде­ния имеет два предохранительных клапана с уплотнительными резиновы­ми прокладками и пружинами. Паровой клапан регулируют на избыточное давление (0,145—0,160 МПа), воздушный клапан открывается при падении давленияв системе против атмосферного не более чем на 0,01 МПа.

При нормальном функционировании клапанов система охлаждения только кратковременно может сообщаться с окружающей средой или поло­стью расширительного бачка.

Жалюзи устанавливаются перед радиатором, с их помощью регулирует­ся количество воздуха, проходящего через сердцевину радиатора. Жалюзи изготовляются в виде набора вертикальных иди горизонтальных пластин — створок из оцинкованного железа, которые объединены общей рамкой и снабжены шарнирным устройством, обеспечивающим одновременный или групповой поворот их вокруг своей оси. Жалюзи прикрепляют к каркасу радиатора или к его наружной облицовке. Управление створками осущест­вляется вручную или с помощью устройства с термостатом.

Жидкостной насос создаст в системе охлаждения принудительную цир­куляцию жидкости. Применяют одноступенчатые жидкостные насосы цен­тробежного типа. Привод насоса, как правило, работает от шкива коленча­того вала посредством клиноременной передачи.

Жидкостной насос состоит из корпуса, вала привода с крыльчаткой, ступицы для крепления шкива привода, самоподжимной уплотняющей манжеты, двух латунных обойм, резиновой манжеты» уплотняющей шайбы ипружинного кольца. Вал насоса вращается на двух шарикоподшипниках.

Центробежные насосы одноступенчатого типа, рассчитанные на давле­ние и 0,04 —0,1 МПа, отличаются компактностью и обеспечивают доста­точную подачу жидкости при сравнительно больших зазорах между крыль­чаткой и стенками корпуса.

Вентилятор служит для создания воздушного потока, проходящего че­рез сердцевину радиатора, для охлаждения жидкости, протекающей по трубкам.

Ремонт системы охлаждения

Воздушная система охлаждениянеисправности системы охлаждения

Обслуживание системы охлаждения гарантия нормальной работы вашего двигателя.

 

 

Система охлаждения

Система охлаждения предназначена для поддержания оптимального теплового режима двигателя, чтобы он не перегревался и не переохлаждался.

Порядок замены охлаждающей жидкости

Если не менять охлаждающую

жидкость во время , это приведет к повышенному…

Требования к системе охлаждения:

• автоматическое поддержание оптимального теплового режима в двигателе, независимого от режима работы и внешних условий;
• быстрый прогрев двигателя до рабочей температуры;
• длительное сохранение теплоты после остановки двигателя;
• малые энергетические затраты, связанные с приводом агрегатов системы охлаждения.


Сгорание горючей смеси сопровождается выделением значительного количества теплоты. Если двигатель не охлаждать или охлаждать недостаточно, го его детали могут нагреться до высокой температуры, а это уменьшает их прочность и наполнение цилиндров, ухудшает условия работы смазочной системы вследствие снижения вязкости перегретого масла, ускоряет срабатывание присадок к маслам и увеличивает количество отложений и нагара на деталях.

«Большинство автомобильных двигателей имеют жидкостные системы охлаждения закрытого типа» .

Жидкостная система охлаждения

Жиддкостная система охлаждения более инерционна, двигатель медленно прогревается, но и медленно остывает. Кроме того, большая теплоемкость охлаждающей жидкости обеспечивают интенсивный и равномерный теплоотвод и меньшую температуру деталей.

Теплота, отводимая от двигателей, используется для подогрева впускного трубопровода и улучшения смесеобразования, а также для отопления кабины или салона автомобиля в холодную погоду.

Приборы системы охлаждения:

радиатора 3, вентилятора 1, жидкостного насоса 8, рубашки охлаждения блока цилиндров, рубашки охлаждения головки блока цилиндров, термостата 10, патрубков 6,17 шлангов 9, расширительного бачка, приборов контроля температуры жидкости 13, сливных краников 18, 19.

Устройство системы охлаждения двигателя

Работа системы охлаждения

Циркуляцию жидкости в системе охлаждения осуществляют по двум кругам: малому и большому.

По малому кругу жидкость циркулирует при пуске холодною двигателя, обеспечивая его быстрый прогрев в такой последовательности: жидкостной насос — распределительные трубы — рубашка охлаждения блока цилиндров — рубашка охлаждения головки блока цилиндров — верхний патрубок термостата (клапан закрыт) — перепускной шланг приемная полость жидкостного насоса.

По большому кругу жидкость циркулирует при прогретом двигателе: жидкостной насос (как и по малому кругу) — термостат (клапан открыт) — резиновый шланг — патрубок радиатора — верхний бачок радиатора — сердцевина радиатора — нижний бачок радиатора — патрубок — шланги — приемная полость жидкостного насоса.

жидкостная система охлаждения

Переохлаждение двигателя сопровождается ростом механических потерь из-за повышения вязкости масла, ухудшением процессов смесеобразования и сгорания, следствием чего является повышенный расход топлива. Конденсация паров воды в картерной полости холодного двигателя и на стенках цилиндров приводит к коррозии. В отрабатавших газах повышается содержание углеводородов не сгоревшего топлива и высокотоксичных альдегидных соединений.
Принудительный отвод теплоты от деталей двигателя осуществляется с помощью жидкости или воздуха, в связи с чем различают двигатели жидкостного и воздушного охлаждения.

Радиатор является теплообменником системы охлаждения, где поступающая из двигателя жидкость передаст теплоту потоку воздуха.

Радиатор состоит из верхнего и нижнего бачков, соединенных между собой трубками, образующими его охлаждающую решетку (сердцевину ра­диатора). Верхний бачок радиатора имеет наливную горловину с пробкой, а нижний — сливной кран. В наливную горловину впаяна пароотводная трубка, соединенная с расширительным бачком. Пароотводная трубка за­глублена в радиатор, где отводимые пары конденсируются. К верхнему и нижнему бачкам припаяны боковые стойки. Стойки и пластина образуют каркас радиатора. Сердцевина радиатора состоит из нескольких рядов тру­бок, впаянных в верхний и нижний бачки. К трубкам крепятся гонкие ох­лаждающие пластины или гофрированные ленты, изготовленные из лату­ки, алюминия или красной меди.

Пробка заливной горловины в закрытых системах жидкостного охлажде­ния имеет два предохранительных клапана с уплотнительными резиновы­ми прокладками и пружинами. Паровой клапан регулируют на избыточное давление (0,145—0,160 МПа), воздушный клапан открывается при падении давленияв системе против атмосферного не более чем на 0,01 МПа.

При нормальном функционировании клапанов система охлаждения только кратковременно может сообщаться с окружающей средой или поло­стью расширительного бачка.

Жалюзи устанавливаются перед радиатором, с их помощью регулирует­ся количество воздуха, проходящего через сердцевину радиатора. Жалюзи изготовляются в виде набора вертикальных иди горизонтальных пластин — створок из оцинкованного железа, которые объединены общей рамкой и снабжены шарнирным устройством, обеспечивающим одновременный или групповой поворот их вокруг своей оси. Жалюзи прикрепляют к каркасу радиатора или к его наружной облицовке. Управление створками осущест­вляется вручную или с помощью устройства с термостатом.

Жидкостной насос создаст в системе охлаждения принудительную цир­куляцию жидкости. Применяют одноступенчатые жидкостные насосы цен­тробежного типа. Привод насоса, как правило, работает от шкива коленча­того вала посредством клиноременной передачи.

Жидкостной насос состоит из корпуса, вала привода с крыльчаткой, ступицы для крепления шкива привода, самоподжимной уплотняющей манжеты, двух латунных обойм, резиновой манжеты» уплотняющей шайбы ипружинного кольца. Вал насоса вращается на двух шарикоподшипниках.

Центробежные насосы одноступенчатого типа, рассчитанные на давле­ние и 0,04 —0,1 МПа, отличаются компактностью и обеспечивают доста­точную подачу жидкости при сравнительно больших зазорах между крыль­чаткой и стенками корпуса.

Вентилятор служит для создания воздушного потока, проходящего че­рез сердцевину радиатора, для охлаждения жидкости, протекающей по трубкам.

Ремонт системы охлаждения

Воздушная система охлаждениянеисправности системы охлаждения

Обслуживание системы охлаждения гарантия нормальной работы вашего двигателя.

 

 

Устройство и работа приборов жидкостной системы охлаждения

Категория:

   Техническое обслуживание автомобилей

Публикация:

   Устройство и работа приборов жидкостной системы охлаждения

Читать далее:



Устройство и работа приборов жидкостной системы охлаждения

Жидкостный насос. Для создания принудительной циркуляции охлаждающей жидкости в системе охлаждения служит жидкостный насос центробежного типа (рис. 4.2). Расположен насос в передней части блока цилиндров и приводится в действие клиноременной передачей от шкива коленчатого вала. Он состоит из корпуса крыльчатки и корпуса подшипников, соединенных между собой через прокладку. Вал насоса вращается в двух шарикоподшипниках, снабженных сальниками для удержания масла. Передний подшипник фиксируется упорным кольцом, а задний удерживается от перемещения дистанционной втулкой.

Пластмассовая крыльчатка крепится на заднем конце вала при помощи металлической ступицы. При вращении крыльчатки жидкость из подводящего патрубка поступает к ее центру, затем захватывается лопастями и под действием центробежной силы отбрасывается к стенкам корпуса, а оттуда через полые приливы подается в рубашку охлаждения двигателя.

Герметичность вращающихся деталей, расположенных в корпусе насоса, обеспечивается самоподвижным сальником, установленным в крыльчатке и состоящей из уплот-нительной шайбы, резиновой манжеты и пружины, прижимающей шайбу к торцу корпуса подшипников. Своими выступами шайба входит в пазы крыльчатки и закрепляется обоймой. На переднем конце вала с помощью втулки установлена ступица, к которой крепится шкив привода насоса и вентилятора.

Рекламные предложения на основе ваших интересов:

Рис. 4.3. Жидкостный насос в сборе с электромагнитной муфтой вентилятора

Вентилятор. Для повышения скорости потока воздуха, проходящего через радиатор, служит вентилятор (см. рис. 4.2). Устанавливаемые на двигателях вентиляторы имеют лопастей, которые изготовляют из листовой стали или пластмассы (у автомобилей ВАЗ-2106 «Жигули», «Москвич-2140» и др.).

На ряде двигателей лопасти вентилятора располагают в направляющем кожухе (диффузора), который улучшает вентиляцию подкапотного пространства и увеличивает количество воздуха, проходящего через радиатор. Для этой же цели лопасти 15 вентиляторов двигателей ЗМЗ-53, ЗИЛ-130 и др. изготовляют с отогнутыми концами в сторону радиатора.

На двигателях автомобилей ЗИЛ-130, ГАЗ-53-12, автобусах ЛиАЗ-677М и на многих легковых автомобилях привод вентилятора осуществляется клиноременной передачей. На дизелях ЯМЭ-236, -238 вентилятор приводится в действие через систему зубчатых колес непосредственно от зубчатого колеса распределительного вала.

На ряде моделей двигателей автомобилей семейства ГАЗ (ГАЗ-53-12 и ГАЗ-24-02) для лучшего поддержания в заданных пределах их теплового режима и уменьшения потери мощности на привод вентилятора последний приводится в действие электромагнитной муфтой. Центробежный насос в сборе с такой муфтой показан на рис. 4.3. Он состоит из корпуса, вала, крыльчатки с лопастями, самоподжимным сальником и электромагнитной муфты. В зависимости от температуры жидкости в системе охлаждения электромагнитная муфта включается или выключается. Она состоит из электромагнита 6, установленного вместе со шкивом на ступице насоса, и ступицы вентилятора, соединенной пластинчатой пружиной с якорем, свободно вращающимся вместе со ступицей на двух шарикоподшипниках. Катушка электромагнита соединена с тепловым реле, датчик которого расположен в верхнем бачке радиатора.

Когда температура охлаждающей жидкости в верхнем бачке радиатора достигает 85—90 °С, контакты теплового реле замыкаются и в катушку электромагнита поступает ток от аккумуляторной батареи. Якорь притягивается к электромагниту, и ступица вместе с лопастями вентилятора начинает вращаться. При понижении температуры охлаждающей жидкости до 80—85 °С контакты реле размыкаются и вентилятор отключается.

На автомобилях ВАЗ-2108 «Спутник», -2109 и их модификациях устанавливают электровентиляторы. Включение и выключение электродвигателя вентилятора происходят в зависимости от температуры охлаждающей жидкости датчиком, ввернутым в верхний бачок радиатора.

На дизелях автомобилей семейства КамАЗ в приводе вентилятора установлена гидромуфта, передающая крутящий момент от коленчатого вала к вентилятору. Гидромуфта имеет регулятор-выключатель с термосиловым датчиком, реагирующим на тепловой режим работы двигателя. С повышением температуры охлаждающей жидкости до 80 °С активная масса, находящаяся в баллоне включателя, начинает плавиться с увеличением объема, вследствие чего шток датчика, воздействуя на золотник, открывает канал главной масляной магистрали, из которого масло поступает в гидромуфту, обеспечивающей плавное включение вентилятора.

Рис. 4.4. Термостат с твердым наполнителем:
а — общий вид; б — клапан термостата.закрыт; в — клапан термостата открыт

В зависимости от теплового состояния двигателя изменяется перемещение золотника, а следовательно, количество подаваемого масла в гидромуфту, что в свою очередь влияет на частоту вращения вентилятора. При понижении температуры охлаждающей жидкости ниже 70 °С подача масла в гидромуфту прекращается и вентилятор отключается.

Термостат. Для ускорения прогрева холодного двигателя и автоматического поддержания его теплового режима в заданных пределах служит термостат. Конструктивно он представляет собой клапан, регулирующий количество циркулирующей жидкости через радиатор.

Термостаты могут быть с твердым или жидкостным наполнителем. На двигателях автомобилей ЗИЛ-130, КамАЭ-5320, «Москвич-2140» и др. применяют термостаты ствердым наполнителем (рис. 4.4, а).

Такой термостат располагается между патрубком (рис. 4.4, б) и корпусом выпускного трубопровода. Баллончик термостата заполнен активной массой, состоящей из смеси церезина (нефтяного воска) и медного порошка. Находящаяся в баллончике активная масса закрыта резиновой мембраной, на которой установлена направляющая втулка с отверстием для резинового буфера, предохраняющего мембрану от разрушения. На буфере установлен шток, связанный рычагом с клапаном, который в закрытом положении плотно прижимается к седлу пружиной.

При температуре охлаждающей жидкости (70 ±2) °С активная масса начинает плавиться и, расширяясь (рис. 4.4, в) перемещает вверх резиновую мембрану, буфер и шток. Последний, воздействуя на рычаг 8, начинает открывать клапан 6, полное открытие которого произойдет при температуре (83±2) °С. Следовательно, в интервале температур от 68 до 85 °С клапан термостата, изменяя свое положение, регулирует в заданных пределах количество охлаждающей жидкости, проходящей через радиатор, поддерживая тем самым нормальный температурный режим работы двигателя.

Жидкостные термостаты применяют в системах охлаждения двигателей автомобилей ГАЗ-53-12, ГАЗ-24-10 «Волга» и др. В корпусе (рис. 4.5, а) такого термостата находится гофрированный цилиндр из тонкой латуни, заполненный лег-коиспаряющейся жидкостью (смесь —70% этилового спирта и 30% воды). К верхней части гофрированного цилиндра штоком присоединен клапан термостата.

При температуре охлаждающей жидкости ниже 75 °С гофрированный цилиндр находится в сжатом состоянии, клапан термостата при этом закрыт, а охлаждающая жидкость циркулирует через перепускной канал 2 (шланг) по малому кругу, минуя радиатор.

С повышением температуры охлаждающей жидкости давление в гофрированном цилиндре 6 увеличивается (рис. 4.5, б), клапан термостата приоткрывается и жидкость через патрубок (см. рис. 4.5, а) начинает циркулировать по большому кругу. При температуре выше 90 °С клапан термостата открывается полностью и вся жидкость циркулирует через радиатор.

Радиатор. Радиатор, являющийся теплообменным узлом, предназначен для передачи тепла от охлаждающей жидкости потоку воздуха. Каркас радиатора образован боковыми стойками (рис. 4.6, а), соединенными пластиной, припаянной к нижнему бачку. Он крепится к раме автомобиля на резиновых подушках, что необходимо для уменьшения вибраций и ударных нагрузок, возникающих при его движении.

Рис. 4.5. Термостат с жидкостным наполнителем: а—клапан термостата закрыт; б—клапан термостата открыт

Радиатор состоит из верхнего и нижнего бачков и теплорассеи-вающей сердцевины, наружная поверхность которой обдувается воздухом, рассеивающим теплоту, полученную жидким теплоносителем (охлаждающей жидкостью) от нагретых деталей двигателя.

Количество воздуха, проходящего через сердцевину, регулируется створками-жалюзи, установленными в специальной рамке на каркасе радиатора. Они выполнены в виде набора узких пластин из специального железа и снабжены шарнирным устройством, обеспечивающим их поворот из кабины водителя. В радиаторах применяют в основном трубчато-пластинчатые или трубчато-ленточные сердцевины.

Трубчато-пластинчатая сердцевина (рис. 4.6, б) состоит из трех-четырех рядов латунных трубок овального сечения, к которым припаяны поперечно расположенные пластины, увеличивающие поверхность охлаждения.

Трубчато-ленточная сердцевина (рис. 4.6, в) состоит из плоских латунных трубок, между рядами которых размещаются широкие зигзагообразные ленты, имеющие специальные выштамповки, искривляющие воздушный канал и повышающие эффективность отдачи тепла потоку воздуха. Радиаторы с трубчато-ленточной сердцевиной получили широкое распространение и устанавливаются на большинстве двигателей.

В современных системах охлаждения закрытого типа горловина радиатора с установленной в ней пароотводной трубкой (см. рис. 4.7, а) герметически закрывается пробкой. Так как давление в такой системе охлаждения несколько больше атмосферного, то температура кипения жидкости (воды) находится в пределах 108—119 °С, из-за этого она меньше испаряется и реже закипает, что обеспечивает более длительную работу двигателя без дозаправки и перегрева.

Рис. 4.6. Радиатор и типы его сердцевин: а — устройство; б, в — соответственно трубчато-пластинчатая и трубчато-ленточная сердцевины

Герметичность закрытия горловины радиатора пробкой достигается упорной гофрированной шайбой (рис. 4.7, а) и пружиной, а сообщение системы охлаждения с атмосферой происходит через паровой и воздушный клапаны.

При избыточном давлении около 0,1 МП а (у двигателя ЗИЛ-130) и 0,045—0,55 МПа (у двигателя ЗМЗ-53-11) паровой клапан открывается и пар или жидкость поступает к пароотводной трубке. Из-за разрежения, возникающего после выхода пара, давление в системе снижается и при его уменьшении на 0,01 МПа открывается воздушный клапан (рис. 4.7, б), что предохраняет верхний бачок радиатора от деформации под действием давления воздуха.

На двигателях автомобилей ЗИЛ-131, КамАЭ-5320, ВАЗ-2105 «Жигули», «Москвич-2140» и др. в систему охлаждения устанавливают расширительный (конденсаторный) бачок (см. рис. 4.1,6), служащий для поддержания постоянного объема циркулирующей жидкости. Для контроля уровня жидкости на бачке имеется контрольная метка или кран (у автомобиля КамАЭ-5320).

В пробке расширительного бачка (у автомобилей ЗИЛ-131, КамАЗ-5320) или в пробке радиатора (у автомобилей ВАЗ-2105 «Жигули», «Москвич-2140») размещаются выпускной и впускной клапаны, устройство и принцип действия которых аналогичны описанным выше паровому и воздушному клапанам.

При избыточном давлении в системе охлаждения открывается выпускной клапан и пар или жидкость по трубопроводу отводится в расширительный бачок. По мере понижения температуры двигателя объем охлаждающей жидкости уменьшается, вследствие чего создается разрежение, под действием которого открывается впускной клапан, и жидкость из расширительного бачка поступает обратно в радиатор, в результате объем жидкости в системах охлаждения поддерживается постоянным при работе двигателя.

Охлаждающую жидкость сливают через сливные краны, расположенные соответственно на нижнем патрубке радиатора и в нижней части блока-картера, при этом пробки радиатора и расширительного бачка должны быть открытыми. У двигателей ЗИЛ управление кранами дистанционное с выводом тяг в подкапотное пространство.

Рис. 4.7. Пробка радиатора с открытым клапаном:
а—паровым; б—воздушным

Вместимости систем охлаждения автомобилей составляют: у ЗИЛ-130—26; у ЗИЛ-4331—27, у КамАЭ-5320—35, у ГАЗ-ЗЮ2— 12, у ВАЗ-2108 «Спутник» — 7,8.

Рекламные предложения:


Читать далее: Условия смазывания деталей

Категория: — Техническое обслуживание автомобилей

Главная → Справочник → Статьи → Форум


Жидкостная система охлаждения двигателя.


Жидкостная система охлаждения



Виды жидкостных систем охлаждения

Жидкостная система охлаждения может быть термосифонной и принудительной, открытой и закрытой.
Большинство современных автомобильных двигателей оснащены принудительной системой охлаждения закрытого типа из-за ряда существенных преимуществ.

При термосифонной системе охлаждения жидкость циркулирует по рубашке охлаждения и соединенному с ней радиатору благодаря разнице плотности горячей и холодной жидкости в верхней и нижней части системы (горячая жидкость поднимается, а холодная опускается самотеком, без применения перекачивающих устройств). Такая система проста, но малоэффективна и требует радиатор увеличенной емкости.
Поэтому термосифонная система жидкостного охлаждения распространения на автомобильных двигателях не получила; обычно применяется принудительная система охлаждения, в которой циркуляция охлаждающей жидкости обеспечивается жидкостным насосом.

Открытая система сообщается с окружающей средой (атмосферой) непосредственно, т. е. в такую систему постоянно может поступать воздух, а из системы выпускаться пар.
Закрытая система сообщается с окружающей средой посредством специальных клапанов, размещенных в пробке радиатора или крышке расширительного бачка. Такая система сообщается с атмосферой лишь в случае значительного превышения давления в ней, выпуская пар и горячий воздух через клапана. Это позволяют поднять давление и температуру кипения охлаждающей жидкости, благодаря чему можно уменьшить габаритные размеры радиатора.

Закипевшая охлаждающая жидкость резко снижает эффективность системы охлаждения, так как в этом случае в жидкости образуются пузырьки пара, препятствующие циркуляции жидкости и теплообменным процессам. Поэтому современные автомобильные двигатели оснащаются закрытой системой охлаждения, позволяющей использовать более высокий нагрев жидкости без закипания.

***

Устройство и работа жидкостной системы охлаждения

В классическом исполнении жидкостная система охлаждения двигателя состоит из жидкостного и воздушного трактов. Жидкостный тракт системы включает в себя (см. рис. 1): рубашку 6 охлаждения, термостат, радиатор 1, жидкостный насос 5, расширительный бачок 4 и трубопроводы.

Воздушный тракт системы состоит из радиатора 1, вентилятора 9 и направляющих элементов тракта (диффузора).

Принцип действия системы охлаждения заключается в следующем: жидкостный насос 5, приводимый от коленчатого вала двигателя, засасывает охлаждающую жидкость из нижней части радиатора и нагнетает ее в рубашку охлаждения 6. Проходя по каналам и полостям рубашки, жидкость забирает избыток теплоты у цилиндров и головки блока цилиндров, охлаждая детали.
Затем охлаждающая жидкость через систему патрубков и термостат поступает в верхний бачок 12 (рис. 1,б) радиатора, откуда по множеству трубок, составляющих сердцевину радиатора, скатывается в нижний бачок, отдавая по пути теплоту и охлаждаясь.
Далее охлаждающая жидкость опять засасывается насосом и циркуляция повторяется.
Описанный путь охлаждающей жидкости называют циркуляцией по большому кругу (рис. 2,б).



На пути охлаждающей жидкости из рубашки охлаждения в верхнем патрубке устанавливается специальный прибор — термостат, представляющий собой температурный клапан, который автоматически, в зависимости от степени нагрева, изменяет направление движения охлаждающей жидкости.
Если жидкость холодная, т. е. еще не прогрелась до рабочей температуры, клапан термостата перекрывает проход жидкости в радиатор и направляет ее сразу в насос, откуда она вновь поступает к рубашке охлаждения двигателя.
Такой путь жидкости, когда она перемещается, минуя радиатор, называется циркуляцией по малому кругу (рис. 2,а).

По малому кругу жидкость циркулирует при пуске холодного двигателя, обеспечивая его быстрый прогрев до рабочих температур. Когда двигатель прогревается, термостат обеспечивает циркуляцию охлаждающей жидкости по большому кругу, через радиатор.

Клапан термостата начинает открываться, пропуская охлаждающую жидкость в радиатор при температуре 70…87 ˚С.

***

Интенсивному охлаждению жидкости в радиаторе способствует поток воздуха, создаваемый вентилятором 9. Скорость потока охлаждающего воздуха зависит от скорости движения автомобиля. Изменить скорость воздушного потока можно с помощью жалюзи 2 (рис. 2,а), установленных перед радиатором.
На современных автомобилях изменение интенсивности обдува радиатора воздухом осуществляется автоматическими устройствами, например, вентиляторами с приводом от управляемого термодатчиком электродвигателя, гидромуфтами различных конструкций и т. п.

Охлаждающая жидкость может подводиться к рубашке охлаждения двигателя через нижний пояс цилиндров, верхний пояс и головку блока цилиндров. Подвод охлаждающей жидкости через нижний пояс цилиндров характерен для дизелей, которые допускают повышение температуры головки блока цилиндров, способствующее лучшему воспламенению рабочей смеси от сжатия.

В двигателях с принудительным воспламенением, склонных к детонации при наличии в камере сгорания перегретых зон, охлаждающая жидкость подводится через верхние пояса (рис. 1,б) или даже через головку блока цилиндров (рис. 1,в). В последнем случае нагретые участки головки блока цилиндров охлаждаются наиболее интенсивно.

Для подвода охлаждающей жидкости в рубашку охлаждения иногда применяют водораспределительные трубы 14 (рис. 1,в), имеющие окна против каждого цилиндра. Благодаря этому достигается параллельный подвод охлаждающей жидкости одинаковой температуры ко всем цилиндрам и улучшается равномерность их охлаждения.

Контроль над работой системы охлаждения осуществляется с помощью датчиков и указателя температуры, а также сигнализатора аварийной температуры охлаждающей жидкости.

Датчики устанавливаются в системе охлаждения двигателя, а указатель и сигнализатор – на приборной доске (щитке приборов) в кабине водителя.

Теплота, отводимая жидкостью от деталей двигателя, используется для подогрева впускного трубопровода, улучшения смесеобразования, а также для отопления кабины или салона автомобиля в холодную погоду.

***

Назначение и устройство радиатора



Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *