Двигателя камаз схема: Двигатель КамАЗ-5320, -53212, -5410, -54112, -5511, -55102 – Устройство двигателя КАМАЗ

Содержание

Схема двигателя КамАЗ

 В базовой комплектации общая схема КамАЗ 65115 предусматривает использование «заморского» двигателя Cammins 6ISBe. Среди преимуществ конкретно этого мотора повышенный крутящий момент, увеличенная мощность и изменения в системе подачи топлива. В отношении последнего следует отметить большую удобность и надежность в эксплуатации. Дело в том, что на таких двигателях ТНДВ как таковой отсутствует, вместо него используется система «Common Rail» механического типа.

 В более позднем варианте используются тоже «Камминсы», но уже другой модели – L325. Подобная схема двигателя КамАЗ кроме уже упомянутых преимуществ отличается еще большей мощностью. Внутри Cammins L325 скрываются сразу 325 «лошадок», что очень неплохо для самосвала, считающегося одним из самых слабых. Правда подобная «слабость» целиком компенсируется удобностью в эксплуатации, в частности, максимальной маневренностью автомобиля, за что он даже получил прозвище «городской самосвал».

двигатель

 Противники импортных комплектующих часто указывают на трудности, связанные с ремонтом и обслуживанием такого двигателя. Плюс, схема двигателя КамАЗ 740 (а такие моторы тоже ставят на 4310-е) более проста, и это не недостаток, ведь они не менее надежны, но выигрывают в плане ремонтопригодности. К тому же, 740-е изначально задумывались, как «армейские» моторы, а это означает большую неприхотливость. Например, схема системы охлаждения двигателя КамАЗ сделана таким образом, что при утечке «штатного» антифриза можно временно восполнить объемы жидкости в системе, залив туда простую воду, устройство коробки КамАЗ

отличается простотой и высокой ремонтопригодностью .

 Естественно, надолго в таком состоянии систему оставлять нельзя, но водитель получает неплохой зазор во времени, чтобы без последствий добраться до сервиса (гаража, стоянки) и там отремонтировать систему охлаждения. А еще, на таких «модифицированных» авто КамАЗ схема смазки двигателя более подходит для российских реалий, нежели та, по которой проводится смазка импортных моторов.

Консультация по техническим вопросам , приобретению запчастей      8-916-161-01-97      Сергей Николаевич


 Впрочем, мы не собираемся советовать вам, какой мотор выбрать – каждый из них по-своему хорош. Тем более, надежность больше зависит от того, насколько точно соблюдаются правила эксплуатации, и насколько качественные расходные материалы и запчасти используются при их ремонте и обслуживании. И если первое зависит больше от вас и вашей работы, то вот вторым обеспечить может наша компания Спецмаш . В нашем интернет-магазине вы легко сможете недорого приобрести качественные запчасти для двигателей, как отечественного, так и импортного производства.

Устройство двигателя КамАЗ

740-1.gif

1     1/61008/11     Гайка М8х1,25-6Н    
2     1/05166/73     Шайба 8 пружинная    
2     1/05166/73     Шайба 8 пружинная    
3     740.1009010     Картер масляный в сборе (сварка)    
4     740.1009040     Прокладка картера масляного    
5     740.1012010-01     Фильтр очистки масла в сборе    
6     1/05200/01     Шайба плоская 12х22х3    
6     1/05200/01     Шайба плоская 12х22х3    
7     1/05170/73     Шайба 12 пружинная    
7     1/05170/73     Шайба 12 пружинная    
7     1/05170/73     Шайба 12 пружинная    
8     1/55419/21     Болт М12х1,25х130    
9     1/55421/21     Болт М12х1,25х150    
10     740.1012100-20     Прокладка корпуса масляного фильтра    
11     740.1002010     Блок цилиндров в сборе    
12     870884     Пробка КГ 1/8″ масляного канала    
13     740.3904012     Табличка заводская двигателя    
14     33.1111910     Гвоздь нарезной    
15     870623     Шайба 17 регулировочная    
16     740.1002053     Рым-болт    
17     1/55416/21     Болт М12х1,25-6gх100    
18     14.1703242     Кронштейн рычага    
19     740.1002500     Трубка сливная в сборе    
20     740.1002502     Трубка    
21     740.1002501     Трубка сливная    
22     1/60434/21     Болт М8-6gх20    
23     870882     Пробка коническая транспортная КГ 3/8″    
24     870625     Прокладка уплотнительная 28х34х2    
25     870886     Пробка М28х1,5 сливная
740-2.gif
1     1/59707/21     Болт М10х1,25-6gх25    
2     870851     Шайба замковая 10    
2     870851     Шайба замковая 10    
3     740-1005544     Шайба    
4     740.1005106     Болт М10х1,25-6gх26    
5     740.1005534     Полумуфта отбора мощности    
6     740.1005008     Вал коленчатый в сборе    
7     740.1005170     Вкладыш подшипника коленвала верхний    
7     740.1005170     Вкладыш подшипника коленвала верхний    
8     740.1005184     Полукольцо упорного подшипника коленчатого вала верхнее    
8     740.1005184     Полукольцо упорного подшипника коленчатого вала верхнее    
9     740.1005127-10     Болт крепления маховика    
10     740.1005115-10     Маховик в сборе    
11     864709     Подшипник шариковый    
12     740.1005183     Полукольцо упорного подшипника коленчатого вала нижнее    
12     740.1005183     Полукольцо упорного подшипника коленчатого вала нижнее    
13     740.1005171     Вкладыш подшипника коленвала нижний    
13     740.1005171     Вкладыш подшипника коленвала нижний
740-3.gif
1     740.1002011     Блок цилиндров в сборе    
2     1/03389/26     Штифт цилиндрический 10х25    
2     1/03389/26     Штифт цилиндрический 10х25    
3     740.1002075     Штифт установочный 10х25    
3     740.1002075     Штифт установочный 10х25    
4     870882     Пробка коническая транспортная КГ 3/8″    
5     740.1002523     Кольцо уплотнительное    
6     740.1002524     Заглушка отверстия распределительного вала    
7     262519     Пробка КГ 1/2″    
8     1/60434/21     Болт М8-6gх20    
8     1/60434/21     Болт М8-6gх20    
8     1/60434/21     Болт М8-6gх20    
8     1/60434/21     Болт М8-6gх20    
9     1/05166/73     Шайба 8 пружинная    
9     1/05166/73     Шайба 8 пружинная    
9     1/05166/73     Шайба 8 пружинная    
9     1/05166/73     Шайба 8 пружинная    
10     740.1002404     Заглушка водяной полости    
10     740.1002404     Заглушка водяной полости    
11     740.1002406     Прокладка заглушки водяной полости    
11     740.1002406     Прокладка заглушки водяной полости    
11     740.1002406     Прокладка заглушки водяной полости    
11     740.1002406     Прокладка заглушки водяной полости    
12     870884     Пробка КГ 1/8″ масляного канала    
13     740.1003035     Втулка с уплотнительными кольцами в сборе    
13     740.1003035     Втулка с уплотнительными кольцами в сборе    
14     1/45172/23     Штифт цилиндрический 14х25    
14     1/45172/23     Штифт цилиндрический 14х25    
15     740.1014506     Угольник сапуна    
16     740.1014494     Кольцо уплотнительное    
17     740.1014504     Угольник сапуна в сборе    
18     Пробка КГ 1/4″     Пробка КГ 1/4″    
19     740.1002084     Заглушка водяной полости    
20     740.1002080     Заглушка водяной полости в сборе    
20     740.1002080     Заглушка водяной полости в сборе    
21     870771     Штифт цилиндрический 8х16    
22     853829     Заглушка чашечная 20    
23     740.1003040     Кольцо уплотнительное    
23     740.1003040     Кольцо уплотнительное    
24     740.1003037     Втулка    
25     740.1002024     Кольцо уплотнительное гильзы    
26     740.1002031     Кольцо уплотнительное гильзы верхнее    
27     740.1002021     Гильза цилиндра

Двигатель камаз 5320 схема

Двигатели автомобилей КамАЗ-5320, КамАЗ-4310 и Урал-4320 в основном идентичны по конструкции и представляют собой однотипный восьмицилиндровый V-образный четырехтактный дизель модели 740 с жидкостным охлаждением.

Некоторые конструктивные изменения по размещению агрегатов и узлов систем двигателя, установленного на автомобиле Урал-4320, вызваны компоновочными соображениями.

Устройство двигателя автомобилей КамАЗ-5320 и КамАЗ-4310 представлено на рис. 2.1, 2.2; устройство двигателя автомобиля Урал-4320 — на рис. 2.3.

Рекламные предложения на основе ваших интересов:

Блок цилиндров двигателя отлит из чугуна как одно целое с верхней частью картера и снизу закрыт штампованным масляным поддоном. В расточках полублоков установлены гильзы цилиндров «мокрого» типа. Сверху гильзы закрыты отдельными на каждый цилиндр головками. Механизм газораспределения верхнеклапанный. В средней части развала блока между рядами цилиндров установлен распределительный вал, в нижней части блока — коленчатый вал.

В двигателе автомобилей КамАЭ-5320 и КамАЗ-4310 (см. рис. 2.1, 2.2) в передней части блока цилиндров соосно с коленчатым валом установлена гидромуфта привода вентилятора. С правой стороны блока крепятся фильтр центробежной очистки масла, два масляных фильтра тонкой очистки, маслозаливная горловина и щуп для контроля уровня масла в поддоне. С левой стороны нижней части блока установлен электростартер.

С наружной стороны боковых поверхностей головок цилиндров крепятся выпускные трубопроводы, с внутренней стороны — впускные трубопроводы и водоотводящие трубы. Сверху к впускным трубам крепятся два фильтра тонкой очистки топлива. На передних концах водоотводящих труб установлены термостаты системы охлаждения двигателя.

В развале блока цилиндров размещены топливный насос высокого давления, компрессор и насос гидроусилителя руля.

Основные конструктивные отличия двигателя автомобиля Урал-4320 вызваны размещением вентилятора с гидромуфтой и воздушного фильтра. Вентилятор с гидромуфтой размещен в верхней части двигателя, фильтр — в подкапотном пространстве на соединительном патрубке впускных трубопроводов. В связи с этим появились изменения в конструкции привода гидромуфты, корпуса и заборного трубопровода воздушного фильтра. Привод гидромуфты обеспечивается ременной передачей от шкива коленчатого вала.

Рис. 2.1. Устройство двигателя модели 740 автомобилей КамАЭ-5320 и КамАЗ-4310 (продольный разрез):
1 — маховик; 2 — масляный поддон картера; 3 — выпускной коллектор: 4 — блок цилиндров; 5— гильза цилиндра; 6 — поршень; 7 — коленчатый вал; 8 — поршневой палец; 9— шатун; 10 — крышка первой опоры коленчатого вала; 11 — масляный насос; 12 — передний вынос-Ной противовес коленчатого вала; 13 — валик привода гидромуфты; 14 — шкив привода генератора; 15 — гидромуфта; 16 — ремни привода генератора и водяного насоса; 17 — распределительный вал; 18 — толкатель; 19 — включатель гидромуфты: 20 — штанга толкателя; 21 — фильтр центробежной очистки масла; 2’2 — впускной клапан; 23 — генератор: 24 — коромысло клапана; 23 — правый впускной коллектор; 26 — топливный нэсос высокого давления; 27 — ручной топливоподкачивающий иасос; 28 — свеча электрофакелького подогрегате-ля; 29 — компрессор: 30 — крышка головки цилиндра; 31 — головка цилиндра; 32 — соединительный патрубок впускных коллекторов; 33— насос гидроусилителя руля; 34 — шестерня привода топливного насоса высокого давления; 35 — Шестерня распределительного вала; 36 — блок промежуточных Шестерен; 37 — ведущая шестерня коленчатого вала

Рис. 2.2. Устройство двигателя модели 740 автомобилей КамАЭ-5320 и КамАЗ-4310 (поперечный разрез):
1 — масляный насос; 2 — фильтр полнопоточный очистки масла; 3 — противовес коленчато» го вала; 4 — шатун; 5 — распределительный вал; 6 — поршневой палец; 7 —поршень; « — форсунка; 9 — фильтр тонкой очистки топлива; 10— компрессор; И — бачок гидроуснлн» теля руля; 12 — ручной топливоподкачнвающий насос

Изменена также конструкция поддона картера двигателя, размещение и крепление маслоприемника насоса.

Конструктивные отличия по системам двигателя изложены ниже.

Рис. 2.3. Устройство двигателя модели 740 автомобиля Урал-4320 (продольный разрез):
1 — маслоприемник; 2 —масляный насос; 3 — шкив коленчатого вала; 4 — гидромуфта; 5 — шкив привода гидромуфты с вентилятором; 6 — воздухоочиститель

Основные конструктивные данные и параметры дизеля модели 740 приведены в технической характеристике, закономерности изменения основных показателей двигателя в функции от частоты вращения коленчатого вала — на скоростной характеристике.

Высокая литровая мощность и низкий удельный расход топлива достигнуты форсированием двигателя по частоте вращения, применением совершенного смесеобразования, высокой степени сжатия и использованием тороидальной камеры сгорания.

Трудоемкость технического обслуживания двигателя в процессе эксплуатации значительно снижена благодаря применению закры той системы охлаждения с всесезонной специальной охлаждающей жидкостью, высококачественных моторных масел, эффективных двухступенчатого воздухоочистителя сухого типа, топливных и масляных фильтров.

Высокие пусковые качества двигателя при низких температурах обеспечены в результате применения аккумуляторных батарей повышенной емкости, мощного стартера, маловязкого моторного масла и предпускового подогрева двигателя.

Применение автоматической гидромуфты привода вентилятора и двух термостатов в системе охлаждения, эффективная очистка масла, топлива и воздуха обеспечивают высокую износостойкость деталей и узлов двигателя.

Двигатель состоит из кривошипно-шатунного механизма и механизма газораспределения, систем смазки, охлаждения, подогрева, питания топливом, воздухом и выпуска отработавших газов.

Содержание

Стр.
Введение
1.Технические характеристика КАМАЗ 5320
2. Устройство двигателя КАМАЗ 740.10
3. Принцип работы двигателя КАМАЗ 740.10
3.1. Принцип работы четырёхтактного двигателя
3.2. Кривошипно-шатунный механизм (КШМ)
3.3. Система питания двигателя КАМАЗ 740.10
3.4. Механизм газораспределения КАМАЗ
3.5. Система охлаждения двигателя КАМАЗ 740.10
3.6. Система смазки двигателя КАМАЗ 740.10
Список используемой литературы:

Введение

Прототип Будущего КамАЗа 5320 разрабатывался на ЗИЛе и назывался ЗИЛ-170. Первый ЗИЛ-170 был построен в 1968 году. На нем стоял двигатель Ярославского моторного завода (ЯМЗ). В качестве образца для прототипа, среди закупленных за рубежом для испытаний и выявления требуемого класса капотных и бескапотных аналогов, был выбран американский «International COF-220». В версии ЗиЛа кабина приобрела немного другие, более прямоугольные формы и изящный передок, с такой привычной нам решеткой воздухозаборника в правой части. Уже в мае 1969 года первый опытный образец автомобиля ЗиЛ-170 прошел первые испытания на участке Углич—Рыбинск. Но после принятия постановления ЦК КПСС и Совета Министров СССР «о строительстве комплекса заводов по производству большегрузных автомобилей в Набережных Челнах» дальнейшую разработку и последующую сборку ЗИЛа-170 было решено перенести на КАМАЗ. Тогда же название машины ЗИЛ-170 поменяли на КАМАЗ-5320. Первый, опытный КАМАЗ 5320 сошел с конвейера в 1974 г.

Первые серийные КАМАЗы сошли с конвейера 16 февраля 1976 года. По традиции тех лет грузовики из первой партии были украшены лозунгом «Наш подарок XXV съезду КПСС.

В дальнейшем на базе КАМАЗа 5320 был создан седельный тягач КАМАЗ 5410. и самосвал КАМАЗ 5511. Их производство началось в 1977 году. Все эти модели имели схожую конструкцию и во многом были унифицированы.

Техническая характеристика КАМАЗ 5320

  • Колесная формула — 6х4
  • Весовые параметры и нагрузки, а/м
  • Снаряженная масса а/м, кг — 7080
  • Грузоподъемность а/м, кг — 8000
  • Полная масса, кг — 15305
  • Двигатель
  • Модель — КамАЗ 740.10
  • Тип — дизельный атмосферный
  • Мощность кВт(л.с.) — 154(210)
  • Расположение и число цилиндров — V-образное, 8
  • Рабочий объём, л — 10,85
  • Коробка передач
  • Тип — механическая пятиступенчатая с двухступенчатым делителем (5*2)
  • Кабина
  • Тип — расположенная над двигателем.
  • Исполнение — без спального места
  • Колеса и шины
  • Тип колес — бездисковые
  • Тип шин — пневматические, камерные
  • Размер шин — 9.00R20 (260R508)
  • Платформа
  • Платформа бортовая, с металлическими откидными бортами
  • Внутренние размеры, мм — 5200х2320
  • Общие характеристики
  • Максимальная скорость, км/ч — 85
  • Угол преодол. подъема, не менее, % — 30
  • Внешний габаритный радиус поворота, м — 9,3
  • 2. Устройство двигателя Камаз-740.10

    Силовой агрегат
    На автомобили Камаз монтируются моторы моделей Камаз-740.10

    Рисунок. 1. Продольный разрез мотора Камаз-740.10: 1 — генератор; 2 — насос топливный низкого давления; 3 — насос топливоподкачивающий ручной; 4 — насос топливный высокого давления; 5 — муфта автоматическая опережения впрыскивания топлива; 6-полумуфта ведущая привода топливного насоса высокого давления; 7-патрубок соединительный впускных воздухопроводов; 8 — фильтрующий элемент тонкой очистки топлива; 9 — вал кулачковый; 10 -маховик; 11 — картер маховика; 12-пробка сливная; 13-картер мотора; 14-вал коленчатый; 15 — насос масляный; 16 — валик привода ведущей секции гидромуфты; 17 — шкив привода генератора; 18-крыльчатка вентилятора

    Рисунок. 2. Поперечный разрез мотора Камаз-740.10: 1 — фильтрующий элемент полнопоточный очистки масла; 2 — горловина маслозаливная; 3 -указатель уровня масла; 4 — фильтрующий элемент центробежный масляный; 5 -коробка термостатов; 6 — рым-болт передний; 7 — компрессор; 8 -насос гидроусилителя рулевого управления; 9 — рым-болт тыльный; 10 — труба водяная левая; 11 — свеча факельная; 12- воздухопровод подающий левый; 13 — форсунка; 14 — скоба фиксации форсунки; 15 — патрубок выпускного коллектора; 16 — коллектор выпускной

    Рисунок. 3. Силовой агрегат Камаз-7403.1. с турбонаддувом: 1 — коллектор выпускной; 2 — стартер; 3 — крышка головки цилиндра; 4 — картер масляный; 5 -кронштейн рычага переключения передач; 6 — насос водяной; 7 — крыльчатка вентилятора; 5 — ремни привода; 9 -фильтр центробежный масляный; 10 -генератор; 11, 25 — кронштейны; 12-рычаг переключения передач; 13 -патрубок объединительный; 14 — крышка регулятора топливного насоса высокого давления; 15, 22 — свечи факельные; 16 — клапан электромагнитный; 17, 23 — коллекторы впускные; 18 -фильтр тонкой очистки топлива; 19 -компрессор; 20,26 — турбокомпрессоры; 21 — сосуд насоса гидроусилителя рулевого управления; 24 патрубок

    Моторы Камаз-740.1. и Камаз-7403.1. имеют следующие конструктивные тонкости:
    —поршни, отлитые из высококремнистого алюминиевого сплава, с чугунной упрочняющей вставкой под верхнее компрессионное кольцо и коллоидно-графитным приработочным покрытием юбки;
    —гильзы цилиндров, объемно закаленные и обработанные плосковершинным хонингованием;
    —поршневые кольца с хромовым и молибденовым покрытием боковых плоскостей;
    —трехслойные тонкостенные сталебронзовые вкладыши коренных и шатунных подшипников;
    —закрытую систему охлаждения, заполняемую низкозамерзающей охлаждающей жидкостью, с автомати
    ческим регулированием температурного режима,гидромуфтой привода вентилятора и термостатами;
    —высокоэффективную фильтрацию масла, топлива и воздуха бумажными фильтрующими элементами;
    —электрофакельное устройство подогрева воздуха, обеспечивающее прочный пуск мотора при
    отрицательных температурах окружающего воздуха до минус 25 С.

    Рисунок. 4. Модель нумерации и порядок работы цилиндров Камаз:
    1. — цилиндры; I — правый ряд; Ii — левый ряд

    ДВИГАТЕЛЬ КАМA3-740.50-360 И ЕГО СИСТЕМЫ

    Двигатели четырехтактные с воспламенением от сжатия, жидкостного охлаждения, с V-образным расположением восьми цилиндров, с турбонаддувом и промежуточным охлаждением наддувочного воздуха (ОНВ) типа «воздух-воздух».

    По выбросам вредных веществ с отработавшими газами двигатель 740.50-360 соответствуют требованиям правил ЕЭК ООН (EURO-2).

    Общий вид, продольный и поперечный разрезы двигателей приведены на рис. 15. 19.

    Рис. 15. Общий вид двигателя.

    Рис. 16. Продольный разрез двигателя:

    1 — ТНВД; 2 — привод ТНВД; 3 — компрессор; 4 — фильтр тонкой очистки топлива; 5 — картер агрегатов; 6 — турбокомпрессор; 7 — маховик; 8 — картер маховика; 9 — коленчатый вал; 10 — масляный картер; 11 — форсунка охлаждения поршня; 12 — масляный насос; 13 — гаситель крутильных колебаний; 14 — шкив привода водяного насоса и генератора; 15 — вентилятор с вязкостной муфтой; 16 — кронштейн крепления обечайки вентилятора; 17 — обечайка вентилятора; 18-шестерня привода насоса масляного откачивающего.

    Рис. 17. Поперечный разрез двигателя:

    1 — коллектор выпускной; 2 — головка цилиндра; 3 — блок цилиндров; 4 — поршень; 5 — стартер; 6 — фильтр масляный; 7 — водомасляный теплообменник; 8 — форсунка; 9 — коллектор впускной; 10 — труба подводящая; 11 — привод управления регулятором ТНВД; 12 — маслоналивная горловина; 13 — бачок насоса гидроусилителя руля.

    Рис. 18. Двигатель, вид спереди:

    1 — труба отвода воздуха в охладитель наддувочного воздуха; 2 — бачок насоса гидроусилителя руля; 3 — корпус водяных каналов; 4 — водяной насос, 5 — выпускной коллектор;6 — ремень привода водяного насоса и генератора; 7 -стартер; 8 — передняя крышка; 9 — масляный картер; 10 — фильтр масляный; 11 — водомасляный теплообменник; 12 — генератор; 13 — патрубок отвода охлаждающей жидкости из двигателя; 14-крышка головки цилиндра; 15 — патрубок соединительный.

    Техническая характеристика двигателей

    Наименование параметра, характеристика и единица измерения

    четырехтактный, с воспламенением от сжатия

    V-образное, с углом развала 90°

    Порядок работы цилиндров

    Направление вращения коленчатого вала

    правое (против часовой стрелки, если

    смотреть со стороны маховика)

    Диаметр цилиндров и ход поршня, мм

    Рабочий объем, л.

    Номинальная мощность, кВт (л.с.)

    Максимальный крутящий момент, Н м (кгс-м)

    Установочный угол опережения впрыскивания топлива, град.

    Частота вращения коленчатого вала, мин -1 :

    — при максимальном крутящем моменте на холостом ходу:

    Количество клапанов в головке цилиндра

    2 (впускной и выпускной)

    Зазоры на холодном двигателе, между коромыслами и стержнями клапанов:

    впускных — 0,25. 0,30 мм; выпускных — 0,35. 0,40 мм.

    Давление масла в прогретом двигателе при частоте вращения коленчатого вала, кПа (кгс/см 2 ):

    — минимальной холостого хода, не менее

    с распылителем производства «ЯЗДА»

    с распылителем производства ф. «БОШ»

    Давление начала впрыскивания форсунки, МПа (кгс/см 2 )

    DLLA 148 S 1380

    23,73. 24.90 (242. 254)

    Топливный насос высокого давления (ТНВД) модели

    газотурбинная, с двумя турбокомпрессорами и ОНВ типа «воздух-воздух».

    Генератор мод. 6582.3701:

    — номинальный ток. А:

    — номинальное выпрямленное напряжение, В;

    — номинальная мощность, кВт.

    — номинальная мощность, кВт

    постоянного тока, последовательного возбуждения, с электромагнитным приводом.

    Коробка передач модели ZF — 16S151 фирмы «ZAHNRADFABR1K»

    Механическая, шестнадцатиступенчатая. включает основную четырехступенчатую коробку с встроенным двухступенчатым делителем, расположенным впереди основной коробки и с двухступенчатым планетарным демультипликатором, расположенным сзади основной коробки.

    Маркирование и пломбирование

    Каждый двигатель должен иметь маркировку, которая наносится на блоке цилиндров с правой стороны сверху в передней части двигателя.

    — код года изготовления 1 знак и порядковый номер двигателя 7 знаков. Маркировка наносится ударным способом.

    Товарный знак завода-изготовителя, сведения о сертификации и модель двигателя нанесены на информационную табличку, которая прикрепляется к левому воздушному коллектору.

    Маркировка может выполняться на табличке, которая прикрепляется к блоку цилиндров с правой стороны сверху в передней части двигателя и содержит следующие данные:

    — товарный знак предприятия-изготовителя;

    — условное обозначение модели двигателя, состоящее из 10 знаков, 740.50-360;

    — порядковый номер двигателя, состоящий из 7 знаков;

    — дата (месяц и год) выпуска, состоящее из 4 знаков;

    — международный знак официального утверждения в соответствии с Правилами ЕЭК ООН. состоящий из:

    — круга, в котором проставлена буква «Е» и цифры 22;

    — номера Правил ЕЭК ООН и номера официального утверждения (сертификата), расположенных справа от круга.

    Порядковый номер двигателя и дата изготовления наносятся ударным способом.

    Модель топливного насоса высокого давления и дата выпуска выбиты на табличке, прикрепленной к корпусу насоса с левой стороны.

    Порядковый номер ТНВД выбит на заднем торце корпуса ТНВД с правой стороны.

    На топливном насосе высокого давления в сборе с регулятором частоты вращения устанавливаются восемь пломб завода-изготовителя:

    — на обе крышки секций ТНВД;

    — на винт регулировки цикловой подачи и болт крепления крышки мембраны корректора по давлению наддувочного воздуха;

    — на винт регулировки корректора по давлению наддувочного воздуха;

    — на болт крепления крышки мембраны корректора по давлению наддувочного воздуха и болт крепления крышки регулятора;

    — на болт ограничения максимальной частоты вращения;

    — на болт регулировки пусковой подачи и болт крепления крышки регулятора;

    — на болт ограничения хода рычага останова и болт крепления крышки регулятора.

    Снятие пломб категорически запрещается.

    Состав двигателя, устройство и работа

    Блок цилиндров является основной корпусной деталью двигателя и представляет собой отливку из чугуна.

    Отливку подвергают искусственному старению для снятия термических напряжений, что позволяет блоку сохранить правильные геометрические формы и размеры в процессе эксплуатации.

    Два ряда полублоков под гильзы цилиндров, отлитых как одно целое с верхней частью картера, расположены под углом 90° один к другому.

    Левый ряд расточек под гильзы смещен относительно правого вперед (к вентилятору) на 29,5 мм, что обусловлено установкой на каждую шатунную шейку коленчатого вала двух шатунов.

    Каждая расточка имеет два соосных цилиндрических отверстия, выполненные в верхнем и нижнем поясах блока, по которым центрируются гильзы цилиндра, и выточки в верх нем поясе, образующие кольцевые площадки под бурты гильз. Чтобы обеспечить правильную посадку гильзы в блоке, параметры плоскостности и перпендикулярности упорной площадки под бурт гильзы относительно оси центрирующих расточек выполняются с высокой точностью.

    На нижнем поясе выполнены две канавки под уплотнительные кольца, которые предотвращают попадание охлаждающей жидкости из полости охлаждения блока в полость масляного картера двигателя.

    Бобышки отверстий под болты крепления головок цилиндров выполнены в виде приливов к поперечным стенкам, образующим рубашку охлаждения, равномерно распределены вокруг каждого цилиндра.

    Картерная часть блока связана с крышками коренных подшипников коренными и стяжными болтами. Центрирование крышек коренных подшипников производится горизонтальными штифтами 8 (рис. 24), которые запрессованы на стыке между блоком и крышками, но большей частью входящими в блок для предотвращения их выпадения при снятии крышек.

    Кроме того, крышка пятой коренной опоры центрируется в продольном направлении двумя вертикальными штифтами, обеспечивающими точность совпадения расточек под упорные полукольца коленчатого вала на блоке и на крышках.

    Порядок затяжки болтов крепления крышек коренных опор в соответствии с приложением 8.

    Расточка блока цилиндров под вкладыши коренных подшипников производится в сборе с крышками, поэтому крышки коренных подшипников невзаимозаменяемы и устанавливаются в строго определенном положении. На каждой крышке нанесен порядковый номер опоры, нумерация которых начинается с переднего торца блока.

    В картерной части развала блока цилиндров в виде бобышек выполнены направляющие толкателей клапанов. Ближе к заднему торцу между четвертым и восьмым цилиндрами, для улучшения циркуляции охлаждающей жидкости, выполнена перепускная труба полости охлаждения. Одновременно она придает блоку еще и дополнительную жесткость. Параллельно оси расточек под подшипники коленчатого вала выполнены расточки под втулки распределительного вала увеличенной размерности.

    Диаметры масляных каналов в блоке цилиндров увеличены.

    В нижней части цилиндров отлиты, заодно с блоком, бобышки под форсунки охлаждения поршней.

    С целью установки на блок фильтра с теплообменником на правой стороне увеличина. по сравнению с двигателем 740.10, площадка под фильтр, введены два дополнительных крепежных отверстия и сливное отверстие из фильтра.

    Гильзы цилиндров (рис. 19) «мокрого» типа, легкосъемные имеют маркировку 740.50-1002021 на конусной части внизу гильзы. Установка гильз с другой маркировкой недопустима из-за возникающего контакта с шатуном. Гильзы двигателей 740.50-360 отличаются меньшей на 3 мм высотой от гильз других моделей двигателей КАМАЗ размерности 120×120.

    Гильза цилиндра изготавливается из серого специального чугуна упрочненного объемной закалкой.

    В соединении гильза — блок цилиндров полость охлаждения уплотнена резиновыми кольцами круглого сечения. В верхней части установлено кольцо 5 в проточке гильзы, в нижней части — два кольца 4 в расточки блока цилиндров.

    Микрорельеф на зеркале гильзы представляет собой редкую сетку впадин и площадок с мелкими рисками под углом к оси гильзы. При работе двигателя масло удерживается во впадинах, что улучшает прирабатываемость деталей цилиндро-поршневой группы.

    При сборке двигателя на нерабочем выступе торца гильзы наносится номер цилиндра и индекс варианта исполнения поршня.

    Рис. 19. Установка гильзы цилиндра п уплотнительных колец

    1 — трубка форсунки; 2 — корпус форсунки охлаждения поршня; 3 — корпус клапана; 4 — кольцо уплотнительное гильзы нижнее; 5 — кольцо уплотнительное верхнее; 6 — гильза цилиндра; 7 — блок цилиндров.

    Привод агрегатов (рис. 20) осуществляется прямозубыми шестернями и служит для привода механизма газораспределения, топливного насоса высокого давления, компрессора и насоса гидроусилителя руля автомобиля.

    Механизм газораспределения приводится в действие от шестерни 10, установленной на хвостовике коленчатого вала, через блок промежуточных шестерен, которые вращаются на двух рядах роликов 3, разделённых промежуточной втулкой 4 и расположенных на оси 1, закреплённой на заднем торце блока цилиндров.

    На конец распределительного вала напрессована шестерня, угловое расположение которой относительно кулачков вала определяется шпонкой.

    Шестерня 15 привода топливного насоса высокого давления (ТНВД) установлена на валу 13 привода ТНВД и фиксируется шпонкой 14.

    Шестерни устанавливаются на двигатель в строго определенном положении по метке «0» на шестерне привода распределительного вала, метке «Е» на шестерне привода ТНВД и рискам, выбитым на зубчатых колесах, как показано на рис. 23.

    Привод ТНВД осуществляется от шестерни 15, находящейся в зацеплении с шестерней распределительного вала. Вращение от вала к ТНВД передается через ведущую и ведомую полумуфты с упругими пластинами, которые компенсируют несоосность установки валов ТНВД и шестерни. С шестерней привода ТНВД находятся в зацеплении шестерни привода компрессора и насоса гидроусилителя руля.

    Рис. 20. Привод агрегатов

    1 — ось ведущей шестерни привода распределительного вала; 2 — болт крепления оси; 3 — ролики 5,5×15,8 в количестве 62 шт.; 4 — втулка промежуточных роликов; 5 — шестерня ведущая; 6 — шпонка; 7 — шайба упорная; 8 — шайба замковая; 9 — болт M12x1,25×90 крепления насыпного подшипника; 10 — ведущее зубчатое колесо коленчатого вала; 11 — шестерня промежуточная; 12 — шарикоподшипники; 13 — вал колеса привода ГНВД; 14 — шпонка; 15 — шестерня привода ТНВД; 16- втулка; 17 — распределительный вал в сборе с шестерней.

    К заднему торцу блока цилиндров крепится картер агрегатов. В верхней части картера агрегатов есть расточки, в которые устанавливаются компрессор и насос гидроусилителя руля. По бокам картера агрегатов выполнены бобышки с отверстиями для слива масла из турбокомпрессоров и отверстием под указатель уровня масла.

    Привод агрегатов закрыт картером маховика, закреплённым к заднему торцу блока цилиндров через картер агрегатов.

    На картере маховика справа предусмотрено место для установки фиксатора маховика, применяемого для установки угла опережения впрыскивания топлива и регулирования тепловых зазоров в механизме газораспределения. Ручка фиксатора при работе двигателя должна находиться в верхнем положении.

    В нижнее положение ее переводят при регулировочных работах, в этом случае фиксатор находится в зацеплении с маховиком. В верхней части картера маховика выполнена расточка, в которую устанавливается корпус заднего подшипника. Внизу в левой части картера имеется расточка, в которую устанавливается стартер. В середине картера выполнена расточка под манжету коленчатого вала.

    В верхней части картера слева выполнен прилив, предназначенный для установки коробки отбора мощности (КОМ). В случае отсутствия КОМ внутренние поверхности прилива не обрабатываются. Задний фланец картера маховика выполнен с присоединительными размерами по SAE1.

    Система смазки двигателя КамАЗ-740. Схема с пояснениями.

    В двигателях автомобилей КамАЗ применена комбинированная система смазки. В зависимости от размещения и условий работы деталей масло подается либо под  давлением, либо разбрызгиванием, либо самотеком. К наиболее нагруженным деталям масло подается под давлением, к остальным — разбрызгиванием и самотеком.

    Система смазки представляет собой ряд приборов и агрегатов для хранения, подвода, очистки и охлаждения масла:

    • поддон картера двигателя;
    • маслозаборник;
    • масляный фильтр грубой очистки;
    • масляный фильтр тонкой очистки;
    • масляный насос;
    • маслопроводы;
    • масляный радиатор;
    • контрольно-измерительные приборы и датчики.

    Масло из поддона через маслоприемник с сетчатым фильтром поступает в секции масляного насоса. Из нагнетающей секции масло через канал подается в полнопоточный фильтр, а оттуда в главную масляную магистраль. Затем по каналам в блоке и головках цилиндров масло под давлением подается к деталям КШМ и ГРМ, ТНВД и компрессору.

    К шатунным подшипникам масло подается по каналу коленчатого вала от ближайшей к ним коренной шейки.
    Опоры штанг и толкателей газораспределительного механизма омываются пульсирующей струей, а остальные детали — разбрызгиванием или самотеком масла.

    Масло, снимаемое со стенок цилиндра маслосъемными кольцами, отводится через сверления в поршневых канавках внутрь поршня и смазывает опоры поршневого пальца в верхней головке шатуна и бобышках поршня.

    Из главной смазочной магистрали масло под давлением подается к термосиловому датчику, а при открытом кране включения гидромуфты — в саму гидромуфту.

    Из радиаторной секции масляного насоса масло подается к фильтру центробежной (тонкой) очистки и через открытый кран включения масляного радиатора в сам радиатор, а из него в поддон картера двигателя. Если кран включения масляного радиатора закрыт, то из центрифуги (фильтр центробежной очистки) масло поступает в поддон через сливной клапан.

    1 — фильтр центробежной очистки масла; 2 — кран включения масляного радиатора; 3 — перепускной клапан центробежного фильтра; 4 — сливной клапан центробежного фильтра; 5 — перепускной клапан полнопоточного масляного фильтра; 6 — главная масляная магистраль; 7 — полнопоточный фильтр очистки масла; 8 — клапан системы смазки; 9 — нагнетающая секция масляного насоса; 10 — радиаторная секция масляного насоса; 11 — предохра­нительный клапан нагнетающей секции; 12 — масляный радиатор; 13 — пре­дохранительный клапан радиаторной секции; 14 — поддон; 15 — гидромуфта привода вентилятора; 16 — термосиловой датчик; 17 — кран включения гидро­муфты; 18 — топливный насос высокого давления; 19 — компрессор; 20 — сапун; 21 — указатель уровня масла; 22 — манометр.

    Конструкция питания дизеля Камаз-740.30-260

    Система питания топливом обеспечивает фильтрацию топлива и равномерное распределение его по цилиндрам двигателя дозированными порциями в строго определенные моменты

    На двигателе применена система питания топливом разделенного типа, состоящая из топливного бака, топливопроводов низкого давления, фильтров грубой и тонкой очистки топлива, топливопрокачивающего и топливоподкачивающего насосов, топливного насоса высокого давления (ТНВД) с электромагнитом останова, топливопроводов высокого давления, форсунок, электромагнитного клапана и штифтовых свечей электрофакельного устройства (ЭФУ).

    Топливный бак, фильтр грубой очистки топлива и топливопрокачивающий насос должны быть установлены на изделии, на котором применяется двигатель, все остальные элементы системы питания установлены непосредственно на двигателе.

     

    Схема системы питания двигателя топливом показана на рисунке 1.

    Топливо из топливного бака 26 через фильтр грубой очистки 29 и топливопрокачивающий насос 30 подаётся топливоподкачивающим насосом 18, по топливной трубке 13 в фильтр тонкой очистки 16.

    Из фильтра тонкой очистки, по топливной трубке низкого давления 14 топливо поступает в ТНВД 21, который в соответствии с порядком работы цилиндров распределяет топливо по топливопроводам 1-8 высокого давления к форсункам 10.

    Форсунки впрыскивают топливо в камеры сгорания.

    Избыточное топливо, а вместе с ним попавший в систему воздух через перепускной клапан 24 и клапан 23 отводится в топливный бак.

     

    Форсунка типа 273 закрытой конструкции, с пятью распыливающими отверстиями и гидравлическим управлением подъема иглы распылителя показана на рисунке 2.

    Все детали форсунки собраны в корпусе 6. К нижнему горцу корпуса форсунки гайкой 2 через проставку 3 прижат корпус 1 распылителя, внутри которого находится игла 12.

    Корпус и игла распылителя составляют прецизионную пару.

    Угловая фиксация корпуса распылителя относительно проставки и проставки относительно корпуса форсунки осуществлена штифтами 4.

    На верхний конец иглы распылителя через штангу 5 оказывает давление пружина 11.

    Необходимое натяжение этой пружины осуществляется набором регулировочных шайб 9, 10, устанавливаемых между пружиной и торцом внутренней полости корпуса форсунки.

    Топливо к форсунке подается под высоким давлением через штуцер 8 со встроенным в него щелевым фильтром 13, далее по каналам корпуса 6, проставки 3 и корпуса распылителя 1 — в полость между корпусом распылителя и иглой 12 и, поднимая её, впрыскивается в цилиндр двигателя.

    Просочившееся через зазор между иглой и корпусом распылителя топливо отводится по каналам в корпусе форсунки и сливается в бак через дренажные трубки 9 и 11, показанные на рисунке 42.

    Форсунка установлена в головке цилиндра, зафиксирована скобами, которые закреплены гайкой.

    Торец гайки распылителя уплотнен от прорыва газов гофрированной медной прокладкой.

    Уплотнительное кольцо 7 (рисунок 2) предохраняет от попадания пыли и жидкостей полость между форсункой и головкой цилиндра.

    Проверку и регулировку форсунок, а также замену распылителей необходимо проводить в специализированной мастерской.

    Запрещается установка форсунок других моделей, кроме указанных в инструкции, ввиду возможности выхода из строя двигателя.

     

    Топливный насос высокого давления (рисунок 3), предназначен для подачи в цилиндры двигателя в определенные моменты строго дозированных порций топлива под высоким давлением.

    На двигатель автомобильной комплектации устанавливается ТНВД модели 337-20 с всережимным регулятором.

    На двигатель автобусной комплектации устанавливается ТНВД модели 337-71 с двухрежимным регулятором.

    Диаметр плунжера ТНВД -11 мм, ход плунжера -13 мм, нагнетательный клапан — грибковый, перьевой диаметром 7 мм без разгрузки.

    В корпусе ТНВД 1 установлены восемь секций, состоящих из корпуса 6, втулки плунжера 8, плунжера 7, поворотной втулки 4, нагнетательного клапана 11 с седлом 10, прижатым к втулке плунжера штуцером 12.

    Плунжер совершает возвратно-поступательное движение под действием кулачка вала 46 и пружины 3 толкателя. Толкатель 2 от проворачивания в корпусе зафиксирован сухарём 14.

    Кулачковый вал вращается в роликовых подшипниках 45.

    Наружные обоймы подшипников установлены в запрессованные в корпус насоса стальные кольца. От осевого перемещения кулачковый вал зафиксирован крышками.

    Натяг подшипников кулачкового вала регулируется прокладками 44 и должен составлять 0,05…0,15 мм.

    Для изменения подачи топлива плунжер 7 поворачивается с помощью втулки 4, соединенной через ось поводка с рейкой 5 насоса. Рейка перемещается в направляющих втулках 40.

    Отверстия под направляющие втулки в корпусе ТНВД со стороны привода закрыты пробками 39.

    С противоположной стороны насоса на задней крышке 20 регулятора расположен корректор подачи топлива по давлению наддувочного воздуха 24.

    На переднем торце корпуса, в месте выхода топлива из насоса, установлен перепускной клапан 38, который обеспечивает давление перед впускными отверстиями плунжеров на рабочих режимах 0,13…0,19 МПа (1,3…1,9 кгс/см2).

    Смазывание насоса циркуляционное, под давлением от общей смазочной системы двигателя.

     

    Регулятор частоты вращения ТНВД мод. 337-20 (рисунок 4) всережимный, прямого действия, изменяет количество топлива, подаваемого в цилиндры в зависимости от нагрузки,

    поддерживая заданную частоту вращения коленчатого вала.

    Регулятор установлен в развале корпуса ТНВД. На кулачковом валу насоса установлена ведущая шестерня регулятора 16 (рисунок 3), вращение которой передается через резиновые сухари 17.

    Ведомая шестерня выполнена заодно с державкой 28 грузов, вращающейся на двух шариковых подшипниках.

    При вращении державки грузы 31, качающиеся на осях 29, под действием центробежных сил расходятся и через упорный подшипник 30 перемещают муфту 32 регулятора, которая, упираясь в палец 34, в свою очередь, перемещает рычаги 2, 8 и 9 регулятора (рисунок 4), преодолевая усилие пружины 5.

    Рычаг 2 через штифт соединен с правой рейкой 3 топливного насоса. Правая рейка через рычаг реек 7 связана с левой рейкой 11.

     

    Схема работы регулятора частоты вращения показана на рисунке 5.

    Рычаг 16 управления регулятором жестко связан с рычагом 12. К рычагу 12 присоединена пружина 13 регулятора, а к рычагам 14 и 11 — стартовая пружина 15.

    Во время работы регулятора центробежные силы грузов уравновешены усилием пружины 13.

    При увеличении частоты вращения коленчатого вала грузы, преодолевая сопротивление пружины 13, перемещают рычаги 2, 4 и 9, а вместе с ними и рейки ТНВД — подача топлива уменьшается.

    При понижении частоты вращения коленчатого вала центробежная сила грузов уменьшается, и рычаги с рейкой ТНВД под действием усилия пружины перемещаются в обратном направлении — подача топлива и частота вращения коленчатого вала увеличиваются.

    При упоре рычага 9 регулятора в болт 6 и частоте вращения коленчатого вала менее 1800 мин-1 пружина 10 прямого корректора перемещает рейки насоса (через рычаги 2 и 4) в

    сторону увеличения подачи топлива, обеспечивая требуемую величину максимального крутящего момента двигателя.

    Пружина 3 обратного корректора при частоте вращения менее 1400 мин-1 перемещает рычаг 4 с рейками в сторону уменьшения подачи топлива, ограничивая максимальную дымность отработавших газов двигателя.

     

    Подача топлива прекращается поворотом рычага 3 (рисунок 6) останова двигателя до упора в болт 5.

    Поворот рычага осуществляется усилием встроенной в электромагнит останова двигателя 6 пружины при отключении удерживающей обмотки электромагнита от источника питания (ключ замка выключателя приборов и стартера в фиксированном положении «0»).

    При этом рычаг 3, преодолев усилия пружин 33 (рисунок 3) и 5 (рисунок 4), через штифт 14 повернет рычаги 2,9 и 8, рейки переместятся до полного прекращения подачи топлива

    При повороте ключа замка выключателя приборов и стартера в фиксированное положение «I» подается питание на удерживающую обмотку электромагнита останова, а при дальнейшем повороте ключа в нефиксированное положение «II» питание подается и на втягивающую обмотку электромагнита, шток электромагнита, преодолевая усилие собственной пружины, выдвигается и освобождает рычаг 3 (рисунок 6).

    Рычаг 3 под действием пружины 33 (рисунок 3) возвращается в рабочее положение, а стартовая пружина 6 (рисунок 4) через рычаг реек 7 вернет рейки ТНВД в положение, соответствующее максимальной подаче топлива, необходимой для пуска двигателя.

    При переводе ключа замка выключателя приборов и стартера из нефиксированного положения «II» в фиксированное положение «I» втягивающая обмотка электромагнита отключается от источника питания и шток электромагнита останова остается в рабочем положении только за счет удерживающей обмотки.

    Проверку и регулировку ТНВД, а также замену плунжерных пар, уплотнительных колец секций ТНВД необходимо проводить в специализированной мастерской квалифицированным специалистом.

    КАТЕГОРИЧЕСКИ ЗАПРЕЩАЕТСЯ установка на двигатель 740.30-260 ТНВД других моделей во избежание ухудшения качества рабочего процесса двигателя, повышения токсичности и дымности отработавших газов, а также выхода двигателя из строя!

     

    Корректор подачи топлива по давлению наддувочного воздуха (рисунок 7).

    Корректор по давлению наддувочного воздуха уменьшает подачу топлива при снижении давления наддувочного воздуха ниже 40…45 кПа (0,4…0,45 кгс/см2), тем самым осуществляя тепловую защиту двигателя и ограничивая дымность отработавших газов.

    В корпусе корректора 1 установлен поршень 26 с золотником 2. На поршень действует пружина 27, зафиксированная тарелкой 25 и кольцом 3.

    В поршень завернута и законтрена гайкой 28 шпилька 29 с наконечником 31, являющимся номинальным упором в регуляторе.

    Наконечник контрится гайкой 30. На золотник 2 действует пружина 7, предварительное натяжение которой может меняться регулировочным винтом 11.

    К корпусу корректора 1 через прокладку 4 прикреплен корпус мембраны 8. В него установлен узел мембраны со штоком (детали 24,16,17,23,22, 19, 18).

    Мембрана зажата между корпусом 8 и крышкой 21. В корпусе мембраны 8 на оси рычага 13 установлен рычаг корректора 12, поворот которого ограничен регулировочным винтом 15.

    Корректор подачи топлива не прямого действия; при изменении давления наддувочного воздуха в полости мембраны меняется положение золотника, который, в свою очередь, определяет положение поршня корректора.

    В полость «А» между корпусом корректора 1 и поршнем 26 через резьбовое отверстие и жиклер 0,7 мм в корпусе корректора (на рисунке не показаны) подается масло под давлением из системы смазки двигателя.

    Поршень под действием этого давления, сжимая пружину 27, перемещается влево до тех пор, пока не откроются окна в поршне и золотнике и масло не пойдет на слив. При этом устанавливается постоянный расход масла через корректор.

    При изменении положения золотника поршень перемещается вслед за ним (следящая система).

    Через резьбовое отверстие крышки 21 в полость мембраны подводится воздух из впускного коллектора двигателя.

    При снижении давления воздуха ниже 0,04 МПа (0,4 кгс/см2) усилие пружины корректора 7, действующей на золотник становится больше усилия, создаваемого давлением наддувочного воздуха на мембрану и передающегося через шток мембраны и рычаг корректора также на золотник.

    Золотник перемещается вправо до тех пор, пока не наступит равновесие сил, действующих на него.

    Вслед за золотником перемещается вправо и поршень со шпилькой 29 и наконечником 31, передвигая вправо упирающийся в него рычаг регулятора 8 (рисунок 4).

    Вслед за рычагом регулятора, под действием центробежных сил грузов, движутся рычаги 9,2 и 7 с рейками насоса в сторону уменьшения подачи топлива.

    Регулировка корректора

    Корректор имеет две внешние регулировки — винты 11 и 15 (рисунок 7).

    Винтом 11 изменяется предварительное натяжение пружины корректора 7, при этом меняется начало срабатывания корректора.

    Если необходимо увеличить значение давления наддувочного воздуха, при котором начинает срабатывать корректор, то винт 11 заворачивают, увеличивая предварительное натяжение пружины 7.

    Винтом 15 регулируется номинальная цикловая подача топлива. При выворачивании винта 15 подача топлива увеличивается.

    Если возникла необходимость в снятии корректора, то предварительно необходимо замерить выступание наконечника шпильки 31 относительно заднего торца корпуса ТНВД, а после установки корректора на место восстановить величину этого выступания и законтрить наконечник гайкой 30.

     

    Привод ТНВД показан на рисунке 8.

    Он состоит из вала привода ТНВД 6 с пакетами передних 7 и задних8 компенсирующих пластин, полумуфты ведомой 2, фланца ведомой полумуфты 3, фланца центрирующего 4, полумуфты ведущей 9 и центрирующих втулок 5.

    Каждый пакет компенсирующих пластин состоит из 5-ти пластин толщиной 0,5 мм каждая.

    Все болты в приводе ТНВД должны быть класса прочности R100 и затягиваться моментом 65…75 Нм (6,5…7,5 кгс м).

    Затяжку всех болтов необходимо проконтролировать динамометрическим ключом. Перед установкой болтов проверить наличие центрирующих втулок.

    Деформация (изгиб) передних и задних компенсирующих пластин не допускается.

    Стяжной болт 10 ведущей полумуфты должен затягиваться в последнюю очередь.

     

    Фильтр тонкой очистки топлива показан на рисунке 9. Он предназначен для окончательной очистки топлива от мелких частиц перед поступлением в ТНВД.

     

    Фильтр установлен в самой высокой точке системы питания топливом для сбора и удаления в бак воздуха вместе с частью топлива через клапан (рисунок 10), установленный на перепуске из фильтра,

    При замене фильтрующих элементов необходимо строго соблюдать правила обслуживания системы питания топливом.

    Не допускайте попадания загрязнений в систему и применяйте фильтрующие элементы только следующих моделей 740.1117040-01, 740.1117040-02, 740.1117040-04.

    Клапан представлен на рисунке 10. При достижении давления в полости «А» подвода топлива 25…45 кПа (0,25…0,45 кгс/см2), происходит перемещение шарика 4 и перетекание топлива из полости «А» в полость «Б» через жиклер 5 клапана.

    При давлении 200…240 кПа (2…2,4 кгс/см2) обеспечивается полное открытие клапана и перепуск топлива в топливный бак через полость «Б”.

    Насос топливоподкачивающий 13 (рисунок 3) поршневого типа предназначен для подачи топлива от бака через фильтры грубой и тонкой очистки и топливопрокачивающий насос к впускной полости ТНВД.

    Насос установлен на задней крышке регулятора, привод его осуществляется от эксцентрика 19, расположенного на заднем конце кулачкового вала ТНВД.

    В корпусе насоса размещены поршень, пружина поршня, втулка штока 47 и шток 48 толкателя, впускной и нагнетательный клапаны с пружинами.

    Эксцентрик 19 через ролик 49, толкатель 15 и шток 48 сообщает поршню топливоподкачивающего насоса возвратно-поступательное движение.

     

    Схема работы насоса показана на рисунке 11.

    При опускании толкателя 9 поршень 1 под действием пружины 4 движется вниз. В полости «А» создается разрежение и впускной клапан 2, сжимая пружину 3, пропускает топливо в полость «А».

    Одновременно топливо, находящееся в нагнетательной полости «В», вытесняется в магистраль «Г», при этом клапан 5 под действием пружины 6 закрывается, исключая перетекание топлива из полости «В» в полость «А».

    При движении поршня 1 вверх, топливо, заполняющее полость «А», через нагнетательный клапан 5 поступает в полость «В» под поршнем, при этом впускной клапан закрывается.

    При повышении давления в нагнетательной магистрали поршень не совершает полного хода вслед за толкателем, а остается в положении, которое определяется равновесием силы давления топлива с одной стороны и усилия пружины — с другой.

    Насос топливопрокачивающий 10 (рисунок 11) поршневого типа служит для заполнения топливной системы топливом перед пуском двигателя и удаления из нее воздуха.

    Насос состоит из корпуса, поршня, цилиндра, впускного и нагнетательного клапанов.

    Топливную систему следует прокачивать при помощи поршня насоса, предварительно расстопорив его поворотом против часовой стрелки.

    При движении поршня 11 вверх в пространстве под ним создается разрежение.

    Впускной клапан 12, сжимая пружину 14, открывается, и топливо поступает в полость «Д» насоса.

    При движений поршня вниз впускной клапан закрывается и открывается нагнетательный клапан 13, топливо под давлением поступает в нагнетательную магистраль, обеспечивая удаление воздуха из топливной системы двигателя через клапан ФТОТ и перепускной клапан ТНВД.

    После прокачивания системы необходимо опустить поршень и зафиксировать его поворотом по часовой стрелке. При этом поршень прижмется к торцу цилиндра через резиновую прокладку, уплотнив полость всасывания топливопрокачивающего насоса.

    Не допускается пускать двигатель при незафиксированном поршне ввиду возможности подсоса воздуха через уплотнение поршня.

    Топливопроводы подразделяются на топливопроводы низкого давления — 0,4…2 МПа (4…20 кгс/см2) и высокого давления более 20 МПа (200 кгс/см2).

    Топливопроводы низкого давления изготовлены из стальной трубы сечением 10 мм с паяными наконечниками.

    Топливопроводы высокого давления равной длины (1=595 мм), изготовлены из стальных трубок внутренним диаметром 2+0,05 мм путем высадки на концах соединительных конусов с обжимными шайбами и накидными гайками для соединения со штуцерами ТНВД и форсунок.

    Во избежание поломок от вибрации, топливопроводы закреплены скобами к впускным коллекторам

    Система охлаждения двигателя / Руководство по эксплуатации двигателей КамАЗ экологических классов Евро-2 и Евро-3. Двигатели КамАЗ 740.35-400, 740.37-400, 740.38-360, 740.60-360, 740.61-320, 740.62-280, 740.63-400, 740.65-240 / Техсправочник / Кама-Автодеталь

    СИСТЕМА ОХЛАЖДЕНИЯ ДВИГАТЕЛЯ

    СИСТЕМА ОХЛАЖДЕНИЯ предназначена для обеспечения оптимального теплового режима работы двигателя. Система охлаждения двигателя жидкостная, закрытого типа, с принудительной циркуляцией охлаждающей жидкости. К основным агрегатам и узлам системы охлаждения относятся: радиатор, вентилятор с вязкостной или электромагнитной муфтой привода или без нее, кожух вентилятора, расширительный бачок, корпус водяных каналов, водяной насос, термостаты, каналы и соединительные трубопроводы для прохода охлаждающей жидкости.

    Тепловой режим двигателя регулируется автоматически:

    — двумя термостатами, которые управляют направлением потока охлаждающей жидкости в зависимости от ее температуры на выходе из двигателя, которая должна находиться в пределах 75…95 °С;

    — вязкостной муфтой привода вентилятора в зависимости от температуры воздуха перед вентилятором или электромагнитной муфтой привода вентилятора в зависимости от температуры охлаждающей жидкости на выходе из двигателя.

    Схема системы охлаждения с соосным коленчатому валу вентилятором и с вязкостной муфтой привода вентилятора приведена на рисунке 26. Во время работы двигателя циркуляция охлаждающей жидкости в системе создается водяным насосом 8. Охлаждающая жидкость из насоса 8 нагнетается в полость охлаждения левого ряда цилиндров через канал 9 и через канал 14 — через водомасляный теплообменник в полость охлаждения правого ряда цилиндров. Омывая наружные поверхности гильз цилиндров, охлаждающая жидкость через отверстия в верхних привалочных плоскостях блока цилиндров поступает в полости охлаждения головок цилиндров. Из головок цилиндров нагретая жидкость по каналам 4, 5 и 6 поступает в водяную коробку корпуса водяных каналов 16, из которой, в зависимости от температуры, направляется в радиатор или на вход насоса. Часть жидкости отводится по каналу 14 в масляный теплообменник 15, где происходит передача тепла от масла в охлаждающую жидкость. Из теплообменника охлаждающая жидкость направляется в водяную рубашку блока цилиндров в зоне расположения четвертого цилиндра.

    По требованию потребителей вентилятор может располагаться выше оси коленчатого вала (для капотных машин) или устанавливаться отдельно от двигателя (автобусные комплектации двигателей). Расширительный бачок при этом может устанавливаться не на двигателе, а силами разработчика изделия в другом месте. Принцип работы системы при этом аналогичен описанной.

    Рисунок 26 — Схема системы охлаждения:

    1- расширительный бачок; 2- пароотводящая трубка; 3- трубка отвода воздуха из компрессора; 4- канал выхода жидкости из правого ряда цилиндров; 5- соединительный канал; 6- канал выхода жидкости из левого ряда цилиндров; 7- входная полость водяного насоса; 8- водяной насос; 9- канал входа жидкости в левый ряд блока; 10- канал подвода жидкости в насос из радиатора; 11- выходная полость насоса; 12- соединительный канал; 13-перепускной канал из водяной коробки на вход насоса; 14- канал отвода жидкости в теплообменник масляный; 15- теплообменник масляный; 16- водяная коробка; 17- трубка подвода жидкости в компрессор; 18- перепускная труба.

    КОРПУС ВОДЯНЫХ КАНАЛОВ (рисунок 26) отлит из чугуна и закреплен болтами на переднем торце блока цилиндров.

    В корпусе водяных каналов отлиты входная 7 и выходная 11 полости водяного насоса, соединительные каналы 5 и 12, каналы 9 и 14, подводящие охлаждающую жидкость в блок цилиндров и водомасляный теплообменник, каналы 4 и 6, отводящие охлаждающую жидкость из головок цилиндров, перепускной канал 13, канал 14 отвода охлаждающей жидкости в масляный теплообменник, полости водяной коробки 16 для установки термостатов, канал 10 подвода охлаждающей жидкости в водяной насос из радиатора.

    НАСОС ВОДЯНОЙ (рисунок 27) центробежного типа, установлен на корпусе водяных каналов. В корпус 1 запрессован радиальный двухрядный шарико-роликовый подшипник 6 с валиком. С обеих сторон торцы подшипника защищены резиновыми уплотнениями.

    Смазка в подшипник заложена предприятием-изготовителем. Пополнение смазки в эксплуатации не требуется. Упорное кольцо 3 препятствует перемещению наружной обоймы подшипника в осевом направлении. На концы валика подшипника напрессованы крыльчатка 4 и шкив 5. Сальник 2 запрессован в корпус насоса.

    В корпусе насоса между подшипником и сальником выполнено два отверстия: нижнее и верхнее. Верхнее отверстие 7 служит для вентиляции полости между подшипником и сальником, а нижнее 8 — для контроля исправности торцового уплотнения.

    Подтекание жидкости из нижнего отверстия свидетельствует о неисправности уплотнения. В эксплуатации оба отверстия должны быть чистыми, так как их закупорка приведет к выходу из строя подшипника.

    Рисунок 27 — Насос водяной:

    1 — корпус; 2 — сальник; 3 — кольцо упорное; 4 — крыльчатка; 5 — шкив; 6 — подшипник радиальный шарико-роликовый с валиком, 7, 8 — отверстия.

    Рисунок 28 — Сальник водяного насоса:

    1 — обойма; 2 — пружина; 3 — уплотнительное кольцо; 4 — уплотнительное кольцо; 5 — корпус; 6 — крыльчатка.

    САЛЬНИК ВОДЯНОГО НАСОСА (рисунок 28) состоит из стальной обоймы 1 и корпуса 4, в которые вставлены кольцо скольжения 3 и уплотнительное кольцо 4. Внутри мембраны размещена пружина 2. Пружина поджимает кольцо скольжения 3. Сальник водяного насоса по конструкции неразборный.

    Двигатели могут комплектоваться вязкостной или электромагнитной муфтой привода вентилятора.

    МУФТА ВЯЗКОСТНАЯ ПРИВОДА ВЕНТИЛЯТОРА И КОЛЬЦЕВОЙ ВЕНТИЛЯТОР приведены на рисунке 29.

    Кольцевой вентилятор 1, изготовлен из стеклонаполненного полиамида, ступица 4 вентилятора — металлическая.

    Для привода вентилятора применяется автоматически включаемая муфта 2 вязкостного типа, которая крепится к ступице вентилятора 4.

    Принцип работы муфты основан на вязкостном трении жидкости в небольших зазорах между ведомой и ведущей частями муфты. В качестве рабочей жидкости используется силиконовая жидкость с высокой вязкостью.

    Муфта неразборная и не требует технического обслуживания в эксплуатации.

    Включение муфты происходит при повышении температуры воздуха на выходе из радиатора до 61.. .67 °С. Управляет работой муфты термобиметаллическая спираль 3.

    МУФТА ЭЛЕКТРОМАГНИТНАЯ ПРИВОДА ВЕНТИЛЯТОРА (рисунок 30) состоит из неподвижной электромагнитной катушки 10, закрепленной тремя болтами 11 на передней крышке блока цилиндров 13, шкива 9 коленчатого вала, соединенного с валом отбора мощности 12 шестью болтами 4 через прокладку 5. На выступающей оси шкива 9 в подшипнике 2 свободно вращается ступица 3 с вентилятором 8. Между ступицей 3 и шкивом 9 установлен фрикционный диск 7, который крепится к ступице 3 болтами 6 через три пружинные пластины 15. Между торцами шкива 9 и фрикционного диска 7 тремя подпружиненными регулировочными болтами 1 устанавливается воздушный зазор 0,5…0,7 мм.

    В потоке охлаждающей жидкости на входе в двигатель установлен термобиметаллический датчик 14 включения вентилятора.

    Шкив 9 вращается постоянно с частотой вращения коленчатого вала. При повышении температуры охлаждающей жидкости до 90 °С происходит замыкание контактов термобиметаллического датчика 14, подается напряжение на электромагнитную катушку 10 и под действием электромагнитных сил фрикционный диск 7 прижимается к шкиву 9, в результате чего, за счет сил трения происходит передача крутящего момента от шкива 9 к ступице 3 вентилятора.

    Рисунок 29 — Кольцевой вентилятор с вязкостной муфтой привода:

    1 — кольцевой вентилятор; 2 — вязкостная муфта; 3 — термобиметаллическая спираль; 4 — ступица вентилятора.

    При понижении температуры охлаждающей жидкости до 84 °С происходит размыкание контактов термобиметаллического датчика 14, электромагнитная катушка 10 отключается от источника питания и фрикционный диск 7 под действием упругих сил пружинных пластин 15 возвращается в исходное положение, восстанавливая воздушный зазор между фрикционным диском 7 и шкивом 9.

    В случае отказа в работе датчика 14 электромагнитная муфта может быть включена в постоянный режим работы клавишей на панели приборов изделия, а в случае неисправности электромагнитной катушки 10 фрикционный диск 7 может быть соединен со шкивом 9 механически — тремя болтами М8, для чего нужно совместить три выреза А, расположенные на наружном диаметре фрикционного диска 7, с резьбовыми отверстиями Б в шкиве 9 и ввернуть болты с пружинными и плоскими шайбами.

    При преодолении глубокого брода вентилятор может быть отключен клавишей на панели приборов.

    Работа вентилятора с постоянно включенной или соединенной болтами электромагнитной муфтой не должна быть длительной, так как это приведет к повышению расхода топлива и переохлаждению двигателя в зимнее время, поэтому при первой же возможности нужно заменить неисправные детали.

    Рисунок 30 — Электромагнитная муфта вентилятора:

    1- болт регулировочный; 2- подшипник; 3- ступица вентилятора; 4- болт крепления шкива; 5- прокладка; 6 — болт крепления фрикционного диска; 7 — диск фрикционный; 8 — вентилятор; 9 — шкив привода генератора и водяного насоса; 10 — катушка электромагнитная; 11 — болт крепления электромагнитной катушки; 12 — вал отбора мощности; 13 — крышка передняя блока цилиндров; 14 — датчик включения вентилятора; 15-пластина пружинная; А — вырез в фрикционном диске; Б — резьбовое отверстие шкива.

    РАДИАТОР (автомобилей КАМАЗ) медно-латунный, паяный твердым припоем, для повышения теплоотдачи охлаждающие ленты выполнены с жалюзийными просечками, крепится боковыми кронштейнами через резиновые подушки к лонжеронам рамы, а верхней тягой к соединительному патрубку.

    ТЕРМОСТАТЫ (рисунок 31) позволяют ускорить прогрев холодного двигателя и поддерживать температуру охлаждающей жидкости не ниже 75 °С путем изменения ее расхода через радиатор. В водяной коробке 5 корпуса водяных каналов установлено параллельно два термостата с температурой начала открытия (80±2) °С.

    При температуре охлаждающей жидкости ниже 80 °С, основной клапан 12 прижимается к седлу корпуса 14 пружиной 11 и перекрывает проход охлаждающей жидкости в радиатор. Перепускной клапан 6 открыт и соединяет водяную коробку корпуса водяных каналов по перепускному каналу 4 с входом водяного насоса.

    При температуре охлаждающей жидкости выше 80 °С, наполнитель 9, находящийся в баллоне 10, начинает плавиться, увеличиваясь в объеме. Наполнитель состоит из смеси 60 % церезина (нефтяного воска) и 40 % алюминиевой пудры. Давление от расширяющегося наполнителя через резиновую вставку 8 передается на поршень 13, который, выдавливаясь наружу, перемещает баллон 10 с основным клапаном 12, сжимая пружину 11. Между корпусом 14 и клапаном 12 открывается кольцевой проход для охлаждающей жидкости в радиатор. При температуре охлаждающей жидкости 93 °С происходит полное открытие термостата, клапан поднимается на высоту не менее 8,5 мм.

    Одновременно с открытием основного клапана вместе с баллоном перемещается перепускной клапан 6, который перекрывает отверстие в водяной коробке корпуса водяных каналов, соединяющее ее с входом водяного насоса.

    При понижении температуры охлаждающей жидкости до 80 °С и ниже, под действием пружин 7 и 11 происходит возврат клапанов 12 и 6 в исходное положение.

    Для контроля температуры охлаждающей жидкости, на водяной коробке корпуса водяных каналов установлено два датчика температуры 1 и 2. Датчик 1 выдает показания текущего значения температуры охлаждающей жидкости на щиток приборов, датчик 2 служит сигнализатором перегрева охлаждающей жидкости. При повышении температуры до 98… 104 °С на щитке приборов загорается контрольная лампа аварийного перегрева охлаждающей жидкости.

    Рисунок 31 — Термостаты:

    1 — датчик указателя температуры; 2- датчик сигнализатора аварийного перегрева; 3 — канал выхода жидкости из двигателя; 4 — канал перепуска жидкости на вход насоса; 5 — корпус водяных каналов; 6 — перепускной клапан; 7 — пружина перепускного клапана; 8 — резиновая вставка; 9 — наполнитель; 10 — баллон; 11 — пружина основного клапана; 12 — основной клапан; 13 — поршень; 14 — корпус; 15 — патрубок водяной коробки; 16 — прокладка.

    РАСШИРИТЕЛЬНЫЙ БАЧОК 1 (рисунок 26) устанавливается на двигателях автомобилей КАМАЗ с правой стороны по ходу автомобиля. Расширительный бачок соединен перепускной трубой 18 с входной полостью водяного насоса 7, пароотводящей трубкой 2 с верхним бачком радиатора и с трубкой отвода жидкости из компрессора 3.

    Расширительный бачок служит для компенсации изменения объема охлаждающей жидкости при ее расширении от нагрева, а также позволяет контролировать степень заполнения системы охлаждения и способствует удалению из нее воздуха и пара. Расширительный бачок изготовлен из полупрозрачного сополимера пропилена. На горловину бачка навинчивается пробка расширительного бачка (рисунок 32) с клапанами впускным 6 (воздушным) и выпускным (паровым). Выпускной и впускной клапаны объединены в блок клапанов 8. Блок клапанов неразборный. Выпускной клапан, нагруженный пружиной 3, поддерживает в системе охлаждения избыточное давление 65 кПа (0,65 кгс/см ), впускной клапан 6, нагруженный более слабой пружиной 5, препятствует падению давления ниже атмосферного при остывании двигателя.

    Рисунок 32 — Пробка расширительного бачка:

    1 — корпус пробки; 2 — тарелка пружины выпускного клапана; 3 — пружина выпускного клапана; 4 — седло выпускного клапана; 5 — пружина клапана впускного; 6 — клапан впускной в сборе; 7 — прокладка выпускного клапана; 8 — блок клапанов.

    Впускной клапан открывается и сообщает систему охлаждения с окружающей средой при разряжении в системе охлаждения 1… 13 кПа (0,01…0,13 кгс/см2).

    Заправка двигателя охлаждающей жидкостью производится через заливную горловину расширительного бачка. Перед заполнением системы охлаждения надо предварительно открыть кран системы отопления.

    Для слива охлаждающей жидкости следует открыть сливные краны теплообменника и насосного агрегата предпускового подогревателя, отвернуть пробки на нижнем бачке радиатора и расширительного бачка.

    ВНИМАНИЕ!

    Не допускается открывать пробку расширительного бачка на горячем двигателе — это приведет к выбросу горячей охлаждающей жидкости и пара из горловины расширительного бачка.

    Эксплуатация двигателя без пробки расширительного бачка не допускается.

    ОБСЛУЖИВАНИЕ СИСТЕМЫ ОХЛАЖДЕНИЯ

    Регулировка натяжения ремня привода водяного насоса и генератора 2 (рисунок 33) привода генератора, водяного насоса для двигателей с расположением вентилятора соосно с коленчатым валом выполняется следующим образом:

    — ослабить болты и гайки крепления генератора;

    — вращением болта натяжного 6 обеспечить необходимое натяжение ремня;

    — затянуть болты и гайки крепления генератора.

    Рисунок 33 — Схема проверки натяжения ремня привода генератора и водяного насоса:

    1 — шкив водяного насоса; 2 — ремень поликлиновой; 3 — шкив коленчатого вала; 4 — ролик направляющий; 5, 10-болты; 6 — болт натяжной; 7, 9 —гайки; 8 — шкив генератора

    После регулировки проверить натяжение ремня:

    — правильно натянутый ремень 2 при нажатии на середину наибольшей ветви усилием F = (44,1 ±5) Н ((4,5±0,5) кгс) должен иметь прогиб — 6… 10 мм.

    Проверка уровня охлаждающей жидкости в системе производится на холодном двигателе. Уровень должен находиться между отметками “MIN” и “МАХ” на боковой поверхности расширительного бачка.

    В ходе эксплуатации необходимо следить за плотностью охлаждающей жидкости, которая при ее температуре 20 °С должна быть:

    — ОЖ-40 «Лена» — (1,075… 1,085) г/см3;

    — «Тосол-А40М» — (1,078. ..1,085) г/см3;

    — ОЖ-65 «Лена» и «Тосол-А65М» — (1,085.. .1,100) г/см3.

    Воздушный зазор между фрикционным диском и шкивом электромагнитной муфты привода вентилятора проверять и регулировать на неработающем двигателе тремя регулировочными болтами 1 (рисунок 30). Зазор по окружности фрикционного диска должен быть равномерным и составлять 0,6±0,1 мм.

    Двигатель Камаз

    Двигатель состоит из кривошипно-ша­тунного и газораспределительного меха­низмов, а также из систем охлаждения, смазочной, питания и регулирования, пуска

    С помощью кривошипно-шатунного ме­ханизма возвратно-поступательное движе­ние поршней в цилиндрах преобразуется во вращательное движение коленчатого вала.

     

    Рис. 1.1. Двигатель КамАЗ-740.10 (базовая модель): а — продольный разрез, б — поперечный разрез; 1 — генератор, 2 — топливный насос низкого давления, 3 — ручной топливопрокачивающий насос, 4— топливный насос высокого давления, 5 — автоматическая муфта опережения впрыскивания топлива, 6 — ведущая полумуфта привода топливного насоса высокого давления, 7 — соединительный патрубок впускных воздухопроводов, 8 — фильтр тонкой очистки топлива, 9 — распределительный вал, 10 — маховик, 11 — картер маховика, 12 — пробка сливного отверстия; 13 — поддон картера, 14 — коленчатый вал, 15 — масляный насос, 16 — вал привода гидромуфты, 17 — шкив привода генератора; 18 — лопасти вентилятора, 19 — полнопоточный масляный фильтр, 20 — маслозаливная   горловина, указатель уровня масла в картере двигателя, 22 — центробежный масляный фильтр, 23 — коробка термостатов, 24 — передний рым-болт, 25 — компрессор, 26 — насос гидроусилителя рулевого­, 27 — задний рым-болт, 28 — левая водосборная труба, 29 — факельная свеча, 30 — левый впуск­ воздухопровод, 31 — форсунка, 32 — скоба крепления форсунки 33 — патрубок выпускного коллектора, 34 — выпускной коллектор

     

    Механизм газораспределения своевре­менно открывает и закрывает клапаны, ко­торые пропускают в цилиндры воздух и вы­пускают из цилиндров отработавшие газы.

    Система охлаждения поддерживает требуемый тепловой режим двигателя.

    Смазочная система подает масло к тру­щимся деталям двигателя для уменьшения трения и их изнашивания.

    Система питания очищает и подает в цилиндры воздух и топливо, а с помощью регулятора автоматически регулирует поступление (подачу) топлива в камеру сго­рания в зависимости от нагрузки двига­теля.

    Система пуска дизеля необходима для проворачивания коленчатого вала при пуске.

    Здесь мы опишем набор со­ставных частей двигателей КамАЗ-740.10, КамАЗ-7403.10 и КамАЗ-7409.10, объясним схему действия и принцип работы их механизмов и систем.

    Двигатель КамАЗ-740.10 (рис. 1) — четырехтактный дизель жид­костного охлаждения с V-образным расположением восьми цилиндров; является ба­зовым для всех модификаций двигателя марки.

    Двигатель КамA3 — 7403.10 (рис. 2) имеет увеличенную мощность за счет применения газотурбинного наддува, при котором для сжатия воздуха и его на­гнетания в цилиндры используется часть энергии отработавших газов.

    Газодизель 7409.10 (рис. 3) может работать как на природном газе с воспламенением его запальной дозой ди­зельного топлива, так и на дизельном топ­ливе в режиме дизеля.

    Рис. 3. Общий вид двигателя К.амАЗ-7403.10 с турбонаддувом:1 — объединительный патрубок, 2 — топливный насос высокого давления модели 334, 3, воздухопроводы, 4,7 — турбокомпрессоры,6 — патрубок, 8 — выпускной коллектор,модели 271 5 — впускные 9 — форсунка

     Рис. 4. Общий вид двигателя КамАЗ-7409.10 (газодизель):1 — объединительный патрубок. 2, 10 — впускные воздуховоды, 3 — топлив­ный насос высокого давления модели 335, 4 — индивидуальный воздухо­очиститель компрессора, 5 — редуктор низкого давления. 6 — электромагнитный клапан с фильтром, 7 — привод управления с дозатором газа, 8 — дозатор газа. 9 — смеситель, 11 — привод управления регуля­тором частоты вращения

    Основные конструктивные данные и па­раметры двигателей приведены в техниче­ской характеристике (в скобках даны зна­чения при работе двигателя в режиме дизеля).

    Техническая характеристика двигателей КамАЗ

    Модель

    740.10

    7403.10

    7409.10

    Число тактов

    4

    Число цилиндров

    8

    Расположение цилиндров

    V-образное, угол развала 90°

    Порядок работы цилиндров

    1—5—4—2—6—3—7—8

    Направление вращения коленчатого вала

    правое

    Диаметр цилиндров и ход поршня, мм

    120 X 120

    Рабочий объем, л

    10,85

    Степень сжатия

    17

    16

    17

    Номинальная мощность, кВт

    154

    191

    154

    Максимальный крутящий момент, Нм

    637

    785

    637

    Частота вращения коленчатого вала, об/мин:

    номинальная

    2600

    2600

    2550 (2600)

    при максимальном крутящем моменте

    (1600 … 1800)

    1600…1800

    1600… 1800

    1300… 1800

    на режиме холостого хода мини­мальная, не более

    600

    то же, максимальная, не более

    2930

    Фазы газораспределения впускного кла­пана:

    открытие

    13° до в. м. т.

    закрытие

    49° после н. м. т.

    То же, впускного клапана:

    открытие

    66° до н. м. т.

    закрытие

    10° после в. м. т.

    Давление масла в прогретом двигателе, кПа:

    при номинальной частоте вращения

    400 … 550

    при минимальной частоте враще­ния

    на  режиме холостого хода, не менее

    100

     

    Модель форсунки

    33-01

    271

    33-01

    Модель топливного насоса высокого давления

    33-02

    334

    335

     

    Электросхема КамАЗ — система электрооборудования


    Работа машины КамАЗ в течение многих лет обеспечивается правильной работой электрооборудования. В процессе эксплуатации машины возможны различные нарушения. Они связаны с постепенным износом и выходом элементов из строя. Восстановление электрооборудования КамАЗ проводят в процессе технического обслуживания транспортного средства.

    Состав электрооборудования КамАЗ

    Электрооборудование машины состоит из следующих звеньев:

    • Система электроснабжения.
    • Световая и звуковая оповестительная сигнализация.
    • Наружное и внутреннее техническое освещение.
    • Контрольно-измерительная и регистрирующая аппаратура.
    • Отопительная система.
    • Пусковой механизм.
    Оригинальная схема электрооборудования и проводки КАМАЗ- 55111

    Оригинальная схема электрооборудования и проводки КАМАЗ- 55111

    Система электроснабжения

    Электроснабжение предназначено для функционирования внутренних и внешних элементов автомобиля. Электроэнергию вырабатывает генераторная установка. Для запуска двигателя служит стартер.

    Потенциальная схема системы электроснабжения КамАЗ включает в себя источники питания и выключатели различных типов.

    Электрическая схема системы электроснабжения

    Электрическая схема системы электроснабжения

    Для хранения вырабатываемой энергии служат две аккумуляторные литий-ионные батареи. Они соединяются между собой с использованием последовательной сборки.

    Генератор соединяют с аккумуляторами по параллельной схеме. Минусовой вывод аккумуляторов подключен к корпусу машины через дистанционный выключатель массы.

    Для быстрого запуска стартера двигателя в холодное время года служит электрофакельное устройство. При его воздействии цепь обмоток генератора подлежит разрыву с помощью автоматического реле.

    При включенном положении кнопки выключателя приборов, кнопка управления массой неактивна. Автоматическая блокировка предотвращает возможность внезапного отсоединения массы во время запуска силовой установки.

    Отсоединение генератора от аккумуляторов производят клавишей выключателя. Для этого кнопку выключателя приборов переводят в нейтральное положение. Контроль за действием всех процессов проводят по индикации контрольных ламп.

    Схема включения сигналов торможения и контрольной лампы стояночного тормоза

    Электросхема световой оповестительной сигнализации

    Световые сигналы служат для предупреждения водителей остальных транспортных средств о совершаемых маневрах. При повороте, обгоне и торможении применяют различные световые знаки. Источником светового потока служат контрольные лампы и светодиоды.

    Световая сигнализация включает в себя следующие элементы:

    Электрическая схема системы световой сигнализации

    Электрическая схема системы световой сигнализации

    • аварийную сигнализацию;
    • индикацию поворотов автомобиля и прицепа;
    • сигнализацию тормозной системы;
    • наружную и внутреннюю сеть освещения;
    • блокировочную сигнализацию межосевого дифференциала.

    Активация кнопки аварийного режима после запуска стартера приводит к включению передних и задних поворотных указателей. При аварийном режиме указатели светят в мигающем режиме.

    Световые индикаторы и звуковая сигнализация

    Мигающая индикация указателей обеспечивается аварийным реле-прерывателем. Функции реле дублируются контрольной лампой на выключателе блока аварийной сигнализации.

    Указатели поворотов транспорта включают и отключают комбинированным переключателем. Устройство работает при разблокированном положении выключателя приборов. Работу всего механизма оценивают по показаниям соответствующих датчиков.

    Обозначение ламп контрольных приборов КамАЗ

    Обозначение ламп контрольных приборов КамАЗ

    Световая индикация тормозной системы активизируется при замедлении и полном прекращении движения транспорта. Срабатывание сигнала торможения происходит за счет замыкания пневмоэлектрического датчика.

    Посредством промежуточного пускового реле включаются задние стопорные фонари. Сигнал о включении световой оповестительной сигнализации проходит через амперметр. Работа амперметра не зависит от положения кнопки стартера и выключателя приборов.

    Звуковая сигнализация предназначена для оповещения о нормальной работе агрегатов. Передача информации производится посредством пневматических и электрозвуковых сигналов.

    Пневматический сигнал включают нажатием кнопки с правой стороны от переключателя наружного освещения. Звуковой сигнал включается и отключается соответствующей кнопкой на поперечной раме под кабиной управления.

    Электросхема блока освещения

    Внутреннее и наружное освещение предназначены для эксплуатации автомобиля в условиях плохой видимости и темное время суток.

    Электросхема освещения машины КамАЗ включает следующие элементы:

    Электрическая схема системы наружного и внутреннего освещения

    Электрическая схема системы наружного и внутреннего освещения

    • фары на кабине управления;
    • противотуманные галогеновые фары;
    • передние и задние световые указатели;
    • подкапотная лампа накаливания;
    • лампа освещения багажного ящика;
    • лампа освещения спального места;
    • блок ламп освещения приборной панели;
    • плафоны с лампами в кабине управления.

    Подключение внутреннего и наружного освещения осуществляется по однопроводной схеме. Бесперебойность действия электрической цепи обеспечивают предохранители с плавкой вставкой типа ПРС-10.

    Освещение работает с помощью комбинированного переключателя, напрямую подключенного через амперметр к источнику питания.

    Контрольно-измерительная электрическая схема

    Контрольно-измерительные приборы предназначены для фиксации показателей работы узлов и агрегатов.

    Все элементы блока подключены по однопроводной параллельной схеме. Замыкание электрической цепи осуществляется через выключатель приборов и пусковой стартер. Для подсветки и контроля световых индикаторов используются лампы накаливания и светодиоды различной мощности.

    Электрическая схема системы контрольно-измерительных приборов

    Электрическая схема отопительной системы

    Электрическая схема систем отопления, звуковой сигнализации и стеклоочистки

    Электрическая схема систем отопления, звуковой сигнализации и стеклоочистки

    Отопление служит для обогрева кабины управления в холодное время года. Нагревание воздуха происходит через радиатор. Поток горячего воздуха поступает от реверсивного электродвигателя типа МЭ-250.

    В зависимости от способа подключения контактов двигатель функционирует в двух режимах. При подключении к положительному полюсу источника питания вращение вала двигателя происходит в правую сторону. При подключении к отрицательному полюсу – в левую сторону.

    Управление отоплением производят из кабины через клавишный переключатель. Бесперебойную работу узлов и агрегатов оценивают с помощью контрольных ламп.

    Электрическая схема запуска двигателя

    Пусковая установка предназначена для запуска двигателя и обеспечения его стабильной работы в рабочем режиме.

    Схема пуска двигателя Камаз

    Схема пуска двигателя Камаз

    Система запуска состоит из следующих элементов:

    • стартер типа СТ-142Б;
    • реле стартера;
    • выключатель стартера и приборов;
    • реле блокировки;
    • дублирующий выключатель стартера;
    • розетка внешнего пуска.

    Стартер СТ-142Б автомобиля КамАЗ

    Стартер СТ-142Б - устройство

    Стартер СТ-142Б — устройство

    Стартером является электрический двигатель постоянного тока. Устройство служит для преобразования электрической энергии от источника тока в механическую энергию вращения коленчатого вала.

    Устройство выполнено в герметичном корпусе и обладает последовательным возбуждением. Агрегат оснащен электромагнитным реле. С помощью электромагнитного реле шестерня стартера входит в зацепление с венцом маховика. Запуск и работа стартера сопровождается миганием контрольной лампы.

    Первым приводом электродвигателя является храповый механизм. Храповик обладает свободным ходом. Вторым приводом служит масса двигателя.

    Номинальное напряжение стартера типа СТ-1425 составляет 24 В. Номинальная мощность не превышает 7,7 кВт. Передаточное число установки «двигатель-стартер» имеет показатель 11,3.

    Генератор автомобиля КамАЗ

    Генератор представляет собой агрегат для преобразования механической энергии вращения коленчатого вала в электричество.

    Генератор состоит из неподвижной части – статора и вращающегося элемента – ротора. Статор состоит из набора металлических пластин с обмотками из меди. Медные обмотки сдвинуты на 120° относительно друг друга.

    Генератор Г-288 автомобиля КАМАЗ

    Генератор Г-288 автомобиля КАМАЗ

    Ротор имеет вид стального вала с рифлёной поверхностью. На вал запрессованы два магнитопровода. Между ними установлена медная обмотка возбуждения.

    При подаче электроэнергии от источника питания в обмотках генератора возникают магнитные потоки. Каждый поток имеет противоположное направление. Пересечение разнонаправленных потоков приводит к образованию электроэнергии. Через щеточные выводы образуемая электроэнергия поступает к потребителям.

    Электрическая схема грузового автомобиля КамАЗ имеет сложную конструкцию. Она состоит из многочисленных реле, датчиков, выключателей и контрольных ламп. Знание базовых принципов работы каждого элемента является обязанностью каждого водителя транспортного средства.

    Видео по теме: Проводка на КАМАЗе


    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *