Принцип работы упп: Устройства плавного пуска электродвигателя (УПП, софтстартеры, плавные пускатели): предназначение,виды, цены – 500 — Ошибка: 500

Содержание

Устройства плавного пуска: правильный выбор

Ранее мы обсуждали характеристики преобразователей частоты, а сегодня настал черед устройств плавного пуска (мягких пускателей, плавных пускателей – единый термин пока не устоялся, и в этой статье мы будем использовать термин «устройство плавного пуска» – УПП).

Иногда из уст продавцов приходится слышать мнение о том, что УПП выбрать просто, это, мол, не преобразователь частоты, здесь надо только пуск организовать. Это не так. Устройство плавного пуска выбирать сложнее. Попробуем разобраться, в чем эта сложность состоит.

Назначение УПП

Как следует из названия, задача прибора – организовать плавный пуск асинхронного двигателя переменного тока. Дело в том, что при прямом пуске (то есть при подключении двигателя к питающей сети при помощи обычного пускателя) двигатель потребляет пусковой ток, превышающий номинальный в 5-7 раз, и развивает пусковой момент, существенно превышающий номинальный. Все это приводит к двум группам проблем:

1) Пуск слишком быстрый, и это приводит к различным неприятностям – гидравлическим ударам, рывкам в механизме, ударному выбору люфтов, обрыву транспортерных лент и т.д.

2) Пуск тяжелый, и завершить его не удается. Здесь сначала нужно определиться с термином «тяжелый пуск» и возможностями его «облегчения» при помощи УПП. К «тяжелому пуску» обычно относят три разновидности пуска:

а) пуск, «тяжелый» для питающей сети – от сети требуется ток, который она может обеспечить с трудом или не может вообще. Характерные признаки: при пуске отключаются автоматы на входе системы, в процессе пуска гаснут лампочки и отключаются некоторые реле и контакторы, останавливается питающий генератор. Скорее всего, УПП тут действительно поправит дело. Однако следует помнить, что в лучшем случае пусковой ток удастся снизить до 250% от номинального тока двигателя, и если этого недостаточно, то решение одно – необходимо использовать преобразователь частоты.
б) Двигатель не может запустить механизм при прямом пуске – не крутится вообще или «зависает» на определенной скорости и остается на ней до срабатывания защиты. Увы, УПП ему не поможет – двигателю не хватает момента на валу. Возможно, с задачей справится преобразователь частоты, но этот случай требует исследования.

в) Двигатель уверенно разгоняет механизм, но не успевает дойти до номинальной частоты – срабатывает автомат на входе. Такое часто бывает на тяжелых вентиляторах с достаточно высокой частотой вращения. Устройство плавного пуска здесь, скорее всего, поможет, но риск неудачи сохраняется. Чем ближе механизм к номинальной скорости в момент срабатывания защиты, тем больше вероятность успеха.

Организация пуска при помощи УПП

Принцип работы устройства плавного пуска заключается в том, что напряжение, подаваемое от сети через УПП на нагрузку, ограничивается при помощи специальных силовых ключей – симисторов (или встречно – параллельно включенных тиристоров) – см. рис. 1. В результате напряжение на нагрузке можно регулировать.

Немного теории: процесс пуска – это процесс преобразования электрической энергии источника питания в кинетическую энергию работающего на номинальной скорости механизма. Очень упрощенно этот процесс можно описать так: сопротивление двигателя R в процессе разгона увеличивается от очень маленького при остановленном двигателе до достаточно большого на номинальной скорости, поэтому ток, который по закону Ома равен:

I = U / R (1)

оказывается очень большим, а передача энергии

Е = P х t = I х U х t (2)

очень быстрой. Если между сетью и двигателем установить УПП, то формула (1) действует на его выходе, а формула (2) – на входе. Понятно, что ток в обеих формулах одинаковый. УПП ограничивает напряжение на двигателе, плавно повышая его по мере разгона вслед за ростом сопротивления, ограничивая, таким образом, потребляемый ток. Поэтому по формуле (2) при постоянстве необходимой энергии Е и напряжении сети U чем меньше ток I, тем больше время пуска t. Отсюда видно, что при снижении напряжения будут решаться как проблемы, связанные со слишком быстрым пуском, так и проблемы, связанные со слишком большим током, потребляемым от сети.

Однако в наших выкладках не учитывалась нагрузка, для разгона которой нужен дополнительный момент, и соответственно дополнительный ток, поэтому уменьшать ток слишком сильно нельзя. Если нагрузка велика, то момента на валу двигателя может не хватить даже при прямом пуске, не говоря уже о пуске при пониженном напряжении – это вариант тяжелого пуска «б», описанный выше. Если же при снижении тока момент оказывается достаточным для разгона, но время в формуле (2) растет, то может сработать автомат – с его точки зрения время протекания тока, существенно превышающего номинальный, недопустимо велико (вариант тяжелого пуска «в»).

Основные характеристики УПП. Возможность контроля тока. По существу это способность УПП регулировать напряжение так, чтобы ток изменялся по заданной характеристике. Эта функция обычно называется пуском в функции тока. Простейшие УПП, не имеющие такой возможности, просто регулируют напряжение в функции времени – т.е. напряжение на двигателе плавно возрастает от начального до номинального за заданное время. Во многих случаях этого достаточно, особенно при решении проблем группы 1. Но если основная причина установки УПП – ограничение тока, то без его точного регулирования не обойтись. Эта функция особенно важна тогда, когда из-за ограниченной мощности сети (маленький трансформатор, слабый генератор, тонкий кабель и т.п.) превышение предельно допустимого тока чревато аварией. Кроме того, УПП с контролем тока способны реализовать его плавное нарастание в начале процесса пуска, что особенно важно при работе от генераторов, которые очень чувствительны к резким броскам нагрузки.

Необходимость шунтирования.

По окончании процесса пуска и достижении номинального напряжения на двигателе УПП желательно вывести из силовой цепи. Для этого применяется шунтирующий контактор, соединяющий вход и выход УПП пофазно (см. рис. 2).

По команде от УПП этот контактор замыкается, и ток течет в обход прибора, что позволяет его силовым элементам полностью остыть. Однако, даже при отсутствии шунтирующей цепи, когда во все время работы двигателя через симисторы течет номинальный силовой ток, их нагрев по сравнению с режимом пуска оказывается небольшим, поэтому многие УПП допускают работу без шунтирования. Платой за такую возможность оказывается немного меньший номинальный ток и существенное увеличение веса и габаритов за счет радиатора, необходимого для отвода тепла от силовых ключей. Некоторые УПП строятся по обратному принципу – в них шунтирующий контактор уже встроен, и на работу без шунтирования они не рассчитаны, поэтому из-за уменьшения охлаждающих радиаторов их размеры оказываются минимальными. Это положительно сказывается и на цене, и на получающейся схеме подключения, но их время работы в пусковом режиме оказывается меньше по сравнению с другими приборами.

Количество регулируемых фаз.

По этому параметру УПП делятся на двухфазные и трехфазные. В двухфазных, как это следует из названия, ключи установлены только в двух фазах, третья же подключается к двигателю напрямую. Плюсы – снижение нагрева, уменьшение габаритов и цены.

Минусы – нелинейное и несимметричное по фазам потребление тока, которое хотя и частично компенсируется специальными алгоритмами управления, все же отрицательно влияет на сеть и двигатель. Впрочем, при нечастых пусках этими недостатками можно пренебречь.

Цифровое управление. Система управления УПП может быть цифровой и аналоговой. Цифровые УПП обычно реализуются на микропроцессоре и позволяют очень гибко управлять процессом работы прибора и реализовывать множество дополнительных функций и защит, а также обеспечивать удобную индикацию и связь с управляющими системами верхнего уровня. В управлении аналоговых УПП используются операционные элементы, поэтому их функциональная насыщенность ограничена, настройка выполняется потенциометрами и переключателями, а связь с внешними системами управления обычно осуществляется при помощи дополнительных устройств.

Дополнительные функции

Защита. Кроме своей основной функции – организации плавного пуска – УПП содержат в себе комплекс защит механизма и двигателя. Как правило, в этот комплекс входит электронная защита от перегрузки и неисправностей силовой цепи. В дополнительный набор могут входить защиты от превышения времени пуска, от перекоса фаз, изменения чередования фаз, слишком маленького тока (защита от кавитации в насосах), от перегрева радиаторов УПП, от снижения частоты сети и т.д. Ко многим моделям возможно подключение термистора или термореле, встроенного в двигатель. Однако следует помнить, что УПП не может защитить ни себя, ни сеть от короткого замыкания в цепи нагрузки. Конечно, сеть будет защищена вводным автоматом, но УПП при коротком замыкании неизбежно выйдет из строя. Некоторым утешением может служить только то, что короткое замыкание при правильном монтаже не возникает мгновенно, и в процессе снижения сопротивления нагрузки УПП обязательно отключится, только не стоит вновь включать его, не установив причину отключения.

Пониженная скорость. Некоторые устройства плавного пуска способны реализовать так называемое псевдочастотное регулирование –перевод двигателя на пониженную скорость. Этих пониженных скоростей может быть несколько, но они всегда строго определены и не поддаются коррекции пользователем.

Кроме того, работа на этих скоростях сильно ограничена по времени. Как правило, эти режимы используются в процессе отладки или при необходимости точной установки механизма в нужное положение перед началом работы или по ее окончании.

Торможение. Довольно много моделей способны подать на обмотку двигателя постоянный ток, что приводит к интенсивному торможению привода. Эта функция обычно нужна в системах с активной нагрузкой – подъемники, наклонные транспортеры, т.е. системы, которые могуг двигаться сами собой при отсутствии тормоза. Иногда эта функция нужна для предпусковой остановки вентилятора, вращающегося в обратную сторону из-за тяги или действия другого вентилятора.

Толчковый пуск. Используется в механизмах, имеющих высокий момент трогания. Заключается функция в том, что в самом начале пуска на двигатель кратковременно (доли секунды) подается полное напряжение сети, и происходит срыв механизма с места, после чего дальнейший разгон происходит в обычном режиме.

Экономия энергии в насосно-вентиляторной нагрузке. Поскольку УПП представляет собой регулятор напряжения, то при малой нагрузке можно снизить напряжение питания без ущерба для работы механизма.

Экономию энергии это дает, но не следует забывать, что тиристоры в режиме ограничения напряжения являются нелинейной нагрузкой для сети со всеми вытекающими отсюда последствиями.

Есть и другие возможности, которые производители закладывают в свои изделия, но для их перечисления объема одной статьи недостаточно.

Методика выбора

Теперь вернемся к тому, с чего мы начинали – к выбору конкретного прибора.

Многие советы, данные для выбора преобразователя частоты, действуют и здесь: сначала следует отобрать серии, отвечающие техническим требованиям по функциональности, затем выбрать из них те, которые охватывают диапазон мощностей для конкретного проекта, и из оставшихся выбрать нужную серию в соответствии с другими критериями – производитель, поставщик, сервис, цена, габариты, и т.д.

Если нужно выбрать УПП для насоса или вентилятора, запуск которых происходит не чаще двух-трех раз в час, то можно просто выбрать модель, номинальный ток которой равен или больше номинального тока запускаемого двигателя. Этот случай охватывает около 80% применений, и не требует консультаций со специалистом. Если же частота пусков в час превышает 10, то нужно учесть и необходимое ограничение тока, и требуемое затягивание пуска по времени. В этом случае очень желательна помощь поставщика, у которого, как правило, имеется программа выбора нужной модели или хотя бы расчетный алгоритм. Данные, которые понадобятся для расчета: номинальный ток двигателя, количество пусков в час, необходимая длительность пуска, необходимое ограничение тока, необходимая длительность останова, окружающая температура, предполагаемое шунтирование.

Если же двигатель запускается свыше 30 раз в час, то стоит рассмотреть в качестве альтернативы вариант использования преобразователя частоты, поскольку даже выбор более мощной модели УПП может не решить проблему. А цена его уже будет сравнима с ценой преобразователя при существенно меньшей функциональности и серьезному влиянию на качество сети.

Подключение

Кроме очевидного подключения прибора к сети и двигателю, необходимо определиться с шунтированием.

Несмотря на то, что шунтирующий контактор будет коммутировать номинальный, а не пусковой ток двигателя, желательно все-таки использовать модель, рассчитанную на прямой пуск – хотя бы для реализации аварийных режимов работы. При подключении следует обратить особое внимание на фазировку – если ошибочно соединить, например, фазу А на входе УПП с другой фазой на выходе, то при первом же включении шунтирующего контактора произойдет короткое замыкание, и прибор будет выведен из строя.

Некоторые УПП допускают так называемое шестипроводное подключение, схема которого показана на рис. 3. Такое подключение требует большего количества кабелей, но позволяет использовать устройство плавного пуска с двигателем, мощность которого намного превышает мощность самого УПП.

При установке УПП следует иметь в виду еще одно его свойство, часто приводящее к недоразумениям (см. тяжелый пуск «в»). При расчете вводного автомата для двигателя, подключающегося к сети напрямую, учитывается номинальный ток двигателя, протекающи й длительное время, и пусковой, протекающий лишь несколько секунд. При использовании же УПП пусковой ток существенно меньше, но протекает он намного дольше – до минуты и более. Автомат не может этого “понять” и считает, что запуск давно завершен, а протекающий ток, превышающий номинальный в разы, является следствием аварийной ситуации, и отключает систему. Во избежание этого следует либо установить специальный автомат с возможностью установки дополнительного режима для процесса плавного пуска, либо выбрать автомат с номинальным током, соответствующим пусковому току при использовании УПП. Во втором случае этот автомат не сможет защитить двигатель от перегрузок, но эту функцию выполняет сам УПП, так что защита двигателя не пострадает.

Подведем итоги. Если механизм, пуск которого нужно сделать более плавным, вписывается во все перечисленные в этой статье ограничения, а возможности, обеспечиваемые доступными моделями УПП, вас устраивают, то ваш выбор – устройство плавного пуска. Экономия средств по сравнению с применением преобразователя частоты (заменой питающего трансформатора, увеличением мощности генератора, заменой кабеля на более толстый – выберите ваш случай) будет ощутимой. Если же УПП по каким-то причинам не подходит – еще раз обратите внимание на преобразователи частоты, которые хотя и дороже, но намного функциональнее.

Руслан Хусаинов, к.т.н., технический директор ЗАО «Сантерно» (Москва)

Общие сведения об устройствах плавного пуска – РегионПривод

Практика показала, что про устройства плавного пуска мы всё чаще вспоминаем только тогда, когда видим вышедший из строя редуктор приводного механизма, когда приходится менять преждевременно изношенные и никуда уже не годные приводные ремни, когда завариваем порывы труб, когда просадка питающего напряжения при включении того или иного агрегата выбивает все защиты и приводит не только вас, но и ваших соседей в ярость.

Перечень таких неприятных моментов можно продолжать сколько угодно долго, но и вышеприведенных фактов должно быть достаточно для того, чтобы задуматься: по какой причине все это происходит?

Своевременно приобретенный и подключенный софтстартер позволит избежать лишних затрат и мало когда уместной головной боли.

Устройство плавного пуска – это механическое, электротехническое или электромеханическое оборудование, необходимое для осуществления плавного пуска/останова электродвигателей с небольшим моментом страгивания рабочей машины.


Классификация устройств плавного пуска

Сегодня плавный пуск оборудования осуществляется с помощью трех типов устройств:

  • УПП с одной управляемой фазой (адаптированы для маломощных двигателей)
  • УПП с двумя управляемыми фазами (третья фаза подключается к сети напрямую)
  • УПП со всеми управляемыми фазами

Сердцем силовой части устройства плавного пуска выступает симистор, последовательно включаемый между питающим проводником и обмоткой электродвигателя. Для справки: симистор представляет собой два встречно-параллельно включенных тиристора с управляющим входом. Тиристор отпирается только в том случае, когда выполнено условие приложения прямого напряжения типа анод-катод и одновременной подачи потенциала (отпирающий потенциал) или его импульса на управляющий электрод. Запирание катода осуществляется путем снижения токового значения в цепи «анод-катод-нагрузка» до величины, стремящейся к нулю. В структуре софтстартера тиристору отведена роль быстродействующего полупроводникового контактора, который включается напряжением и выключается током.

Важно учесть, что временной момент запирания при переходе через нулевое значение тока тиристора, через который происходит питание обмотки разгоняемого привода, всегда запаздывает относительно момента перехода синусоиды фазы напряжения через нулевой показатель по причине индуктивной составляющей. Готовые к использованию плавные пускатели уже предусматривают наличие симисторов, включаемых в одну, две или все три фазы. Когда обмотка соединена по принципу треугольника, имеется возможность включения симисторов не в фазу питания, а в разрыв обмотки. При этом токовое значение через симистор уменьшается в 1,73 раза, что, в конечном итоге, позволяет пользователю выбрать менее мощный и более доступный по цене софтстартер. Но такая ситуация удваивает число используемых кабелей.

Сравнительные технические параметры одно-, двух- и трёхфазного регулирования приведены ниже в таблице:

Число регулируемых фаз Перекос I и U по фазам Реализация плавного торможения Ограничение пускового тока Включение в разрыв обмоток в «треугольник» Динамическое торможение Обязательность входного контактора
1 да нет слабо нет нет да
2 да да средне нет нет нет
3 нет да Только по характеру нагрузки на валу при пуске и торможении да возможно нет

Однофазное регулирование. Нерегулируемые фазы в цикле разгона привода пропускают ток, соответствующий скольжению и моменту в конкретный временной отрезок. Так как по причине плавности пускового цикла время разгона становится больше, тепловой режим нерегулируемой обмотки может оказаться куда хуже, чем в условиях прямого пуска. Кроме того, важно учесть, что однофазные устройства плавного пуска не имеют возможности аварийного останова трёхфазного электродвигатель. Самое большое, что можно ожидать от софтстартера – это подача аварийного сигнала. Другими словами, такая схема будет актуальна только при необходимости смягчения пусковых токов в механической нагрузке в диапазоне до 11кВт и плавное торможение/длительный пуск/ограничение пускового тока не требуются.

Однофазное устройство плавного пуска ориентировано, прежде всего, на электродвигатели компрессоров в бытовых кондиционерах. Но также такое оборудование может быть успешно использовано для выполнения безопасного пуска однофазных нагрузок другого характера, при которых также будет обеспечено уменьшение ударных пусковых нагрузок и минимизация кратковременных перегрузок питающей сети. Но по причине удешевления тиристоров однофазные софтстартеры снимаются с производства. На их место приходят двухфазные.

Двухфазное регулирование. Двухфазные устройства плавного пуска адаптированы для электродвигателей мощностью не выше 250кВт. Они используются только тогда, когда узким местом при запуске является не ограничение тока до уровня гарантированной величины, а смягчение механической ударной нагрузки. Большинство моделей предусматривают наличие внутренних байпасных контакторов, что существенно снижает затраты на запуск одного или нескольких параллельно подключенных электродвигателей.

Трёхфазное регулирование. Этот тип регулирования рассматривается как наиболее оптимальное и технически совершенное решение. Трехфазные УПП позволяют получить симметричное по фазам ограничение тока и силы магнитного поля. Именно поэтому, относительно двухфазных плавных пускателей, в условиях того же крутящего момента силы в момент разгона электродвигателя, токовый режим предельно благоприятен и для привода, и для сети. Применение таких устройств плавного пуска универсально.

Принцип действия устройства плавного пуска

Принцип действия устройства плавного пуска базируется на том, что развиваемый двигателем механический момент находится в пропорции к квадрату приложенного к нему напряжения. Повышая опорное напряжение (начальный пониженный уровень) до максимального значения, появляется возможность выполнить плавный запуск и разгон электрического двигателя до номинальных оборотов.

Как правило, такие УПП используют амплитудные методы управления за счет чего успешно справляются с запуском приводов и оборудования как в холостом, так и в слабо нагруженном режиме. Более усовершенствованные плавные пускатели, относящиеся к новому поколению, основываются на фазовых методах управления, в силу чего такие устройства способны запускать электрические приводы, для которых свойственны тяжелые пусковые режимы «номинал в номинал». Применение таких устройств плавного пуска дает возможность чаще производить запуски оборудования, уменьшить пусковой «бросок» тока до минимальных значений, оптимизировать количество применяемых реле, выключателей и контакторов. Устройство плавного пуска однофазного двигателя и других приводных узлов обеспечат надежную защиту от аварийной перегрузки, заклинивания, обрыва фазы, перегрева и снизит интенсивность электромагнитных помех.


Подключение устройства плавного пуска

1 – Если подключение устройства плавного пуска выполняется стандартно (3 провода), то подключение электродвигателя может выполняться и по схеме «звезда», и по схеме «треугольник».
2 – Для электродвигателя той же мощности, при их подключении по схеме с внутренним соединением треугольником (6 проводов), потребляемая мощность УПП на 43% меньше, чем это требуется при стандартном 3-хпроводном соединении. Когда с плавным пускателем используется двигатель, подключенный по схеме с внутренним соединением треугольником, можно запускать электрический двигатели с мощностью на 73% выше, чем в условиях стандартного подключения (3 провода).
3 – Для запуска двигателя с подключением согласно схеме с внутренним соединением по типу «треугольник» (6 проводов), вторичные обмотки силового трансформатора соединяются по типу «звезда», нейтраль обязательно заземляется.


Более подробно о том, как подключить устройство плавного пуска, расскажут менеджеры нашей компании.


грамотный подход к выбору необходимого оборудования / Статьи и обзоры / Элек.ру

Во всем мире, в том числе и в нашей стране, на сегодняшний день является актуальной задача преобразования электрической энергии в механическую. Для этой задачи используются различные электроприводы, позволяющие управлять работой синхронных и асинхронных двигателей, которые в свою очередь приводят в движение необходимый механизм, будь то насос или конвейер. Для решения этих задач может применяться разное оборудование — в основном это частотно-регулируемый привод и устройство плавного пуска. В этой статье будут рассмотрены основные принципы работы этого оборудования, а также рекомендации по выбору нужных приборов для решения производственных задач.

Начнем с терминологии.

Частотно-регулируемый привод (ЧРП, частотный преобразователь, ПЧ) это устройство для управления синхронным и асинхронным двигателем, состоящее из двух основных функциональных модулей:

  1. Выпрямитель (моста постоянного тока) — преобразует переменный ток промышленной частоты и амплитуды в постоянный.
  2. Инвертор — осуществляет преобразование постоянного тока в переменный нужной частоты и амплитуды.

В результате двигатель сохраняет номинальный момент на валу и движется с необходимой скоростью.

Устройство плавного пуска (УПП) — устройство для плавного безударного пуска с ограничением пускового тока, длительной работы в номинальном режиме и торможения высоковольтных асинхронных электродвигателей.

Итак, остановимся подробнее на выборе устройств.

Выбор частотно-регулируемого привода

При выборе модели ЧРП необходимо обратить внимание на следующие моменты.

— Мощность преобразователя.

Чем шире мощностной ряд, тем больше механизмов, которыми можно будет управлять с помощью данного ЧРП. Сохраняется тип подключения, опциональные компоненты. На выходе — большое число задач, решаемых работой одного прибора.

— Входное напряжение.

В России качество многих сетей на сегодняшний день оставляет желать лучшего. Потому характеристика входного напряжения часто бывает величиной нестабильной. Данная проблема частично решается посредством установки дросселей на входе преобразователя. Однако, чем заявленный диапазон входного напряжения ЧРП шире, тем лучше.

— Режимы управления ЧРП.

Существуют различные способы управления ПЧ. Наиболее распространенные: программируемый логический контроллер, компьютер, встроенная панель или выносной пульт, а также напрямую через клеммы управления.

— Методы управления.

Преобразователи частоты могут работать в скалярном и векторном режимах.Скалярный режим более простой, но при этом имеет свое преимущество: возможность управления более мощными электродвигателями при сохранении тех же силовых элементов в цепи. Применяется чаще всего при работе с насосами, вентиляторами и конвейерами. Векторный режим в отличие от скалярного обеспечивает управление магнитным потоком ротора. При выборе такого управления, возможно работать с двигателем как в обычном режиме, так и в режимах с повышенной точностью задания скорости или момента на валу.

— Диапазон регулирования частоты. Нижний предел указывает на диапазон регулирования скорости электродвигателя. Верхний предел является значимой величиной при работе с двигателями высокой номинальной частоты до 800 Гц.

Это основные параметры, на которые необходимо обращать внимание при выборе ЧРП. Разумеется, здесь представлены не все характеристики ПЧ. В любом случае, если нет уверенности в правильности сделанного выбора, лучше обратиться к специалистам. Квалифицированные специалисты Корпорации Триол всегда рады Вашему звонку или письму.

Выбор устройства плавного пуска

Принцип работы УПП основан на ограничении напряжения сети на нагрузке при помощи симисторов или тиристоров, включенных встречно-параллельно. Исходя их этого, регулируются ток и напряжение на двигателе. УПП предназначается для разгона и останова асинхронного двигателя, имеющего высокий пусковой момент. При выборе УПП необходимо остановиться на следующих свойствах.

— Шунтирование.

После запуска двигателя с нагрузкой устройство желательно вывести из силовой цепи по двум причинам:

1. УПП необходимо подготовить к последующей работе, соответственно прибору нужно дать остыть после пуска;

2. Минимизируются потери из-за падения напряжения на симисторах. Этого можно достичь, соединяя пофазно вход и выход УПП шунтирующим контактором. Однако тепловые потери на силовых ключах намного меньше потерь на УПП в режиме пуска даже при длительном протекании силового тока. Поэтому некоторые УПП производятся и без шунтирующего контактора.

— Управление.

По элементной базе разделяют на аналоговые и цифровые УПП.

— Фазность.

По числу ключей в фазах УПП делятся на неполнофазные (имеющие ключи в 1…2 фазах) и полнофазные (имеющие ключи во всех фазах). Полнофазные УПП обеспечивают симметричное распределение токов по фазам.

— Контроль величины тока.

Чаще всего УПП, не имеющие функции контроля тока, повышают за определенное время напряжение на двигателе от начального до номинального значения. Если же стоит задача ограничения тока, без данной функции не обойтись. В случаях, когда наблюдается ограниченная мощность сети, существует вероятность аварии из-за превышения предельно допустимого тока. УПП, имеющие данную функцию, способны обеспечить плавное нарастание тока в начале процесса пуска.

— Торможение.

При подаче на электродвигатель постоянного тока происходит его интенсивное торможение. Функция УПП подачи тока на обмотку чаще всего применяется в системах, которые могут двигаться сами собой при отсутствии тормоза, — подъемники, фуникулеры.

— Защита.

УПП имеет ряд защит двигателя и механизма. В этот комплекс входят: защита от перекоса фаз, изменения чередования фаз, перегрева радиаторов УПП, защита от перегрузки и неисправностей силовой цепи, слишком маленького тока, от снижения частоты. Но стоит оберегать прибор от короткого замыкания в цепи нагрузки, в противном случае УПП может выйти из строя. Однако при правильном монтаже короткое замыкание — процесс не мгновенный, и прибор, скорее всего, просто отключится при снижении сопротивления нагрузки. Но, прежде чем снова запускать его в работу, необходимо устранить причину, приведшую к короткому замыканию.

На сегодняшний день различные отрасли российской промышленности применяют электропривод переменного тока для решения своих задач: водоснабжение, энергетика, атомная, оборонная промышленности, нефтегазовая отрасль, автоматизированное производство, крановое и лифтовое производство, вентиляция, кондиционирование. Помимо перечисленных характеристик, у преобразователя частоты и устройства плавного пуска, также важны и другие параметры: номинальные мощность и ток двигателя, напряжение питания, число пусков в час, длительность пуска/останова, пусковой ток.

Преобразователи частоты и устройства плавного пуска с фирменным логотипом «Триол» работают и на северных заснеженных просторах, и в Волгоградских степях, и в Сибири, и на жарком черноморском побережье. Перечислить все машины и механизмы, в приводах которых установлено оборудование «Триол», представляется вообще весьма затруднительным. Вот лишь небольшая часть из всего многообразия:
мельницы, дробилки, грануляторы, экструдеры, массажеры, волчки, куттеры, гомогенизаторы, жом-прессы, этикетировочные аппараты, укупорочные машины и много чего еще специфического. Сюда же следует добавить и привычные слуху насосы, вентиляторы, транспортеры, конвейеры, технологические линии.
В любой точке России Корпорация «Триол» предоставляет качественное сервисное обслуживание и практические консультации по вопросам внедрения и использования продукции. Услуги сервисной поддержки представлены 9 сервисными центрами, расположенными в разных регионах страны для обеспечения максимальной логистики и оперативного реагирования на возможные проблемы, возникшие у наших клиентов.

Источник: Андрей Степанов, Корпорация «Триол»

Общие сведения об устройствах плавного пуска – РегионПривод

Практика показала, что про устройства плавного пуска мы всё чаще вспоминаем только тогда, когда видим вышедший из строя редуктор приводного механизма, когда приходится менять преждевременно изношенные и никуда уже не годные приводные ремни, когда завариваем порывы труб, когда просадка питающего напряжения при включении того или иного агрегата выбивает все защиты и приводит не только вас, но и ваших соседей в ярость.

Перечень таких неприятных моментов можно продолжать сколько угодно долго, но и вышеприведенных фактов должно быть достаточно для того, чтобы задуматься: по какой причине все это происходит?

Своевременно приобретенный и подключенный софтстартер позволит избежать лишних затрат и мало когда уместной головной боли.

Устройство плавного пуска – это механическое, электротехническое или электромеханическое оборудование, необходимое для осуществления плавного пуска/останова электродвигателей с небольшим моментом страгивания рабочей машины.


Классификация устройств плавного пуска

Сегодня плавный пуск оборудования осуществляется с помощью трех типов устройств:

  • УПП с одной управляемой фазой (адаптированы для маломощных двигателей)
  • УПП с двумя управляемыми фазами (третья фаза подключается к сети напрямую)
  • УПП со всеми управляемыми фазами

Сердцем силовой части устройства плавного пуска выступает симистор, последовательно включаемый между питающим проводником и обмоткой электродвигателя. Для справки: симистор представляет собой два встречно-параллельно включенных тиристора с управляющим входом. Тиристор отпирается только в том случае, когда выполнено условие приложения прямого напряжения типа анод-катод и одновременной подачи потенциала (отпирающий потенциал) или его импульса на управляющий электрод. Запирание катода осуществляется путем снижения токового значения в цепи «анод-катод-нагрузка» до величины, стремящейся к нулю. В структуре софтстартера тиристору отведена роль быстродействующего полупроводникового контактора, который включается напряжением и выключается током.

Важно учесть, что временной момент запирания при переходе через нулевое значение тока тиристора, через который происходит питание обмотки разгоняемого привода, всегда запаздывает относительно момента перехода синусоиды фазы напряжения через нулевой показатель по причине индуктивной составляющей. Готовые к использованию плавные пускатели уже предусматривают наличие симисторов, включаемых в одну, две или все три фазы. Когда обмотка соединена по принципу треугольника, имеется возможность включения симисторов не в фазу питания, а в разрыв обмотки. При этом токовое значение через симистор уменьшается в 1,73 раза, что, в конечном итоге, позволяет пользователю выбрать менее мощный и более доступный по цене софтстартер. Но такая ситуация удваивает число используемых кабелей.

Сравнительные технические параметры одно-, двух- и трёхфазного регулирования приведены ниже в таблице:

Число регулируемых фаз Перекос I и U по фазам Реализация плавного торможения Ограничение пускового тока Включение в разрыв обмоток в «треугольник» Динамическое торможение Обязательность входного контактора
1 да нет слабо нет нет да
2 да да средне нет нет нет
3 нет да Только по характеру нагрузки на валу при пуске и торможении да возможно нет

Однофазное регулирование. Нерегулируемые фазы в цикле разгона привода пропускают ток, соответствующий скольжению и моменту в конкретный временной отрезок. Так как по причине плавности пускового цикла время разгона становится больше, тепловой режим нерегулируемой обмотки может оказаться куда хуже, чем в условиях прямого пуска. Кроме того, важно учесть, что однофазные устройства плавного пуска не имеют возможности аварийного останова трёхфазного электродвигатель. Самое большое, что можно ожидать от софтстартера – это подача аварийного сигнала. Другими словами, такая схема будет актуальна только при необходимости смягчения пусковых токов в механической нагрузке в диапазоне до 11кВт и плавное торможение/длительный пуск/ограничение пускового тока не требуются.

Однофазное устройство плавного пуска ориентировано, прежде всего, на электродвигатели компрессоров в бытовых кондиционерах. Но также такое оборудование может быть успешно использовано для выполнения безопасного пуска однофазных нагрузок другого характера, при которых также будет обеспечено уменьшение ударных пусковых нагрузок и минимизация кратковременных перегрузок питающей сети. Но по причине удешевления тиристоров однофазные софтстартеры снимаются с производства. На их место приходят двухфазные.

Двухфазное регулирование. Двухфазные устройства плавного пуска адаптированы для электродвигателей мощностью не выше 250кВт. Они используются только тогда, когда узким местом при запуске является не ограничение тока до уровня гарантированной величины, а смягчение механической ударной нагрузки. Большинство моделей предусматривают наличие внутренних байпасных контакторов, что существенно снижает затраты на запуск одного или нескольких параллельно подключенных электродвигателей.

Трёхфазное регулирование. Этот тип регулирования рассматривается как наиболее оптимальное и технически совершенное решение. Трехфазные УПП позволяют получить симметричное по фазам ограничение тока и силы магнитного поля. Именно поэтому, относительно двухфазных плавных пускателей, в условиях того же крутящего момента силы в момент разгона электродвигателя, токовый режим предельно благоприятен и для привода, и для сети. Применение таких устройств плавного пуска универсально.

Принцип действия устройства плавного пуска

Принцип действия устройства плавного пуска базируется на том, что развиваемый двигателем механический момент находится в пропорции к квадрату приложенного к нему напряжения. Повышая опорное напряжение (начальный пониженный уровень) до максимального значения, появляется возможность выполнить плавный запуск и разгон электрического двигателя до номинальных оборотов.

Как правило, такие УПП используют амплитудные методы управления за счет чего успешно справляются с запуском приводов и оборудования как в холостом, так и в слабо нагруженном режиме. Более усовершенствованные плавные пускатели, относящиеся к новому поколению, основываются на фазовых методах управления, в силу чего такие устройства способны запускать электрические приводы, для которых свойственны тяжелые пусковые режимы «номинал в номинал». Применение таких устройств плавного пуска дает возможность чаще производить запуски оборудования, уменьшить пусковой «бросок» тока до минимальных значений, оптимизировать количество применяемых реле, выключателей и контакторов. Устройство плавного пуска однофазного двигателя и других приводных узлов обеспечат надежную защиту от аварийной перегрузки, заклинивания, обрыва фазы, перегрева и снизит интенсивность электромагнитных помех.


Подключение устройства плавного пуска

1 – Если подключение устройства плавного пуска выполняется стандартно (3 провода), то подключение электродвигателя может выполняться и по схеме «звезда», и по схеме «треугольник».
2 – Для электродвигателя той же мощности, при их подключении по схеме с внутренним соединением треугольником (6 проводов), потребляемая мощность УПП на 43% меньше, чем это требуется при стандартном 3-хпроводном соединении. Когда с плавным пускателем используется двигатель, подключенный по схеме с внутренним соединением треугольником, можно запускать электрический двигатели с мощностью на 73% выше, чем в условиях стандартного подключения (3 провода).
3 – Для запуска двигателя с подключением согласно схеме с внутренним соединением по типу «треугольник» (6 проводов), вторичные обмотки силового трансформатора соединяются по типу «звезда», нейтраль обязательно заземляется.


Более подробно о том, как подключить устройство плавного пуска, расскажут менеджеры нашей компании.


Схема подключения устройства плавного пуска электродвигателя

Рассмотрим подключение УПП на примере устройства MCD 201. Софт-стартер этой марки предназначено для приводов мощностью 7,5-110 кВт. УПП обеспечивает запуск и остановку на плавно изменяющимся напряжении (функция Timed Voltage Ramp – TVR) без обратной связи по току. Регулировка напряжения осуществляется по всем трем фазам. УПП имеет встроенный шунтирующий контактор.

УПП или устройства плавного пуска – электрооборудование для постепенного старта, разгона и торможения асинхронных электродвигателей. Вне зависимости от особенностей конструкции, софт-стартер состоит:

  • Из безтрансформаторного преобразователя напряжения на базе силовых тиристоров и генератора импульсов. Этот элемент обеспечивает изменение напряжения, подаваемое на электродвигатель.
  • Из микропроцессорного устройства управления. Этот блок формирует управляющие команды на генератор импульсов, осуществляет связь с оборудованием телекоммуникаций, осуществляет контроль параметров и прием сигналов с внешних датчиков.
  • Из шунтирущих контарторов. Коммутационные электроаппараты переключают ток в обход силовых тиристоров после полного разгона электродвигателя. Это уменьшаетнагрев полупроводниковых устройств, снижает потребляемую мощность и исключает появление электромагнитных помех во время работы привода.

Устройства плавного пуска без встроенных обводных контакторов обычно имеют клеммы для подключения внешних аппаратов коммутации.

Компания Данфосс выпускает софт-стартеры VLT для приводов мощностью от 0,1 до 1200 кВт. В линейку УПП входят модели:

Устройства различаются по функционалу, электрическим характеристикам и другим параметрам.

Выбор УПП

Выбор софт-стартера делается при проектировании или модернизации электропривода. При этом учитываются требования к оборудованию, характеристики электросети и другие условия. Главными критериями являются:

  • Ток, напряжение и мощность электрической машины. Необходимо чтобы максимально возможный ток при пуске не превышал предельную величину тока УПП. Напряжение и мощность устройства должны соответствовать характеристикам двигателя.
  • Количество стартов и остановок. Этот параметр указан в технической документации УПП, он должен отвечать условиям работы электропривода.
  • Величина пускового момента. Интервал настраиваемых значений должен включать необходимую величину допустимого момента при запуске оборудования.
  • Электромагнитная совместимость. Все электрооборудование привода должно иметь одинаковый класс ЭМС.
  • Допустимое время разгона и торможение двигателя.
  • При выборе также принимаются во внимание наличие функций динамического торможения, защиты от ненормальных режимов работы, поддерживаемые интерфейсы связи.

    Подключение софт-стартера

    Софт-стартер поддерживает протоколы связи PROFIBUS, DeviceNet, Modbus RTU, Profinet, Modbus TCP, Ethernet IP. Возможно подключение панели дистанционного управления. УПП MCD 201 используется с внешними аппаратами защиты электродвигателя.

    Схема подключения устройства плавного пуска электродвигателя

    Клеммная панель содержит следующие входы и выходы:

    • 1,3,5. Предназначены для подключения к трехфазной сети. Перед УПП в цепь обязательно включают плавкие предохранители. Это необходимо для снижения вероятности пробоя тиристоров при коротких замыканиях и возникновении переходных процессов. Компания Данффос рекомендует применять аппараты марок Ferraz и Bussman. Опционально могут подключаться автоматический размыкатель и контроллер перегрузки.
    • 2,4,6. К этим клеммам присоединяют обмотки статора электродвигателя.
    • 13, 14. Входы для линейного контактора.
    • 06, 05. Клеммы для датчика температуры обмоток электродвигателя. Для этой модели УПП требуется применять терморезисторы. Температура отключения двигателя – 2,8 кОм. При отсутствии датчика входы закорачивают перемычкой.
    • А1, А2, А3, N1, N2. Входы цепей управления 24 В АС/DC; 110-240 АС и В 380 — 440 АС.

    Подключение цепей управления

    Запуск и остановка электродвигателя реализуется двух- или трехпроводными схемами.

    Схема подключения устройства плавного пуска электродвигателя

    Старт привода производится нажатием кнопки. Остановка электрической машины осуществляется повторным нажатием.

    Схема подключения устройства плавного пуска электродвигателя

    При выборе трехпроводной схемы, плавный пуск и торможение двигателя осуществляется нажатием кнопок “старт” и “стоп”.

    УПП этой модели позволяет настраивать пусковое напряжение в диапазоне от 30% до 75% от номинального значения электросети. По умолчанию выставлено 50% . Длительность нарастания и снижения напряжения регулируется в интервале от 2-х до 20 секунд. Эта величина определяет время разгона и остановки электрической машины.

    Все электрические соединения выполняются кабелями с медными жилами, рекомендованных производителями марок и сечения. Настойки привода и программирование УПП проводятся в соответствии с алгоритмом, указанным производителем. Перед пробным пуском для проверки работоспособности привода необходимо проверить схему подключения и корректность настроек.

    Александр Ситников ( Кировская обл.)

    Рассматриваемая в статье схема позволяет осуществить безударный пуск и торможение электродвигателя, увеличить срок службы оборудования и снизить нагрузку на электросеть. Плавный пуск достигается путём регулирования напряжения на обмотках двигателя силовыми тиристорами.

    Устройства плавного пуска ( УПП) широко применяются в различных электроприводах. Структурная схема разработанного УПП приведена на рисунке 1, а диаграмма работы УПП – на рисунке 2. Основой УПП являются три пары встречно-параллельных тиристоров VS1 – VS6, включенных в разрыв каждой из фаз. Плавный пуск осуществляется за счёт постепенного

    увеличения прикладываемого к обмоткам электродвигателя сетевого напряжения от некоторого начального значения Uначдо номинального Uном. Это достигается путём постепенного увеличения угла проводимости тиристоров VS1 – VS6 от минимального значения до максимального в течение времени Тпуск, называемого временем пуска.

    Обычно значение Uначсоставляет 30…60% от Uном, поэтому пусковой момент электродвигателя существенно меньше, чем в случае подключения электродвигателя на полное напряжение сети. При этом происходит постепенное натяжение приводных ремней и плавное зацепление зубчатых колес редуктора. Это благоприятно сказывается на снижении динамических нагрузок электропривода и, как следствие, способствует продлению срока службы механизмов и увеличению интервала между ремонтами.

    Применение УПП также позволяет снизить нагрузку на электросеть, поскольку в этом случае пусковой ток электродвигателя составляет 2 – 4 номинала тока двигателя, а не 5 – 7 номиналов, как при непосредственном пуске. Это важно при питании электроустановок от источников энергии ограниченной мощности, например, дизель-генераторных установок, источников бесперебойного питания и трансформаторных подстанций малой мощности

    ( особенно в сельской местности). После завершения пуска тиристоры шунтируются байпасом ( обходным контактором) К, благодаря чему в течение времени Траб на тиристорах не рассеивается мощность, а значит, экономится электроэнергия.

    При торможении двигателя процессы происходят в обратном порядке: после отключения контактора К угол проводимости тиристоров максимален, напряжение на обмотках электродвигателя равно сетевому за вычетом падения напряжения на тиристорах. Затем угол проводимости тиристоров в течение времени Тторм уменьшается до минимального значения, которому соответствует напряжение отсечки Uотс, после чего угол проводимости тиристоров становится равным нулю и напряжение на обмотки не подается. На рисунке 3 приведены диаграммы тока одной из фаз двигателя при постепенном увеличении угла проводимости тиристоров.

    На рисунке 4 приведены фрагменты принципиальной электрической схемы УПП. Полностью схема приведена на сайте журнала. Для её работы требуется напряжение трех фаз А, В, С стандартной сети 380 В частотой 50 Гц. Обмотки электродвигателя при этом могут быть соединены как « звездой», так и „треугольником“.

    В качестве силовых тиристоров VS1 – VS6 применены недорогие приборы типа 40TPS12 в корпусе ТО-247 с прямым током Iпр= 35 А. Допустимый ток через фазу составляет Iдоп= 2Iпр= 70 А. Будем считать, что максимальный пусковой ток составляет 4Iном, откуда следует, что Iном ( по причине подключения двигателя большей мощности или слишком малого времени пуска), процесс пуска будет остановлен, поскольку сработает автоматический выключатель QF1 со специально подобранной характеристикой.

    Параллельно тиристорам подключены демпфирующие RC-цепочки R48, C20, C21, R50, C22, C23, R52, C24, C25, предотвращающие ложное включение тиристоров, а также варисторы R49, R51 и R53, поглощающие импульсы перенапряжения свыше 700 В. Обходные реле К1, К2, К3 типа TR91-12VDC-SC-C с номинальным током 40 А шунтируют силовые тиристоры после завершения пуска.

    Питание системы управления осуществляется от трансформаторного блока питания, запитанного от межфазного напряжения Uав. В блок питания входят понижающие трансформаторы TV1, TV2, диодный мост VD1, токоограничивающий резистор R1, сглаживающие конденсаторы С1, С3, С5, помехоподавляющие конденсаторы С2, С4, С6 и линейные стабилизаторы DA1 и DA2, обеспечивающие напряжение 12 и 5 В соответственно.

    Система управления построена с применением микроконтроллера DD1 типа PIC16F873. Микроконтроллер выдаёт импульсы управления тиристорами VS1 – VS6 путём « зажигания» оптосимисторов ОРТ5-ОРТ10 (MOC3052 ). Для ограничения тока в цепях управления тиристоров VS1 – VS6 служат резисторы R36 – R47. Импульсы управления подаются одновременно на два тиристора с задержкой относительно начала полуволны межфазного напряжения. Цепи синхронизации с сетевым напряжением состоят из трёх однотипных узлов, состоящих из зарядных резисторов R13, R14, R18, R19, R23, R24, диодов VD3 – VD8, транзисторов VT1 – VT3, накопительных конденсаторов С17 – С19 и оптопар OPT2 – OPT4. C выхода 4 оптопар OPT2, OPT3, OPT4 на входы микроконтроллера RC2, RC1, RC0 поступают импульсы длительностью примерно 100 мкс, соответствующие началу отрицательной полуволны фазных напряжений Uab, Ubc, Uca.

    Диаграммы работы узла синхронизации приведены на рисунке 5. Если принять верхний график за сетевое напряжение Uав, то среднийграфик будет соответствовать напряжению на конденсаторе С17, а нижний – току через фотодиод оптопары ОРТ2. Микроконтроллер регистрирует поступающие на его входы синхроимпульсы, определяет наличие, порядок чередования, отсутствие « слипания» фаз, а также производит расчёт времени задержки импульсов управления тиристорами. Входы цепей синхронизации защищены от перенапряжения варисторами R17, R22 и R27.

    С помощью потенциометров R2, R3, R4 задаются параметры, соответствующие диаграмме работы УПП, приведённой на рисунке 2; соответственно R2 – Tпуск, R3 – Тторм, R4 – Uначи Uотс. Напряжения уставок с движков R2, R3, R4 поступают на входы RA2, RA1, RA0 микросхемы DD1 и преобразуются с помощью АЦП. Время пуска и торможения регулируется в пределах от 3 до 15 с, а начальное напряжение – от нуля до напряжения, соответствующего углу проводимости тиристора в 60 электрических градусов. Конденсаторы С8 – С10 – помехоподавляющие.

    Команда « ПУСК» подаётся путём замыкания контактов 1 и 2 разъёма XS2, при этом на выходе 4 оптопары OPT1 появляется лог. 1; конденсаторы С14 и С15 производят подавление колебаний, возникающих вследствие „дребезга“ контактов. Разомкнутому положению контактов 1 и 2 разъёма XS2 соответствует команда „СТОП“. Коммутацию цепи управления запуском можно реализовать кнопкой с фиксацией, тумблером или контактами реле.

    Силовые тиристоры защищены от перегрева термостатом B1009N с нормально-замкнутыми контактами, размещёнными на теплоотводе. При достижении температуры 80°С контакты термостата размыкаются, и на вход RC3 микроконтроллера поступает уровень лог. 1, свидетельствующий о перегреве.

    Светодиоды HL1, HL2, HL3 служат индикаторами следующих состояний:

    • HL1 ( зелёный) « Готовность» – отсутствие аварийных состояний, готовность к запуску;
    • HL2 ( зелёный) « Работа» – мигающий светодиод означает, что УПП производит пуск или торможение двигателя, постоянное свечение – работа на байпасе;
    • HL3 ( красный) « Авария» – свидетельствует о перегреве теплоотвода, отсутствии или „слипании“ фазных напряжений.

    Включение обходных реле К1, К2, К3 производится путём подачи микроконтроллером лог. 1 на базу транзистора VT4.

    Программирование микроконтроллера – внутрисхемное, для чего используется разъём XS3, диод VD2 и микропереключатель Дж1. Элементы ZQ1, C11, C12 образуют цепь запуска тактового генератора, R5 и С7 – цепь сброса по питанию, С13 осуществляет фильтрацию помех по шинам питания микроконтроллера.

    На рисунке 6 приведён упрощённый алгоритм работы УПП. После инициализации микроконтроллера вызывается подпрограмма Error_Test, которая определяет наличие аварийных ситуаций: перегрев теплоотвода, невозможность синхронизироваться с сетевым напряжением вследствие потери фазы, неверного подключения к сети или сильных помех. Если аварийная ситуация не фиксируется, то переменной Error присваивается значение «0 », после возврата из подпрограммы зажигается светодиод „Готовность“, и схема переходит в режим ожидания команды „ПУСК“. После регистрации команды „ПУСК“ микроконтроллер производит аналого!цифровое преобразование напряжений уставок
    на потенциометрах и расчёт параметров Тпуск и Uнач, после чего выдаёт импульсы управления силовыми тиристорами. По окончании пуска включается байпас. При торможении двигателя процессы управления выполняются в обратном
    порядке.

    Практика показала, что про устройства плавного пуска мы всё чаще вспоминаем только тогда, когда видим вышедший из строя редуктор приводного механизма, когда приходится менять преждевременно изношенные и никуда уже не годные приводные ремни, когда завариваем порывы труб, когда просадка питающего напряжения при включении того или иного агрегата выбивает все защиты и приводит не только вас, но и ваших соседей в ярость.

    Перечень таких неприятных моментов можно продолжать сколько угодно долго, но и вышеприведенных фактов должно быть достаточно для того, чтобы задуматься: по какой причине все это происходит?

    Своевременно приобретенный и подключенный софтстартер позволит избежать лишних затрат и мало когда уместной головной боли.

    Устройство плавного пуска – это механическое, электротехническое или электромеханическое оборудование, необходимое для осуществления плавного пуска/останова электродвигателей с небольшим моментом страгивания рабочей машины.

    Классификация устройств плавного пуска

    Сегодня плавный пуск оборудования осуществляется с помощью трех типов устройств:

    • УПП с одной управляемой фазой (адаптированы для маломощных двигателей)
    • УПП с двумя управляемыми фазами (третья фаза подключается к сети напрямую)
    • УПП со всеми управляемыми фазами

    Сердцем силовой части устройства плавного пуска выступает симистор, последовательно включаемый между питающим проводником и обмоткой электродвигателя. Для справки: симистор представляет собой два встречно-параллельно включенных тиристора с управляющим входом. Тиристор отпирается только в том случае, когда выполнено условие приложения прямого напряжения типа анод-катод и одновременной подачи потенциала (отпирающий потенциал) или его импульса на управляющий электрод. Запирание катода осуществляется путем снижения токового значения в цепи «анод-катод-нагрузка» до величины, стремящейся к нулю. В структуре софтстартера тиристору отведена роль быстродействующего полупроводникового контактора, который включается напряжением и выключается током.

    Важно учесть, что временной момент запирания при переходе через нулевое значение тока тиристора, через который происходит питание обмотки разгоняемого привода, всегда запаздывает относительно момента перехода синусоиды фазы напряжения через нулевой показатель по причине индуктивной составляющей. Готовые к использованию плавные пускатели уже предусматривают наличие симисторов, включаемых в одну, две или все три фазы. Когда обмотка соединена по принципу треугольника, имеется возможность включения симисторов не в фазу питания, а в разрыв обмотки. При этом токовое значение через симистор уменьшается в 1,73 раза, что, в конечном итоге, позволяет пользователю выбрать менее мощный и более доступный по цене софтстартер. Но такая ситуация удваивает число используемых кабелей.

    Схема подключения устройства плавного пуска электродвигателя

    Сравнительные технические параметры одно-, двух- и трёхфазного регулирования приведены ниже в таблице:

    Число регулируемых фазПерекос I и U по фазамРеализация плавного торможенияОграничение пускового токаВключение в разрыв обмоток в «треугольник»Динамическое торможениеОбязательность входного контактора
    1данетслабонетнетда
    2дадасредненетнетнет
    3нетдаТолько по характеру нагрузки на валу при пуске и торможениидавозможнонет

    Однофазное регулирование. Нерегулируемые фазы в цикле разгона привода пропускают ток, соответствующий скольжению и моменту в конкретный временной отрезок. Так как по причине плавности пускового цикла время разгона становится больше, тепловой режим нерегулируемой обмотки может оказаться куда хуже, чем в условиях прямого пуска. Кроме того, важно учесть, что однофазные устройства плавного пуска не имеют возможности аварийного останова трёхфазного электродвигатель. Самое большое, что можно ожидать от софтстартера – это подача аварийного сигнала. Другими словами, такая схема будет актуальна только при необходимости смягчения пусковых токов в механической нагрузке в диапазоне до 11кВт и плавное торможение/длительный пуск/ограничение пускового тока не требуются.

    Однофазное устройство плавного пуска ориентировано, прежде всего, на электродвигатели компрессоров в бытовых кондиционерах. Но также такое оборудование может быть успешно использовано для выполнения безопасного пуска однофазных нагрузок другого характера, при которых также будет обеспечено уменьшение ударных пусковых нагрузок и минимизация кратковременных перегрузок питающей сети. Но по причине удешевления тиристоров однофазные софтстартеры снимаются с производства. На их место приходят двухфазные.

    Схема подключения устройства плавного пуска электродвигателя

    Двухфазное регулирование. Двухфазные устройства плавного пуска адаптированы для электродвигателей мощностью не выше 250кВт. Они используются только тогда, когда узким местом при запуске является не ограничение тока до уровня гарантированной величины, а смягчение механической ударной нагрузки. Большинство моделей предусматривают наличие внутренних байпасных контакторов, что существенно снижает затраты на запуск одного или нескольких параллельно подключенных электродвигателей.

    Схема подключения устройства плавного пуска электродвигателя

    Трёхфазное регулирование. Этот тип регулирования рассматривается как наиболее оптимальное и технически совершенное решение. Трехфазные УПП позволяют получить симметричное по фазам ограничение тока и силы магнитного поля. Именно поэтому, относительно двухфазных плавных пускателей, в условиях того же крутящего момента силы в момент разгона электродвигателя, токовый режим предельно благоприятен и для привода, и для сети. Применение таких устройств плавного пуска универсально.

    Схема подключения устройства плавного пуска электродвигателя

    Принцип действия устройства плавного пуска

    Принцип действия устройства плавного пуска базируется на том, что развиваемый двигателем механический момент находится в пропорции к квадрату приложенного к нему напряжения. Повышая опорное напряжение (начальный пониженный уровень) до максимального значения, появляется возможность выполнить плавный запуск и разгон электрического двигателя до номинальных оборотов.

    Как правило, такие УПП используют амплитудные методы управления за счет чего успешно справляются с запуском приводов и оборудования как в холостом, так и в слабо нагруженном режиме. Более усовершенствованные плавные пускатели, относящиеся к новому поколению, основываются на фазовых методах управления, в силу чего такие устройства способны запускать электрические приводы, для которых свойственны тяжелые пусковые режимы «номинал в номинал». Применение таких устройств плавного пуска дает возможность чаще производить запуски оборудования, уменьшить пусковой «бросок» тока до минимальных значений, оптимизировать количество применяемых реле, выключателей и контакторов. Устройство плавного пуска однофазного двигателя и других приводных узлов обеспечат надежную защиту от аварийной перегрузки, заклинивания, обрыва фазы, перегрева и снизит интенсивность электромагнитных помех.

    Подключение устройства плавного пуска

    Схема подключения устройства плавного пуска электродвигателя

    1 – Если подключение устройства плавного пуска выполняется стандартно (3 провода), то подключение электродвигателя может выполняться и по схеме «звезда», и по схеме «треугольник».
    2 – Для электродвигателя той же мощности, при их подключении по схеме с внутренним соединением треугольником (6 проводов), потребляемая мощность УПП на 43% меньше, чем это требуется при стандартном 3-хпроводном соединении. Когда с плавным пускателем используется двигатель, подключенный по схеме с внутренним соединением треугольником, можно запускать электрический двигатели с мощностью на 73% выше, чем в условиях стандартного подключения (3 провода).
    3 – Для запуска двигателя с подключением согласно схеме с внутренним соединением по типу «треугольник» (6 проводов), вторичные обмотки силового трансформатора соединяются по типу «звезда», нейтраль обязательно заземляется.

    Более подробно о том, как подключить устройство плавного пуска, расскажут менеджеры нашей компании.

    Общие сведения об устройствах плавного пуска – РегионПривод

    Практика показала, что про устройства плавного пуска мы всё чаще вспоминаем только тогда, когда видим вышедший из строя редуктор приводного механизма, когда приходится менять преждевременно изношенные и никуда уже не годные приводные ремни, когда завариваем порывы труб, когда просадка питающего напряжения при включении того или иного агрегата выбивает все защиты и приводит не только вас, но и ваших соседей в ярость.

    Перечень таких неприятных моментов можно продолжать сколько угодно долго, но и вышеприведенных фактов должно быть достаточно для того, чтобы задуматься: по какой причине все это происходит?

    Своевременно приобретенный и подключенный софтстартер позволит избежать лишних затрат и мало когда уместной головной боли.

    Устройство плавного пуска – это механическое, электротехническое или электромеханическое оборудование, необходимое для осуществления плавного пуска/останова электродвигателей с небольшим моментом страгивания рабочей машины.


    Классификация устройств плавного пуска

    Сегодня плавный пуск оборудования осуществляется с помощью трех типов устройств:

    • УПП с одной управляемой фазой (адаптированы для маломощных двигателей)
    • УПП с двумя управляемыми фазами (третья фаза подключается к сети напрямую)
    • УПП со всеми управляемыми фазами

    Сердцем силовой части устройства плавного пуска выступает симистор, последовательно включаемый между питающим проводником и обмоткой электродвигателя. Для справки: симистор представляет собой два встречно-параллельно включенных тиристора с управляющим входом. Тиристор отпирается только в том случае, когда выполнено условие приложения прямого напряжения типа анод-катод и одновременной подачи потенциала (отпирающий потенциал) или его импульса на управляющий электрод. Запирание катода осуществляется путем снижения токового значения в цепи «анод-катод-нагрузка» до величины, стремящейся к нулю. В структуре софтстартера тиристору отведена роль быстродействующего полупроводникового контактора, который включается напряжением и выключается током.

    Важно учесть, что временной момент запирания при переходе через нулевое значение тока тиристора, через который происходит питание обмотки разгоняемого привода, всегда запаздывает относительно момента перехода синусоиды фазы напряжения через нулевой показатель по причине индуктивной составляющей. Готовые к использованию плавные пускатели уже предусматривают наличие симисторов, включаемых в одну, две или все три фазы. Когда обмотка соединена по принципу треугольника, имеется возможность включения симисторов не в фазу питания, а в разрыв обмотки. При этом токовое значение через симистор уменьшается в 1,73 раза, что, в конечном итоге, позволяет пользователю выбрать менее мощный и более доступный по цене софтстартер. Но такая ситуация удваивает число используемых кабелей.

    Сравнительные технические параметры одно-, двух- и трёхфазного регулирования приведены ниже в таблице:

    Число регулируемых фаз Перекос I и U по фазам Реализация плавного торможения Ограничение пускового тока Включение в разрыв обмоток в «треугольник» Динамическое торможение Обязательность входного контактора
    1 да нет слабо нет нет да
    2 да да средне нет нет нет
    3 нет да Только по характеру нагрузки на валу при пуске и торможении да возможно нет

    Однофазное регулирование. Нерегулируемые фазы в цикле разгона привода пропускают ток, соответствующий скольжению и моменту в конкретный временной отрезок. Так как по причине плавности пускового цикла время разгона становится больше, тепловой режим нерегулируемой обмотки может оказаться куда хуже, чем в условиях прямого пуска. Кроме того, важно учесть, что однофазные устройства плавного пуска не имеют возможности аварийного останова трёхфазного электродвигатель. Самое большое, что можно ожидать от софтстартера – это подача аварийного сигнала. Другими словами, такая схема будет актуальна только при необходимости смягчения пусковых токов в механической нагрузке в диапазоне до 11кВт и плавное торможение/длительный пуск/ограничение пускового тока не требуются.

    Однофазное устройство плавного пуска ориентировано, прежде всего, на электродвигатели компрессоров в бытовых кондиционерах. Но также такое оборудование может быть успешно использовано для выполнения безопасного пуска однофазных нагрузок другого характера, при которых также будет обеспечено уменьшение ударных пусковых нагрузок и минимизация кратковременных перегрузок питающей сети. Но по причине удешевления тиристоров однофазные софтстартеры снимаются с производства. На их место приходят двухфазные.

    Двухфазное регулирование. Двухфазные устройства плавного пуска адаптированы для электродвигателей мощностью не выше 250кВт. Они используются только тогда, когда узким местом при запуске является не ограничение тока до уровня гарантированной величины, а смягчение механической ударной нагрузки. Большинство моделей предусматривают наличие внутренних байпасных контакторов, что существенно снижает затраты на запуск одного или нескольких параллельно подключенных электродвигателей.

    Трёхфазное регулирование. Этот тип регулирования рассматривается как наиболее оптимальное и технически совершенное решение. Трехфазные УПП позволяют получить симметричное по фазам ограничение тока и силы магнитного поля. Именно поэтому, относительно двухфазных плавных пускателей, в условиях того же крутящего момента силы в момент разгона электродвигателя, токовый режим предельно благоприятен и для привода, и для сети. Применение таких устройств плавного пуска универсально.

    Принцип действия устройства плавного пуска

    Принцип действия устройства плавного пуска базируется на том, что развиваемый двигателем механический момент находится в пропорции к квадрату приложенного к нему напряжения. Повышая опорное напряжение (начальный пониженный уровень) до максимального значения, появляется возможность выполнить плавный запуск и разгон электрического двигателя до номинальных оборотов.

    Как правило, такие УПП используют амплитудные методы управления за счет чего успешно справляются с запуском приводов и оборудования как в холостом, так и в слабо нагруженном режиме. Более усовершенствованные плавные пускатели, относящиеся к новому поколению, основываются на фазовых методах управления, в силу чего такие устройства способны запускать электрические приводы, для которых свойственны тяжелые пусковые режимы «номинал в номинал». Применение таких устройств плавного пуска дает возможность чаще производить запуски оборудования, уменьшить пусковой «бросок» тока до минимальных значений, оптимизировать количество применяемых реле, выключателей и контакторов. Устройство плавного пуска однофазного двигателя и других приводных узлов обеспечат надежную защиту от аварийной перегрузки, заклинивания, обрыва фазы, перегрева и снизит интенсивность электромагнитных помех.


    Подключение устройства плавного пуска

    1 – Если подключение устройства плавного пуска выполняется стандартно (3 провода), то подключение электродвигателя может выполняться и по схеме «звезда», и по схеме «треугольник».
    2 – Для электродвигателя той же мощности, при их подключении по схеме с внутренним соединением треугольником (6 проводов), потребляемая мощность УПП на 43% меньше, чем это требуется при стандартном 3-хпроводном соединении. Когда с плавным пускателем используется двигатель, подключенный по схеме с внутренним соединением треугольником, можно запускать электрический двигатели с мощностью на 73% выше, чем в условиях стандартного подключения (3 провода).
    3 – Для запуска двигателя с подключением согласно схеме с внутренним соединением по типу «треугольник» (6 проводов), вторичные обмотки силового трансформатора соединяются по типу «звезда», нейтраль обязательно заземляется.


    Более подробно о том, как подключить устройство плавного пуска, расскажут менеджеры нашей компании.


    Общие сведения об устройствах плавного пуска – РегионПривод

    Практика показала, что про устройства плавного пуска мы всё чаще вспоминаем только тогда, когда видим вышедший из строя редуктор приводного механизма, когда приходится менять преждевременно изношенные и никуда уже не годные приводные ремни, когда завариваем порывы труб, когда просадка питающего напряжения при включении того или иного агрегата выбивает все защиты и приводит не только вас, но и ваших соседей в ярость.

    Перечень таких неприятных моментов можно продолжать сколько угодно долго, но и вышеприведенных фактов должно быть достаточно для того, чтобы задуматься: по какой причине все это происходит?

    Своевременно приобретенный и подключенный софтстартер позволит избежать лишних затрат и мало когда уместной головной боли.

    Устройство плавного пуска – это механическое, электротехническое или электромеханическое оборудование, необходимое для осуществления плавного пуска/останова электродвигателей с небольшим моментом страгивания рабочей машины.


    Классификация устройств плавного пуска

    Сегодня плавный пуск оборудования осуществляется с помощью трех типов устройств:

    • УПП с одной управляемой фазой (адаптированы для маломощных двигателей)
    • УПП с двумя управляемыми фазами (третья фаза подключается к сети напрямую)
    • УПП со всеми управляемыми фазами

    Сердцем силовой части устройства плавного пуска выступает симистор, последовательно включаемый между питающим проводником и обмоткой электродвигателя. Для справки: симистор представляет собой два встречно-параллельно включенных тиристора с управляющим входом. Тиристор отпирается только в том случае, когда выполнено условие приложения прямого напряжения типа анод-катод и одновременной подачи потенциала (отпирающий потенциал) или его импульса на управляющий электрод. Запирание катода осуществляется путем снижения токового значения в цепи «анод-катод-нагрузка» до величины, стремящейся к нулю. В структуре софтстартера тиристору отведена роль быстродействующего полупроводникового контактора, который включается напряжением и выключается током.

    Важно учесть, что временной момент запирания при переходе через нулевое значение тока тиристора, через который происходит питание обмотки разгоняемого привода, всегда запаздывает относительно момента перехода синусоиды фазы напряжения через нулевой показатель по причине индуктивной составляющей. Готовые к использованию плавные пускатели уже предусматривают наличие симисторов, включаемых в одну, две или все три фазы. Когда обмотка соединена по принципу треугольника, имеется возможность включения симисторов не в фазу питания, а в разрыв обмотки. При этом токовое значение через симистор уменьшается в 1,73 раза, что, в конечном итоге, позволяет пользователю выбрать менее мощный и более доступный по цене софтстартер. Но такая ситуация удваивает число используемых кабелей.

    Сравнительные технические параметры одно-, двух- и трёхфазного регулирования приведены ниже в таблице:

    Число регулируемых фаз Перекос I и U по фазам Реализация плавного торможения Ограничение пускового тока Включение в разрыв обмоток в «треугольник» Динамическое торможение Обязательность входного контактора
    1 да нет слабо нет нет да
    2 да да средне нет нет нет
    3 нет да Только по характеру нагрузки на валу при пуске и торможении да возможно нет

    Однофазное регулирование. Нерегулируемые фазы в цикле разгона привода пропускают ток, соответствующий скольжению и моменту в конкретный временной отрезок. Так как по причине плавности пускового цикла время разгона становится больше, тепловой режим нерегулируемой обмотки может оказаться куда хуже, чем в условиях прямого пуска. Кроме того, важно учесть, что однофазные устройства плавного пуска не имеют возможности аварийного останова трёхфазного электродвигатель. Самое большое, что можно ожидать от софтстартера – это подача аварийного сигнала. Другими словами, такая схема будет актуальна только при необходимости смягчения пусковых токов в механической нагрузке в диапазоне до 11кВт и плавное торможение/длительный пуск/ограничение пускового тока не требуются.

    Однофазное устройство плавного пуска ориентировано, прежде всего, на электродвигатели компрессоров в бытовых кондиционерах. Но также такое оборудование может быть успешно использовано для выполнения безопасного пуска однофазных нагрузок другого характера, при которых также будет обеспечено уменьшение ударных пусковых нагрузок и минимизация кратковременных перегрузок питающей сети. Но по причине удешевления тиристоров однофазные софтстартеры снимаются с производства. На их место приходят двухфазные.

    Двухфазное регулирование. Двухфазные устройства плавного пуска адаптированы для электродвигателей мощностью не выше 250кВт. Они используются только тогда, когда узким местом при запуске является не ограничение тока до уровня гарантированной величины, а смягчение механической ударной нагрузки. Большинство моделей предусматривают наличие внутренних байпасных контакторов, что существенно снижает затраты на запуск одного или нескольких параллельно подключенных электродвигателей.

    Трёхфазное регулирование. Этот тип регулирования рассматривается как наиболее оптимальное и технически совершенное решение. Трехфазные УПП позволяют получить симметричное по фазам ограничение тока и силы магнитного поля. Именно поэтому, относительно двухфазных плавных пускателей, в условиях того же крутящего момента силы в момент разгона электродвигателя, токовый режим предельно благоприятен и для привода, и для сети. Применение таких устройств плавного пуска универсально.

    Принцип действия устройства плавного пуска

    Принцип действия устройства плавного пуска базируется на том, что развиваемый двигателем механический момент находится в пропорции к квадрату приложенного к нему напряжения. Повышая опорное напряжение (начальный пониженный уровень) до максимального значения, появляется возможность выполнить плавный запуск и разгон электрического двигателя до номинальных оборотов.

    Как правило, такие УПП используют амплитудные методы управления за счет чего успешно справляются с запуском приводов и оборудования как в холостом, так и в слабо нагруженном режиме. Более усовершенствованные плавные пускатели, относящиеся к новому поколению, основываются на фазовых методах управления, в силу чего такие устройства способны запускать электрические приводы, для которых свойственны тяжелые пусковые режимы «номинал в номинал». Применение таких устройств плавного пуска дает возможность чаще производить запуски оборудования, уменьшить пусковой «бросок» тока до минимальных значений, оптимизировать количество применяемых реле, выключателей и контакторов. Устройство плавного пуска однофазного двигателя и других приводных узлов обеспечат надежную защиту от аварийной перегрузки, заклинивания, обрыва фазы, перегрева и снизит интенсивность электромагнитных помех.


    Подключение устройства плавного пуска

    1 – Если подключение устройства плавного пуска выполняется стандартно (3 провода), то подключение электродвигателя может выполняться и по схеме «звезда», и по схеме «треугольник».
    2 – Для электродвигателя той же мощности, при их подключении по схеме с внутренним соединением треугольником (6 проводов), потребляемая мощность УПП на 43% меньше, чем это требуется при стандартном 3-хпроводном соединении. Когда с плавным пускателем используется двигатель, подключенный по схеме с внутренним соединением треугольником, можно запускать электрический двигатели с мощностью на 73% выше, чем в условиях стандартного подключения (3 провода).
    3 – Для запуска двигателя с подключением согласно схеме с внутренним соединением по типу «треугольник» (6 проводов), вторичные обмотки силового трансформатора соединяются по типу «звезда», нейтраль обязательно заземляется.


    Более подробно о том, как подключить устройство плавного пуска, расскажут менеджеры нашей компании.


    Отправить ответ

    avatar
      Подписаться  
    Уведомление о